cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

super.c (65993B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 *
      7 * Authors: Artem Bityutskiy (Битюцкий Артём)
      8 *          Adrian Hunter
      9 */
     10
     11/*
     12 * This file implements UBIFS initialization and VFS superblock operations. Some
     13 * initialization stuff which is rather large and complex is placed at
     14 * corresponding subsystems, but most of it is here.
     15 */
     16
     17#include <linux/init.h>
     18#include <linux/slab.h>
     19#include <linux/module.h>
     20#include <linux/ctype.h>
     21#include <linux/kthread.h>
     22#include <linux/parser.h>
     23#include <linux/seq_file.h>
     24#include <linux/mount.h>
     25#include <linux/math64.h>
     26#include <linux/writeback.h>
     27#include "ubifs.h"
     28
     29static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
     30{
     31	int n = 0, ret;
     32
     33	ret = kstrtoint(val, 10, &n);
     34	if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
     35		return -EINVAL;
     36	return param_set_int(val, kp);
     37}
     38
     39static const struct kernel_param_ops ubifs_default_version_ops = {
     40	.set = ubifs_default_version_set,
     41	.get = param_get_int,
     42};
     43
     44int ubifs_default_version = UBIFS_FORMAT_VERSION;
     45module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
     46
     47/*
     48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
     49 * allocating too much.
     50 */
     51#define UBIFS_KMALLOC_OK (128*1024)
     52
     53/* Slab cache for UBIFS inodes */
     54static struct kmem_cache *ubifs_inode_slab;
     55
     56/* UBIFS TNC shrinker description */
     57static struct shrinker ubifs_shrinker_info = {
     58	.scan_objects = ubifs_shrink_scan,
     59	.count_objects = ubifs_shrink_count,
     60	.seeks = DEFAULT_SEEKS,
     61};
     62
     63/**
     64 * validate_inode - validate inode.
     65 * @c: UBIFS file-system description object
     66 * @inode: the inode to validate
     67 *
     68 * This is a helper function for 'ubifs_iget()' which validates various fields
     69 * of a newly built inode to make sure they contain sane values and prevent
     70 * possible vulnerabilities. Returns zero if the inode is all right and
     71 * a non-zero error code if not.
     72 */
     73static int validate_inode(struct ubifs_info *c, const struct inode *inode)
     74{
     75	int err;
     76	const struct ubifs_inode *ui = ubifs_inode(inode);
     77
     78	if (inode->i_size > c->max_inode_sz) {
     79		ubifs_err(c, "inode is too large (%lld)",
     80			  (long long)inode->i_size);
     81		return 1;
     82	}
     83
     84	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
     85		ubifs_err(c, "unknown compression type %d", ui->compr_type);
     86		return 2;
     87	}
     88
     89	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
     90		return 3;
     91
     92	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
     93		return 4;
     94
     95	if (ui->xattr && !S_ISREG(inode->i_mode))
     96		return 5;
     97
     98	if (!ubifs_compr_present(c, ui->compr_type)) {
     99		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
    100			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
    101	}
    102
    103	err = dbg_check_dir(c, inode);
    104	return err;
    105}
    106
    107struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
    108{
    109	int err;
    110	union ubifs_key key;
    111	struct ubifs_ino_node *ino;
    112	struct ubifs_info *c = sb->s_fs_info;
    113	struct inode *inode;
    114	struct ubifs_inode *ui;
    115
    116	dbg_gen("inode %lu", inum);
    117
    118	inode = iget_locked(sb, inum);
    119	if (!inode)
    120		return ERR_PTR(-ENOMEM);
    121	if (!(inode->i_state & I_NEW))
    122		return inode;
    123	ui = ubifs_inode(inode);
    124
    125	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
    126	if (!ino) {
    127		err = -ENOMEM;
    128		goto out;
    129	}
    130
    131	ino_key_init(c, &key, inode->i_ino);
    132
    133	err = ubifs_tnc_lookup(c, &key, ino);
    134	if (err)
    135		goto out_ino;
    136
    137	inode->i_flags |= S_NOCMTIME;
    138
    139	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
    140		inode->i_flags |= S_NOATIME;
    141
    142	set_nlink(inode, le32_to_cpu(ino->nlink));
    143	i_uid_write(inode, le32_to_cpu(ino->uid));
    144	i_gid_write(inode, le32_to_cpu(ino->gid));
    145	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
    146	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
    147	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
    148	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
    149	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
    150	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
    151	inode->i_mode = le32_to_cpu(ino->mode);
    152	inode->i_size = le64_to_cpu(ino->size);
    153
    154	ui->data_len    = le32_to_cpu(ino->data_len);
    155	ui->flags       = le32_to_cpu(ino->flags);
    156	ui->compr_type  = le16_to_cpu(ino->compr_type);
    157	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
    158	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
    159	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
    160	ui->xattr_names = le32_to_cpu(ino->xattr_names);
    161	ui->synced_i_size = ui->ui_size = inode->i_size;
    162
    163	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
    164
    165	err = validate_inode(c, inode);
    166	if (err)
    167		goto out_invalid;
    168
    169	switch (inode->i_mode & S_IFMT) {
    170	case S_IFREG:
    171		inode->i_mapping->a_ops = &ubifs_file_address_operations;
    172		inode->i_op = &ubifs_file_inode_operations;
    173		inode->i_fop = &ubifs_file_operations;
    174		if (ui->xattr) {
    175			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
    176			if (!ui->data) {
    177				err = -ENOMEM;
    178				goto out_ino;
    179			}
    180			memcpy(ui->data, ino->data, ui->data_len);
    181			((char *)ui->data)[ui->data_len] = '\0';
    182		} else if (ui->data_len != 0) {
    183			err = 10;
    184			goto out_invalid;
    185		}
    186		break;
    187	case S_IFDIR:
    188		inode->i_op  = &ubifs_dir_inode_operations;
    189		inode->i_fop = &ubifs_dir_operations;
    190		if (ui->data_len != 0) {
    191			err = 11;
    192			goto out_invalid;
    193		}
    194		break;
    195	case S_IFLNK:
    196		inode->i_op = &ubifs_symlink_inode_operations;
    197		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
    198			err = 12;
    199			goto out_invalid;
    200		}
    201		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
    202		if (!ui->data) {
    203			err = -ENOMEM;
    204			goto out_ino;
    205		}
    206		memcpy(ui->data, ino->data, ui->data_len);
    207		((char *)ui->data)[ui->data_len] = '\0';
    208		break;
    209	case S_IFBLK:
    210	case S_IFCHR:
    211	{
    212		dev_t rdev;
    213		union ubifs_dev_desc *dev;
    214
    215		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
    216		if (!ui->data) {
    217			err = -ENOMEM;
    218			goto out_ino;
    219		}
    220
    221		dev = (union ubifs_dev_desc *)ino->data;
    222		if (ui->data_len == sizeof(dev->new))
    223			rdev = new_decode_dev(le32_to_cpu(dev->new));
    224		else if (ui->data_len == sizeof(dev->huge))
    225			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
    226		else {
    227			err = 13;
    228			goto out_invalid;
    229		}
    230		memcpy(ui->data, ino->data, ui->data_len);
    231		inode->i_op = &ubifs_file_inode_operations;
    232		init_special_inode(inode, inode->i_mode, rdev);
    233		break;
    234	}
    235	case S_IFSOCK:
    236	case S_IFIFO:
    237		inode->i_op = &ubifs_file_inode_operations;
    238		init_special_inode(inode, inode->i_mode, 0);
    239		if (ui->data_len != 0) {
    240			err = 14;
    241			goto out_invalid;
    242		}
    243		break;
    244	default:
    245		err = 15;
    246		goto out_invalid;
    247	}
    248
    249	kfree(ino);
    250	ubifs_set_inode_flags(inode);
    251	unlock_new_inode(inode);
    252	return inode;
    253
    254out_invalid:
    255	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
    256	ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
    257	ubifs_dump_inode(c, inode);
    258	err = -EINVAL;
    259out_ino:
    260	kfree(ino);
    261out:
    262	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
    263	iget_failed(inode);
    264	return ERR_PTR(err);
    265}
    266
    267static struct inode *ubifs_alloc_inode(struct super_block *sb)
    268{
    269	struct ubifs_inode *ui;
    270
    271	ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
    272	if (!ui)
    273		return NULL;
    274
    275	memset((void *)ui + sizeof(struct inode), 0,
    276	       sizeof(struct ubifs_inode) - sizeof(struct inode));
    277	mutex_init(&ui->ui_mutex);
    278	init_rwsem(&ui->xattr_sem);
    279	spin_lock_init(&ui->ui_lock);
    280	return &ui->vfs_inode;
    281};
    282
    283static void ubifs_free_inode(struct inode *inode)
    284{
    285	struct ubifs_inode *ui = ubifs_inode(inode);
    286
    287	kfree(ui->data);
    288	fscrypt_free_inode(inode);
    289
    290	kmem_cache_free(ubifs_inode_slab, ui);
    291}
    292
    293/*
    294 * Note, Linux write-back code calls this without 'i_mutex'.
    295 */
    296static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
    297{
    298	int err = 0;
    299	struct ubifs_info *c = inode->i_sb->s_fs_info;
    300	struct ubifs_inode *ui = ubifs_inode(inode);
    301
    302	ubifs_assert(c, !ui->xattr);
    303	if (is_bad_inode(inode))
    304		return 0;
    305
    306	mutex_lock(&ui->ui_mutex);
    307	/*
    308	 * Due to races between write-back forced by budgeting
    309	 * (see 'sync_some_inodes()') and background write-back, the inode may
    310	 * have already been synchronized, do not do this again. This might
    311	 * also happen if it was synchronized in an VFS operation, e.g.
    312	 * 'ubifs_link()'.
    313	 */
    314	if (!ui->dirty) {
    315		mutex_unlock(&ui->ui_mutex);
    316		return 0;
    317	}
    318
    319	/*
    320	 * As an optimization, do not write orphan inodes to the media just
    321	 * because this is not needed.
    322	 */
    323	dbg_gen("inode %lu, mode %#x, nlink %u",
    324		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
    325	if (inode->i_nlink) {
    326		err = ubifs_jnl_write_inode(c, inode);
    327		if (err)
    328			ubifs_err(c, "can't write inode %lu, error %d",
    329				  inode->i_ino, err);
    330		else
    331			err = dbg_check_inode_size(c, inode, ui->ui_size);
    332	}
    333
    334	ui->dirty = 0;
    335	mutex_unlock(&ui->ui_mutex);
    336	ubifs_release_dirty_inode_budget(c, ui);
    337	return err;
    338}
    339
    340static int ubifs_drop_inode(struct inode *inode)
    341{
    342	int drop = generic_drop_inode(inode);
    343
    344	if (!drop)
    345		drop = fscrypt_drop_inode(inode);
    346
    347	return drop;
    348}
    349
    350static void ubifs_evict_inode(struct inode *inode)
    351{
    352	int err;
    353	struct ubifs_info *c = inode->i_sb->s_fs_info;
    354	struct ubifs_inode *ui = ubifs_inode(inode);
    355
    356	if (ui->xattr)
    357		/*
    358		 * Extended attribute inode deletions are fully handled in
    359		 * 'ubifs_removexattr()'. These inodes are special and have
    360		 * limited usage, so there is nothing to do here.
    361		 */
    362		goto out;
    363
    364	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
    365	ubifs_assert(c, !atomic_read(&inode->i_count));
    366
    367	truncate_inode_pages_final(&inode->i_data);
    368
    369	if (inode->i_nlink)
    370		goto done;
    371
    372	if (is_bad_inode(inode))
    373		goto out;
    374
    375	ui->ui_size = inode->i_size = 0;
    376	err = ubifs_jnl_delete_inode(c, inode);
    377	if (err)
    378		/*
    379		 * Worst case we have a lost orphan inode wasting space, so a
    380		 * simple error message is OK here.
    381		 */
    382		ubifs_err(c, "can't delete inode %lu, error %d",
    383			  inode->i_ino, err);
    384
    385out:
    386	if (ui->dirty)
    387		ubifs_release_dirty_inode_budget(c, ui);
    388	else {
    389		/* We've deleted something - clean the "no space" flags */
    390		c->bi.nospace = c->bi.nospace_rp = 0;
    391		smp_wmb();
    392	}
    393done:
    394	clear_inode(inode);
    395	fscrypt_put_encryption_info(inode);
    396}
    397
    398static void ubifs_dirty_inode(struct inode *inode, int flags)
    399{
    400	struct ubifs_info *c = inode->i_sb->s_fs_info;
    401	struct ubifs_inode *ui = ubifs_inode(inode);
    402
    403	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
    404	if (!ui->dirty) {
    405		ui->dirty = 1;
    406		dbg_gen("inode %lu",  inode->i_ino);
    407	}
    408}
    409
    410static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
    411{
    412	struct ubifs_info *c = dentry->d_sb->s_fs_info;
    413	unsigned long long free;
    414	__le32 *uuid = (__le32 *)c->uuid;
    415
    416	free = ubifs_get_free_space(c);
    417	dbg_gen("free space %lld bytes (%lld blocks)",
    418		free, free >> UBIFS_BLOCK_SHIFT);
    419
    420	buf->f_type = UBIFS_SUPER_MAGIC;
    421	buf->f_bsize = UBIFS_BLOCK_SIZE;
    422	buf->f_blocks = c->block_cnt;
    423	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
    424	if (free > c->report_rp_size)
    425		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
    426	else
    427		buf->f_bavail = 0;
    428	buf->f_files = 0;
    429	buf->f_ffree = 0;
    430	buf->f_namelen = UBIFS_MAX_NLEN;
    431	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
    432	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
    433	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
    434	return 0;
    435}
    436
    437static int ubifs_show_options(struct seq_file *s, struct dentry *root)
    438{
    439	struct ubifs_info *c = root->d_sb->s_fs_info;
    440
    441	if (c->mount_opts.unmount_mode == 2)
    442		seq_puts(s, ",fast_unmount");
    443	else if (c->mount_opts.unmount_mode == 1)
    444		seq_puts(s, ",norm_unmount");
    445
    446	if (c->mount_opts.bulk_read == 2)
    447		seq_puts(s, ",bulk_read");
    448	else if (c->mount_opts.bulk_read == 1)
    449		seq_puts(s, ",no_bulk_read");
    450
    451	if (c->mount_opts.chk_data_crc == 2)
    452		seq_puts(s, ",chk_data_crc");
    453	else if (c->mount_opts.chk_data_crc == 1)
    454		seq_puts(s, ",no_chk_data_crc");
    455
    456	if (c->mount_opts.override_compr) {
    457		seq_printf(s, ",compr=%s",
    458			   ubifs_compr_name(c, c->mount_opts.compr_type));
    459	}
    460
    461	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
    462	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
    463
    464	return 0;
    465}
    466
    467static int ubifs_sync_fs(struct super_block *sb, int wait)
    468{
    469	int i, err;
    470	struct ubifs_info *c = sb->s_fs_info;
    471
    472	/*
    473	 * Zero @wait is just an advisory thing to help the file system shove
    474	 * lots of data into the queues, and there will be the second
    475	 * '->sync_fs()' call, with non-zero @wait.
    476	 */
    477	if (!wait)
    478		return 0;
    479
    480	/*
    481	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
    482	 * do this if it waits for an already running commit.
    483	 */
    484	for (i = 0; i < c->jhead_cnt; i++) {
    485		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
    486		if (err)
    487			return err;
    488	}
    489
    490	/*
    491	 * Strictly speaking, it is not necessary to commit the journal here,
    492	 * synchronizing write-buffers would be enough. But committing makes
    493	 * UBIFS free space predictions much more accurate, so we want to let
    494	 * the user be able to get more accurate results of 'statfs()' after
    495	 * they synchronize the file system.
    496	 */
    497	err = ubifs_run_commit(c);
    498	if (err)
    499		return err;
    500
    501	return ubi_sync(c->vi.ubi_num);
    502}
    503
    504/**
    505 * init_constants_early - initialize UBIFS constants.
    506 * @c: UBIFS file-system description object
    507 *
    508 * This function initialize UBIFS constants which do not need the superblock to
    509 * be read. It also checks that the UBI volume satisfies basic UBIFS
    510 * requirements. Returns zero in case of success and a negative error code in
    511 * case of failure.
    512 */
    513static int init_constants_early(struct ubifs_info *c)
    514{
    515	if (c->vi.corrupted) {
    516		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
    517		c->ro_media = 1;
    518	}
    519
    520	if (c->di.ro_mode) {
    521		ubifs_msg(c, "read-only UBI device");
    522		c->ro_media = 1;
    523	}
    524
    525	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
    526		ubifs_msg(c, "static UBI volume - read-only mode");
    527		c->ro_media = 1;
    528	}
    529
    530	c->leb_cnt = c->vi.size;
    531	c->leb_size = c->vi.usable_leb_size;
    532	c->leb_start = c->di.leb_start;
    533	c->half_leb_size = c->leb_size / 2;
    534	c->min_io_size = c->di.min_io_size;
    535	c->min_io_shift = fls(c->min_io_size) - 1;
    536	c->max_write_size = c->di.max_write_size;
    537	c->max_write_shift = fls(c->max_write_size) - 1;
    538
    539	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
    540		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
    541			   c->leb_size, UBIFS_MIN_LEB_SZ);
    542		return -EINVAL;
    543	}
    544
    545	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
    546		ubifs_errc(c, "too few LEBs (%d), min. is %d",
    547			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
    548		return -EINVAL;
    549	}
    550
    551	if (!is_power_of_2(c->min_io_size)) {
    552		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
    553		return -EINVAL;
    554	}
    555
    556	/*
    557	 * Maximum write size has to be greater or equivalent to min. I/O
    558	 * size, and be multiple of min. I/O size.
    559	 */
    560	if (c->max_write_size < c->min_io_size ||
    561	    c->max_write_size % c->min_io_size ||
    562	    !is_power_of_2(c->max_write_size)) {
    563		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
    564			   c->max_write_size, c->min_io_size);
    565		return -EINVAL;
    566	}
    567
    568	/*
    569	 * UBIFS aligns all node to 8-byte boundary, so to make function in
    570	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
    571	 * less than 8.
    572	 */
    573	if (c->min_io_size < 8) {
    574		c->min_io_size = 8;
    575		c->min_io_shift = 3;
    576		if (c->max_write_size < c->min_io_size) {
    577			c->max_write_size = c->min_io_size;
    578			c->max_write_shift = c->min_io_shift;
    579		}
    580	}
    581
    582	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
    583	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
    584
    585	/*
    586	 * Initialize node length ranges which are mostly needed for node
    587	 * length validation.
    588	 */
    589	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
    590	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
    591	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
    592	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
    593	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
    594	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
    595	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
    596	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
    597				UBIFS_MAX_HMAC_LEN;
    598	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
    599	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
    600
    601	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
    602	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
    603	c->ranges[UBIFS_ORPH_NODE].min_len =
    604				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
    605	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
    606	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
    607	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
    608	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
    609	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
    610	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
    611	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
    612	/*
    613	 * Minimum indexing node size is amended later when superblock is
    614	 * read and the key length is known.
    615	 */
    616	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
    617	/*
    618	 * Maximum indexing node size is amended later when superblock is
    619	 * read and the fanout is known.
    620	 */
    621	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
    622
    623	/*
    624	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
    625	 * about these values.
    626	 */
    627	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
    628	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
    629
    630	/*
    631	 * Calculate how many bytes would be wasted at the end of LEB if it was
    632	 * fully filled with data nodes of maximum size. This is used in
    633	 * calculations when reporting free space.
    634	 */
    635	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
    636
    637	/* Buffer size for bulk-reads */
    638	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
    639	if (c->max_bu_buf_len > c->leb_size)
    640		c->max_bu_buf_len = c->leb_size;
    641
    642	/* Log is ready, preserve one LEB for commits. */
    643	c->min_log_bytes = c->leb_size;
    644
    645	return 0;
    646}
    647
    648/**
    649 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
    650 * @c: UBIFS file-system description object
    651 * @lnum: LEB the write-buffer was synchronized to
    652 * @free: how many free bytes left in this LEB
    653 * @pad: how many bytes were padded
    654 *
    655 * This is a callback function which is called by the I/O unit when the
    656 * write-buffer is synchronized. We need this to correctly maintain space
    657 * accounting in bud logical eraseblocks. This function returns zero in case of
    658 * success and a negative error code in case of failure.
    659 *
    660 * This function actually belongs to the journal, but we keep it here because
    661 * we want to keep it static.
    662 */
    663static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
    664{
    665	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
    666}
    667
    668/*
    669 * init_constants_sb - initialize UBIFS constants.
    670 * @c: UBIFS file-system description object
    671 *
    672 * This is a helper function which initializes various UBIFS constants after
    673 * the superblock has been read. It also checks various UBIFS parameters and
    674 * makes sure they are all right. Returns zero in case of success and a
    675 * negative error code in case of failure.
    676 */
    677static int init_constants_sb(struct ubifs_info *c)
    678{
    679	int tmp, err;
    680	long long tmp64;
    681
    682	c->main_bytes = (long long)c->main_lebs * c->leb_size;
    683	c->max_znode_sz = sizeof(struct ubifs_znode) +
    684				c->fanout * sizeof(struct ubifs_zbranch);
    685
    686	tmp = ubifs_idx_node_sz(c, 1);
    687	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
    688	c->min_idx_node_sz = ALIGN(tmp, 8);
    689
    690	tmp = ubifs_idx_node_sz(c, c->fanout);
    691	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
    692	c->max_idx_node_sz = ALIGN(tmp, 8);
    693
    694	/* Make sure LEB size is large enough to fit full commit */
    695	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
    696	tmp = ALIGN(tmp, c->min_io_size);
    697	if (tmp > c->leb_size) {
    698		ubifs_err(c, "too small LEB size %d, at least %d needed",
    699			  c->leb_size, tmp);
    700		return -EINVAL;
    701	}
    702
    703	/*
    704	 * Make sure that the log is large enough to fit reference nodes for
    705	 * all buds plus one reserved LEB.
    706	 */
    707	tmp64 = c->max_bud_bytes + c->leb_size - 1;
    708	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
    709	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
    710	tmp /= c->leb_size;
    711	tmp += 1;
    712	if (c->log_lebs < tmp) {
    713		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
    714			  c->log_lebs, tmp);
    715		return -EINVAL;
    716	}
    717
    718	/*
    719	 * When budgeting we assume worst-case scenarios when the pages are not
    720	 * be compressed and direntries are of the maximum size.
    721	 *
    722	 * Note, data, which may be stored in inodes is budgeted separately, so
    723	 * it is not included into 'c->bi.inode_budget'.
    724	 */
    725	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
    726	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
    727	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
    728
    729	/*
    730	 * When the amount of flash space used by buds becomes
    731	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
    732	 * The writers are unblocked when the commit is finished. To avoid
    733	 * writers to be blocked UBIFS initiates background commit in advance,
    734	 * when number of bud bytes becomes above the limit defined below.
    735	 */
    736	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
    737
    738	/*
    739	 * Ensure minimum journal size. All the bytes in the journal heads are
    740	 * considered to be used, when calculating the current journal usage.
    741	 * Consequently, if the journal is too small, UBIFS will treat it as
    742	 * always full.
    743	 */
    744	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
    745	if (c->bg_bud_bytes < tmp64)
    746		c->bg_bud_bytes = tmp64;
    747	if (c->max_bud_bytes < tmp64 + c->leb_size)
    748		c->max_bud_bytes = tmp64 + c->leb_size;
    749
    750	err = ubifs_calc_lpt_geom(c);
    751	if (err)
    752		return err;
    753
    754	/* Initialize effective LEB size used in budgeting calculations */
    755	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
    756	return 0;
    757}
    758
    759/*
    760 * init_constants_master - initialize UBIFS constants.
    761 * @c: UBIFS file-system description object
    762 *
    763 * This is a helper function which initializes various UBIFS constants after
    764 * the master node has been read. It also checks various UBIFS parameters and
    765 * makes sure they are all right.
    766 */
    767static void init_constants_master(struct ubifs_info *c)
    768{
    769	long long tmp64;
    770
    771	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
    772	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
    773
    774	/*
    775	 * Calculate total amount of FS blocks. This number is not used
    776	 * internally because it does not make much sense for UBIFS, but it is
    777	 * necessary to report something for the 'statfs()' call.
    778	 *
    779	 * Subtract the LEB reserved for GC, the LEB which is reserved for
    780	 * deletions, minimum LEBs for the index, and assume only one journal
    781	 * head is available.
    782	 */
    783	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
    784	tmp64 *= (long long)c->leb_size - c->leb_overhead;
    785	tmp64 = ubifs_reported_space(c, tmp64);
    786	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
    787}
    788
    789/**
    790 * take_gc_lnum - reserve GC LEB.
    791 * @c: UBIFS file-system description object
    792 *
    793 * This function ensures that the LEB reserved for garbage collection is marked
    794 * as "taken" in lprops. We also have to set free space to LEB size and dirty
    795 * space to zero, because lprops may contain out-of-date information if the
    796 * file-system was un-mounted before it has been committed. This function
    797 * returns zero in case of success and a negative error code in case of
    798 * failure.
    799 */
    800static int take_gc_lnum(struct ubifs_info *c)
    801{
    802	int err;
    803
    804	if (c->gc_lnum == -1) {
    805		ubifs_err(c, "no LEB for GC");
    806		return -EINVAL;
    807	}
    808
    809	/* And we have to tell lprops that this LEB is taken */
    810	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
    811				  LPROPS_TAKEN, 0, 0);
    812	return err;
    813}
    814
    815/**
    816 * alloc_wbufs - allocate write-buffers.
    817 * @c: UBIFS file-system description object
    818 *
    819 * This helper function allocates and initializes UBIFS write-buffers. Returns
    820 * zero in case of success and %-ENOMEM in case of failure.
    821 */
    822static int alloc_wbufs(struct ubifs_info *c)
    823{
    824	int i, err;
    825
    826	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
    827			    GFP_KERNEL);
    828	if (!c->jheads)
    829		return -ENOMEM;
    830
    831	/* Initialize journal heads */
    832	for (i = 0; i < c->jhead_cnt; i++) {
    833		INIT_LIST_HEAD(&c->jheads[i].buds_list);
    834		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
    835		if (err)
    836			return err;
    837
    838		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
    839		c->jheads[i].wbuf.jhead = i;
    840		c->jheads[i].grouped = 1;
    841		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
    842		if (IS_ERR(c->jheads[i].log_hash)) {
    843			err = PTR_ERR(c->jheads[i].log_hash);
    844			goto out;
    845		}
    846	}
    847
    848	/*
    849	 * Garbage Collector head does not need to be synchronized by timer.
    850	 * Also GC head nodes are not grouped.
    851	 */
    852	c->jheads[GCHD].wbuf.no_timer = 1;
    853	c->jheads[GCHD].grouped = 0;
    854
    855	return 0;
    856
    857out:
    858	while (i--)
    859		kfree(c->jheads[i].log_hash);
    860
    861	return err;
    862}
    863
    864/**
    865 * free_wbufs - free write-buffers.
    866 * @c: UBIFS file-system description object
    867 */
    868static void free_wbufs(struct ubifs_info *c)
    869{
    870	int i;
    871
    872	if (c->jheads) {
    873		for (i = 0; i < c->jhead_cnt; i++) {
    874			kfree(c->jheads[i].wbuf.buf);
    875			kfree(c->jheads[i].wbuf.inodes);
    876			kfree(c->jheads[i].log_hash);
    877		}
    878		kfree(c->jheads);
    879		c->jheads = NULL;
    880	}
    881}
    882
    883/**
    884 * free_orphans - free orphans.
    885 * @c: UBIFS file-system description object
    886 */
    887static void free_orphans(struct ubifs_info *c)
    888{
    889	struct ubifs_orphan *orph;
    890
    891	while (c->orph_dnext) {
    892		orph = c->orph_dnext;
    893		c->orph_dnext = orph->dnext;
    894		list_del(&orph->list);
    895		kfree(orph);
    896	}
    897
    898	while (!list_empty(&c->orph_list)) {
    899		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
    900		list_del(&orph->list);
    901		kfree(orph);
    902		ubifs_err(c, "orphan list not empty at unmount");
    903	}
    904
    905	vfree(c->orph_buf);
    906	c->orph_buf = NULL;
    907}
    908
    909/**
    910 * free_buds - free per-bud objects.
    911 * @c: UBIFS file-system description object
    912 */
    913static void free_buds(struct ubifs_info *c)
    914{
    915	struct ubifs_bud *bud, *n;
    916
    917	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
    918		kfree(bud);
    919}
    920
    921/**
    922 * check_volume_empty - check if the UBI volume is empty.
    923 * @c: UBIFS file-system description object
    924 *
    925 * This function checks if the UBIFS volume is empty by looking if its LEBs are
    926 * mapped or not. The result of checking is stored in the @c->empty variable.
    927 * Returns zero in case of success and a negative error code in case of
    928 * failure.
    929 */
    930static int check_volume_empty(struct ubifs_info *c)
    931{
    932	int lnum, err;
    933
    934	c->empty = 1;
    935	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
    936		err = ubifs_is_mapped(c, lnum);
    937		if (unlikely(err < 0))
    938			return err;
    939		if (err == 1) {
    940			c->empty = 0;
    941			break;
    942		}
    943
    944		cond_resched();
    945	}
    946
    947	return 0;
    948}
    949
    950/*
    951 * UBIFS mount options.
    952 *
    953 * Opt_fast_unmount: do not run a journal commit before un-mounting
    954 * Opt_norm_unmount: run a journal commit before un-mounting
    955 * Opt_bulk_read: enable bulk-reads
    956 * Opt_no_bulk_read: disable bulk-reads
    957 * Opt_chk_data_crc: check CRCs when reading data nodes
    958 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
    959 * Opt_override_compr: override default compressor
    960 * Opt_assert: set ubifs_assert() action
    961 * Opt_auth_key: The key name used for authentication
    962 * Opt_auth_hash_name: The hash type used for authentication
    963 * Opt_err: just end of array marker
    964 */
    965enum {
    966	Opt_fast_unmount,
    967	Opt_norm_unmount,
    968	Opt_bulk_read,
    969	Opt_no_bulk_read,
    970	Opt_chk_data_crc,
    971	Opt_no_chk_data_crc,
    972	Opt_override_compr,
    973	Opt_assert,
    974	Opt_auth_key,
    975	Opt_auth_hash_name,
    976	Opt_ignore,
    977	Opt_err,
    978};
    979
    980static const match_table_t tokens = {
    981	{Opt_fast_unmount, "fast_unmount"},
    982	{Opt_norm_unmount, "norm_unmount"},
    983	{Opt_bulk_read, "bulk_read"},
    984	{Opt_no_bulk_read, "no_bulk_read"},
    985	{Opt_chk_data_crc, "chk_data_crc"},
    986	{Opt_no_chk_data_crc, "no_chk_data_crc"},
    987	{Opt_override_compr, "compr=%s"},
    988	{Opt_auth_key, "auth_key=%s"},
    989	{Opt_auth_hash_name, "auth_hash_name=%s"},
    990	{Opt_ignore, "ubi=%s"},
    991	{Opt_ignore, "vol=%s"},
    992	{Opt_assert, "assert=%s"},
    993	{Opt_err, NULL},
    994};
    995
    996/**
    997 * parse_standard_option - parse a standard mount option.
    998 * @option: the option to parse
    999 *
   1000 * Normally, standard mount options like "sync" are passed to file-systems as
   1001 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
   1002 * be present in the options string. This function tries to deal with this
   1003 * situation and parse standard options. Returns 0 if the option was not
   1004 * recognized, and the corresponding integer flag if it was.
   1005 *
   1006 * UBIFS is only interested in the "sync" option, so do not check for anything
   1007 * else.
   1008 */
   1009static int parse_standard_option(const char *option)
   1010{
   1011
   1012	pr_notice("UBIFS: parse %s\n", option);
   1013	if (!strcmp(option, "sync"))
   1014		return SB_SYNCHRONOUS;
   1015	return 0;
   1016}
   1017
   1018/**
   1019 * ubifs_parse_options - parse mount parameters.
   1020 * @c: UBIFS file-system description object
   1021 * @options: parameters to parse
   1022 * @is_remount: non-zero if this is FS re-mount
   1023 *
   1024 * This function parses UBIFS mount options and returns zero in case success
   1025 * and a negative error code in case of failure.
   1026 */
   1027static int ubifs_parse_options(struct ubifs_info *c, char *options,
   1028			       int is_remount)
   1029{
   1030	char *p;
   1031	substring_t args[MAX_OPT_ARGS];
   1032
   1033	if (!options)
   1034		return 0;
   1035
   1036	while ((p = strsep(&options, ","))) {
   1037		int token;
   1038
   1039		if (!*p)
   1040			continue;
   1041
   1042		token = match_token(p, tokens, args);
   1043		switch (token) {
   1044		/*
   1045		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
   1046		 * We accept them in order to be backward-compatible. But this
   1047		 * should be removed at some point.
   1048		 */
   1049		case Opt_fast_unmount:
   1050			c->mount_opts.unmount_mode = 2;
   1051			break;
   1052		case Opt_norm_unmount:
   1053			c->mount_opts.unmount_mode = 1;
   1054			break;
   1055		case Opt_bulk_read:
   1056			c->mount_opts.bulk_read = 2;
   1057			c->bulk_read = 1;
   1058			break;
   1059		case Opt_no_bulk_read:
   1060			c->mount_opts.bulk_read = 1;
   1061			c->bulk_read = 0;
   1062			break;
   1063		case Opt_chk_data_crc:
   1064			c->mount_opts.chk_data_crc = 2;
   1065			c->no_chk_data_crc = 0;
   1066			break;
   1067		case Opt_no_chk_data_crc:
   1068			c->mount_opts.chk_data_crc = 1;
   1069			c->no_chk_data_crc = 1;
   1070			break;
   1071		case Opt_override_compr:
   1072		{
   1073			char *name = match_strdup(&args[0]);
   1074
   1075			if (!name)
   1076				return -ENOMEM;
   1077			if (!strcmp(name, "none"))
   1078				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
   1079			else if (!strcmp(name, "lzo"))
   1080				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
   1081			else if (!strcmp(name, "zlib"))
   1082				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
   1083			else if (!strcmp(name, "zstd"))
   1084				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
   1085			else {
   1086				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
   1087				kfree(name);
   1088				return -EINVAL;
   1089			}
   1090			kfree(name);
   1091			c->mount_opts.override_compr = 1;
   1092			c->default_compr = c->mount_opts.compr_type;
   1093			break;
   1094		}
   1095		case Opt_assert:
   1096		{
   1097			char *act = match_strdup(&args[0]);
   1098
   1099			if (!act)
   1100				return -ENOMEM;
   1101			if (!strcmp(act, "report"))
   1102				c->assert_action = ASSACT_REPORT;
   1103			else if (!strcmp(act, "read-only"))
   1104				c->assert_action = ASSACT_RO;
   1105			else if (!strcmp(act, "panic"))
   1106				c->assert_action = ASSACT_PANIC;
   1107			else {
   1108				ubifs_err(c, "unknown assert action \"%s\"", act);
   1109				kfree(act);
   1110				return -EINVAL;
   1111			}
   1112			kfree(act);
   1113			break;
   1114		}
   1115		case Opt_auth_key:
   1116			if (!is_remount) {
   1117				c->auth_key_name = kstrdup(args[0].from,
   1118								GFP_KERNEL);
   1119				if (!c->auth_key_name)
   1120					return -ENOMEM;
   1121			}
   1122			break;
   1123		case Opt_auth_hash_name:
   1124			if (!is_remount) {
   1125				c->auth_hash_name = kstrdup(args[0].from,
   1126								GFP_KERNEL);
   1127				if (!c->auth_hash_name)
   1128					return -ENOMEM;
   1129			}
   1130			break;
   1131		case Opt_ignore:
   1132			break;
   1133		default:
   1134		{
   1135			unsigned long flag;
   1136			struct super_block *sb = c->vfs_sb;
   1137
   1138			flag = parse_standard_option(p);
   1139			if (!flag) {
   1140				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
   1141					  p);
   1142				return -EINVAL;
   1143			}
   1144			sb->s_flags |= flag;
   1145			break;
   1146		}
   1147		}
   1148	}
   1149
   1150	return 0;
   1151}
   1152
   1153/*
   1154 * ubifs_release_options - release mount parameters which have been dumped.
   1155 * @c: UBIFS file-system description object
   1156 */
   1157static void ubifs_release_options(struct ubifs_info *c)
   1158{
   1159	kfree(c->auth_key_name);
   1160	c->auth_key_name = NULL;
   1161	kfree(c->auth_hash_name);
   1162	c->auth_hash_name = NULL;
   1163}
   1164
   1165/**
   1166 * destroy_journal - destroy journal data structures.
   1167 * @c: UBIFS file-system description object
   1168 *
   1169 * This function destroys journal data structures including those that may have
   1170 * been created by recovery functions.
   1171 */
   1172static void destroy_journal(struct ubifs_info *c)
   1173{
   1174	while (!list_empty(&c->unclean_leb_list)) {
   1175		struct ubifs_unclean_leb *ucleb;
   1176
   1177		ucleb = list_entry(c->unclean_leb_list.next,
   1178				   struct ubifs_unclean_leb, list);
   1179		list_del(&ucleb->list);
   1180		kfree(ucleb);
   1181	}
   1182	while (!list_empty(&c->old_buds)) {
   1183		struct ubifs_bud *bud;
   1184
   1185		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
   1186		list_del(&bud->list);
   1187		kfree(bud);
   1188	}
   1189	ubifs_destroy_idx_gc(c);
   1190	ubifs_destroy_size_tree(c);
   1191	ubifs_tnc_close(c);
   1192	free_buds(c);
   1193}
   1194
   1195/**
   1196 * bu_init - initialize bulk-read information.
   1197 * @c: UBIFS file-system description object
   1198 */
   1199static void bu_init(struct ubifs_info *c)
   1200{
   1201	ubifs_assert(c, c->bulk_read == 1);
   1202
   1203	if (c->bu.buf)
   1204		return; /* Already initialized */
   1205
   1206again:
   1207	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
   1208	if (!c->bu.buf) {
   1209		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
   1210			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
   1211			goto again;
   1212		}
   1213
   1214		/* Just disable bulk-read */
   1215		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
   1216			   c->max_bu_buf_len);
   1217		c->mount_opts.bulk_read = 1;
   1218		c->bulk_read = 0;
   1219		return;
   1220	}
   1221}
   1222
   1223/**
   1224 * check_free_space - check if there is enough free space to mount.
   1225 * @c: UBIFS file-system description object
   1226 *
   1227 * This function makes sure UBIFS has enough free space to be mounted in
   1228 * read/write mode. UBIFS must always have some free space to allow deletions.
   1229 */
   1230static int check_free_space(struct ubifs_info *c)
   1231{
   1232	ubifs_assert(c, c->dark_wm > 0);
   1233	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
   1234		ubifs_err(c, "insufficient free space to mount in R/W mode");
   1235		ubifs_dump_budg(c, &c->bi);
   1236		ubifs_dump_lprops(c);
   1237		return -ENOSPC;
   1238	}
   1239	return 0;
   1240}
   1241
   1242/**
   1243 * mount_ubifs - mount UBIFS file-system.
   1244 * @c: UBIFS file-system description object
   1245 *
   1246 * This function mounts UBIFS file system. Returns zero in case of success and
   1247 * a negative error code in case of failure.
   1248 */
   1249static int mount_ubifs(struct ubifs_info *c)
   1250{
   1251	int err;
   1252	long long x, y;
   1253	size_t sz;
   1254
   1255	c->ro_mount = !!sb_rdonly(c->vfs_sb);
   1256	/* Suppress error messages while probing if SB_SILENT is set */
   1257	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
   1258
   1259	err = init_constants_early(c);
   1260	if (err)
   1261		return err;
   1262
   1263	err = ubifs_debugging_init(c);
   1264	if (err)
   1265		return err;
   1266
   1267	err = ubifs_sysfs_register(c);
   1268	if (err)
   1269		goto out_debugging;
   1270
   1271	err = check_volume_empty(c);
   1272	if (err)
   1273		goto out_free;
   1274
   1275	if (c->empty && (c->ro_mount || c->ro_media)) {
   1276		/*
   1277		 * This UBI volume is empty, and read-only, or the file system
   1278		 * is mounted read-only - we cannot format it.
   1279		 */
   1280		ubifs_err(c, "can't format empty UBI volume: read-only %s",
   1281			  c->ro_media ? "UBI volume" : "mount");
   1282		err = -EROFS;
   1283		goto out_free;
   1284	}
   1285
   1286	if (c->ro_media && !c->ro_mount) {
   1287		ubifs_err(c, "cannot mount read-write - read-only media");
   1288		err = -EROFS;
   1289		goto out_free;
   1290	}
   1291
   1292	/*
   1293	 * The requirement for the buffer is that it should fit indexing B-tree
   1294	 * height amount of integers. We assume the height if the TNC tree will
   1295	 * never exceed 64.
   1296	 */
   1297	err = -ENOMEM;
   1298	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
   1299					 GFP_KERNEL);
   1300	if (!c->bottom_up_buf)
   1301		goto out_free;
   1302
   1303	c->sbuf = vmalloc(c->leb_size);
   1304	if (!c->sbuf)
   1305		goto out_free;
   1306
   1307	if (!c->ro_mount) {
   1308		c->ileb_buf = vmalloc(c->leb_size);
   1309		if (!c->ileb_buf)
   1310			goto out_free;
   1311	}
   1312
   1313	if (c->bulk_read == 1)
   1314		bu_init(c);
   1315
   1316	if (!c->ro_mount) {
   1317		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
   1318					       UBIFS_CIPHER_BLOCK_SIZE,
   1319					       GFP_KERNEL);
   1320		if (!c->write_reserve_buf)
   1321			goto out_free;
   1322	}
   1323
   1324	c->mounting = 1;
   1325
   1326	if (c->auth_key_name) {
   1327		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
   1328			err = ubifs_init_authentication(c);
   1329			if (err)
   1330				goto out_free;
   1331		} else {
   1332			ubifs_err(c, "auth_key_name, but UBIFS is built without"
   1333				  " authentication support");
   1334			err = -EINVAL;
   1335			goto out_free;
   1336		}
   1337	}
   1338
   1339	err = ubifs_read_superblock(c);
   1340	if (err)
   1341		goto out_auth;
   1342
   1343	c->probing = 0;
   1344
   1345	/*
   1346	 * Make sure the compressor which is set as default in the superblock
   1347	 * or overridden by mount options is actually compiled in.
   1348	 */
   1349	if (!ubifs_compr_present(c, c->default_compr)) {
   1350		ubifs_err(c, "'compressor \"%s\" is not compiled in",
   1351			  ubifs_compr_name(c, c->default_compr));
   1352		err = -ENOTSUPP;
   1353		goto out_auth;
   1354	}
   1355
   1356	err = init_constants_sb(c);
   1357	if (err)
   1358		goto out_auth;
   1359
   1360	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
   1361	c->cbuf = kmalloc(sz, GFP_NOFS);
   1362	if (!c->cbuf) {
   1363		err = -ENOMEM;
   1364		goto out_auth;
   1365	}
   1366
   1367	err = alloc_wbufs(c);
   1368	if (err)
   1369		goto out_cbuf;
   1370
   1371	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
   1372	if (!c->ro_mount) {
   1373		/* Create background thread */
   1374		c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
   1375		if (IS_ERR(c->bgt)) {
   1376			err = PTR_ERR(c->bgt);
   1377			c->bgt = NULL;
   1378			ubifs_err(c, "cannot spawn \"%s\", error %d",
   1379				  c->bgt_name, err);
   1380			goto out_wbufs;
   1381		}
   1382	}
   1383
   1384	err = ubifs_read_master(c);
   1385	if (err)
   1386		goto out_master;
   1387
   1388	init_constants_master(c);
   1389
   1390	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
   1391		ubifs_msg(c, "recovery needed");
   1392		c->need_recovery = 1;
   1393	}
   1394
   1395	if (c->need_recovery && !c->ro_mount) {
   1396		err = ubifs_recover_inl_heads(c, c->sbuf);
   1397		if (err)
   1398			goto out_master;
   1399	}
   1400
   1401	err = ubifs_lpt_init(c, 1, !c->ro_mount);
   1402	if (err)
   1403		goto out_master;
   1404
   1405	if (!c->ro_mount && c->space_fixup) {
   1406		err = ubifs_fixup_free_space(c);
   1407		if (err)
   1408			goto out_lpt;
   1409	}
   1410
   1411	if (!c->ro_mount && !c->need_recovery) {
   1412		/*
   1413		 * Set the "dirty" flag so that if we reboot uncleanly we
   1414		 * will notice this immediately on the next mount.
   1415		 */
   1416		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
   1417		err = ubifs_write_master(c);
   1418		if (err)
   1419			goto out_lpt;
   1420	}
   1421
   1422	/*
   1423	 * Handle offline signed images: Now that the master node is
   1424	 * written and its validation no longer depends on the hash
   1425	 * in the superblock, we can update the offline signed
   1426	 * superblock with a HMAC version,
   1427	 */
   1428	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
   1429		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
   1430		if (err)
   1431			goto out_lpt;
   1432		c->superblock_need_write = 1;
   1433	}
   1434
   1435	if (!c->ro_mount && c->superblock_need_write) {
   1436		err = ubifs_write_sb_node(c, c->sup_node);
   1437		if (err)
   1438			goto out_lpt;
   1439		c->superblock_need_write = 0;
   1440	}
   1441
   1442	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
   1443	if (err)
   1444		goto out_lpt;
   1445
   1446	err = ubifs_replay_journal(c);
   1447	if (err)
   1448		goto out_journal;
   1449
   1450	/* Calculate 'min_idx_lebs' after journal replay */
   1451	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
   1452
   1453	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
   1454	if (err)
   1455		goto out_orphans;
   1456
   1457	if (!c->ro_mount) {
   1458		int lnum;
   1459
   1460		err = check_free_space(c);
   1461		if (err)
   1462			goto out_orphans;
   1463
   1464		/* Check for enough log space */
   1465		lnum = c->lhead_lnum + 1;
   1466		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
   1467			lnum = UBIFS_LOG_LNUM;
   1468		if (lnum == c->ltail_lnum) {
   1469			err = ubifs_consolidate_log(c);
   1470			if (err)
   1471				goto out_orphans;
   1472		}
   1473
   1474		if (c->need_recovery) {
   1475			if (!ubifs_authenticated(c)) {
   1476				err = ubifs_recover_size(c, true);
   1477				if (err)
   1478					goto out_orphans;
   1479			}
   1480
   1481			err = ubifs_rcvry_gc_commit(c);
   1482			if (err)
   1483				goto out_orphans;
   1484
   1485			if (ubifs_authenticated(c)) {
   1486				err = ubifs_recover_size(c, false);
   1487				if (err)
   1488					goto out_orphans;
   1489			}
   1490		} else {
   1491			err = take_gc_lnum(c);
   1492			if (err)
   1493				goto out_orphans;
   1494
   1495			/*
   1496			 * GC LEB may contain garbage if there was an unclean
   1497			 * reboot, and it should be un-mapped.
   1498			 */
   1499			err = ubifs_leb_unmap(c, c->gc_lnum);
   1500			if (err)
   1501				goto out_orphans;
   1502		}
   1503
   1504		err = dbg_check_lprops(c);
   1505		if (err)
   1506			goto out_orphans;
   1507	} else if (c->need_recovery) {
   1508		err = ubifs_recover_size(c, false);
   1509		if (err)
   1510			goto out_orphans;
   1511	} else {
   1512		/*
   1513		 * Even if we mount read-only, we have to set space in GC LEB
   1514		 * to proper value because this affects UBIFS free space
   1515		 * reporting. We do not want to have a situation when
   1516		 * re-mounting from R/O to R/W changes amount of free space.
   1517		 */
   1518		err = take_gc_lnum(c);
   1519		if (err)
   1520			goto out_orphans;
   1521	}
   1522
   1523	spin_lock(&ubifs_infos_lock);
   1524	list_add_tail(&c->infos_list, &ubifs_infos);
   1525	spin_unlock(&ubifs_infos_lock);
   1526
   1527	if (c->need_recovery) {
   1528		if (c->ro_mount)
   1529			ubifs_msg(c, "recovery deferred");
   1530		else {
   1531			c->need_recovery = 0;
   1532			ubifs_msg(c, "recovery completed");
   1533			/*
   1534			 * GC LEB has to be empty and taken at this point. But
   1535			 * the journal head LEBs may also be accounted as
   1536			 * "empty taken" if they are empty.
   1537			 */
   1538			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
   1539		}
   1540	} else
   1541		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
   1542
   1543	err = dbg_check_filesystem(c);
   1544	if (err)
   1545		goto out_infos;
   1546
   1547	dbg_debugfs_init_fs(c);
   1548
   1549	c->mounting = 0;
   1550
   1551	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
   1552		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
   1553		  c->ro_mount ? ", R/O mode" : "");
   1554	x = (long long)c->main_lebs * c->leb_size;
   1555	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
   1556	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
   1557		  c->leb_size, c->leb_size >> 10, c->min_io_size,
   1558		  c->max_write_size);
   1559	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
   1560		  x, x >> 20, c->main_lebs, c->max_leb_cnt,
   1561		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
   1562	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
   1563		  c->report_rp_size, c->report_rp_size >> 10);
   1564	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
   1565		  c->fmt_version, c->ro_compat_version,
   1566		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
   1567		  c->big_lpt ? ", big LPT model" : ", small LPT model");
   1568
   1569	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
   1570	dbg_gen("data journal heads:  %d",
   1571		c->jhead_cnt - NONDATA_JHEADS_CNT);
   1572	dbg_gen("log LEBs:            %d (%d - %d)",
   1573		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
   1574	dbg_gen("LPT area LEBs:       %d (%d - %d)",
   1575		c->lpt_lebs, c->lpt_first, c->lpt_last);
   1576	dbg_gen("orphan area LEBs:    %d (%d - %d)",
   1577		c->orph_lebs, c->orph_first, c->orph_last);
   1578	dbg_gen("main area LEBs:      %d (%d - %d)",
   1579		c->main_lebs, c->main_first, c->leb_cnt - 1);
   1580	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
   1581	dbg_gen("total index bytes:   %llu (%llu KiB, %llu MiB)",
   1582		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
   1583		c->bi.old_idx_sz >> 20);
   1584	dbg_gen("key hash type:       %d", c->key_hash_type);
   1585	dbg_gen("tree fanout:         %d", c->fanout);
   1586	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
   1587	dbg_gen("max. znode size      %d", c->max_znode_sz);
   1588	dbg_gen("max. index node size %d", c->max_idx_node_sz);
   1589	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
   1590		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
   1591	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
   1592		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
   1593	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
   1594		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
   1595	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
   1596		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
   1597		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
   1598	dbg_gen("dead watermark:      %d", c->dead_wm);
   1599	dbg_gen("dark watermark:      %d", c->dark_wm);
   1600	dbg_gen("LEB overhead:        %d", c->leb_overhead);
   1601	x = (long long)c->main_lebs * c->dark_wm;
   1602	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
   1603		x, x >> 10, x >> 20);
   1604	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
   1605		c->max_bud_bytes, c->max_bud_bytes >> 10,
   1606		c->max_bud_bytes >> 20);
   1607	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
   1608		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
   1609		c->bg_bud_bytes >> 20);
   1610	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
   1611		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
   1612	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
   1613	dbg_gen("commit number:       %llu", c->cmt_no);
   1614	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
   1615	dbg_gen("max orphans:           %d", c->max_orphans);
   1616
   1617	return 0;
   1618
   1619out_infos:
   1620	spin_lock(&ubifs_infos_lock);
   1621	list_del(&c->infos_list);
   1622	spin_unlock(&ubifs_infos_lock);
   1623out_orphans:
   1624	free_orphans(c);
   1625out_journal:
   1626	destroy_journal(c);
   1627out_lpt:
   1628	ubifs_lpt_free(c, 0);
   1629out_master:
   1630	kfree(c->mst_node);
   1631	kfree(c->rcvrd_mst_node);
   1632	if (c->bgt)
   1633		kthread_stop(c->bgt);
   1634out_wbufs:
   1635	free_wbufs(c);
   1636out_cbuf:
   1637	kfree(c->cbuf);
   1638out_auth:
   1639	ubifs_exit_authentication(c);
   1640out_free:
   1641	kfree(c->write_reserve_buf);
   1642	kfree(c->bu.buf);
   1643	vfree(c->ileb_buf);
   1644	vfree(c->sbuf);
   1645	kfree(c->bottom_up_buf);
   1646	kfree(c->sup_node);
   1647	ubifs_sysfs_unregister(c);
   1648out_debugging:
   1649	ubifs_debugging_exit(c);
   1650	return err;
   1651}
   1652
   1653/**
   1654 * ubifs_umount - un-mount UBIFS file-system.
   1655 * @c: UBIFS file-system description object
   1656 *
   1657 * Note, this function is called to free allocated resourced when un-mounting,
   1658 * as well as free resources when an error occurred while we were half way
   1659 * through mounting (error path cleanup function). So it has to make sure the
   1660 * resource was actually allocated before freeing it.
   1661 */
   1662static void ubifs_umount(struct ubifs_info *c)
   1663{
   1664	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
   1665		c->vi.vol_id);
   1666
   1667	dbg_debugfs_exit_fs(c);
   1668	spin_lock(&ubifs_infos_lock);
   1669	list_del(&c->infos_list);
   1670	spin_unlock(&ubifs_infos_lock);
   1671
   1672	if (c->bgt)
   1673		kthread_stop(c->bgt);
   1674
   1675	destroy_journal(c);
   1676	free_wbufs(c);
   1677	free_orphans(c);
   1678	ubifs_lpt_free(c, 0);
   1679	ubifs_exit_authentication(c);
   1680
   1681	ubifs_release_options(c);
   1682	kfree(c->cbuf);
   1683	kfree(c->rcvrd_mst_node);
   1684	kfree(c->mst_node);
   1685	kfree(c->write_reserve_buf);
   1686	kfree(c->bu.buf);
   1687	vfree(c->ileb_buf);
   1688	vfree(c->sbuf);
   1689	kfree(c->bottom_up_buf);
   1690	kfree(c->sup_node);
   1691	ubifs_debugging_exit(c);
   1692	ubifs_sysfs_unregister(c);
   1693}
   1694
   1695/**
   1696 * ubifs_remount_rw - re-mount in read-write mode.
   1697 * @c: UBIFS file-system description object
   1698 *
   1699 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
   1700 * mode. This function allocates the needed resources and re-mounts UBIFS in
   1701 * read-write mode.
   1702 */
   1703static int ubifs_remount_rw(struct ubifs_info *c)
   1704{
   1705	int err, lnum;
   1706
   1707	if (c->rw_incompat) {
   1708		ubifs_err(c, "the file-system is not R/W-compatible");
   1709		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
   1710			  c->fmt_version, c->ro_compat_version,
   1711			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
   1712		return -EROFS;
   1713	}
   1714
   1715	mutex_lock(&c->umount_mutex);
   1716	dbg_save_space_info(c);
   1717	c->remounting_rw = 1;
   1718	c->ro_mount = 0;
   1719
   1720	if (c->space_fixup) {
   1721		err = ubifs_fixup_free_space(c);
   1722		if (err)
   1723			goto out;
   1724	}
   1725
   1726	err = check_free_space(c);
   1727	if (err)
   1728		goto out;
   1729
   1730	if (c->need_recovery) {
   1731		ubifs_msg(c, "completing deferred recovery");
   1732		err = ubifs_write_rcvrd_mst_node(c);
   1733		if (err)
   1734			goto out;
   1735		if (!ubifs_authenticated(c)) {
   1736			err = ubifs_recover_size(c, true);
   1737			if (err)
   1738				goto out;
   1739		}
   1740		err = ubifs_clean_lebs(c, c->sbuf);
   1741		if (err)
   1742			goto out;
   1743		err = ubifs_recover_inl_heads(c, c->sbuf);
   1744		if (err)
   1745			goto out;
   1746	} else {
   1747		/* A readonly mount is not allowed to have orphans */
   1748		ubifs_assert(c, c->tot_orphans == 0);
   1749		err = ubifs_clear_orphans(c);
   1750		if (err)
   1751			goto out;
   1752	}
   1753
   1754	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
   1755		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
   1756		err = ubifs_write_master(c);
   1757		if (err)
   1758			goto out;
   1759	}
   1760
   1761	if (c->superblock_need_write) {
   1762		struct ubifs_sb_node *sup = c->sup_node;
   1763
   1764		err = ubifs_write_sb_node(c, sup);
   1765		if (err)
   1766			goto out;
   1767
   1768		c->superblock_need_write = 0;
   1769	}
   1770
   1771	c->ileb_buf = vmalloc(c->leb_size);
   1772	if (!c->ileb_buf) {
   1773		err = -ENOMEM;
   1774		goto out;
   1775	}
   1776
   1777	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
   1778				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
   1779	if (!c->write_reserve_buf) {
   1780		err = -ENOMEM;
   1781		goto out;
   1782	}
   1783
   1784	err = ubifs_lpt_init(c, 0, 1);
   1785	if (err)
   1786		goto out;
   1787
   1788	/* Create background thread */
   1789	c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
   1790	if (IS_ERR(c->bgt)) {
   1791		err = PTR_ERR(c->bgt);
   1792		c->bgt = NULL;
   1793		ubifs_err(c, "cannot spawn \"%s\", error %d",
   1794			  c->bgt_name, err);
   1795		goto out;
   1796	}
   1797
   1798	c->orph_buf = vmalloc(c->leb_size);
   1799	if (!c->orph_buf) {
   1800		err = -ENOMEM;
   1801		goto out;
   1802	}
   1803
   1804	/* Check for enough log space */
   1805	lnum = c->lhead_lnum + 1;
   1806	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
   1807		lnum = UBIFS_LOG_LNUM;
   1808	if (lnum == c->ltail_lnum) {
   1809		err = ubifs_consolidate_log(c);
   1810		if (err)
   1811			goto out;
   1812	}
   1813
   1814	if (c->need_recovery) {
   1815		err = ubifs_rcvry_gc_commit(c);
   1816		if (err)
   1817			goto out;
   1818
   1819		if (ubifs_authenticated(c)) {
   1820			err = ubifs_recover_size(c, false);
   1821			if (err)
   1822				goto out;
   1823		}
   1824	} else {
   1825		err = ubifs_leb_unmap(c, c->gc_lnum);
   1826	}
   1827	if (err)
   1828		goto out;
   1829
   1830	dbg_gen("re-mounted read-write");
   1831	c->remounting_rw = 0;
   1832
   1833	if (c->need_recovery) {
   1834		c->need_recovery = 0;
   1835		ubifs_msg(c, "deferred recovery completed");
   1836	} else {
   1837		/*
   1838		 * Do not run the debugging space check if the were doing
   1839		 * recovery, because when we saved the information we had the
   1840		 * file-system in a state where the TNC and lprops has been
   1841		 * modified in memory, but all the I/O operations (including a
   1842		 * commit) were deferred. So the file-system was in
   1843		 * "non-committed" state. Now the file-system is in committed
   1844		 * state, and of course the amount of free space will change
   1845		 * because, for example, the old index size was imprecise.
   1846		 */
   1847		err = dbg_check_space_info(c);
   1848	}
   1849
   1850	mutex_unlock(&c->umount_mutex);
   1851	return err;
   1852
   1853out:
   1854	c->ro_mount = 1;
   1855	vfree(c->orph_buf);
   1856	c->orph_buf = NULL;
   1857	if (c->bgt) {
   1858		kthread_stop(c->bgt);
   1859		c->bgt = NULL;
   1860	}
   1861	kfree(c->write_reserve_buf);
   1862	c->write_reserve_buf = NULL;
   1863	vfree(c->ileb_buf);
   1864	c->ileb_buf = NULL;
   1865	ubifs_lpt_free(c, 1);
   1866	c->remounting_rw = 0;
   1867	mutex_unlock(&c->umount_mutex);
   1868	return err;
   1869}
   1870
   1871/**
   1872 * ubifs_remount_ro - re-mount in read-only mode.
   1873 * @c: UBIFS file-system description object
   1874 *
   1875 * We assume VFS has stopped writing. Possibly the background thread could be
   1876 * running a commit, however kthread_stop will wait in that case.
   1877 */
   1878static void ubifs_remount_ro(struct ubifs_info *c)
   1879{
   1880	int i, err;
   1881
   1882	ubifs_assert(c, !c->need_recovery);
   1883	ubifs_assert(c, !c->ro_mount);
   1884
   1885	mutex_lock(&c->umount_mutex);
   1886	if (c->bgt) {
   1887		kthread_stop(c->bgt);
   1888		c->bgt = NULL;
   1889	}
   1890
   1891	dbg_save_space_info(c);
   1892
   1893	for (i = 0; i < c->jhead_cnt; i++) {
   1894		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
   1895		if (err)
   1896			ubifs_ro_mode(c, err);
   1897	}
   1898
   1899	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
   1900	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
   1901	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
   1902	err = ubifs_write_master(c);
   1903	if (err)
   1904		ubifs_ro_mode(c, err);
   1905
   1906	vfree(c->orph_buf);
   1907	c->orph_buf = NULL;
   1908	kfree(c->write_reserve_buf);
   1909	c->write_reserve_buf = NULL;
   1910	vfree(c->ileb_buf);
   1911	c->ileb_buf = NULL;
   1912	ubifs_lpt_free(c, 1);
   1913	c->ro_mount = 1;
   1914	err = dbg_check_space_info(c);
   1915	if (err)
   1916		ubifs_ro_mode(c, err);
   1917	mutex_unlock(&c->umount_mutex);
   1918}
   1919
   1920static void ubifs_put_super(struct super_block *sb)
   1921{
   1922	int i;
   1923	struct ubifs_info *c = sb->s_fs_info;
   1924
   1925	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
   1926
   1927	/*
   1928	 * The following asserts are only valid if there has not been a failure
   1929	 * of the media. For example, there will be dirty inodes if we failed
   1930	 * to write them back because of I/O errors.
   1931	 */
   1932	if (!c->ro_error) {
   1933		ubifs_assert(c, c->bi.idx_growth == 0);
   1934		ubifs_assert(c, c->bi.dd_growth == 0);
   1935		ubifs_assert(c, c->bi.data_growth == 0);
   1936	}
   1937
   1938	/*
   1939	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
   1940	 * and file system un-mount. Namely, it prevents the shrinker from
   1941	 * picking this superblock for shrinking - it will be just skipped if
   1942	 * the mutex is locked.
   1943	 */
   1944	mutex_lock(&c->umount_mutex);
   1945	if (!c->ro_mount) {
   1946		/*
   1947		 * First of all kill the background thread to make sure it does
   1948		 * not interfere with un-mounting and freeing resources.
   1949		 */
   1950		if (c->bgt) {
   1951			kthread_stop(c->bgt);
   1952			c->bgt = NULL;
   1953		}
   1954
   1955		/*
   1956		 * On fatal errors c->ro_error is set to 1, in which case we do
   1957		 * not write the master node.
   1958		 */
   1959		if (!c->ro_error) {
   1960			int err;
   1961
   1962			/* Synchronize write-buffers */
   1963			for (i = 0; i < c->jhead_cnt; i++) {
   1964				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
   1965				if (err)
   1966					ubifs_ro_mode(c, err);
   1967			}
   1968
   1969			/*
   1970			 * We are being cleanly unmounted which means the
   1971			 * orphans were killed - indicate this in the master
   1972			 * node. Also save the reserved GC LEB number.
   1973			 */
   1974			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
   1975			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
   1976			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
   1977			err = ubifs_write_master(c);
   1978			if (err)
   1979				/*
   1980				 * Recovery will attempt to fix the master area
   1981				 * next mount, so we just print a message and
   1982				 * continue to unmount normally.
   1983				 */
   1984				ubifs_err(c, "failed to write master node, error %d",
   1985					  err);
   1986		} else {
   1987			for (i = 0; i < c->jhead_cnt; i++)
   1988				/* Make sure write-buffer timers are canceled */
   1989				hrtimer_cancel(&c->jheads[i].wbuf.timer);
   1990		}
   1991	}
   1992
   1993	ubifs_umount(c);
   1994	ubi_close_volume(c->ubi);
   1995	mutex_unlock(&c->umount_mutex);
   1996}
   1997
   1998static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
   1999{
   2000	int err;
   2001	struct ubifs_info *c = sb->s_fs_info;
   2002
   2003	sync_filesystem(sb);
   2004	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
   2005
   2006	err = ubifs_parse_options(c, data, 1);
   2007	if (err) {
   2008		ubifs_err(c, "invalid or unknown remount parameter");
   2009		return err;
   2010	}
   2011
   2012	if (c->ro_mount && !(*flags & SB_RDONLY)) {
   2013		if (c->ro_error) {
   2014			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
   2015			return -EROFS;
   2016		}
   2017		if (c->ro_media) {
   2018			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
   2019			return -EROFS;
   2020		}
   2021		err = ubifs_remount_rw(c);
   2022		if (err)
   2023			return err;
   2024	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
   2025		if (c->ro_error) {
   2026			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
   2027			return -EROFS;
   2028		}
   2029		ubifs_remount_ro(c);
   2030	}
   2031
   2032	if (c->bulk_read == 1)
   2033		bu_init(c);
   2034	else {
   2035		dbg_gen("disable bulk-read");
   2036		mutex_lock(&c->bu_mutex);
   2037		kfree(c->bu.buf);
   2038		c->bu.buf = NULL;
   2039		mutex_unlock(&c->bu_mutex);
   2040	}
   2041
   2042	if (!c->need_recovery)
   2043		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
   2044
   2045	return 0;
   2046}
   2047
   2048const struct super_operations ubifs_super_operations = {
   2049	.alloc_inode   = ubifs_alloc_inode,
   2050	.free_inode    = ubifs_free_inode,
   2051	.put_super     = ubifs_put_super,
   2052	.write_inode   = ubifs_write_inode,
   2053	.drop_inode    = ubifs_drop_inode,
   2054	.evict_inode   = ubifs_evict_inode,
   2055	.statfs        = ubifs_statfs,
   2056	.dirty_inode   = ubifs_dirty_inode,
   2057	.remount_fs    = ubifs_remount_fs,
   2058	.show_options  = ubifs_show_options,
   2059	.sync_fs       = ubifs_sync_fs,
   2060};
   2061
   2062/**
   2063 * open_ubi - parse UBI device name string and open the UBI device.
   2064 * @name: UBI volume name
   2065 * @mode: UBI volume open mode
   2066 *
   2067 * The primary method of mounting UBIFS is by specifying the UBI volume
   2068 * character device node path. However, UBIFS may also be mounted without any
   2069 * character device node using one of the following methods:
   2070 *
   2071 * o ubiX_Y    - mount UBI device number X, volume Y;
   2072 * o ubiY      - mount UBI device number 0, volume Y;
   2073 * o ubiX:NAME - mount UBI device X, volume with name NAME;
   2074 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
   2075 *
   2076 * Alternative '!' separator may be used instead of ':' (because some shells
   2077 * like busybox may interpret ':' as an NFS host name separator). This function
   2078 * returns UBI volume description object in case of success and a negative
   2079 * error code in case of failure.
   2080 */
   2081static struct ubi_volume_desc *open_ubi(const char *name, int mode)
   2082{
   2083	struct ubi_volume_desc *ubi;
   2084	int dev, vol;
   2085	char *endptr;
   2086
   2087	if (!name || !*name)
   2088		return ERR_PTR(-EINVAL);
   2089
   2090	/* First, try to open using the device node path method */
   2091	ubi = ubi_open_volume_path(name, mode);
   2092	if (!IS_ERR(ubi))
   2093		return ubi;
   2094
   2095	/* Try the "nodev" method */
   2096	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
   2097		return ERR_PTR(-EINVAL);
   2098
   2099	/* ubi:NAME method */
   2100	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
   2101		return ubi_open_volume_nm(0, name + 4, mode);
   2102
   2103	if (!isdigit(name[3]))
   2104		return ERR_PTR(-EINVAL);
   2105
   2106	dev = simple_strtoul(name + 3, &endptr, 0);
   2107
   2108	/* ubiY method */
   2109	if (*endptr == '\0')
   2110		return ubi_open_volume(0, dev, mode);
   2111
   2112	/* ubiX_Y method */
   2113	if (*endptr == '_' && isdigit(endptr[1])) {
   2114		vol = simple_strtoul(endptr + 1, &endptr, 0);
   2115		if (*endptr != '\0')
   2116			return ERR_PTR(-EINVAL);
   2117		return ubi_open_volume(dev, vol, mode);
   2118	}
   2119
   2120	/* ubiX:NAME method */
   2121	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
   2122		return ubi_open_volume_nm(dev, ++endptr, mode);
   2123
   2124	return ERR_PTR(-EINVAL);
   2125}
   2126
   2127static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
   2128{
   2129	struct ubifs_info *c;
   2130
   2131	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
   2132	if (c) {
   2133		spin_lock_init(&c->cnt_lock);
   2134		spin_lock_init(&c->cs_lock);
   2135		spin_lock_init(&c->buds_lock);
   2136		spin_lock_init(&c->space_lock);
   2137		spin_lock_init(&c->orphan_lock);
   2138		init_rwsem(&c->commit_sem);
   2139		mutex_init(&c->lp_mutex);
   2140		mutex_init(&c->tnc_mutex);
   2141		mutex_init(&c->log_mutex);
   2142		mutex_init(&c->umount_mutex);
   2143		mutex_init(&c->bu_mutex);
   2144		mutex_init(&c->write_reserve_mutex);
   2145		init_waitqueue_head(&c->cmt_wq);
   2146		c->buds = RB_ROOT;
   2147		c->old_idx = RB_ROOT;
   2148		c->size_tree = RB_ROOT;
   2149		c->orph_tree = RB_ROOT;
   2150		INIT_LIST_HEAD(&c->infos_list);
   2151		INIT_LIST_HEAD(&c->idx_gc);
   2152		INIT_LIST_HEAD(&c->replay_list);
   2153		INIT_LIST_HEAD(&c->replay_buds);
   2154		INIT_LIST_HEAD(&c->uncat_list);
   2155		INIT_LIST_HEAD(&c->empty_list);
   2156		INIT_LIST_HEAD(&c->freeable_list);
   2157		INIT_LIST_HEAD(&c->frdi_idx_list);
   2158		INIT_LIST_HEAD(&c->unclean_leb_list);
   2159		INIT_LIST_HEAD(&c->old_buds);
   2160		INIT_LIST_HEAD(&c->orph_list);
   2161		INIT_LIST_HEAD(&c->orph_new);
   2162		c->no_chk_data_crc = 1;
   2163		c->assert_action = ASSACT_RO;
   2164
   2165		c->highest_inum = UBIFS_FIRST_INO;
   2166		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
   2167
   2168		ubi_get_volume_info(ubi, &c->vi);
   2169		ubi_get_device_info(c->vi.ubi_num, &c->di);
   2170	}
   2171	return c;
   2172}
   2173
   2174static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
   2175{
   2176	struct ubifs_info *c = sb->s_fs_info;
   2177	struct inode *root;
   2178	int err;
   2179
   2180	c->vfs_sb = sb;
   2181	/* Re-open the UBI device in read-write mode */
   2182	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
   2183	if (IS_ERR(c->ubi)) {
   2184		err = PTR_ERR(c->ubi);
   2185		goto out;
   2186	}
   2187
   2188	err = ubifs_parse_options(c, data, 0);
   2189	if (err)
   2190		goto out_close;
   2191
   2192	/*
   2193	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
   2194	 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
   2195	 * which means the user would have to wait not just for their own I/O
   2196	 * but the read-ahead I/O as well i.e. completely pointless.
   2197	 *
   2198	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
   2199	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
   2200	 * writeback happening.
   2201	 */
   2202	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
   2203				   c->vi.vol_id);
   2204	if (err)
   2205		goto out_close;
   2206	sb->s_bdi->ra_pages = 0;
   2207	sb->s_bdi->io_pages = 0;
   2208
   2209	sb->s_fs_info = c;
   2210	sb->s_magic = UBIFS_SUPER_MAGIC;
   2211	sb->s_blocksize = UBIFS_BLOCK_SIZE;
   2212	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
   2213	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
   2214	if (c->max_inode_sz > MAX_LFS_FILESIZE)
   2215		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
   2216	sb->s_op = &ubifs_super_operations;
   2217	sb->s_xattr = ubifs_xattr_handlers;
   2218	fscrypt_set_ops(sb, &ubifs_crypt_operations);
   2219
   2220	mutex_lock(&c->umount_mutex);
   2221	err = mount_ubifs(c);
   2222	if (err) {
   2223		ubifs_assert(c, err < 0);
   2224		goto out_unlock;
   2225	}
   2226
   2227	/* Read the root inode */
   2228	root = ubifs_iget(sb, UBIFS_ROOT_INO);
   2229	if (IS_ERR(root)) {
   2230		err = PTR_ERR(root);
   2231		goto out_umount;
   2232	}
   2233
   2234	sb->s_root = d_make_root(root);
   2235	if (!sb->s_root) {
   2236		err = -ENOMEM;
   2237		goto out_umount;
   2238	}
   2239
   2240	import_uuid(&sb->s_uuid, c->uuid);
   2241
   2242	mutex_unlock(&c->umount_mutex);
   2243	return 0;
   2244
   2245out_umount:
   2246	ubifs_umount(c);
   2247out_unlock:
   2248	mutex_unlock(&c->umount_mutex);
   2249out_close:
   2250	ubifs_release_options(c);
   2251	ubi_close_volume(c->ubi);
   2252out:
   2253	return err;
   2254}
   2255
   2256static int sb_test(struct super_block *sb, void *data)
   2257{
   2258	struct ubifs_info *c1 = data;
   2259	struct ubifs_info *c = sb->s_fs_info;
   2260
   2261	return c->vi.cdev == c1->vi.cdev;
   2262}
   2263
   2264static int sb_set(struct super_block *sb, void *data)
   2265{
   2266	sb->s_fs_info = data;
   2267	return set_anon_super(sb, NULL);
   2268}
   2269
   2270static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
   2271			const char *name, void *data)
   2272{
   2273	struct ubi_volume_desc *ubi;
   2274	struct ubifs_info *c;
   2275	struct super_block *sb;
   2276	int err;
   2277
   2278	dbg_gen("name %s, flags %#x", name, flags);
   2279
   2280	/*
   2281	 * Get UBI device number and volume ID. Mount it read-only so far
   2282	 * because this might be a new mount point, and UBI allows only one
   2283	 * read-write user at a time.
   2284	 */
   2285	ubi = open_ubi(name, UBI_READONLY);
   2286	if (IS_ERR(ubi)) {
   2287		if (!(flags & SB_SILENT))
   2288			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
   2289			       current->pid, name, (int)PTR_ERR(ubi));
   2290		return ERR_CAST(ubi);
   2291	}
   2292
   2293	c = alloc_ubifs_info(ubi);
   2294	if (!c) {
   2295		err = -ENOMEM;
   2296		goto out_close;
   2297	}
   2298
   2299	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
   2300
   2301	sb = sget(fs_type, sb_test, sb_set, flags, c);
   2302	if (IS_ERR(sb)) {
   2303		err = PTR_ERR(sb);
   2304		kfree(c);
   2305		goto out_close;
   2306	}
   2307
   2308	if (sb->s_root) {
   2309		struct ubifs_info *c1 = sb->s_fs_info;
   2310		kfree(c);
   2311		/* A new mount point for already mounted UBIFS */
   2312		dbg_gen("this ubi volume is already mounted");
   2313		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
   2314			err = -EBUSY;
   2315			goto out_deact;
   2316		}
   2317	} else {
   2318		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
   2319		if (err)
   2320			goto out_deact;
   2321		/* We do not support atime */
   2322		sb->s_flags |= SB_ACTIVE;
   2323		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
   2324			ubifs_msg(c, "full atime support is enabled.");
   2325		else
   2326			sb->s_flags |= SB_NOATIME;
   2327	}
   2328
   2329	/* 'fill_super()' opens ubi again so we must close it here */
   2330	ubi_close_volume(ubi);
   2331
   2332	return dget(sb->s_root);
   2333
   2334out_deact:
   2335	deactivate_locked_super(sb);
   2336out_close:
   2337	ubi_close_volume(ubi);
   2338	return ERR_PTR(err);
   2339}
   2340
   2341static void kill_ubifs_super(struct super_block *s)
   2342{
   2343	struct ubifs_info *c = s->s_fs_info;
   2344	kill_anon_super(s);
   2345	kfree(c);
   2346}
   2347
   2348static struct file_system_type ubifs_fs_type = {
   2349	.name    = "ubifs",
   2350	.owner   = THIS_MODULE,
   2351	.mount   = ubifs_mount,
   2352	.kill_sb = kill_ubifs_super,
   2353};
   2354MODULE_ALIAS_FS("ubifs");
   2355
   2356/*
   2357 * Inode slab cache constructor.
   2358 */
   2359static void inode_slab_ctor(void *obj)
   2360{
   2361	struct ubifs_inode *ui = obj;
   2362	inode_init_once(&ui->vfs_inode);
   2363}
   2364
   2365static int __init ubifs_init(void)
   2366{
   2367	int err;
   2368
   2369	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
   2370
   2371	/* Make sure node sizes are 8-byte aligned */
   2372	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
   2373	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
   2374	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
   2375	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
   2376	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
   2377	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
   2378	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
   2379	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
   2380	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
   2381	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
   2382	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
   2383
   2384	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
   2385	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
   2386	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
   2387	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
   2388	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
   2389	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
   2390
   2391	/* Check min. node size */
   2392	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
   2393	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
   2394	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
   2395	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
   2396
   2397	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
   2398	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
   2399	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
   2400	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
   2401
   2402	/* Defined node sizes */
   2403	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
   2404	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
   2405	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
   2406	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
   2407
   2408	/*
   2409	 * We use 2 bit wide bit-fields to store compression type, which should
   2410	 * be amended if more compressors are added. The bit-fields are:
   2411	 * @compr_type in 'struct ubifs_inode', @default_compr in
   2412	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
   2413	 */
   2414	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
   2415
   2416	/*
   2417	 * We require that PAGE_SIZE is greater-than-or-equal-to
   2418	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
   2419	 */
   2420	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
   2421		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
   2422		       current->pid, (unsigned int)PAGE_SIZE);
   2423		return -EINVAL;
   2424	}
   2425
   2426	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
   2427				sizeof(struct ubifs_inode), 0,
   2428				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
   2429				SLAB_ACCOUNT, &inode_slab_ctor);
   2430	if (!ubifs_inode_slab)
   2431		return -ENOMEM;
   2432
   2433	err = register_shrinker(&ubifs_shrinker_info);
   2434	if (err)
   2435		goto out_slab;
   2436
   2437	err = ubifs_compressors_init();
   2438	if (err)
   2439		goto out_shrinker;
   2440
   2441	dbg_debugfs_init();
   2442
   2443	err = ubifs_sysfs_init();
   2444	if (err)
   2445		goto out_dbg;
   2446
   2447	err = register_filesystem(&ubifs_fs_type);
   2448	if (err) {
   2449		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
   2450		       current->pid, err);
   2451		goto out_sysfs;
   2452	}
   2453	return 0;
   2454
   2455out_sysfs:
   2456	ubifs_sysfs_exit();
   2457out_dbg:
   2458	dbg_debugfs_exit();
   2459	ubifs_compressors_exit();
   2460out_shrinker:
   2461	unregister_shrinker(&ubifs_shrinker_info);
   2462out_slab:
   2463	kmem_cache_destroy(ubifs_inode_slab);
   2464	return err;
   2465}
   2466/* late_initcall to let compressors initialize first */
   2467late_initcall(ubifs_init);
   2468
   2469static void __exit ubifs_exit(void)
   2470{
   2471	WARN_ON(!list_empty(&ubifs_infos));
   2472	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
   2473
   2474	dbg_debugfs_exit();
   2475	ubifs_sysfs_exit();
   2476	ubifs_compressors_exit();
   2477	unregister_shrinker(&ubifs_shrinker_info);
   2478
   2479	/*
   2480	 * Make sure all delayed rcu free inodes are flushed before we
   2481	 * destroy cache.
   2482	 */
   2483	rcu_barrier();
   2484	kmem_cache_destroy(ubifs_inode_slab);
   2485	unregister_filesystem(&ubifs_fs_type);
   2486}
   2487module_exit(ubifs_exit);
   2488
   2489MODULE_LICENSE("GPL");
   2490MODULE_VERSION(__stringify(UBIFS_VERSION));
   2491MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
   2492MODULE_DESCRIPTION("UBIFS - UBI File System");