cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tnc.c (93872B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 *
      7 * Authors: Adrian Hunter
      8 *          Artem Bityutskiy (Битюцкий Артём)
      9 */
     10
     11/*
     12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
     13 * the UBIFS B-tree.
     14 *
     15 * At the moment the locking rules of the TNC tree are quite simple and
     16 * straightforward. We just have a mutex and lock it when we traverse the
     17 * tree. If a znode is not in memory, we read it from flash while still having
     18 * the mutex locked.
     19 */
     20
     21#include <linux/crc32.h>
     22#include <linux/slab.h>
     23#include "ubifs.h"
     24
     25static int try_read_node(const struct ubifs_info *c, void *buf, int type,
     26			 struct ubifs_zbranch *zbr);
     27static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
     28			      struct ubifs_zbranch *zbr, void *node);
     29
     30/*
     31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
     32 * @NAME_LESS: name corresponding to the first argument is less than second
     33 * @NAME_MATCHES: names match
     34 * @NAME_GREATER: name corresponding to the second argument is greater than
     35 *                first
     36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
     37 *
     38 * These constants were introduce to improve readability.
     39 */
     40enum {
     41	NAME_LESS    = 0,
     42	NAME_MATCHES = 1,
     43	NAME_GREATER = 2,
     44	NOT_ON_MEDIA = 3,
     45};
     46
     47/**
     48 * insert_old_idx - record an index node obsoleted since the last commit start.
     49 * @c: UBIFS file-system description object
     50 * @lnum: LEB number of obsoleted index node
     51 * @offs: offset of obsoleted index node
     52 *
     53 * Returns %0 on success, and a negative error code on failure.
     54 *
     55 * For recovery, there must always be a complete intact version of the index on
     56 * flash at all times. That is called the "old index". It is the index as at the
     57 * time of the last successful commit. Many of the index nodes in the old index
     58 * may be dirty, but they must not be erased until the next successful commit
     59 * (at which point that index becomes the old index).
     60 *
     61 * That means that the garbage collection and the in-the-gaps method of
     62 * committing must be able to determine if an index node is in the old index.
     63 * Most of the old index nodes can be found by looking up the TNC using the
     64 * 'lookup_znode()' function. However, some of the old index nodes may have
     65 * been deleted from the current index or may have been changed so much that
     66 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
     67 * That is what this function does. The RB-tree is ordered by LEB number and
     68 * offset because they uniquely identify the old index node.
     69 */
     70static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
     71{
     72	struct ubifs_old_idx *old_idx, *o;
     73	struct rb_node **p, *parent = NULL;
     74
     75	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
     76	if (unlikely(!old_idx))
     77		return -ENOMEM;
     78	old_idx->lnum = lnum;
     79	old_idx->offs = offs;
     80
     81	p = &c->old_idx.rb_node;
     82	while (*p) {
     83		parent = *p;
     84		o = rb_entry(parent, struct ubifs_old_idx, rb);
     85		if (lnum < o->lnum)
     86			p = &(*p)->rb_left;
     87		else if (lnum > o->lnum)
     88			p = &(*p)->rb_right;
     89		else if (offs < o->offs)
     90			p = &(*p)->rb_left;
     91		else if (offs > o->offs)
     92			p = &(*p)->rb_right;
     93		else {
     94			ubifs_err(c, "old idx added twice!");
     95			kfree(old_idx);
     96			return 0;
     97		}
     98	}
     99	rb_link_node(&old_idx->rb, parent, p);
    100	rb_insert_color(&old_idx->rb, &c->old_idx);
    101	return 0;
    102}
    103
    104/**
    105 * insert_old_idx_znode - record a znode obsoleted since last commit start.
    106 * @c: UBIFS file-system description object
    107 * @znode: znode of obsoleted index node
    108 *
    109 * Returns %0 on success, and a negative error code on failure.
    110 */
    111int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
    112{
    113	if (znode->parent) {
    114		struct ubifs_zbranch *zbr;
    115
    116		zbr = &znode->parent->zbranch[znode->iip];
    117		if (zbr->len)
    118			return insert_old_idx(c, zbr->lnum, zbr->offs);
    119	} else
    120		if (c->zroot.len)
    121			return insert_old_idx(c, c->zroot.lnum,
    122					      c->zroot.offs);
    123	return 0;
    124}
    125
    126/**
    127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
    128 * @c: UBIFS file-system description object
    129 * @znode: znode of obsoleted index node
    130 *
    131 * Returns %0 on success, and a negative error code on failure.
    132 */
    133static int ins_clr_old_idx_znode(struct ubifs_info *c,
    134				 struct ubifs_znode *znode)
    135{
    136	int err;
    137
    138	if (znode->parent) {
    139		struct ubifs_zbranch *zbr;
    140
    141		zbr = &znode->parent->zbranch[znode->iip];
    142		if (zbr->len) {
    143			err = insert_old_idx(c, zbr->lnum, zbr->offs);
    144			if (err)
    145				return err;
    146			zbr->lnum = 0;
    147			zbr->offs = 0;
    148			zbr->len = 0;
    149		}
    150	} else
    151		if (c->zroot.len) {
    152			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
    153			if (err)
    154				return err;
    155			c->zroot.lnum = 0;
    156			c->zroot.offs = 0;
    157			c->zroot.len = 0;
    158		}
    159	return 0;
    160}
    161
    162/**
    163 * destroy_old_idx - destroy the old_idx RB-tree.
    164 * @c: UBIFS file-system description object
    165 *
    166 * During start commit, the old_idx RB-tree is used to avoid overwriting index
    167 * nodes that were in the index last commit but have since been deleted.  This
    168 * is necessary for recovery i.e. the old index must be kept intact until the
    169 * new index is successfully written.  The old-idx RB-tree is used for the
    170 * in-the-gaps method of writing index nodes and is destroyed every commit.
    171 */
    172void destroy_old_idx(struct ubifs_info *c)
    173{
    174	struct ubifs_old_idx *old_idx, *n;
    175
    176	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
    177		kfree(old_idx);
    178
    179	c->old_idx = RB_ROOT;
    180}
    181
    182/**
    183 * copy_znode - copy a dirty znode.
    184 * @c: UBIFS file-system description object
    185 * @znode: znode to copy
    186 *
    187 * A dirty znode being committed may not be changed, so it is copied.
    188 */
    189static struct ubifs_znode *copy_znode(struct ubifs_info *c,
    190				      struct ubifs_znode *znode)
    191{
    192	struct ubifs_znode *zn;
    193
    194	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
    195	if (unlikely(!zn))
    196		return ERR_PTR(-ENOMEM);
    197
    198	zn->cnext = NULL;
    199	__set_bit(DIRTY_ZNODE, &zn->flags);
    200	__clear_bit(COW_ZNODE, &zn->flags);
    201
    202	ubifs_assert(c, !ubifs_zn_obsolete(znode));
    203	__set_bit(OBSOLETE_ZNODE, &znode->flags);
    204
    205	if (znode->level != 0) {
    206		int i;
    207		const int n = zn->child_cnt;
    208
    209		/* The children now have new parent */
    210		for (i = 0; i < n; i++) {
    211			struct ubifs_zbranch *zbr = &zn->zbranch[i];
    212
    213			if (zbr->znode)
    214				zbr->znode->parent = zn;
    215		}
    216	}
    217
    218	atomic_long_inc(&c->dirty_zn_cnt);
    219	return zn;
    220}
    221
    222/**
    223 * add_idx_dirt - add dirt due to a dirty znode.
    224 * @c: UBIFS file-system description object
    225 * @lnum: LEB number of index node
    226 * @dirt: size of index node
    227 *
    228 * This function updates lprops dirty space and the new size of the index.
    229 */
    230static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
    231{
    232	c->calc_idx_sz -= ALIGN(dirt, 8);
    233	return ubifs_add_dirt(c, lnum, dirt);
    234}
    235
    236/**
    237 * dirty_cow_znode - ensure a znode is not being committed.
    238 * @c: UBIFS file-system description object
    239 * @zbr: branch of znode to check
    240 *
    241 * Returns dirtied znode on success or negative error code on failure.
    242 */
    243static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
    244					   struct ubifs_zbranch *zbr)
    245{
    246	struct ubifs_znode *znode = zbr->znode;
    247	struct ubifs_znode *zn;
    248	int err;
    249
    250	if (!ubifs_zn_cow(znode)) {
    251		/* znode is not being committed */
    252		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
    253			atomic_long_inc(&c->dirty_zn_cnt);
    254			atomic_long_dec(&c->clean_zn_cnt);
    255			atomic_long_dec(&ubifs_clean_zn_cnt);
    256			err = add_idx_dirt(c, zbr->lnum, zbr->len);
    257			if (unlikely(err))
    258				return ERR_PTR(err);
    259		}
    260		return znode;
    261	}
    262
    263	zn = copy_znode(c, znode);
    264	if (IS_ERR(zn))
    265		return zn;
    266
    267	if (zbr->len) {
    268		err = insert_old_idx(c, zbr->lnum, zbr->offs);
    269		if (unlikely(err))
    270			return ERR_PTR(err);
    271		err = add_idx_dirt(c, zbr->lnum, zbr->len);
    272	} else
    273		err = 0;
    274
    275	zbr->znode = zn;
    276	zbr->lnum = 0;
    277	zbr->offs = 0;
    278	zbr->len = 0;
    279
    280	if (unlikely(err))
    281		return ERR_PTR(err);
    282	return zn;
    283}
    284
    285/**
    286 * lnc_add - add a leaf node to the leaf node cache.
    287 * @c: UBIFS file-system description object
    288 * @zbr: zbranch of leaf node
    289 * @node: leaf node
    290 *
    291 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
    292 * purpose of the leaf node cache is to save re-reading the same leaf node over
    293 * and over again. Most things are cached by VFS, however the file system must
    294 * cache directory entries for readdir and for resolving hash collisions. The
    295 * present implementation of the leaf node cache is extremely simple, and
    296 * allows for error returns that are not used but that may be needed if a more
    297 * complex implementation is created.
    298 *
    299 * Note, this function does not add the @node object to LNC directly, but
    300 * allocates a copy of the object and adds the copy to LNC. The reason for this
    301 * is that @node has been allocated outside of the TNC subsystem and will be
    302 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
    303 * may be changed at any time, e.g. freed by the shrinker.
    304 */
    305static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
    306		   const void *node)
    307{
    308	int err;
    309	void *lnc_node;
    310	const struct ubifs_dent_node *dent = node;
    311
    312	ubifs_assert(c, !zbr->leaf);
    313	ubifs_assert(c, zbr->len != 0);
    314	ubifs_assert(c, is_hash_key(c, &zbr->key));
    315
    316	err = ubifs_validate_entry(c, dent);
    317	if (err) {
    318		dump_stack();
    319		ubifs_dump_node(c, dent, zbr->len);
    320		return err;
    321	}
    322
    323	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
    324	if (!lnc_node)
    325		/* We don't have to have the cache, so no error */
    326		return 0;
    327
    328	zbr->leaf = lnc_node;
    329	return 0;
    330}
    331
    332 /**
    333 * lnc_add_directly - add a leaf node to the leaf-node-cache.
    334 * @c: UBIFS file-system description object
    335 * @zbr: zbranch of leaf node
    336 * @node: leaf node
    337 *
    338 * This function is similar to 'lnc_add()', but it does not create a copy of
    339 * @node but inserts @node to TNC directly.
    340 */
    341static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
    342			    void *node)
    343{
    344	int err;
    345
    346	ubifs_assert(c, !zbr->leaf);
    347	ubifs_assert(c, zbr->len != 0);
    348
    349	err = ubifs_validate_entry(c, node);
    350	if (err) {
    351		dump_stack();
    352		ubifs_dump_node(c, node, zbr->len);
    353		return err;
    354	}
    355
    356	zbr->leaf = node;
    357	return 0;
    358}
    359
    360/**
    361 * lnc_free - remove a leaf node from the leaf node cache.
    362 * @zbr: zbranch of leaf node
    363 */
    364static void lnc_free(struct ubifs_zbranch *zbr)
    365{
    366	if (!zbr->leaf)
    367		return;
    368	kfree(zbr->leaf);
    369	zbr->leaf = NULL;
    370}
    371
    372/**
    373 * tnc_read_hashed_node - read a "hashed" leaf node.
    374 * @c: UBIFS file-system description object
    375 * @zbr: key and position of the node
    376 * @node: node is returned here
    377 *
    378 * This function reads a "hashed" node defined by @zbr from the leaf node cache
    379 * (in it is there) or from the hash media, in which case the node is also
    380 * added to LNC. Returns zero in case of success or a negative error
    381 * code in case of failure.
    382 */
    383static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
    384				void *node)
    385{
    386	int err;
    387
    388	ubifs_assert(c, is_hash_key(c, &zbr->key));
    389
    390	if (zbr->leaf) {
    391		/* Read from the leaf node cache */
    392		ubifs_assert(c, zbr->len != 0);
    393		memcpy(node, zbr->leaf, zbr->len);
    394		return 0;
    395	}
    396
    397	if (c->replaying) {
    398		err = fallible_read_node(c, &zbr->key, zbr, node);
    399		/*
    400		 * When the node was not found, return -ENOENT, 0 otherwise.
    401		 * Negative return codes stay as-is.
    402		 */
    403		if (err == 0)
    404			err = -ENOENT;
    405		else if (err == 1)
    406			err = 0;
    407	} else {
    408		err = ubifs_tnc_read_node(c, zbr, node);
    409	}
    410	if (err)
    411		return err;
    412
    413	/* Add the node to the leaf node cache */
    414	err = lnc_add(c, zbr, node);
    415	return err;
    416}
    417
    418/**
    419 * try_read_node - read a node if it is a node.
    420 * @c: UBIFS file-system description object
    421 * @buf: buffer to read to
    422 * @type: node type
    423 * @zbr: the zbranch describing the node to read
    424 *
    425 * This function tries to read a node of known type and length, checks it and
    426 * stores it in @buf. This function returns %1 if a node is present and %0 if
    427 * a node is not present. A negative error code is returned for I/O errors.
    428 * This function performs that same function as ubifs_read_node except that
    429 * it does not require that there is actually a node present and instead
    430 * the return code indicates if a node was read.
    431 *
    432 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
    433 * is true (it is controlled by corresponding mount option). However, if
    434 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
    435 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
    436 * because during mounting or re-mounting from R/O mode to R/W mode we may read
    437 * journal nodes (when replying the journal or doing the recovery) and the
    438 * journal nodes may potentially be corrupted, so checking is required.
    439 */
    440static int try_read_node(const struct ubifs_info *c, void *buf, int type,
    441			 struct ubifs_zbranch *zbr)
    442{
    443	int len = zbr->len;
    444	int lnum = zbr->lnum;
    445	int offs = zbr->offs;
    446	int err, node_len;
    447	struct ubifs_ch *ch = buf;
    448	uint32_t crc, node_crc;
    449
    450	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
    451
    452	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
    453	if (err) {
    454		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
    455			  type, lnum, offs, err);
    456		return err;
    457	}
    458
    459	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
    460		return 0;
    461
    462	if (ch->node_type != type)
    463		return 0;
    464
    465	node_len = le32_to_cpu(ch->len);
    466	if (node_len != len)
    467		return 0;
    468
    469	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
    470	    c->remounting_rw) {
    471		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
    472		node_crc = le32_to_cpu(ch->crc);
    473		if (crc != node_crc)
    474			return 0;
    475	}
    476
    477	err = ubifs_node_check_hash(c, buf, zbr->hash);
    478	if (err) {
    479		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
    480		return 0;
    481	}
    482
    483	return 1;
    484}
    485
    486/**
    487 * fallible_read_node - try to read a leaf node.
    488 * @c: UBIFS file-system description object
    489 * @key:  key of node to read
    490 * @zbr:  position of node
    491 * @node: node returned
    492 *
    493 * This function tries to read a node and returns %1 if the node is read, %0
    494 * if the node is not present, and a negative error code in the case of error.
    495 */
    496static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
    497			      struct ubifs_zbranch *zbr, void *node)
    498{
    499	int ret;
    500
    501	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
    502
    503	ret = try_read_node(c, node, key_type(c, key), zbr);
    504	if (ret == 1) {
    505		union ubifs_key node_key;
    506		struct ubifs_dent_node *dent = node;
    507
    508		/* All nodes have key in the same place */
    509		key_read(c, &dent->key, &node_key);
    510		if (keys_cmp(c, key, &node_key) != 0)
    511			ret = 0;
    512	}
    513	if (ret == 0 && c->replaying)
    514		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
    515			zbr->lnum, zbr->offs, zbr->len);
    516	return ret;
    517}
    518
    519/**
    520 * matches_name - determine if a direntry or xattr entry matches a given name.
    521 * @c: UBIFS file-system description object
    522 * @zbr: zbranch of dent
    523 * @nm: name to match
    524 *
    525 * This function checks if xentry/direntry referred by zbranch @zbr matches name
    526 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
    527 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
    528 * of failure, a negative error code is returned.
    529 */
    530static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
    531			const struct fscrypt_name *nm)
    532{
    533	struct ubifs_dent_node *dent;
    534	int nlen, err;
    535
    536	/* If possible, match against the dent in the leaf node cache */
    537	if (!zbr->leaf) {
    538		dent = kmalloc(zbr->len, GFP_NOFS);
    539		if (!dent)
    540			return -ENOMEM;
    541
    542		err = ubifs_tnc_read_node(c, zbr, dent);
    543		if (err)
    544			goto out_free;
    545
    546		/* Add the node to the leaf node cache */
    547		err = lnc_add_directly(c, zbr, dent);
    548		if (err)
    549			goto out_free;
    550	} else
    551		dent = zbr->leaf;
    552
    553	nlen = le16_to_cpu(dent->nlen);
    554	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
    555	if (err == 0) {
    556		if (nlen == fname_len(nm))
    557			return NAME_MATCHES;
    558		else if (nlen < fname_len(nm))
    559			return NAME_LESS;
    560		else
    561			return NAME_GREATER;
    562	} else if (err < 0)
    563		return NAME_LESS;
    564	else
    565		return NAME_GREATER;
    566
    567out_free:
    568	kfree(dent);
    569	return err;
    570}
    571
    572/**
    573 * get_znode - get a TNC znode that may not be loaded yet.
    574 * @c: UBIFS file-system description object
    575 * @znode: parent znode
    576 * @n: znode branch slot number
    577 *
    578 * This function returns the znode or a negative error code.
    579 */
    580static struct ubifs_znode *get_znode(struct ubifs_info *c,
    581				     struct ubifs_znode *znode, int n)
    582{
    583	struct ubifs_zbranch *zbr;
    584
    585	zbr = &znode->zbranch[n];
    586	if (zbr->znode)
    587		znode = zbr->znode;
    588	else
    589		znode = ubifs_load_znode(c, zbr, znode, n);
    590	return znode;
    591}
    592
    593/**
    594 * tnc_next - find next TNC entry.
    595 * @c: UBIFS file-system description object
    596 * @zn: znode is passed and returned here
    597 * @n: znode branch slot number is passed and returned here
    598 *
    599 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
    600 * no next entry, or a negative error code otherwise.
    601 */
    602static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
    603{
    604	struct ubifs_znode *znode = *zn;
    605	int nn = *n;
    606
    607	nn += 1;
    608	if (nn < znode->child_cnt) {
    609		*n = nn;
    610		return 0;
    611	}
    612	while (1) {
    613		struct ubifs_znode *zp;
    614
    615		zp = znode->parent;
    616		if (!zp)
    617			return -ENOENT;
    618		nn = znode->iip + 1;
    619		znode = zp;
    620		if (nn < znode->child_cnt) {
    621			znode = get_znode(c, znode, nn);
    622			if (IS_ERR(znode))
    623				return PTR_ERR(znode);
    624			while (znode->level != 0) {
    625				znode = get_znode(c, znode, 0);
    626				if (IS_ERR(znode))
    627					return PTR_ERR(znode);
    628			}
    629			nn = 0;
    630			break;
    631		}
    632	}
    633	*zn = znode;
    634	*n = nn;
    635	return 0;
    636}
    637
    638/**
    639 * tnc_prev - find previous TNC entry.
    640 * @c: UBIFS file-system description object
    641 * @zn: znode is returned here
    642 * @n: znode branch slot number is passed and returned here
    643 *
    644 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
    645 * there is no next entry, or a negative error code otherwise.
    646 */
    647static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
    648{
    649	struct ubifs_znode *znode = *zn;
    650	int nn = *n;
    651
    652	if (nn > 0) {
    653		*n = nn - 1;
    654		return 0;
    655	}
    656	while (1) {
    657		struct ubifs_znode *zp;
    658
    659		zp = znode->parent;
    660		if (!zp)
    661			return -ENOENT;
    662		nn = znode->iip - 1;
    663		znode = zp;
    664		if (nn >= 0) {
    665			znode = get_znode(c, znode, nn);
    666			if (IS_ERR(znode))
    667				return PTR_ERR(znode);
    668			while (znode->level != 0) {
    669				nn = znode->child_cnt - 1;
    670				znode = get_znode(c, znode, nn);
    671				if (IS_ERR(znode))
    672					return PTR_ERR(znode);
    673			}
    674			nn = znode->child_cnt - 1;
    675			break;
    676		}
    677	}
    678	*zn = znode;
    679	*n = nn;
    680	return 0;
    681}
    682
    683/**
    684 * resolve_collision - resolve a collision.
    685 * @c: UBIFS file-system description object
    686 * @key: key of a directory or extended attribute entry
    687 * @zn: znode is returned here
    688 * @n: zbranch number is passed and returned here
    689 * @nm: name of the entry
    690 *
    691 * This function is called for "hashed" keys to make sure that the found key
    692 * really corresponds to the looked up node (directory or extended attribute
    693 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
    694 * %0 is returned if @nm is not found and @zn and @n are set to the previous
    695 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
    696 * This means that @n may be set to %-1 if the leftmost key in @zn is the
    697 * previous one. A negative error code is returned on failures.
    698 */
    699static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
    700			     struct ubifs_znode **zn, int *n,
    701			     const struct fscrypt_name *nm)
    702{
    703	int err;
    704
    705	err = matches_name(c, &(*zn)->zbranch[*n], nm);
    706	if (unlikely(err < 0))
    707		return err;
    708	if (err == NAME_MATCHES)
    709		return 1;
    710
    711	if (err == NAME_GREATER) {
    712		/* Look left */
    713		while (1) {
    714			err = tnc_prev(c, zn, n);
    715			if (err == -ENOENT) {
    716				ubifs_assert(c, *n == 0);
    717				*n = -1;
    718				return 0;
    719			}
    720			if (err < 0)
    721				return err;
    722			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
    723				/*
    724				 * We have found the branch after which we would
    725				 * like to insert, but inserting in this znode
    726				 * may still be wrong. Consider the following 3
    727				 * znodes, in the case where we are resolving a
    728				 * collision with Key2.
    729				 *
    730				 *                  znode zp
    731				 *            ----------------------
    732				 * level 1     |  Key0  |  Key1  |
    733				 *            -----------------------
    734				 *                 |            |
    735				 *       znode za  |            |  znode zb
    736				 *          ------------      ------------
    737				 * level 0  |  Key0  |        |  Key2  |
    738				 *          ------------      ------------
    739				 *
    740				 * The lookup finds Key2 in znode zb. Lets say
    741				 * there is no match and the name is greater so
    742				 * we look left. When we find Key0, we end up
    743				 * here. If we return now, we will insert into
    744				 * znode za at slot n = 1.  But that is invalid
    745				 * according to the parent's keys.  Key2 must
    746				 * be inserted into znode zb.
    747				 *
    748				 * Note, this problem is not relevant for the
    749				 * case when we go right, because
    750				 * 'tnc_insert()' would correct the parent key.
    751				 */
    752				if (*n == (*zn)->child_cnt - 1) {
    753					err = tnc_next(c, zn, n);
    754					if (err) {
    755						/* Should be impossible */
    756						ubifs_assert(c, 0);
    757						if (err == -ENOENT)
    758							err = -EINVAL;
    759						return err;
    760					}
    761					ubifs_assert(c, *n == 0);
    762					*n = -1;
    763				}
    764				return 0;
    765			}
    766			err = matches_name(c, &(*zn)->zbranch[*n], nm);
    767			if (err < 0)
    768				return err;
    769			if (err == NAME_LESS)
    770				return 0;
    771			if (err == NAME_MATCHES)
    772				return 1;
    773			ubifs_assert(c, err == NAME_GREATER);
    774		}
    775	} else {
    776		int nn = *n;
    777		struct ubifs_znode *znode = *zn;
    778
    779		/* Look right */
    780		while (1) {
    781			err = tnc_next(c, &znode, &nn);
    782			if (err == -ENOENT)
    783				return 0;
    784			if (err < 0)
    785				return err;
    786			if (keys_cmp(c, &znode->zbranch[nn].key, key))
    787				return 0;
    788			err = matches_name(c, &znode->zbranch[nn], nm);
    789			if (err < 0)
    790				return err;
    791			if (err == NAME_GREATER)
    792				return 0;
    793			*zn = znode;
    794			*n = nn;
    795			if (err == NAME_MATCHES)
    796				return 1;
    797			ubifs_assert(c, err == NAME_LESS);
    798		}
    799	}
    800}
    801
    802/**
    803 * fallible_matches_name - determine if a dent matches a given name.
    804 * @c: UBIFS file-system description object
    805 * @zbr: zbranch of dent
    806 * @nm: name to match
    807 *
    808 * This is a "fallible" version of 'matches_name()' function which does not
    809 * panic if the direntry/xentry referred by @zbr does not exist on the media.
    810 *
    811 * This function checks if xentry/direntry referred by zbranch @zbr matches name
    812 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
    813 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
    814 * if xentry/direntry referred by @zbr does not exist on the media. A negative
    815 * error code is returned in case of failure.
    816 */
    817static int fallible_matches_name(struct ubifs_info *c,
    818				 struct ubifs_zbranch *zbr,
    819				 const struct fscrypt_name *nm)
    820{
    821	struct ubifs_dent_node *dent;
    822	int nlen, err;
    823
    824	/* If possible, match against the dent in the leaf node cache */
    825	if (!zbr->leaf) {
    826		dent = kmalloc(zbr->len, GFP_NOFS);
    827		if (!dent)
    828			return -ENOMEM;
    829
    830		err = fallible_read_node(c, &zbr->key, zbr, dent);
    831		if (err < 0)
    832			goto out_free;
    833		if (err == 0) {
    834			/* The node was not present */
    835			err = NOT_ON_MEDIA;
    836			goto out_free;
    837		}
    838		ubifs_assert(c, err == 1);
    839
    840		err = lnc_add_directly(c, zbr, dent);
    841		if (err)
    842			goto out_free;
    843	} else
    844		dent = zbr->leaf;
    845
    846	nlen = le16_to_cpu(dent->nlen);
    847	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
    848	if (err == 0) {
    849		if (nlen == fname_len(nm))
    850			return NAME_MATCHES;
    851		else if (nlen < fname_len(nm))
    852			return NAME_LESS;
    853		else
    854			return NAME_GREATER;
    855	} else if (err < 0)
    856		return NAME_LESS;
    857	else
    858		return NAME_GREATER;
    859
    860out_free:
    861	kfree(dent);
    862	return err;
    863}
    864
    865/**
    866 * fallible_resolve_collision - resolve a collision even if nodes are missing.
    867 * @c: UBIFS file-system description object
    868 * @key: key
    869 * @zn: znode is returned here
    870 * @n: branch number is passed and returned here
    871 * @nm: name of directory entry
    872 * @adding: indicates caller is adding a key to the TNC
    873 *
    874 * This is a "fallible" version of the 'resolve_collision()' function which
    875 * does not panic if one of the nodes referred to by TNC does not exist on the
    876 * media. This may happen when replaying the journal if a deleted node was
    877 * Garbage-collected and the commit was not done. A branch that refers to a node
    878 * that is not present is called a dangling branch. The following are the return
    879 * codes for this function:
    880 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
    881 *    branch;
    882 *  o if we are @adding and @nm was not found, %0 is returned;
    883 *  o if we are not @adding and @nm was not found, but a dangling branch was
    884 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
    885 *  o a negative error code is returned in case of failure.
    886 */
    887static int fallible_resolve_collision(struct ubifs_info *c,
    888				      const union ubifs_key *key,
    889				      struct ubifs_znode **zn, int *n,
    890				      const struct fscrypt_name *nm,
    891				      int adding)
    892{
    893	struct ubifs_znode *o_znode = NULL, *znode = *zn;
    894	int o_n, err, cmp, unsure = 0, nn = *n;
    895
    896	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
    897	if (unlikely(cmp < 0))
    898		return cmp;
    899	if (cmp == NAME_MATCHES)
    900		return 1;
    901	if (cmp == NOT_ON_MEDIA) {
    902		o_znode = znode;
    903		o_n = nn;
    904		/*
    905		 * We are unlucky and hit a dangling branch straight away.
    906		 * Now we do not really know where to go to find the needed
    907		 * branch - to the left or to the right. Well, let's try left.
    908		 */
    909		unsure = 1;
    910	} else if (!adding)
    911		unsure = 1; /* Remove a dangling branch wherever it is */
    912
    913	if (cmp == NAME_GREATER || unsure) {
    914		/* Look left */
    915		while (1) {
    916			err = tnc_prev(c, zn, n);
    917			if (err == -ENOENT) {
    918				ubifs_assert(c, *n == 0);
    919				*n = -1;
    920				break;
    921			}
    922			if (err < 0)
    923				return err;
    924			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
    925				/* See comments in 'resolve_collision()' */
    926				if (*n == (*zn)->child_cnt - 1) {
    927					err = tnc_next(c, zn, n);
    928					if (err) {
    929						/* Should be impossible */
    930						ubifs_assert(c, 0);
    931						if (err == -ENOENT)
    932							err = -EINVAL;
    933						return err;
    934					}
    935					ubifs_assert(c, *n == 0);
    936					*n = -1;
    937				}
    938				break;
    939			}
    940			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
    941			if (err < 0)
    942				return err;
    943			if (err == NAME_MATCHES)
    944				return 1;
    945			if (err == NOT_ON_MEDIA) {
    946				o_znode = *zn;
    947				o_n = *n;
    948				continue;
    949			}
    950			if (!adding)
    951				continue;
    952			if (err == NAME_LESS)
    953				break;
    954			else
    955				unsure = 0;
    956		}
    957	}
    958
    959	if (cmp == NAME_LESS || unsure) {
    960		/* Look right */
    961		*zn = znode;
    962		*n = nn;
    963		while (1) {
    964			err = tnc_next(c, &znode, &nn);
    965			if (err == -ENOENT)
    966				break;
    967			if (err < 0)
    968				return err;
    969			if (keys_cmp(c, &znode->zbranch[nn].key, key))
    970				break;
    971			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
    972			if (err < 0)
    973				return err;
    974			if (err == NAME_GREATER)
    975				break;
    976			*zn = znode;
    977			*n = nn;
    978			if (err == NAME_MATCHES)
    979				return 1;
    980			if (err == NOT_ON_MEDIA) {
    981				o_znode = znode;
    982				o_n = nn;
    983			}
    984		}
    985	}
    986
    987	/* Never match a dangling branch when adding */
    988	if (adding || !o_znode)
    989		return 0;
    990
    991	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
    992		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
    993		o_znode->zbranch[o_n].len);
    994	*zn = o_znode;
    995	*n = o_n;
    996	return 1;
    997}
    998
    999/**
   1000 * matches_position - determine if a zbranch matches a given position.
   1001 * @zbr: zbranch of dent
   1002 * @lnum: LEB number of dent to match
   1003 * @offs: offset of dent to match
   1004 *
   1005 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
   1006 */
   1007static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
   1008{
   1009	if (zbr->lnum == lnum && zbr->offs == offs)
   1010		return 1;
   1011	else
   1012		return 0;
   1013}
   1014
   1015/**
   1016 * resolve_collision_directly - resolve a collision directly.
   1017 * @c: UBIFS file-system description object
   1018 * @key: key of directory entry
   1019 * @zn: znode is passed and returned here
   1020 * @n: zbranch number is passed and returned here
   1021 * @lnum: LEB number of dent node to match
   1022 * @offs: offset of dent node to match
   1023 *
   1024 * This function is used for "hashed" keys to make sure the found directory or
   1025 * extended attribute entry node is what was looked for. It is used when the
   1026 * flash address of the right node is known (@lnum:@offs) which makes it much
   1027 * easier to resolve collisions (no need to read entries and match full
   1028 * names). This function returns %1 and sets @zn and @n if the collision is
   1029 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
   1030 * previous directory entry. Otherwise a negative error code is returned.
   1031 */
   1032static int resolve_collision_directly(struct ubifs_info *c,
   1033				      const union ubifs_key *key,
   1034				      struct ubifs_znode **zn, int *n,
   1035				      int lnum, int offs)
   1036{
   1037	struct ubifs_znode *znode;
   1038	int nn, err;
   1039
   1040	znode = *zn;
   1041	nn = *n;
   1042	if (matches_position(&znode->zbranch[nn], lnum, offs))
   1043		return 1;
   1044
   1045	/* Look left */
   1046	while (1) {
   1047		err = tnc_prev(c, &znode, &nn);
   1048		if (err == -ENOENT)
   1049			break;
   1050		if (err < 0)
   1051			return err;
   1052		if (keys_cmp(c, &znode->zbranch[nn].key, key))
   1053			break;
   1054		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
   1055			*zn = znode;
   1056			*n = nn;
   1057			return 1;
   1058		}
   1059	}
   1060
   1061	/* Look right */
   1062	znode = *zn;
   1063	nn = *n;
   1064	while (1) {
   1065		err = tnc_next(c, &znode, &nn);
   1066		if (err == -ENOENT)
   1067			return 0;
   1068		if (err < 0)
   1069			return err;
   1070		if (keys_cmp(c, &znode->zbranch[nn].key, key))
   1071			return 0;
   1072		*zn = znode;
   1073		*n = nn;
   1074		if (matches_position(&znode->zbranch[nn], lnum, offs))
   1075			return 1;
   1076	}
   1077}
   1078
   1079/**
   1080 * dirty_cow_bottom_up - dirty a znode and its ancestors.
   1081 * @c: UBIFS file-system description object
   1082 * @znode: znode to dirty
   1083 *
   1084 * If we do not have a unique key that resides in a znode, then we cannot
   1085 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
   1086 * This function records the path back to the last dirty ancestor, and then
   1087 * dirties the znodes on that path.
   1088 */
   1089static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
   1090					       struct ubifs_znode *znode)
   1091{
   1092	struct ubifs_znode *zp;
   1093	int *path = c->bottom_up_buf, p = 0;
   1094
   1095	ubifs_assert(c, c->zroot.znode);
   1096	ubifs_assert(c, znode);
   1097	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
   1098		kfree(c->bottom_up_buf);
   1099		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
   1100						 sizeof(int),
   1101						 GFP_NOFS);
   1102		if (!c->bottom_up_buf)
   1103			return ERR_PTR(-ENOMEM);
   1104		path = c->bottom_up_buf;
   1105	}
   1106	if (c->zroot.znode->level) {
   1107		/* Go up until parent is dirty */
   1108		while (1) {
   1109			int n;
   1110
   1111			zp = znode->parent;
   1112			if (!zp)
   1113				break;
   1114			n = znode->iip;
   1115			ubifs_assert(c, p < c->zroot.znode->level);
   1116			path[p++] = n;
   1117			if (!zp->cnext && ubifs_zn_dirty(znode))
   1118				break;
   1119			znode = zp;
   1120		}
   1121	}
   1122
   1123	/* Come back down, dirtying as we go */
   1124	while (1) {
   1125		struct ubifs_zbranch *zbr;
   1126
   1127		zp = znode->parent;
   1128		if (zp) {
   1129			ubifs_assert(c, path[p - 1] >= 0);
   1130			ubifs_assert(c, path[p - 1] < zp->child_cnt);
   1131			zbr = &zp->zbranch[path[--p]];
   1132			znode = dirty_cow_znode(c, zbr);
   1133		} else {
   1134			ubifs_assert(c, znode == c->zroot.znode);
   1135			znode = dirty_cow_znode(c, &c->zroot);
   1136		}
   1137		if (IS_ERR(znode) || !p)
   1138			break;
   1139		ubifs_assert(c, path[p - 1] >= 0);
   1140		ubifs_assert(c, path[p - 1] < znode->child_cnt);
   1141		znode = znode->zbranch[path[p - 1]].znode;
   1142	}
   1143
   1144	return znode;
   1145}
   1146
   1147/**
   1148 * ubifs_lookup_level0 - search for zero-level znode.
   1149 * @c: UBIFS file-system description object
   1150 * @key:  key to lookup
   1151 * @zn: znode is returned here
   1152 * @n: znode branch slot number is returned here
   1153 *
   1154 * This function looks up the TNC tree and search for zero-level znode which
   1155 * refers key @key. The found zero-level znode is returned in @zn. There are 3
   1156 * cases:
   1157 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
   1158 *     is returned and slot number of the matched branch is stored in @n;
   1159 *   o not exact match, which means that zero-level znode does not contain
   1160 *     @key, then %0 is returned and slot number of the closest branch or %-1
   1161 *     is stored in @n; In this case calling tnc_next() is mandatory.
   1162 *   o @key is so small that it is even less than the lowest key of the
   1163 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
   1164 *
   1165 * Note, when the TNC tree is traversed, some znodes may be absent, then this
   1166 * function reads corresponding indexing nodes and inserts them to TNC. In
   1167 * case of failure, a negative error code is returned.
   1168 */
   1169int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
   1170			struct ubifs_znode **zn, int *n)
   1171{
   1172	int err, exact;
   1173	struct ubifs_znode *znode;
   1174	time64_t time = ktime_get_seconds();
   1175
   1176	dbg_tnck(key, "search key ");
   1177	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
   1178
   1179	znode = c->zroot.znode;
   1180	if (unlikely(!znode)) {
   1181		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
   1182		if (IS_ERR(znode))
   1183			return PTR_ERR(znode);
   1184	}
   1185
   1186	znode->time = time;
   1187
   1188	while (1) {
   1189		struct ubifs_zbranch *zbr;
   1190
   1191		exact = ubifs_search_zbranch(c, znode, key, n);
   1192
   1193		if (znode->level == 0)
   1194			break;
   1195
   1196		if (*n < 0)
   1197			*n = 0;
   1198		zbr = &znode->zbranch[*n];
   1199
   1200		if (zbr->znode) {
   1201			znode->time = time;
   1202			znode = zbr->znode;
   1203			continue;
   1204		}
   1205
   1206		/* znode is not in TNC cache, load it from the media */
   1207		znode = ubifs_load_znode(c, zbr, znode, *n);
   1208		if (IS_ERR(znode))
   1209			return PTR_ERR(znode);
   1210	}
   1211
   1212	*zn = znode;
   1213	if (exact || !is_hash_key(c, key) || *n != -1) {
   1214		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
   1215		return exact;
   1216	}
   1217
   1218	/*
   1219	 * Here is a tricky place. We have not found the key and this is a
   1220	 * "hashed" key, which may collide. The rest of the code deals with
   1221	 * situations like this:
   1222	 *
   1223	 *                  | 3 | 5 |
   1224	 *                  /       \
   1225	 *          | 3 | 5 |      | 6 | 7 | (x)
   1226	 *
   1227	 * Or more a complex example:
   1228	 *
   1229	 *                | 1 | 5 |
   1230	 *                /       \
   1231	 *       | 1 | 3 |         | 5 | 8 |
   1232	 *              \           /
   1233	 *          | 5 | 5 |   | 6 | 7 | (x)
   1234	 *
   1235	 * In the examples, if we are looking for key "5", we may reach nodes
   1236	 * marked with "(x)". In this case what we have do is to look at the
   1237	 * left and see if there is "5" key there. If there is, we have to
   1238	 * return it.
   1239	 *
   1240	 * Note, this whole situation is possible because we allow to have
   1241	 * elements which are equivalent to the next key in the parent in the
   1242	 * children of current znode. For example, this happens if we split a
   1243	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
   1244	 * like this:
   1245	 *                      | 3 | 5 |
   1246	 *                       /     \
   1247	 *                | 3 | 5 |   | 5 | 6 | 7 |
   1248	 *                              ^
   1249	 * And this becomes what is at the first "picture" after key "5" marked
   1250	 * with "^" is removed. What could be done is we could prohibit
   1251	 * splitting in the middle of the colliding sequence. Also, when
   1252	 * removing the leftmost key, we would have to correct the key of the
   1253	 * parent node, which would introduce additional complications. Namely,
   1254	 * if we changed the leftmost key of the parent znode, the garbage
   1255	 * collector would be unable to find it (GC is doing this when GC'ing
   1256	 * indexing LEBs). Although we already have an additional RB-tree where
   1257	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
   1258	 * after the commit. But anyway, this does not look easy to implement
   1259	 * so we did not try this.
   1260	 */
   1261	err = tnc_prev(c, &znode, n);
   1262	if (err == -ENOENT) {
   1263		dbg_tnc("found 0, lvl %d, n -1", znode->level);
   1264		*n = -1;
   1265		return 0;
   1266	}
   1267	if (unlikely(err < 0))
   1268		return err;
   1269	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
   1270		dbg_tnc("found 0, lvl %d, n -1", znode->level);
   1271		*n = -1;
   1272		return 0;
   1273	}
   1274
   1275	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
   1276	*zn = znode;
   1277	return 1;
   1278}
   1279
   1280/**
   1281 * lookup_level0_dirty - search for zero-level znode dirtying.
   1282 * @c: UBIFS file-system description object
   1283 * @key:  key to lookup
   1284 * @zn: znode is returned here
   1285 * @n: znode branch slot number is returned here
   1286 *
   1287 * This function looks up the TNC tree and search for zero-level znode which
   1288 * refers key @key. The found zero-level znode is returned in @zn. There are 3
   1289 * cases:
   1290 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
   1291 *     is returned and slot number of the matched branch is stored in @n;
   1292 *   o not exact match, which means that zero-level znode does not contain @key
   1293 *     then %0 is returned and slot number of the closed branch is stored in
   1294 *     @n;
   1295 *   o @key is so small that it is even less than the lowest key of the
   1296 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
   1297 *
   1298 * Additionally all znodes in the path from the root to the located zero-level
   1299 * znode are marked as dirty.
   1300 *
   1301 * Note, when the TNC tree is traversed, some znodes may be absent, then this
   1302 * function reads corresponding indexing nodes and inserts them to TNC. In
   1303 * case of failure, a negative error code is returned.
   1304 */
   1305static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
   1306			       struct ubifs_znode **zn, int *n)
   1307{
   1308	int err, exact;
   1309	struct ubifs_znode *znode;
   1310	time64_t time = ktime_get_seconds();
   1311
   1312	dbg_tnck(key, "search and dirty key ");
   1313
   1314	znode = c->zroot.znode;
   1315	if (unlikely(!znode)) {
   1316		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
   1317		if (IS_ERR(znode))
   1318			return PTR_ERR(znode);
   1319	}
   1320
   1321	znode = dirty_cow_znode(c, &c->zroot);
   1322	if (IS_ERR(znode))
   1323		return PTR_ERR(znode);
   1324
   1325	znode->time = time;
   1326
   1327	while (1) {
   1328		struct ubifs_zbranch *zbr;
   1329
   1330		exact = ubifs_search_zbranch(c, znode, key, n);
   1331
   1332		if (znode->level == 0)
   1333			break;
   1334
   1335		if (*n < 0)
   1336			*n = 0;
   1337		zbr = &znode->zbranch[*n];
   1338
   1339		if (zbr->znode) {
   1340			znode->time = time;
   1341			znode = dirty_cow_znode(c, zbr);
   1342			if (IS_ERR(znode))
   1343				return PTR_ERR(znode);
   1344			continue;
   1345		}
   1346
   1347		/* znode is not in TNC cache, load it from the media */
   1348		znode = ubifs_load_znode(c, zbr, znode, *n);
   1349		if (IS_ERR(znode))
   1350			return PTR_ERR(znode);
   1351		znode = dirty_cow_znode(c, zbr);
   1352		if (IS_ERR(znode))
   1353			return PTR_ERR(znode);
   1354	}
   1355
   1356	*zn = znode;
   1357	if (exact || !is_hash_key(c, key) || *n != -1) {
   1358		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
   1359		return exact;
   1360	}
   1361
   1362	/*
   1363	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
   1364	 * code.
   1365	 */
   1366	err = tnc_prev(c, &znode, n);
   1367	if (err == -ENOENT) {
   1368		*n = -1;
   1369		dbg_tnc("found 0, lvl %d, n -1", znode->level);
   1370		return 0;
   1371	}
   1372	if (unlikely(err < 0))
   1373		return err;
   1374	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
   1375		*n = -1;
   1376		dbg_tnc("found 0, lvl %d, n -1", znode->level);
   1377		return 0;
   1378	}
   1379
   1380	if (znode->cnext || !ubifs_zn_dirty(znode)) {
   1381		znode = dirty_cow_bottom_up(c, znode);
   1382		if (IS_ERR(znode))
   1383			return PTR_ERR(znode);
   1384	}
   1385
   1386	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
   1387	*zn = znode;
   1388	return 1;
   1389}
   1390
   1391/**
   1392 * maybe_leb_gced - determine if a LEB may have been garbage collected.
   1393 * @c: UBIFS file-system description object
   1394 * @lnum: LEB number
   1395 * @gc_seq1: garbage collection sequence number
   1396 *
   1397 * This function determines if @lnum may have been garbage collected since
   1398 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
   1399 * %0 is returned.
   1400 */
   1401static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
   1402{
   1403	int gc_seq2, gced_lnum;
   1404
   1405	gced_lnum = c->gced_lnum;
   1406	smp_rmb();
   1407	gc_seq2 = c->gc_seq;
   1408	/* Same seq means no GC */
   1409	if (gc_seq1 == gc_seq2)
   1410		return 0;
   1411	/* Different by more than 1 means we don't know */
   1412	if (gc_seq1 + 1 != gc_seq2)
   1413		return 1;
   1414	/*
   1415	 * We have seen the sequence number has increased by 1. Now we need to
   1416	 * be sure we read the right LEB number, so read it again.
   1417	 */
   1418	smp_rmb();
   1419	if (gced_lnum != c->gced_lnum)
   1420		return 1;
   1421	/* Finally we can check lnum */
   1422	if (gced_lnum == lnum)
   1423		return 1;
   1424	return 0;
   1425}
   1426
   1427/**
   1428 * ubifs_tnc_locate - look up a file-system node and return it and its location.
   1429 * @c: UBIFS file-system description object
   1430 * @key: node key to lookup
   1431 * @node: the node is returned here
   1432 * @lnum: LEB number is returned here
   1433 * @offs: offset is returned here
   1434 *
   1435 * This function looks up and reads node with key @key. The caller has to make
   1436 * sure the @node buffer is large enough to fit the node. Returns zero in case
   1437 * of success, %-ENOENT if the node was not found, and a negative error code in
   1438 * case of failure. The node location can be returned in @lnum and @offs.
   1439 */
   1440int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
   1441		     void *node, int *lnum, int *offs)
   1442{
   1443	int found, n, err, safely = 0, gc_seq1;
   1444	struct ubifs_znode *znode;
   1445	struct ubifs_zbranch zbr, *zt;
   1446
   1447again:
   1448	mutex_lock(&c->tnc_mutex);
   1449	found = ubifs_lookup_level0(c, key, &znode, &n);
   1450	if (!found) {
   1451		err = -ENOENT;
   1452		goto out;
   1453	} else if (found < 0) {
   1454		err = found;
   1455		goto out;
   1456	}
   1457	zt = &znode->zbranch[n];
   1458	if (lnum) {
   1459		*lnum = zt->lnum;
   1460		*offs = zt->offs;
   1461	}
   1462	if (is_hash_key(c, key)) {
   1463		/*
   1464		 * In this case the leaf node cache gets used, so we pass the
   1465		 * address of the zbranch and keep the mutex locked
   1466		 */
   1467		err = tnc_read_hashed_node(c, zt, node);
   1468		goto out;
   1469	}
   1470	if (safely) {
   1471		err = ubifs_tnc_read_node(c, zt, node);
   1472		goto out;
   1473	}
   1474	/* Drop the TNC mutex prematurely and race with garbage collection */
   1475	zbr = znode->zbranch[n];
   1476	gc_seq1 = c->gc_seq;
   1477	mutex_unlock(&c->tnc_mutex);
   1478
   1479	if (ubifs_get_wbuf(c, zbr.lnum)) {
   1480		/* We do not GC journal heads */
   1481		err = ubifs_tnc_read_node(c, &zbr, node);
   1482		return err;
   1483	}
   1484
   1485	err = fallible_read_node(c, key, &zbr, node);
   1486	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
   1487		/*
   1488		 * The node may have been GC'ed out from under us so try again
   1489		 * while keeping the TNC mutex locked.
   1490		 */
   1491		safely = 1;
   1492		goto again;
   1493	}
   1494	return 0;
   1495
   1496out:
   1497	mutex_unlock(&c->tnc_mutex);
   1498	return err;
   1499}
   1500
   1501/**
   1502 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
   1503 * @c: UBIFS file-system description object
   1504 * @bu: bulk-read parameters and results
   1505 *
   1506 * Lookup consecutive data node keys for the same inode that reside
   1507 * consecutively in the same LEB. This function returns zero in case of success
   1508 * and a negative error code in case of failure.
   1509 *
   1510 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
   1511 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
   1512 * maximum possible amount of nodes for bulk-read.
   1513 */
   1514int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
   1515{
   1516	int n, err = 0, lnum = -1, offs;
   1517	int len;
   1518	unsigned int block = key_block(c, &bu->key);
   1519	struct ubifs_znode *znode;
   1520
   1521	bu->cnt = 0;
   1522	bu->blk_cnt = 0;
   1523	bu->eof = 0;
   1524
   1525	mutex_lock(&c->tnc_mutex);
   1526	/* Find first key */
   1527	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
   1528	if (err < 0)
   1529		goto out;
   1530	if (err) {
   1531		/* Key found */
   1532		len = znode->zbranch[n].len;
   1533		/* The buffer must be big enough for at least 1 node */
   1534		if (len > bu->buf_len) {
   1535			err = -EINVAL;
   1536			goto out;
   1537		}
   1538		/* Add this key */
   1539		bu->zbranch[bu->cnt++] = znode->zbranch[n];
   1540		bu->blk_cnt += 1;
   1541		lnum = znode->zbranch[n].lnum;
   1542		offs = ALIGN(znode->zbranch[n].offs + len, 8);
   1543	}
   1544	while (1) {
   1545		struct ubifs_zbranch *zbr;
   1546		union ubifs_key *key;
   1547		unsigned int next_block;
   1548
   1549		/* Find next key */
   1550		err = tnc_next(c, &znode, &n);
   1551		if (err)
   1552			goto out;
   1553		zbr = &znode->zbranch[n];
   1554		key = &zbr->key;
   1555		/* See if there is another data key for this file */
   1556		if (key_inum(c, key) != key_inum(c, &bu->key) ||
   1557		    key_type(c, key) != UBIFS_DATA_KEY) {
   1558			err = -ENOENT;
   1559			goto out;
   1560		}
   1561		if (lnum < 0) {
   1562			/* First key found */
   1563			lnum = zbr->lnum;
   1564			offs = ALIGN(zbr->offs + zbr->len, 8);
   1565			len = zbr->len;
   1566			if (len > bu->buf_len) {
   1567				err = -EINVAL;
   1568				goto out;
   1569			}
   1570		} else {
   1571			/*
   1572			 * The data nodes must be in consecutive positions in
   1573			 * the same LEB.
   1574			 */
   1575			if (zbr->lnum != lnum || zbr->offs != offs)
   1576				goto out;
   1577			offs += ALIGN(zbr->len, 8);
   1578			len = ALIGN(len, 8) + zbr->len;
   1579			/* Must not exceed buffer length */
   1580			if (len > bu->buf_len)
   1581				goto out;
   1582		}
   1583		/* Allow for holes */
   1584		next_block = key_block(c, key);
   1585		bu->blk_cnt += (next_block - block - 1);
   1586		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
   1587			goto out;
   1588		block = next_block;
   1589		/* Add this key */
   1590		bu->zbranch[bu->cnt++] = *zbr;
   1591		bu->blk_cnt += 1;
   1592		/* See if we have room for more */
   1593		if (bu->cnt >= UBIFS_MAX_BULK_READ)
   1594			goto out;
   1595		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
   1596			goto out;
   1597	}
   1598out:
   1599	if (err == -ENOENT) {
   1600		bu->eof = 1;
   1601		err = 0;
   1602	}
   1603	bu->gc_seq = c->gc_seq;
   1604	mutex_unlock(&c->tnc_mutex);
   1605	if (err)
   1606		return err;
   1607	/*
   1608	 * An enormous hole could cause bulk-read to encompass too many
   1609	 * page cache pages, so limit the number here.
   1610	 */
   1611	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
   1612		bu->blk_cnt = UBIFS_MAX_BULK_READ;
   1613	/*
   1614	 * Ensure that bulk-read covers a whole number of page cache
   1615	 * pages.
   1616	 */
   1617	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
   1618	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
   1619		return 0;
   1620	if (bu->eof) {
   1621		/* At the end of file we can round up */
   1622		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
   1623		return 0;
   1624	}
   1625	/* Exclude data nodes that do not make up a whole page cache page */
   1626	block = key_block(c, &bu->key) + bu->blk_cnt;
   1627	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
   1628	while (bu->cnt) {
   1629		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
   1630			break;
   1631		bu->cnt -= 1;
   1632	}
   1633	return 0;
   1634}
   1635
   1636/**
   1637 * read_wbuf - bulk-read from a LEB with a wbuf.
   1638 * @wbuf: wbuf that may overlap the read
   1639 * @buf: buffer into which to read
   1640 * @len: read length
   1641 * @lnum: LEB number from which to read
   1642 * @offs: offset from which to read
   1643 *
   1644 * This functions returns %0 on success or a negative error code on failure.
   1645 */
   1646static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
   1647		     int offs)
   1648{
   1649	const struct ubifs_info *c = wbuf->c;
   1650	int rlen, overlap;
   1651
   1652	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
   1653	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
   1654	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
   1655	ubifs_assert(c, offs + len <= c->leb_size);
   1656
   1657	spin_lock(&wbuf->lock);
   1658	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
   1659	if (!overlap) {
   1660		/* We may safely unlock the write-buffer and read the data */
   1661		spin_unlock(&wbuf->lock);
   1662		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
   1663	}
   1664
   1665	/* Don't read under wbuf */
   1666	rlen = wbuf->offs - offs;
   1667	if (rlen < 0)
   1668		rlen = 0;
   1669
   1670	/* Copy the rest from the write-buffer */
   1671	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
   1672	spin_unlock(&wbuf->lock);
   1673
   1674	if (rlen > 0)
   1675		/* Read everything that goes before write-buffer */
   1676		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
   1677
   1678	return 0;
   1679}
   1680
   1681/**
   1682 * validate_data_node - validate data nodes for bulk-read.
   1683 * @c: UBIFS file-system description object
   1684 * @buf: buffer containing data node to validate
   1685 * @zbr: zbranch of data node to validate
   1686 *
   1687 * This functions returns %0 on success or a negative error code on failure.
   1688 */
   1689static int validate_data_node(struct ubifs_info *c, void *buf,
   1690			      struct ubifs_zbranch *zbr)
   1691{
   1692	union ubifs_key key1;
   1693	struct ubifs_ch *ch = buf;
   1694	int err, len;
   1695
   1696	if (ch->node_type != UBIFS_DATA_NODE) {
   1697		ubifs_err(c, "bad node type (%d but expected %d)",
   1698			  ch->node_type, UBIFS_DATA_NODE);
   1699		goto out_err;
   1700	}
   1701
   1702	err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
   1703	if (err) {
   1704		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
   1705		goto out;
   1706	}
   1707
   1708	err = ubifs_node_check_hash(c, buf, zbr->hash);
   1709	if (err) {
   1710		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
   1711		return err;
   1712	}
   1713
   1714	len = le32_to_cpu(ch->len);
   1715	if (len != zbr->len) {
   1716		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
   1717		goto out_err;
   1718	}
   1719
   1720	/* Make sure the key of the read node is correct */
   1721	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
   1722	if (!keys_eq(c, &zbr->key, &key1)) {
   1723		ubifs_err(c, "bad key in node at LEB %d:%d",
   1724			  zbr->lnum, zbr->offs);
   1725		dbg_tnck(&zbr->key, "looked for key ");
   1726		dbg_tnck(&key1, "found node's key ");
   1727		goto out_err;
   1728	}
   1729
   1730	return 0;
   1731
   1732out_err:
   1733	err = -EINVAL;
   1734out:
   1735	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
   1736	ubifs_dump_node(c, buf, zbr->len);
   1737	dump_stack();
   1738	return err;
   1739}
   1740
   1741/**
   1742 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
   1743 * @c: UBIFS file-system description object
   1744 * @bu: bulk-read parameters and results
   1745 *
   1746 * This functions reads and validates the data nodes that were identified by the
   1747 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
   1748 * -EAGAIN to indicate a race with GC, or another negative error code on
   1749 * failure.
   1750 */
   1751int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
   1752{
   1753	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
   1754	struct ubifs_wbuf *wbuf;
   1755	void *buf;
   1756
   1757	len = bu->zbranch[bu->cnt - 1].offs;
   1758	len += bu->zbranch[bu->cnt - 1].len - offs;
   1759	if (len > bu->buf_len) {
   1760		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
   1761		return -EINVAL;
   1762	}
   1763
   1764	/* Do the read */
   1765	wbuf = ubifs_get_wbuf(c, lnum);
   1766	if (wbuf)
   1767		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
   1768	else
   1769		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
   1770
   1771	/* Check for a race with GC */
   1772	if (maybe_leb_gced(c, lnum, bu->gc_seq))
   1773		return -EAGAIN;
   1774
   1775	if (err && err != -EBADMSG) {
   1776		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
   1777			  lnum, offs, err);
   1778		dump_stack();
   1779		dbg_tnck(&bu->key, "key ");
   1780		return err;
   1781	}
   1782
   1783	/* Validate the nodes read */
   1784	buf = bu->buf;
   1785	for (i = 0; i < bu->cnt; i++) {
   1786		err = validate_data_node(c, buf, &bu->zbranch[i]);
   1787		if (err)
   1788			return err;
   1789		buf = buf + ALIGN(bu->zbranch[i].len, 8);
   1790	}
   1791
   1792	return 0;
   1793}
   1794
   1795/**
   1796 * do_lookup_nm- look up a "hashed" node.
   1797 * @c: UBIFS file-system description object
   1798 * @key: node key to lookup
   1799 * @node: the node is returned here
   1800 * @nm: node name
   1801 *
   1802 * This function looks up and reads a node which contains name hash in the key.
   1803 * Since the hash may have collisions, there may be many nodes with the same
   1804 * key, so we have to sequentially look to all of them until the needed one is
   1805 * found. This function returns zero in case of success, %-ENOENT if the node
   1806 * was not found, and a negative error code in case of failure.
   1807 */
   1808static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
   1809			void *node, const struct fscrypt_name *nm)
   1810{
   1811	int found, n, err;
   1812	struct ubifs_znode *znode;
   1813
   1814	dbg_tnck(key, "key ");
   1815	mutex_lock(&c->tnc_mutex);
   1816	found = ubifs_lookup_level0(c, key, &znode, &n);
   1817	if (!found) {
   1818		err = -ENOENT;
   1819		goto out_unlock;
   1820	} else if (found < 0) {
   1821		err = found;
   1822		goto out_unlock;
   1823	}
   1824
   1825	ubifs_assert(c, n >= 0);
   1826
   1827	err = resolve_collision(c, key, &znode, &n, nm);
   1828	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
   1829	if (unlikely(err < 0))
   1830		goto out_unlock;
   1831	if (err == 0) {
   1832		err = -ENOENT;
   1833		goto out_unlock;
   1834	}
   1835
   1836	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
   1837
   1838out_unlock:
   1839	mutex_unlock(&c->tnc_mutex);
   1840	return err;
   1841}
   1842
   1843/**
   1844 * ubifs_tnc_lookup_nm - look up a "hashed" node.
   1845 * @c: UBIFS file-system description object
   1846 * @key: node key to lookup
   1847 * @node: the node is returned here
   1848 * @nm: node name
   1849 *
   1850 * This function looks up and reads a node which contains name hash in the key.
   1851 * Since the hash may have collisions, there may be many nodes with the same
   1852 * key, so we have to sequentially look to all of them until the needed one is
   1853 * found. This function returns zero in case of success, %-ENOENT if the node
   1854 * was not found, and a negative error code in case of failure.
   1855 */
   1856int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
   1857			void *node, const struct fscrypt_name *nm)
   1858{
   1859	int err, len;
   1860	const struct ubifs_dent_node *dent = node;
   1861
   1862	/*
   1863	 * We assume that in most of the cases there are no name collisions and
   1864	 * 'ubifs_tnc_lookup()' returns us the right direntry.
   1865	 */
   1866	err = ubifs_tnc_lookup(c, key, node);
   1867	if (err)
   1868		return err;
   1869
   1870	len = le16_to_cpu(dent->nlen);
   1871	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
   1872		return 0;
   1873
   1874	/*
   1875	 * Unluckily, there are hash collisions and we have to iterate over
   1876	 * them look at each direntry with colliding name hash sequentially.
   1877	 */
   1878
   1879	return do_lookup_nm(c, key, node, nm);
   1880}
   1881
   1882static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
   1883			    struct ubifs_dent_node *dent, uint32_t cookie,
   1884			    struct ubifs_znode **zn, int *n, int exact)
   1885{
   1886	int err;
   1887	struct ubifs_znode *znode = *zn;
   1888	struct ubifs_zbranch *zbr;
   1889	union ubifs_key *dkey;
   1890
   1891	if (!exact) {
   1892		err = tnc_next(c, &znode, n);
   1893		if (err)
   1894			return err;
   1895	}
   1896
   1897	for (;;) {
   1898		zbr = &znode->zbranch[*n];
   1899		dkey = &zbr->key;
   1900
   1901		if (key_inum(c, dkey) != key_inum(c, key) ||
   1902		    key_type(c, dkey) != key_type(c, key)) {
   1903			return -ENOENT;
   1904		}
   1905
   1906		err = tnc_read_hashed_node(c, zbr, dent);
   1907		if (err)
   1908			return err;
   1909
   1910		if (key_hash(c, key) == key_hash(c, dkey) &&
   1911		    le32_to_cpu(dent->cookie) == cookie) {
   1912			*zn = znode;
   1913			return 0;
   1914		}
   1915
   1916		err = tnc_next(c, &znode, n);
   1917		if (err)
   1918			return err;
   1919	}
   1920}
   1921
   1922static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
   1923			struct ubifs_dent_node *dent, uint32_t cookie)
   1924{
   1925	int n, err;
   1926	struct ubifs_znode *znode;
   1927	union ubifs_key start_key;
   1928
   1929	ubifs_assert(c, is_hash_key(c, key));
   1930
   1931	lowest_dent_key(c, &start_key, key_inum(c, key));
   1932
   1933	mutex_lock(&c->tnc_mutex);
   1934	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
   1935	if (unlikely(err < 0))
   1936		goto out_unlock;
   1937
   1938	err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
   1939
   1940out_unlock:
   1941	mutex_unlock(&c->tnc_mutex);
   1942	return err;
   1943}
   1944
   1945/**
   1946 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
   1947 * @c: UBIFS file-system description object
   1948 * @key: node key to lookup
   1949 * @node: the node is returned here
   1950 * @cookie: node cookie for collision resolution
   1951 *
   1952 * This function looks up and reads a node which contains name hash in the key.
   1953 * Since the hash may have collisions, there may be many nodes with the same
   1954 * key, so we have to sequentially look to all of them until the needed one
   1955 * with the same cookie value is found.
   1956 * This function returns zero in case of success, %-ENOENT if the node
   1957 * was not found, and a negative error code in case of failure.
   1958 */
   1959int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
   1960			void *node, uint32_t cookie)
   1961{
   1962	int err;
   1963	const struct ubifs_dent_node *dent = node;
   1964
   1965	if (!c->double_hash)
   1966		return -EOPNOTSUPP;
   1967
   1968	/*
   1969	 * We assume that in most of the cases there are no name collisions and
   1970	 * 'ubifs_tnc_lookup()' returns us the right direntry.
   1971	 */
   1972	err = ubifs_tnc_lookup(c, key, node);
   1973	if (err)
   1974		return err;
   1975
   1976	if (le32_to_cpu(dent->cookie) == cookie)
   1977		return 0;
   1978
   1979	/*
   1980	 * Unluckily, there are hash collisions and we have to iterate over
   1981	 * them look at each direntry with colliding name hash sequentially.
   1982	 */
   1983	return do_lookup_dh(c, key, node, cookie);
   1984}
   1985
   1986/**
   1987 * correct_parent_keys - correct parent znodes' keys.
   1988 * @c: UBIFS file-system description object
   1989 * @znode: znode to correct parent znodes for
   1990 *
   1991 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
   1992 * zbranch changes, keys of parent znodes have to be corrected. This helper
   1993 * function is called in such situations and corrects the keys if needed.
   1994 */
   1995static void correct_parent_keys(const struct ubifs_info *c,
   1996				struct ubifs_znode *znode)
   1997{
   1998	union ubifs_key *key, *key1;
   1999
   2000	ubifs_assert(c, znode->parent);
   2001	ubifs_assert(c, znode->iip == 0);
   2002
   2003	key = &znode->zbranch[0].key;
   2004	key1 = &znode->parent->zbranch[0].key;
   2005
   2006	while (keys_cmp(c, key, key1) < 0) {
   2007		key_copy(c, key, key1);
   2008		znode = znode->parent;
   2009		znode->alt = 1;
   2010		if (!znode->parent || znode->iip)
   2011			break;
   2012		key1 = &znode->parent->zbranch[0].key;
   2013	}
   2014}
   2015
   2016/**
   2017 * insert_zbranch - insert a zbranch into a znode.
   2018 * @c: UBIFS file-system description object
   2019 * @znode: znode into which to insert
   2020 * @zbr: zbranch to insert
   2021 * @n: slot number to insert to
   2022 *
   2023 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
   2024 * znode's array of zbranches and keeps zbranches consolidated, so when a new
   2025 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
   2026 * slot, zbranches starting from @n have to be moved right.
   2027 */
   2028static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
   2029			   const struct ubifs_zbranch *zbr, int n)
   2030{
   2031	int i;
   2032
   2033	ubifs_assert(c, ubifs_zn_dirty(znode));
   2034
   2035	if (znode->level) {
   2036		for (i = znode->child_cnt; i > n; i--) {
   2037			znode->zbranch[i] = znode->zbranch[i - 1];
   2038			if (znode->zbranch[i].znode)
   2039				znode->zbranch[i].znode->iip = i;
   2040		}
   2041		if (zbr->znode)
   2042			zbr->znode->iip = n;
   2043	} else
   2044		for (i = znode->child_cnt; i > n; i--)
   2045			znode->zbranch[i] = znode->zbranch[i - 1];
   2046
   2047	znode->zbranch[n] = *zbr;
   2048	znode->child_cnt += 1;
   2049
   2050	/*
   2051	 * After inserting at slot zero, the lower bound of the key range of
   2052	 * this znode may have changed. If this znode is subsequently split
   2053	 * then the upper bound of the key range may change, and furthermore
   2054	 * it could change to be lower than the original lower bound. If that
   2055	 * happens, then it will no longer be possible to find this znode in the
   2056	 * TNC using the key from the index node on flash. That is bad because
   2057	 * if it is not found, we will assume it is obsolete and may overwrite
   2058	 * it. Then if there is an unclean unmount, we will start using the
   2059	 * old index which will be broken.
   2060	 *
   2061	 * So we first mark znodes that have insertions at slot zero, and then
   2062	 * if they are split we add their lnum/offs to the old_idx tree.
   2063	 */
   2064	if (n == 0)
   2065		znode->alt = 1;
   2066}
   2067
   2068/**
   2069 * tnc_insert - insert a node into TNC.
   2070 * @c: UBIFS file-system description object
   2071 * @znode: znode to insert into
   2072 * @zbr: branch to insert
   2073 * @n: slot number to insert new zbranch to
   2074 *
   2075 * This function inserts a new node described by @zbr into znode @znode. If
   2076 * znode does not have a free slot for new zbranch, it is split. Parent znodes
   2077 * are splat as well if needed. Returns zero in case of success or a negative
   2078 * error code in case of failure.
   2079 */
   2080static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
   2081		      struct ubifs_zbranch *zbr, int n)
   2082{
   2083	struct ubifs_znode *zn, *zi, *zp;
   2084	int i, keep, move, appending = 0;
   2085	union ubifs_key *key = &zbr->key, *key1;
   2086
   2087	ubifs_assert(c, n >= 0 && n <= c->fanout);
   2088
   2089	/* Implement naive insert for now */
   2090again:
   2091	zp = znode->parent;
   2092	if (znode->child_cnt < c->fanout) {
   2093		ubifs_assert(c, n != c->fanout);
   2094		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
   2095
   2096		insert_zbranch(c, znode, zbr, n);
   2097
   2098		/* Ensure parent's key is correct */
   2099		if (n == 0 && zp && znode->iip == 0)
   2100			correct_parent_keys(c, znode);
   2101
   2102		return 0;
   2103	}
   2104
   2105	/*
   2106	 * Unfortunately, @znode does not have more empty slots and we have to
   2107	 * split it.
   2108	 */
   2109	dbg_tnck(key, "splitting level %d, key ", znode->level);
   2110
   2111	if (znode->alt)
   2112		/*
   2113		 * We can no longer be sure of finding this znode by key, so we
   2114		 * record it in the old_idx tree.
   2115		 */
   2116		ins_clr_old_idx_znode(c, znode);
   2117
   2118	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
   2119	if (!zn)
   2120		return -ENOMEM;
   2121	zn->parent = zp;
   2122	zn->level = znode->level;
   2123
   2124	/* Decide where to split */
   2125	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
   2126		/* Try not to split consecutive data keys */
   2127		if (n == c->fanout) {
   2128			key1 = &znode->zbranch[n - 1].key;
   2129			if (key_inum(c, key1) == key_inum(c, key) &&
   2130			    key_type(c, key1) == UBIFS_DATA_KEY)
   2131				appending = 1;
   2132		} else
   2133			goto check_split;
   2134	} else if (appending && n != c->fanout) {
   2135		/* Try not to split consecutive data keys */
   2136		appending = 0;
   2137check_split:
   2138		if (n >= (c->fanout + 1) / 2) {
   2139			key1 = &znode->zbranch[0].key;
   2140			if (key_inum(c, key1) == key_inum(c, key) &&
   2141			    key_type(c, key1) == UBIFS_DATA_KEY) {
   2142				key1 = &znode->zbranch[n].key;
   2143				if (key_inum(c, key1) != key_inum(c, key) ||
   2144				    key_type(c, key1) != UBIFS_DATA_KEY) {
   2145					keep = n;
   2146					move = c->fanout - keep;
   2147					zi = znode;
   2148					goto do_split;
   2149				}
   2150			}
   2151		}
   2152	}
   2153
   2154	if (appending) {
   2155		keep = c->fanout;
   2156		move = 0;
   2157	} else {
   2158		keep = (c->fanout + 1) / 2;
   2159		move = c->fanout - keep;
   2160	}
   2161
   2162	/*
   2163	 * Although we don't at present, we could look at the neighbors and see
   2164	 * if we can move some zbranches there.
   2165	 */
   2166
   2167	if (n < keep) {
   2168		/* Insert into existing znode */
   2169		zi = znode;
   2170		move += 1;
   2171		keep -= 1;
   2172	} else {
   2173		/* Insert into new znode */
   2174		zi = zn;
   2175		n -= keep;
   2176		/* Re-parent */
   2177		if (zn->level != 0)
   2178			zbr->znode->parent = zn;
   2179	}
   2180
   2181do_split:
   2182
   2183	__set_bit(DIRTY_ZNODE, &zn->flags);
   2184	atomic_long_inc(&c->dirty_zn_cnt);
   2185
   2186	zn->child_cnt = move;
   2187	znode->child_cnt = keep;
   2188
   2189	dbg_tnc("moving %d, keeping %d", move, keep);
   2190
   2191	/* Move zbranch */
   2192	for (i = 0; i < move; i++) {
   2193		zn->zbranch[i] = znode->zbranch[keep + i];
   2194		/* Re-parent */
   2195		if (zn->level != 0)
   2196			if (zn->zbranch[i].znode) {
   2197				zn->zbranch[i].znode->parent = zn;
   2198				zn->zbranch[i].znode->iip = i;
   2199			}
   2200	}
   2201
   2202	/* Insert new key and branch */
   2203	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
   2204
   2205	insert_zbranch(c, zi, zbr, n);
   2206
   2207	/* Insert new znode (produced by spitting) into the parent */
   2208	if (zp) {
   2209		if (n == 0 && zi == znode && znode->iip == 0)
   2210			correct_parent_keys(c, znode);
   2211
   2212		/* Locate insertion point */
   2213		n = znode->iip + 1;
   2214
   2215		/* Tail recursion */
   2216		zbr->key = zn->zbranch[0].key;
   2217		zbr->znode = zn;
   2218		zbr->lnum = 0;
   2219		zbr->offs = 0;
   2220		zbr->len = 0;
   2221		znode = zp;
   2222
   2223		goto again;
   2224	}
   2225
   2226	/* We have to split root znode */
   2227	dbg_tnc("creating new zroot at level %d", znode->level + 1);
   2228
   2229	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
   2230	if (!zi)
   2231		return -ENOMEM;
   2232
   2233	zi->child_cnt = 2;
   2234	zi->level = znode->level + 1;
   2235
   2236	__set_bit(DIRTY_ZNODE, &zi->flags);
   2237	atomic_long_inc(&c->dirty_zn_cnt);
   2238
   2239	zi->zbranch[0].key = znode->zbranch[0].key;
   2240	zi->zbranch[0].znode = znode;
   2241	zi->zbranch[0].lnum = c->zroot.lnum;
   2242	zi->zbranch[0].offs = c->zroot.offs;
   2243	zi->zbranch[0].len = c->zroot.len;
   2244	zi->zbranch[1].key = zn->zbranch[0].key;
   2245	zi->zbranch[1].znode = zn;
   2246
   2247	c->zroot.lnum = 0;
   2248	c->zroot.offs = 0;
   2249	c->zroot.len = 0;
   2250	c->zroot.znode = zi;
   2251
   2252	zn->parent = zi;
   2253	zn->iip = 1;
   2254	znode->parent = zi;
   2255	znode->iip = 0;
   2256
   2257	return 0;
   2258}
   2259
   2260/**
   2261 * ubifs_tnc_add - add a node to TNC.
   2262 * @c: UBIFS file-system description object
   2263 * @key: key to add
   2264 * @lnum: LEB number of node
   2265 * @offs: node offset
   2266 * @len: node length
   2267 * @hash: The hash over the node
   2268 *
   2269 * This function adds a node with key @key to TNC. The node may be new or it may
   2270 * obsolete some existing one. Returns %0 on success or negative error code on
   2271 * failure.
   2272 */
   2273int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
   2274		  int offs, int len, const u8 *hash)
   2275{
   2276	int found, n, err = 0;
   2277	struct ubifs_znode *znode;
   2278
   2279	mutex_lock(&c->tnc_mutex);
   2280	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
   2281	found = lookup_level0_dirty(c, key, &znode, &n);
   2282	if (!found) {
   2283		struct ubifs_zbranch zbr;
   2284
   2285		zbr.znode = NULL;
   2286		zbr.lnum = lnum;
   2287		zbr.offs = offs;
   2288		zbr.len = len;
   2289		ubifs_copy_hash(c, hash, zbr.hash);
   2290		key_copy(c, key, &zbr.key);
   2291		err = tnc_insert(c, znode, &zbr, n + 1);
   2292	} else if (found == 1) {
   2293		struct ubifs_zbranch *zbr = &znode->zbranch[n];
   2294
   2295		lnc_free(zbr);
   2296		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
   2297		zbr->lnum = lnum;
   2298		zbr->offs = offs;
   2299		zbr->len = len;
   2300		ubifs_copy_hash(c, hash, zbr->hash);
   2301	} else
   2302		err = found;
   2303	if (!err)
   2304		err = dbg_check_tnc(c, 0);
   2305	mutex_unlock(&c->tnc_mutex);
   2306
   2307	return err;
   2308}
   2309
   2310/**
   2311 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
   2312 * @c: UBIFS file-system description object
   2313 * @key: key to add
   2314 * @old_lnum: LEB number of old node
   2315 * @old_offs: old node offset
   2316 * @lnum: LEB number of node
   2317 * @offs: node offset
   2318 * @len: node length
   2319 *
   2320 * This function replaces a node with key @key in the TNC only if the old node
   2321 * is found.  This function is called by garbage collection when node are moved.
   2322 * Returns %0 on success or negative error code on failure.
   2323 */
   2324int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
   2325		      int old_lnum, int old_offs, int lnum, int offs, int len)
   2326{
   2327	int found, n, err = 0;
   2328	struct ubifs_znode *znode;
   2329
   2330	mutex_lock(&c->tnc_mutex);
   2331	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
   2332		 old_offs, lnum, offs, len);
   2333	found = lookup_level0_dirty(c, key, &znode, &n);
   2334	if (found < 0) {
   2335		err = found;
   2336		goto out_unlock;
   2337	}
   2338
   2339	if (found == 1) {
   2340		struct ubifs_zbranch *zbr = &znode->zbranch[n];
   2341
   2342		found = 0;
   2343		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
   2344			lnc_free(zbr);
   2345			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
   2346			if (err)
   2347				goto out_unlock;
   2348			zbr->lnum = lnum;
   2349			zbr->offs = offs;
   2350			zbr->len = len;
   2351			found = 1;
   2352		} else if (is_hash_key(c, key)) {
   2353			found = resolve_collision_directly(c, key, &znode, &n,
   2354							   old_lnum, old_offs);
   2355			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
   2356				found, znode, n, old_lnum, old_offs);
   2357			if (found < 0) {
   2358				err = found;
   2359				goto out_unlock;
   2360			}
   2361
   2362			if (found) {
   2363				/* Ensure the znode is dirtied */
   2364				if (znode->cnext || !ubifs_zn_dirty(znode)) {
   2365					znode = dirty_cow_bottom_up(c, znode);
   2366					if (IS_ERR(znode)) {
   2367						err = PTR_ERR(znode);
   2368						goto out_unlock;
   2369					}
   2370				}
   2371				zbr = &znode->zbranch[n];
   2372				lnc_free(zbr);
   2373				err = ubifs_add_dirt(c, zbr->lnum,
   2374						     zbr->len);
   2375				if (err)
   2376					goto out_unlock;
   2377				zbr->lnum = lnum;
   2378				zbr->offs = offs;
   2379				zbr->len = len;
   2380			}
   2381		}
   2382	}
   2383
   2384	if (!found)
   2385		err = ubifs_add_dirt(c, lnum, len);
   2386
   2387	if (!err)
   2388		err = dbg_check_tnc(c, 0);
   2389
   2390out_unlock:
   2391	mutex_unlock(&c->tnc_mutex);
   2392	return err;
   2393}
   2394
   2395/**
   2396 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
   2397 * @c: UBIFS file-system description object
   2398 * @key: key to add
   2399 * @lnum: LEB number of node
   2400 * @offs: node offset
   2401 * @len: node length
   2402 * @hash: The hash over the node
   2403 * @nm: node name
   2404 *
   2405 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
   2406 * may have collisions, like directory entry keys.
   2407 */
   2408int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
   2409		     int lnum, int offs, int len, const u8 *hash,
   2410		     const struct fscrypt_name *nm)
   2411{
   2412	int found, n, err = 0;
   2413	struct ubifs_znode *znode;
   2414
   2415	mutex_lock(&c->tnc_mutex);
   2416	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
   2417	found = lookup_level0_dirty(c, key, &znode, &n);
   2418	if (found < 0) {
   2419		err = found;
   2420		goto out_unlock;
   2421	}
   2422
   2423	if (found == 1) {
   2424		if (c->replaying)
   2425			found = fallible_resolve_collision(c, key, &znode, &n,
   2426							   nm, 1);
   2427		else
   2428			found = resolve_collision(c, key, &znode, &n, nm);
   2429		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
   2430		if (found < 0) {
   2431			err = found;
   2432			goto out_unlock;
   2433		}
   2434
   2435		/* Ensure the znode is dirtied */
   2436		if (znode->cnext || !ubifs_zn_dirty(znode)) {
   2437			znode = dirty_cow_bottom_up(c, znode);
   2438			if (IS_ERR(znode)) {
   2439				err = PTR_ERR(znode);
   2440				goto out_unlock;
   2441			}
   2442		}
   2443
   2444		if (found == 1) {
   2445			struct ubifs_zbranch *zbr = &znode->zbranch[n];
   2446
   2447			lnc_free(zbr);
   2448			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
   2449			zbr->lnum = lnum;
   2450			zbr->offs = offs;
   2451			zbr->len = len;
   2452			ubifs_copy_hash(c, hash, zbr->hash);
   2453			goto out_unlock;
   2454		}
   2455	}
   2456
   2457	if (!found) {
   2458		struct ubifs_zbranch zbr;
   2459
   2460		zbr.znode = NULL;
   2461		zbr.lnum = lnum;
   2462		zbr.offs = offs;
   2463		zbr.len = len;
   2464		ubifs_copy_hash(c, hash, zbr.hash);
   2465		key_copy(c, key, &zbr.key);
   2466		err = tnc_insert(c, znode, &zbr, n + 1);
   2467		if (err)
   2468			goto out_unlock;
   2469		if (c->replaying) {
   2470			/*
   2471			 * We did not find it in the index so there may be a
   2472			 * dangling branch still in the index. So we remove it
   2473			 * by passing 'ubifs_tnc_remove_nm()' the same key but
   2474			 * an unmatchable name.
   2475			 */
   2476			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
   2477
   2478			err = dbg_check_tnc(c, 0);
   2479			mutex_unlock(&c->tnc_mutex);
   2480			if (err)
   2481				return err;
   2482			return ubifs_tnc_remove_nm(c, key, &noname);
   2483		}
   2484	}
   2485
   2486out_unlock:
   2487	if (!err)
   2488		err = dbg_check_tnc(c, 0);
   2489	mutex_unlock(&c->tnc_mutex);
   2490	return err;
   2491}
   2492
   2493/**
   2494 * tnc_delete - delete a znode form TNC.
   2495 * @c: UBIFS file-system description object
   2496 * @znode: znode to delete from
   2497 * @n: zbranch slot number to delete
   2498 *
   2499 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
   2500 * case of success and a negative error code in case of failure.
   2501 */
   2502static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
   2503{
   2504	struct ubifs_zbranch *zbr;
   2505	struct ubifs_znode *zp;
   2506	int i, err;
   2507
   2508	/* Delete without merge for now */
   2509	ubifs_assert(c, znode->level == 0);
   2510	ubifs_assert(c, n >= 0 && n < c->fanout);
   2511	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
   2512
   2513	zbr = &znode->zbranch[n];
   2514	lnc_free(zbr);
   2515
   2516	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
   2517	if (err) {
   2518		ubifs_dump_znode(c, znode);
   2519		return err;
   2520	}
   2521
   2522	/* We do not "gap" zbranch slots */
   2523	for (i = n; i < znode->child_cnt - 1; i++)
   2524		znode->zbranch[i] = znode->zbranch[i + 1];
   2525	znode->child_cnt -= 1;
   2526
   2527	if (znode->child_cnt > 0)
   2528		return 0;
   2529
   2530	/*
   2531	 * This was the last zbranch, we have to delete this znode from the
   2532	 * parent.
   2533	 */
   2534
   2535	do {
   2536		ubifs_assert(c, !ubifs_zn_obsolete(znode));
   2537		ubifs_assert(c, ubifs_zn_dirty(znode));
   2538
   2539		zp = znode->parent;
   2540		n = znode->iip;
   2541
   2542		atomic_long_dec(&c->dirty_zn_cnt);
   2543
   2544		err = insert_old_idx_znode(c, znode);
   2545		if (err)
   2546			return err;
   2547
   2548		if (znode->cnext) {
   2549			__set_bit(OBSOLETE_ZNODE, &znode->flags);
   2550			atomic_long_inc(&c->clean_zn_cnt);
   2551			atomic_long_inc(&ubifs_clean_zn_cnt);
   2552		} else
   2553			kfree(znode);
   2554		znode = zp;
   2555	} while (znode->child_cnt == 1); /* while removing last child */
   2556
   2557	/* Remove from znode, entry n - 1 */
   2558	znode->child_cnt -= 1;
   2559	ubifs_assert(c, znode->level != 0);
   2560	for (i = n; i < znode->child_cnt; i++) {
   2561		znode->zbranch[i] = znode->zbranch[i + 1];
   2562		if (znode->zbranch[i].znode)
   2563			znode->zbranch[i].znode->iip = i;
   2564	}
   2565
   2566	/*
   2567	 * If this is the root and it has only 1 child then
   2568	 * collapse the tree.
   2569	 */
   2570	if (!znode->parent) {
   2571		while (znode->child_cnt == 1 && znode->level != 0) {
   2572			zp = znode;
   2573			zbr = &znode->zbranch[0];
   2574			znode = get_znode(c, znode, 0);
   2575			if (IS_ERR(znode))
   2576				return PTR_ERR(znode);
   2577			znode = dirty_cow_znode(c, zbr);
   2578			if (IS_ERR(znode))
   2579				return PTR_ERR(znode);
   2580			znode->parent = NULL;
   2581			znode->iip = 0;
   2582			if (c->zroot.len) {
   2583				err = insert_old_idx(c, c->zroot.lnum,
   2584						     c->zroot.offs);
   2585				if (err)
   2586					return err;
   2587			}
   2588			c->zroot.lnum = zbr->lnum;
   2589			c->zroot.offs = zbr->offs;
   2590			c->zroot.len = zbr->len;
   2591			c->zroot.znode = znode;
   2592			ubifs_assert(c, !ubifs_zn_obsolete(zp));
   2593			ubifs_assert(c, ubifs_zn_dirty(zp));
   2594			atomic_long_dec(&c->dirty_zn_cnt);
   2595
   2596			if (zp->cnext) {
   2597				__set_bit(OBSOLETE_ZNODE, &zp->flags);
   2598				atomic_long_inc(&c->clean_zn_cnt);
   2599				atomic_long_inc(&ubifs_clean_zn_cnt);
   2600			} else
   2601				kfree(zp);
   2602		}
   2603	}
   2604
   2605	return 0;
   2606}
   2607
   2608/**
   2609 * ubifs_tnc_remove - remove an index entry of a node.
   2610 * @c: UBIFS file-system description object
   2611 * @key: key of node
   2612 *
   2613 * Returns %0 on success or negative error code on failure.
   2614 */
   2615int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
   2616{
   2617	int found, n, err = 0;
   2618	struct ubifs_znode *znode;
   2619
   2620	mutex_lock(&c->tnc_mutex);
   2621	dbg_tnck(key, "key ");
   2622	found = lookup_level0_dirty(c, key, &znode, &n);
   2623	if (found < 0) {
   2624		err = found;
   2625		goto out_unlock;
   2626	}
   2627	if (found == 1)
   2628		err = tnc_delete(c, znode, n);
   2629	if (!err)
   2630		err = dbg_check_tnc(c, 0);
   2631
   2632out_unlock:
   2633	mutex_unlock(&c->tnc_mutex);
   2634	return err;
   2635}
   2636
   2637/**
   2638 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
   2639 * @c: UBIFS file-system description object
   2640 * @key: key of node
   2641 * @nm: directory entry name
   2642 *
   2643 * Returns %0 on success or negative error code on failure.
   2644 */
   2645int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
   2646			const struct fscrypt_name *nm)
   2647{
   2648	int n, err;
   2649	struct ubifs_znode *znode;
   2650
   2651	mutex_lock(&c->tnc_mutex);
   2652	dbg_tnck(key, "key ");
   2653	err = lookup_level0_dirty(c, key, &znode, &n);
   2654	if (err < 0)
   2655		goto out_unlock;
   2656
   2657	if (err) {
   2658		if (c->replaying)
   2659			err = fallible_resolve_collision(c, key, &znode, &n,
   2660							 nm, 0);
   2661		else
   2662			err = resolve_collision(c, key, &znode, &n, nm);
   2663		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
   2664		if (err < 0)
   2665			goto out_unlock;
   2666		if (err) {
   2667			/* Ensure the znode is dirtied */
   2668			if (znode->cnext || !ubifs_zn_dirty(znode)) {
   2669				znode = dirty_cow_bottom_up(c, znode);
   2670				if (IS_ERR(znode)) {
   2671					err = PTR_ERR(znode);
   2672					goto out_unlock;
   2673				}
   2674			}
   2675			err = tnc_delete(c, znode, n);
   2676		}
   2677	}
   2678
   2679out_unlock:
   2680	if (!err)
   2681		err = dbg_check_tnc(c, 0);
   2682	mutex_unlock(&c->tnc_mutex);
   2683	return err;
   2684}
   2685
   2686/**
   2687 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
   2688 * @c: UBIFS file-system description object
   2689 * @key: key of node
   2690 * @cookie: node cookie for collision resolution
   2691 *
   2692 * Returns %0 on success or negative error code on failure.
   2693 */
   2694int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
   2695			uint32_t cookie)
   2696{
   2697	int n, err;
   2698	struct ubifs_znode *znode;
   2699	struct ubifs_dent_node *dent;
   2700	struct ubifs_zbranch *zbr;
   2701
   2702	if (!c->double_hash)
   2703		return -EOPNOTSUPP;
   2704
   2705	mutex_lock(&c->tnc_mutex);
   2706	err = lookup_level0_dirty(c, key, &znode, &n);
   2707	if (err <= 0)
   2708		goto out_unlock;
   2709
   2710	zbr = &znode->zbranch[n];
   2711	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
   2712	if (!dent) {
   2713		err = -ENOMEM;
   2714		goto out_unlock;
   2715	}
   2716
   2717	err = tnc_read_hashed_node(c, zbr, dent);
   2718	if (err)
   2719		goto out_free;
   2720
   2721	/* If the cookie does not match, we're facing a hash collision. */
   2722	if (le32_to_cpu(dent->cookie) != cookie) {
   2723		union ubifs_key start_key;
   2724
   2725		lowest_dent_key(c, &start_key, key_inum(c, key));
   2726
   2727		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
   2728		if (unlikely(err < 0))
   2729			goto out_free;
   2730
   2731		err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
   2732		if (err)
   2733			goto out_free;
   2734	}
   2735
   2736	if (znode->cnext || !ubifs_zn_dirty(znode)) {
   2737		znode = dirty_cow_bottom_up(c, znode);
   2738		if (IS_ERR(znode)) {
   2739			err = PTR_ERR(znode);
   2740			goto out_free;
   2741		}
   2742	}
   2743	err = tnc_delete(c, znode, n);
   2744
   2745out_free:
   2746	kfree(dent);
   2747out_unlock:
   2748	if (!err)
   2749		err = dbg_check_tnc(c, 0);
   2750	mutex_unlock(&c->tnc_mutex);
   2751	return err;
   2752}
   2753
   2754/**
   2755 * key_in_range - determine if a key falls within a range of keys.
   2756 * @c: UBIFS file-system description object
   2757 * @key: key to check
   2758 * @from_key: lowest key in range
   2759 * @to_key: highest key in range
   2760 *
   2761 * This function returns %1 if the key is in range and %0 otherwise.
   2762 */
   2763static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
   2764			union ubifs_key *from_key, union ubifs_key *to_key)
   2765{
   2766	if (keys_cmp(c, key, from_key) < 0)
   2767		return 0;
   2768	if (keys_cmp(c, key, to_key) > 0)
   2769		return 0;
   2770	return 1;
   2771}
   2772
   2773/**
   2774 * ubifs_tnc_remove_range - remove index entries in range.
   2775 * @c: UBIFS file-system description object
   2776 * @from_key: lowest key to remove
   2777 * @to_key: highest key to remove
   2778 *
   2779 * This function removes index entries starting at @from_key and ending at
   2780 * @to_key.  This function returns zero in case of success and a negative error
   2781 * code in case of failure.
   2782 */
   2783int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
   2784			   union ubifs_key *to_key)
   2785{
   2786	int i, n, k, err = 0;
   2787	struct ubifs_znode *znode;
   2788	union ubifs_key *key;
   2789
   2790	mutex_lock(&c->tnc_mutex);
   2791	while (1) {
   2792		/* Find first level 0 znode that contains keys to remove */
   2793		err = ubifs_lookup_level0(c, from_key, &znode, &n);
   2794		if (err < 0)
   2795			goto out_unlock;
   2796
   2797		if (err)
   2798			key = from_key;
   2799		else {
   2800			err = tnc_next(c, &znode, &n);
   2801			if (err == -ENOENT) {
   2802				err = 0;
   2803				goto out_unlock;
   2804			}
   2805			if (err < 0)
   2806				goto out_unlock;
   2807			key = &znode->zbranch[n].key;
   2808			if (!key_in_range(c, key, from_key, to_key)) {
   2809				err = 0;
   2810				goto out_unlock;
   2811			}
   2812		}
   2813
   2814		/* Ensure the znode is dirtied */
   2815		if (znode->cnext || !ubifs_zn_dirty(znode)) {
   2816			znode = dirty_cow_bottom_up(c, znode);
   2817			if (IS_ERR(znode)) {
   2818				err = PTR_ERR(znode);
   2819				goto out_unlock;
   2820			}
   2821		}
   2822
   2823		/* Remove all keys in range except the first */
   2824		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
   2825			key = &znode->zbranch[i].key;
   2826			if (!key_in_range(c, key, from_key, to_key))
   2827				break;
   2828			lnc_free(&znode->zbranch[i]);
   2829			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
   2830					     znode->zbranch[i].len);
   2831			if (err) {
   2832				ubifs_dump_znode(c, znode);
   2833				goto out_unlock;
   2834			}
   2835			dbg_tnck(key, "removing key ");
   2836		}
   2837		if (k) {
   2838			for (i = n + 1 + k; i < znode->child_cnt; i++)
   2839				znode->zbranch[i - k] = znode->zbranch[i];
   2840			znode->child_cnt -= k;
   2841		}
   2842
   2843		/* Now delete the first */
   2844		err = tnc_delete(c, znode, n);
   2845		if (err)
   2846			goto out_unlock;
   2847	}
   2848
   2849out_unlock:
   2850	if (!err)
   2851		err = dbg_check_tnc(c, 0);
   2852	mutex_unlock(&c->tnc_mutex);
   2853	return err;
   2854}
   2855
   2856/**
   2857 * ubifs_tnc_remove_ino - remove an inode from TNC.
   2858 * @c: UBIFS file-system description object
   2859 * @inum: inode number to remove
   2860 *
   2861 * This function remove inode @inum and all the extended attributes associated
   2862 * with the anode from TNC and returns zero in case of success or a negative
   2863 * error code in case of failure.
   2864 */
   2865int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
   2866{
   2867	union ubifs_key key1, key2;
   2868	struct ubifs_dent_node *xent, *pxent = NULL;
   2869	struct fscrypt_name nm = {0};
   2870
   2871	dbg_tnc("ino %lu", (unsigned long)inum);
   2872
   2873	/*
   2874	 * Walk all extended attribute entries and remove them together with
   2875	 * corresponding extended attribute inodes.
   2876	 */
   2877	lowest_xent_key(c, &key1, inum);
   2878	while (1) {
   2879		ino_t xattr_inum;
   2880		int err;
   2881
   2882		xent = ubifs_tnc_next_ent(c, &key1, &nm);
   2883		if (IS_ERR(xent)) {
   2884			err = PTR_ERR(xent);
   2885			if (err == -ENOENT)
   2886				break;
   2887			kfree(pxent);
   2888			return err;
   2889		}
   2890
   2891		xattr_inum = le64_to_cpu(xent->inum);
   2892		dbg_tnc("xent '%s', ino %lu", xent->name,
   2893			(unsigned long)xattr_inum);
   2894
   2895		ubifs_evict_xattr_inode(c, xattr_inum);
   2896
   2897		fname_name(&nm) = xent->name;
   2898		fname_len(&nm) = le16_to_cpu(xent->nlen);
   2899		err = ubifs_tnc_remove_nm(c, &key1, &nm);
   2900		if (err) {
   2901			kfree(pxent);
   2902			kfree(xent);
   2903			return err;
   2904		}
   2905
   2906		lowest_ino_key(c, &key1, xattr_inum);
   2907		highest_ino_key(c, &key2, xattr_inum);
   2908		err = ubifs_tnc_remove_range(c, &key1, &key2);
   2909		if (err) {
   2910			kfree(pxent);
   2911			kfree(xent);
   2912			return err;
   2913		}
   2914
   2915		kfree(pxent);
   2916		pxent = xent;
   2917		key_read(c, &xent->key, &key1);
   2918	}
   2919
   2920	kfree(pxent);
   2921	lowest_ino_key(c, &key1, inum);
   2922	highest_ino_key(c, &key2, inum);
   2923
   2924	return ubifs_tnc_remove_range(c, &key1, &key2);
   2925}
   2926
   2927/**
   2928 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
   2929 * @c: UBIFS file-system description object
   2930 * @key: key of last entry
   2931 * @nm: name of last entry found or %NULL
   2932 *
   2933 * This function finds and reads the next directory or extended attribute entry
   2934 * after the given key (@key) if there is one. @nm is used to resolve
   2935 * collisions.
   2936 *
   2937 * If the name of the current entry is not known and only the key is known,
   2938 * @nm->name has to be %NULL. In this case the semantics of this function is a
   2939 * little bit different and it returns the entry corresponding to this key, not
   2940 * the next one. If the key was not found, the closest "right" entry is
   2941 * returned.
   2942 *
   2943 * If the fist entry has to be found, @key has to contain the lowest possible
   2944 * key value for this inode and @name has to be %NULL.
   2945 *
   2946 * This function returns the found directory or extended attribute entry node
   2947 * in case of success, %-ENOENT is returned if no entry was found, and a
   2948 * negative error code is returned in case of failure.
   2949 */
   2950struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
   2951					   union ubifs_key *key,
   2952					   const struct fscrypt_name *nm)
   2953{
   2954	int n, err, type = key_type(c, key);
   2955	struct ubifs_znode *znode;
   2956	struct ubifs_dent_node *dent;
   2957	struct ubifs_zbranch *zbr;
   2958	union ubifs_key *dkey;
   2959
   2960	dbg_tnck(key, "key ");
   2961	ubifs_assert(c, is_hash_key(c, key));
   2962
   2963	mutex_lock(&c->tnc_mutex);
   2964	err = ubifs_lookup_level0(c, key, &znode, &n);
   2965	if (unlikely(err < 0))
   2966		goto out_unlock;
   2967
   2968	if (fname_len(nm) > 0) {
   2969		if (err) {
   2970			/* Handle collisions */
   2971			if (c->replaying)
   2972				err = fallible_resolve_collision(c, key, &znode, &n,
   2973							 nm, 0);
   2974			else
   2975				err = resolve_collision(c, key, &znode, &n, nm);
   2976			dbg_tnc("rc returned %d, znode %p, n %d",
   2977				err, znode, n);
   2978			if (unlikely(err < 0))
   2979				goto out_unlock;
   2980		}
   2981
   2982		/* Now find next entry */
   2983		err = tnc_next(c, &znode, &n);
   2984		if (unlikely(err))
   2985			goto out_unlock;
   2986	} else {
   2987		/*
   2988		 * The full name of the entry was not given, in which case the
   2989		 * behavior of this function is a little different and it
   2990		 * returns current entry, not the next one.
   2991		 */
   2992		if (!err) {
   2993			/*
   2994			 * However, the given key does not exist in the TNC
   2995			 * tree and @znode/@n variables contain the closest
   2996			 * "preceding" element. Switch to the next one.
   2997			 */
   2998			err = tnc_next(c, &znode, &n);
   2999			if (err)
   3000				goto out_unlock;
   3001		}
   3002	}
   3003
   3004	zbr = &znode->zbranch[n];
   3005	dent = kmalloc(zbr->len, GFP_NOFS);
   3006	if (unlikely(!dent)) {
   3007		err = -ENOMEM;
   3008		goto out_unlock;
   3009	}
   3010
   3011	/*
   3012	 * The above 'tnc_next()' call could lead us to the next inode, check
   3013	 * this.
   3014	 */
   3015	dkey = &zbr->key;
   3016	if (key_inum(c, dkey) != key_inum(c, key) ||
   3017	    key_type(c, dkey) != type) {
   3018		err = -ENOENT;
   3019		goto out_free;
   3020	}
   3021
   3022	err = tnc_read_hashed_node(c, zbr, dent);
   3023	if (unlikely(err))
   3024		goto out_free;
   3025
   3026	mutex_unlock(&c->tnc_mutex);
   3027	return dent;
   3028
   3029out_free:
   3030	kfree(dent);
   3031out_unlock:
   3032	mutex_unlock(&c->tnc_mutex);
   3033	return ERR_PTR(err);
   3034}
   3035
   3036/**
   3037 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
   3038 * @c: UBIFS file-system description object
   3039 *
   3040 * Destroy left-over obsolete znodes from a failed commit.
   3041 */
   3042static void tnc_destroy_cnext(struct ubifs_info *c)
   3043{
   3044	struct ubifs_znode *cnext;
   3045
   3046	if (!c->cnext)
   3047		return;
   3048	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
   3049	cnext = c->cnext;
   3050	do {
   3051		struct ubifs_znode *znode = cnext;
   3052
   3053		cnext = cnext->cnext;
   3054		if (ubifs_zn_obsolete(znode))
   3055			kfree(znode);
   3056	} while (cnext && cnext != c->cnext);
   3057}
   3058
   3059/**
   3060 * ubifs_tnc_close - close TNC subsystem and free all related resources.
   3061 * @c: UBIFS file-system description object
   3062 */
   3063void ubifs_tnc_close(struct ubifs_info *c)
   3064{
   3065	tnc_destroy_cnext(c);
   3066	if (c->zroot.znode) {
   3067		long n, freed;
   3068
   3069		n = atomic_long_read(&c->clean_zn_cnt);
   3070		freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
   3071		ubifs_assert(c, freed == n);
   3072		atomic_long_sub(n, &ubifs_clean_zn_cnt);
   3073	}
   3074	kfree(c->gap_lebs);
   3075	kfree(c->ilebs);
   3076	destroy_old_idx(c);
   3077}
   3078
   3079/**
   3080 * left_znode - get the znode to the left.
   3081 * @c: UBIFS file-system description object
   3082 * @znode: znode
   3083 *
   3084 * This function returns a pointer to the znode to the left of @znode or NULL if
   3085 * there is not one. A negative error code is returned on failure.
   3086 */
   3087static struct ubifs_znode *left_znode(struct ubifs_info *c,
   3088				      struct ubifs_znode *znode)
   3089{
   3090	int level = znode->level;
   3091
   3092	while (1) {
   3093		int n = znode->iip - 1;
   3094
   3095		/* Go up until we can go left */
   3096		znode = znode->parent;
   3097		if (!znode)
   3098			return NULL;
   3099		if (n >= 0) {
   3100			/* Now go down the rightmost branch to 'level' */
   3101			znode = get_znode(c, znode, n);
   3102			if (IS_ERR(znode))
   3103				return znode;
   3104			while (znode->level != level) {
   3105				n = znode->child_cnt - 1;
   3106				znode = get_znode(c, znode, n);
   3107				if (IS_ERR(znode))
   3108					return znode;
   3109			}
   3110			break;
   3111		}
   3112	}
   3113	return znode;
   3114}
   3115
   3116/**
   3117 * right_znode - get the znode to the right.
   3118 * @c: UBIFS file-system description object
   3119 * @znode: znode
   3120 *
   3121 * This function returns a pointer to the znode to the right of @znode or NULL
   3122 * if there is not one. A negative error code is returned on failure.
   3123 */
   3124static struct ubifs_znode *right_znode(struct ubifs_info *c,
   3125				       struct ubifs_znode *znode)
   3126{
   3127	int level = znode->level;
   3128
   3129	while (1) {
   3130		int n = znode->iip + 1;
   3131
   3132		/* Go up until we can go right */
   3133		znode = znode->parent;
   3134		if (!znode)
   3135			return NULL;
   3136		if (n < znode->child_cnt) {
   3137			/* Now go down the leftmost branch to 'level' */
   3138			znode = get_znode(c, znode, n);
   3139			if (IS_ERR(znode))
   3140				return znode;
   3141			while (znode->level != level) {
   3142				znode = get_znode(c, znode, 0);
   3143				if (IS_ERR(znode))
   3144					return znode;
   3145			}
   3146			break;
   3147		}
   3148	}
   3149	return znode;
   3150}
   3151
   3152/**
   3153 * lookup_znode - find a particular indexing node from TNC.
   3154 * @c: UBIFS file-system description object
   3155 * @key: index node key to lookup
   3156 * @level: index node level
   3157 * @lnum: index node LEB number
   3158 * @offs: index node offset
   3159 *
   3160 * This function searches an indexing node by its first key @key and its
   3161 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
   3162 * nodes it traverses to TNC. This function is called for indexing nodes which
   3163 * were found on the media by scanning, for example when garbage-collecting or
   3164 * when doing in-the-gaps commit. This means that the indexing node which is
   3165 * looked for does not have to have exactly the same leftmost key @key, because
   3166 * the leftmost key may have been changed, in which case TNC will contain a
   3167 * dirty znode which still refers the same @lnum:@offs. This function is clever
   3168 * enough to recognize such indexing nodes.
   3169 *
   3170 * Note, if a znode was deleted or changed too much, then this function will
   3171 * not find it. For situations like this UBIFS has the old index RB-tree
   3172 * (indexed by @lnum:@offs).
   3173 *
   3174 * This function returns a pointer to the znode found or %NULL if it is not
   3175 * found. A negative error code is returned on failure.
   3176 */
   3177static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
   3178					union ubifs_key *key, int level,
   3179					int lnum, int offs)
   3180{
   3181	struct ubifs_znode *znode, *zn;
   3182	int n, nn;
   3183
   3184	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
   3185
   3186	/*
   3187	 * The arguments have probably been read off flash, so don't assume
   3188	 * they are valid.
   3189	 */
   3190	if (level < 0)
   3191		return ERR_PTR(-EINVAL);
   3192
   3193	/* Get the root znode */
   3194	znode = c->zroot.znode;
   3195	if (!znode) {
   3196		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
   3197		if (IS_ERR(znode))
   3198			return znode;
   3199	}
   3200	/* Check if it is the one we are looking for */
   3201	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
   3202		return znode;
   3203	/* Descend to the parent level i.e. (level + 1) */
   3204	if (level >= znode->level)
   3205		return NULL;
   3206	while (1) {
   3207		ubifs_search_zbranch(c, znode, key, &n);
   3208		if (n < 0) {
   3209			/*
   3210			 * We reached a znode where the leftmost key is greater
   3211			 * than the key we are searching for. This is the same
   3212			 * situation as the one described in a huge comment at
   3213			 * the end of the 'ubifs_lookup_level0()' function. And
   3214			 * for exactly the same reasons we have to try to look
   3215			 * left before giving up.
   3216			 */
   3217			znode = left_znode(c, znode);
   3218			if (!znode)
   3219				return NULL;
   3220			if (IS_ERR(znode))
   3221				return znode;
   3222			ubifs_search_zbranch(c, znode, key, &n);
   3223			ubifs_assert(c, n >= 0);
   3224		}
   3225		if (znode->level == level + 1)
   3226			break;
   3227		znode = get_znode(c, znode, n);
   3228		if (IS_ERR(znode))
   3229			return znode;
   3230	}
   3231	/* Check if the child is the one we are looking for */
   3232	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
   3233		return get_znode(c, znode, n);
   3234	/* If the key is unique, there is nowhere else to look */
   3235	if (!is_hash_key(c, key))
   3236		return NULL;
   3237	/*
   3238	 * The key is not unique and so may be also in the znodes to either
   3239	 * side.
   3240	 */
   3241	zn = znode;
   3242	nn = n;
   3243	/* Look left */
   3244	while (1) {
   3245		/* Move one branch to the left */
   3246		if (n)
   3247			n -= 1;
   3248		else {
   3249			znode = left_znode(c, znode);
   3250			if (!znode)
   3251				break;
   3252			if (IS_ERR(znode))
   3253				return znode;
   3254			n = znode->child_cnt - 1;
   3255		}
   3256		/* Check it */
   3257		if (znode->zbranch[n].lnum == lnum &&
   3258		    znode->zbranch[n].offs == offs)
   3259			return get_znode(c, znode, n);
   3260		/* Stop if the key is less than the one we are looking for */
   3261		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
   3262			break;
   3263	}
   3264	/* Back to the middle */
   3265	znode = zn;
   3266	n = nn;
   3267	/* Look right */
   3268	while (1) {
   3269		/* Move one branch to the right */
   3270		if (++n >= znode->child_cnt) {
   3271			znode = right_znode(c, znode);
   3272			if (!znode)
   3273				break;
   3274			if (IS_ERR(znode))
   3275				return znode;
   3276			n = 0;
   3277		}
   3278		/* Check it */
   3279		if (znode->zbranch[n].lnum == lnum &&
   3280		    znode->zbranch[n].offs == offs)
   3281			return get_znode(c, znode, n);
   3282		/* Stop if the key is greater than the one we are looking for */
   3283		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
   3284			break;
   3285	}
   3286	return NULL;
   3287}
   3288
   3289/**
   3290 * is_idx_node_in_tnc - determine if an index node is in the TNC.
   3291 * @c: UBIFS file-system description object
   3292 * @key: key of index node
   3293 * @level: index node level
   3294 * @lnum: LEB number of index node
   3295 * @offs: offset of index node
   3296 *
   3297 * This function returns %0 if the index node is not referred to in the TNC, %1
   3298 * if the index node is referred to in the TNC and the corresponding znode is
   3299 * dirty, %2 if an index node is referred to in the TNC and the corresponding
   3300 * znode is clean, and a negative error code in case of failure.
   3301 *
   3302 * Note, the @key argument has to be the key of the first child. Also note,
   3303 * this function relies on the fact that 0:0 is never a valid LEB number and
   3304 * offset for a main-area node.
   3305 */
   3306int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
   3307		       int lnum, int offs)
   3308{
   3309	struct ubifs_znode *znode;
   3310
   3311	znode = lookup_znode(c, key, level, lnum, offs);
   3312	if (!znode)
   3313		return 0;
   3314	if (IS_ERR(znode))
   3315		return PTR_ERR(znode);
   3316
   3317	return ubifs_zn_dirty(znode) ? 1 : 2;
   3318}
   3319
   3320/**
   3321 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
   3322 * @c: UBIFS file-system description object
   3323 * @key: node key
   3324 * @lnum: node LEB number
   3325 * @offs: node offset
   3326 *
   3327 * This function returns %1 if the node is referred to in the TNC, %0 if it is
   3328 * not, and a negative error code in case of failure.
   3329 *
   3330 * Note, this function relies on the fact that 0:0 is never a valid LEB number
   3331 * and offset for a main-area node.
   3332 */
   3333static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
   3334			       int lnum, int offs)
   3335{
   3336	struct ubifs_zbranch *zbr;
   3337	struct ubifs_znode *znode, *zn;
   3338	int n, found, err, nn;
   3339	const int unique = !is_hash_key(c, key);
   3340
   3341	found = ubifs_lookup_level0(c, key, &znode, &n);
   3342	if (found < 0)
   3343		return found; /* Error code */
   3344	if (!found)
   3345		return 0;
   3346	zbr = &znode->zbranch[n];
   3347	if (lnum == zbr->lnum && offs == zbr->offs)
   3348		return 1; /* Found it */
   3349	if (unique)
   3350		return 0;
   3351	/*
   3352	 * Because the key is not unique, we have to look left
   3353	 * and right as well
   3354	 */
   3355	zn = znode;
   3356	nn = n;
   3357	/* Look left */
   3358	while (1) {
   3359		err = tnc_prev(c, &znode, &n);
   3360		if (err == -ENOENT)
   3361			break;
   3362		if (err)
   3363			return err;
   3364		if (keys_cmp(c, key, &znode->zbranch[n].key))
   3365			break;
   3366		zbr = &znode->zbranch[n];
   3367		if (lnum == zbr->lnum && offs == zbr->offs)
   3368			return 1; /* Found it */
   3369	}
   3370	/* Look right */
   3371	znode = zn;
   3372	n = nn;
   3373	while (1) {
   3374		err = tnc_next(c, &znode, &n);
   3375		if (err) {
   3376			if (err == -ENOENT)
   3377				return 0;
   3378			return err;
   3379		}
   3380		if (keys_cmp(c, key, &znode->zbranch[n].key))
   3381			break;
   3382		zbr = &znode->zbranch[n];
   3383		if (lnum == zbr->lnum && offs == zbr->offs)
   3384			return 1; /* Found it */
   3385	}
   3386	return 0;
   3387}
   3388
   3389/**
   3390 * ubifs_tnc_has_node - determine whether a node is in the TNC.
   3391 * @c: UBIFS file-system description object
   3392 * @key: node key
   3393 * @level: index node level (if it is an index node)
   3394 * @lnum: node LEB number
   3395 * @offs: node offset
   3396 * @is_idx: non-zero if the node is an index node
   3397 *
   3398 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
   3399 * negative error code in case of failure. For index nodes, @key has to be the
   3400 * key of the first child. An index node is considered to be in the TNC only if
   3401 * the corresponding znode is clean or has not been loaded.
   3402 */
   3403int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
   3404		       int lnum, int offs, int is_idx)
   3405{
   3406	int err;
   3407
   3408	mutex_lock(&c->tnc_mutex);
   3409	if (is_idx) {
   3410		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
   3411		if (err < 0)
   3412			goto out_unlock;
   3413		if (err == 1)
   3414			/* The index node was found but it was dirty */
   3415			err = 0;
   3416		else if (err == 2)
   3417			/* The index node was found and it was clean */
   3418			err = 1;
   3419		else
   3420			BUG_ON(err != 0);
   3421	} else
   3422		err = is_leaf_node_in_tnc(c, key, lnum, offs);
   3423
   3424out_unlock:
   3425	mutex_unlock(&c->tnc_mutex);
   3426	return err;
   3427}
   3428
   3429/**
   3430 * ubifs_dirty_idx_node - dirty an index node.
   3431 * @c: UBIFS file-system description object
   3432 * @key: index node key
   3433 * @level: index node level
   3434 * @lnum: index node LEB number
   3435 * @offs: index node offset
   3436 *
   3437 * This function loads and dirties an index node so that it can be garbage
   3438 * collected. The @key argument has to be the key of the first child. This
   3439 * function relies on the fact that 0:0 is never a valid LEB number and offset
   3440 * for a main-area node. Returns %0 on success and a negative error code on
   3441 * failure.
   3442 */
   3443int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
   3444			 int lnum, int offs)
   3445{
   3446	struct ubifs_znode *znode;
   3447	int err = 0;
   3448
   3449	mutex_lock(&c->tnc_mutex);
   3450	znode = lookup_znode(c, key, level, lnum, offs);
   3451	if (!znode)
   3452		goto out_unlock;
   3453	if (IS_ERR(znode)) {
   3454		err = PTR_ERR(znode);
   3455		goto out_unlock;
   3456	}
   3457	znode = dirty_cow_bottom_up(c, znode);
   3458	if (IS_ERR(znode)) {
   3459		err = PTR_ERR(znode);
   3460		goto out_unlock;
   3461	}
   3462
   3463out_unlock:
   3464	mutex_unlock(&c->tnc_mutex);
   3465	return err;
   3466}
   3467
   3468/**
   3469 * dbg_check_inode_size - check if inode size is correct.
   3470 * @c: UBIFS file-system description object
   3471 * @inode: inode to check
   3472 * @size: inode size
   3473 *
   3474 * This function makes sure that the inode size (@size) is correct and it does
   3475 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
   3476 * if it has a data page beyond @size, and other negative error code in case of
   3477 * other errors.
   3478 */
   3479int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
   3480			 loff_t size)
   3481{
   3482	int err, n;
   3483	union ubifs_key from_key, to_key, *key;
   3484	struct ubifs_znode *znode;
   3485	unsigned int block;
   3486
   3487	if (!S_ISREG(inode->i_mode))
   3488		return 0;
   3489	if (!dbg_is_chk_gen(c))
   3490		return 0;
   3491
   3492	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
   3493	data_key_init(c, &from_key, inode->i_ino, block);
   3494	highest_data_key(c, &to_key, inode->i_ino);
   3495
   3496	mutex_lock(&c->tnc_mutex);
   3497	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
   3498	if (err < 0)
   3499		goto out_unlock;
   3500
   3501	if (err) {
   3502		key = &from_key;
   3503		goto out_dump;
   3504	}
   3505
   3506	err = tnc_next(c, &znode, &n);
   3507	if (err == -ENOENT) {
   3508		err = 0;
   3509		goto out_unlock;
   3510	}
   3511	if (err < 0)
   3512		goto out_unlock;
   3513
   3514	ubifs_assert(c, err == 0);
   3515	key = &znode->zbranch[n].key;
   3516	if (!key_in_range(c, key, &from_key, &to_key))
   3517		goto out_unlock;
   3518
   3519out_dump:
   3520	block = key_block(c, key);
   3521	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
   3522		  (unsigned long)inode->i_ino, size,
   3523		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
   3524	mutex_unlock(&c->tnc_mutex);
   3525	ubifs_dump_inode(c, inode);
   3526	dump_stack();
   3527	return -EINVAL;
   3528
   3529out_unlock:
   3530	mutex_unlock(&c->tnc_mutex);
   3531	return err;
   3532}