cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tnc_commit.c (28346B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 *
      7 * Authors: Adrian Hunter
      8 *          Artem Bityutskiy (Битюцкий Артём)
      9 */
     10
     11/* This file implements TNC functions for committing */
     12
     13#include <linux/random.h>
     14#include "ubifs.h"
     15
     16/**
     17 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
     18 * @c: UBIFS file-system description object
     19 * @idx: buffer in which to place new index node
     20 * @znode: znode from which to make new index node
     21 * @lnum: LEB number where new index node will be written
     22 * @offs: offset where new index node will be written
     23 * @len: length of new index node
     24 */
     25static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
     26			 struct ubifs_znode *znode, int lnum, int offs, int len)
     27{
     28	struct ubifs_znode *zp;
     29	u8 hash[UBIFS_HASH_ARR_SZ];
     30	int i, err;
     31
     32	/* Make index node */
     33	idx->ch.node_type = UBIFS_IDX_NODE;
     34	idx->child_cnt = cpu_to_le16(znode->child_cnt);
     35	idx->level = cpu_to_le16(znode->level);
     36	for (i = 0; i < znode->child_cnt; i++) {
     37		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
     38		struct ubifs_zbranch *zbr = &znode->zbranch[i];
     39
     40		key_write_idx(c, &zbr->key, &br->key);
     41		br->lnum = cpu_to_le32(zbr->lnum);
     42		br->offs = cpu_to_le32(zbr->offs);
     43		br->len = cpu_to_le32(zbr->len);
     44		ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
     45		if (!zbr->lnum || !zbr->len) {
     46			ubifs_err(c, "bad ref in znode");
     47			ubifs_dump_znode(c, znode);
     48			if (zbr->znode)
     49				ubifs_dump_znode(c, zbr->znode);
     50
     51			return -EINVAL;
     52		}
     53	}
     54	ubifs_prepare_node(c, idx, len, 0);
     55	ubifs_node_calc_hash(c, idx, hash);
     56
     57	znode->lnum = lnum;
     58	znode->offs = offs;
     59	znode->len = len;
     60
     61	err = insert_old_idx_znode(c, znode);
     62
     63	/* Update the parent */
     64	zp = znode->parent;
     65	if (zp) {
     66		struct ubifs_zbranch *zbr;
     67
     68		zbr = &zp->zbranch[znode->iip];
     69		zbr->lnum = lnum;
     70		zbr->offs = offs;
     71		zbr->len = len;
     72		ubifs_copy_hash(c, hash, zbr->hash);
     73	} else {
     74		c->zroot.lnum = lnum;
     75		c->zroot.offs = offs;
     76		c->zroot.len = len;
     77		ubifs_copy_hash(c, hash, c->zroot.hash);
     78	}
     79	c->calc_idx_sz += ALIGN(len, 8);
     80
     81	atomic_long_dec(&c->dirty_zn_cnt);
     82
     83	ubifs_assert(c, ubifs_zn_dirty(znode));
     84	ubifs_assert(c, ubifs_zn_cow(znode));
     85
     86	/*
     87	 * Note, unlike 'write_index()' we do not add memory barriers here
     88	 * because this function is called with @c->tnc_mutex locked.
     89	 */
     90	__clear_bit(DIRTY_ZNODE, &znode->flags);
     91	__clear_bit(COW_ZNODE, &znode->flags);
     92
     93	return err;
     94}
     95
     96/**
     97 * fill_gap - make index nodes in gaps in dirty index LEBs.
     98 * @c: UBIFS file-system description object
     99 * @lnum: LEB number that gap appears in
    100 * @gap_start: offset of start of gap
    101 * @gap_end: offset of end of gap
    102 * @dirt: adds dirty space to this
    103 *
    104 * This function returns the number of index nodes written into the gap.
    105 */
    106static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
    107		    int *dirt)
    108{
    109	int len, gap_remains, gap_pos, written, pad_len;
    110
    111	ubifs_assert(c, (gap_start & 7) == 0);
    112	ubifs_assert(c, (gap_end & 7) == 0);
    113	ubifs_assert(c, gap_end >= gap_start);
    114
    115	gap_remains = gap_end - gap_start;
    116	if (!gap_remains)
    117		return 0;
    118	gap_pos = gap_start;
    119	written = 0;
    120	while (c->enext) {
    121		len = ubifs_idx_node_sz(c, c->enext->child_cnt);
    122		if (len < gap_remains) {
    123			struct ubifs_znode *znode = c->enext;
    124			const int alen = ALIGN(len, 8);
    125			int err;
    126
    127			ubifs_assert(c, alen <= gap_remains);
    128			err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
    129					    lnum, gap_pos, len);
    130			if (err)
    131				return err;
    132			gap_remains -= alen;
    133			gap_pos += alen;
    134			c->enext = znode->cnext;
    135			if (c->enext == c->cnext)
    136				c->enext = NULL;
    137			written += 1;
    138		} else
    139			break;
    140	}
    141	if (gap_end == c->leb_size) {
    142		c->ileb_len = ALIGN(gap_pos, c->min_io_size);
    143		/* Pad to end of min_io_size */
    144		pad_len = c->ileb_len - gap_pos;
    145	} else
    146		/* Pad to end of gap */
    147		pad_len = gap_remains;
    148	dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
    149	       lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
    150	ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
    151	*dirt += pad_len;
    152	return written;
    153}
    154
    155/**
    156 * find_old_idx - find an index node obsoleted since the last commit start.
    157 * @c: UBIFS file-system description object
    158 * @lnum: LEB number of obsoleted index node
    159 * @offs: offset of obsoleted index node
    160 *
    161 * Returns %1 if found and %0 otherwise.
    162 */
    163static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
    164{
    165	struct ubifs_old_idx *o;
    166	struct rb_node *p;
    167
    168	p = c->old_idx.rb_node;
    169	while (p) {
    170		o = rb_entry(p, struct ubifs_old_idx, rb);
    171		if (lnum < o->lnum)
    172			p = p->rb_left;
    173		else if (lnum > o->lnum)
    174			p = p->rb_right;
    175		else if (offs < o->offs)
    176			p = p->rb_left;
    177		else if (offs > o->offs)
    178			p = p->rb_right;
    179		else
    180			return 1;
    181	}
    182	return 0;
    183}
    184
    185/**
    186 * is_idx_node_in_use - determine if an index node can be overwritten.
    187 * @c: UBIFS file-system description object
    188 * @key: key of index node
    189 * @level: index node level
    190 * @lnum: LEB number of index node
    191 * @offs: offset of index node
    192 *
    193 * If @key / @lnum / @offs identify an index node that was not part of the old
    194 * index, then this function returns %0 (obsolete).  Else if the index node was
    195 * part of the old index but is now dirty %1 is returned, else if it is clean %2
    196 * is returned. A negative error code is returned on failure.
    197 */
    198static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
    199			      int level, int lnum, int offs)
    200{
    201	int ret;
    202
    203	ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
    204	if (ret < 0)
    205		return ret; /* Error code */
    206	if (ret == 0)
    207		if (find_old_idx(c, lnum, offs))
    208			return 1;
    209	return ret;
    210}
    211
    212/**
    213 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
    214 * @c: UBIFS file-system description object
    215 * @p: return LEB number in @c->gap_lebs[p]
    216 *
    217 * This function lays out new index nodes for dirty znodes using in-the-gaps
    218 * method of TNC commit.
    219 * This function merely puts the next znode into the next gap, making no attempt
    220 * to try to maximise the number of znodes that fit.
    221 * This function returns the number of index nodes written into the gaps, or a
    222 * negative error code on failure.
    223 */
    224static int layout_leb_in_gaps(struct ubifs_info *c, int p)
    225{
    226	struct ubifs_scan_leb *sleb;
    227	struct ubifs_scan_node *snod;
    228	int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
    229
    230	tot_written = 0;
    231	/* Get an index LEB with lots of obsolete index nodes */
    232	lnum = ubifs_find_dirty_idx_leb(c);
    233	if (lnum < 0)
    234		/*
    235		 * There also may be dirt in the index head that could be
    236		 * filled, however we do not check there at present.
    237		 */
    238		return lnum; /* Error code */
    239	c->gap_lebs[p] = lnum;
    240	dbg_gc("LEB %d", lnum);
    241	/*
    242	 * Scan the index LEB.  We use the generic scan for this even though
    243	 * it is more comprehensive and less efficient than is needed for this
    244	 * purpose.
    245	 */
    246	sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
    247	c->ileb_len = 0;
    248	if (IS_ERR(sleb))
    249		return PTR_ERR(sleb);
    250	gap_start = 0;
    251	list_for_each_entry(snod, &sleb->nodes, list) {
    252		struct ubifs_idx_node *idx;
    253		int in_use, level;
    254
    255		ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
    256		idx = snod->node;
    257		key_read(c, ubifs_idx_key(c, idx), &snod->key);
    258		level = le16_to_cpu(idx->level);
    259		/* Determine if the index node is in use (not obsolete) */
    260		in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
    261					    snod->offs);
    262		if (in_use < 0) {
    263			ubifs_scan_destroy(sleb);
    264			return in_use; /* Error code */
    265		}
    266		if (in_use) {
    267			if (in_use == 1)
    268				dirt += ALIGN(snod->len, 8);
    269			/*
    270			 * The obsolete index nodes form gaps that can be
    271			 * overwritten.  This gap has ended because we have
    272			 * found an index node that is still in use
    273			 * i.e. not obsolete
    274			 */
    275			gap_end = snod->offs;
    276			/* Try to fill gap */
    277			written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
    278			if (written < 0) {
    279				ubifs_scan_destroy(sleb);
    280				return written; /* Error code */
    281			}
    282			tot_written += written;
    283			gap_start = ALIGN(snod->offs + snod->len, 8);
    284		}
    285	}
    286	ubifs_scan_destroy(sleb);
    287	c->ileb_len = c->leb_size;
    288	gap_end = c->leb_size;
    289	/* Try to fill gap */
    290	written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
    291	if (written < 0)
    292		return written; /* Error code */
    293	tot_written += written;
    294	if (tot_written == 0) {
    295		struct ubifs_lprops lp;
    296
    297		dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
    298		err = ubifs_read_one_lp(c, lnum, &lp);
    299		if (err)
    300			return err;
    301		if (lp.free == c->leb_size) {
    302			/*
    303			 * We must have snatched this LEB from the idx_gc list
    304			 * so we need to correct the free and dirty space.
    305			 */
    306			err = ubifs_change_one_lp(c, lnum,
    307						  c->leb_size - c->ileb_len,
    308						  dirt, 0, 0, 0);
    309			if (err)
    310				return err;
    311		}
    312		return 0;
    313	}
    314	err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
    315				  0, 0, 0);
    316	if (err)
    317		return err;
    318	err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
    319	if (err)
    320		return err;
    321	dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
    322	return tot_written;
    323}
    324
    325/**
    326 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
    327 * @c: UBIFS file-system description object
    328 * @cnt: number of znodes to commit
    329 *
    330 * This function returns the number of empty LEBs needed to commit @cnt znodes
    331 * to the current index head.  The number is not exact and may be more than
    332 * needed.
    333 */
    334static int get_leb_cnt(struct ubifs_info *c, int cnt)
    335{
    336	int d;
    337
    338	/* Assume maximum index node size (i.e. overestimate space needed) */
    339	cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
    340	if (cnt < 0)
    341		cnt = 0;
    342	d = c->leb_size / c->max_idx_node_sz;
    343	return DIV_ROUND_UP(cnt, d);
    344}
    345
    346/**
    347 * layout_in_gaps - in-the-gaps method of committing TNC.
    348 * @c: UBIFS file-system description object
    349 * @cnt: number of dirty znodes to commit.
    350 *
    351 * This function lays out new index nodes for dirty znodes using in-the-gaps
    352 * method of TNC commit.
    353 *
    354 * This function returns %0 on success and a negative error code on failure.
    355 */
    356static int layout_in_gaps(struct ubifs_info *c, int cnt)
    357{
    358	int err, leb_needed_cnt, written, p = 0, old_idx_lebs, *gap_lebs;
    359
    360	dbg_gc("%d znodes to write", cnt);
    361
    362	c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
    363				    GFP_NOFS);
    364	if (!c->gap_lebs)
    365		return -ENOMEM;
    366
    367	old_idx_lebs = c->lst.idx_lebs;
    368	do {
    369		ubifs_assert(c, p < c->lst.idx_lebs);
    370		written = layout_leb_in_gaps(c, p);
    371		if (written < 0) {
    372			err = written;
    373			if (err != -ENOSPC) {
    374				kfree(c->gap_lebs);
    375				c->gap_lebs = NULL;
    376				return err;
    377			}
    378			if (!dbg_is_chk_index(c)) {
    379				/*
    380				 * Do not print scary warnings if the debugging
    381				 * option which forces in-the-gaps is enabled.
    382				 */
    383				ubifs_warn(c, "out of space");
    384				ubifs_dump_budg(c, &c->bi);
    385				ubifs_dump_lprops(c);
    386			}
    387			/* Try to commit anyway */
    388			break;
    389		}
    390		p++;
    391		cnt -= written;
    392		leb_needed_cnt = get_leb_cnt(c, cnt);
    393		dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
    394		       leb_needed_cnt, c->ileb_cnt);
    395		/*
    396		 * Dynamically change the size of @c->gap_lebs to prevent
    397		 * oob, because @c->lst.idx_lebs could be increased by
    398		 * function @get_idx_gc_leb (called by layout_leb_in_gaps->
    399		 * ubifs_find_dirty_idx_leb) during loop. Only enlarge
    400		 * @c->gap_lebs when needed.
    401		 *
    402		 */
    403		if (leb_needed_cnt > c->ileb_cnt && p >= old_idx_lebs &&
    404		    old_idx_lebs < c->lst.idx_lebs) {
    405			old_idx_lebs = c->lst.idx_lebs;
    406			gap_lebs = krealloc(c->gap_lebs, sizeof(int) *
    407					       (old_idx_lebs + 1), GFP_NOFS);
    408			if (!gap_lebs) {
    409				kfree(c->gap_lebs);
    410				c->gap_lebs = NULL;
    411				return -ENOMEM;
    412			}
    413			c->gap_lebs = gap_lebs;
    414		}
    415	} while (leb_needed_cnt > c->ileb_cnt);
    416
    417	c->gap_lebs[p] = -1;
    418	return 0;
    419}
    420
    421/**
    422 * layout_in_empty_space - layout index nodes in empty space.
    423 * @c: UBIFS file-system description object
    424 *
    425 * This function lays out new index nodes for dirty znodes using empty LEBs.
    426 *
    427 * This function returns %0 on success and a negative error code on failure.
    428 */
    429static int layout_in_empty_space(struct ubifs_info *c)
    430{
    431	struct ubifs_znode *znode, *cnext, *zp;
    432	int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
    433	int wlen, blen, err;
    434
    435	cnext = c->enext;
    436	if (!cnext)
    437		return 0;
    438
    439	lnum = c->ihead_lnum;
    440	buf_offs = c->ihead_offs;
    441
    442	buf_len = ubifs_idx_node_sz(c, c->fanout);
    443	buf_len = ALIGN(buf_len, c->min_io_size);
    444	used = 0;
    445	avail = buf_len;
    446
    447	/* Ensure there is enough room for first write */
    448	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
    449	if (buf_offs + next_len > c->leb_size)
    450		lnum = -1;
    451
    452	while (1) {
    453		znode = cnext;
    454
    455		len = ubifs_idx_node_sz(c, znode->child_cnt);
    456
    457		/* Determine the index node position */
    458		if (lnum == -1) {
    459			if (c->ileb_nxt >= c->ileb_cnt) {
    460				ubifs_err(c, "out of space");
    461				return -ENOSPC;
    462			}
    463			lnum = c->ilebs[c->ileb_nxt++];
    464			buf_offs = 0;
    465			used = 0;
    466			avail = buf_len;
    467		}
    468
    469		offs = buf_offs + used;
    470
    471		znode->lnum = lnum;
    472		znode->offs = offs;
    473		znode->len = len;
    474
    475		/* Update the parent */
    476		zp = znode->parent;
    477		if (zp) {
    478			struct ubifs_zbranch *zbr;
    479			int i;
    480
    481			i = znode->iip;
    482			zbr = &zp->zbranch[i];
    483			zbr->lnum = lnum;
    484			zbr->offs = offs;
    485			zbr->len = len;
    486		} else {
    487			c->zroot.lnum = lnum;
    488			c->zroot.offs = offs;
    489			c->zroot.len = len;
    490		}
    491		c->calc_idx_sz += ALIGN(len, 8);
    492
    493		/*
    494		 * Once lprops is updated, we can decrease the dirty znode count
    495		 * but it is easier to just do it here.
    496		 */
    497		atomic_long_dec(&c->dirty_zn_cnt);
    498
    499		/*
    500		 * Calculate the next index node length to see if there is
    501		 * enough room for it
    502		 */
    503		cnext = znode->cnext;
    504		if (cnext == c->cnext)
    505			next_len = 0;
    506		else
    507			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
    508
    509		/* Update buffer positions */
    510		wlen = used + len;
    511		used += ALIGN(len, 8);
    512		avail -= ALIGN(len, 8);
    513
    514		if (next_len != 0 &&
    515		    buf_offs + used + next_len <= c->leb_size &&
    516		    avail > 0)
    517			continue;
    518
    519		if (avail <= 0 && next_len &&
    520		    buf_offs + used + next_len <= c->leb_size)
    521			blen = buf_len;
    522		else
    523			blen = ALIGN(wlen, c->min_io_size);
    524
    525		/* The buffer is full or there are no more znodes to do */
    526		buf_offs += blen;
    527		if (next_len) {
    528			if (buf_offs + next_len > c->leb_size) {
    529				err = ubifs_update_one_lp(c, lnum,
    530					c->leb_size - buf_offs, blen - used,
    531					0, 0);
    532				if (err)
    533					return err;
    534				lnum = -1;
    535			}
    536			used -= blen;
    537			if (used < 0)
    538				used = 0;
    539			avail = buf_len - used;
    540			continue;
    541		}
    542		err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
    543					  blen - used, 0, 0);
    544		if (err)
    545			return err;
    546		break;
    547	}
    548
    549	c->dbg->new_ihead_lnum = lnum;
    550	c->dbg->new_ihead_offs = buf_offs;
    551
    552	return 0;
    553}
    554
    555/**
    556 * layout_commit - determine positions of index nodes to commit.
    557 * @c: UBIFS file-system description object
    558 * @no_space: indicates that insufficient empty LEBs were allocated
    559 * @cnt: number of znodes to commit
    560 *
    561 * Calculate and update the positions of index nodes to commit.  If there were
    562 * an insufficient number of empty LEBs allocated, then index nodes are placed
    563 * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
    564 * this purpose, an obsolete index node is one that was not in the index as at
    565 * the end of the last commit.  To write "in-the-gaps" requires that those index
    566 * LEBs are updated atomically in-place.
    567 */
    568static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
    569{
    570	int err;
    571
    572	if (no_space) {
    573		err = layout_in_gaps(c, cnt);
    574		if (err)
    575			return err;
    576	}
    577	err = layout_in_empty_space(c);
    578	return err;
    579}
    580
    581/**
    582 * find_first_dirty - find first dirty znode.
    583 * @znode: znode to begin searching from
    584 */
    585static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
    586{
    587	int i, cont;
    588
    589	if (!znode)
    590		return NULL;
    591
    592	while (1) {
    593		if (znode->level == 0) {
    594			if (ubifs_zn_dirty(znode))
    595				return znode;
    596			return NULL;
    597		}
    598		cont = 0;
    599		for (i = 0; i < znode->child_cnt; i++) {
    600			struct ubifs_zbranch *zbr = &znode->zbranch[i];
    601
    602			if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
    603				znode = zbr->znode;
    604				cont = 1;
    605				break;
    606			}
    607		}
    608		if (!cont) {
    609			if (ubifs_zn_dirty(znode))
    610				return znode;
    611			return NULL;
    612		}
    613	}
    614}
    615
    616/**
    617 * find_next_dirty - find next dirty znode.
    618 * @znode: znode to begin searching from
    619 */
    620static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
    621{
    622	int n = znode->iip + 1;
    623
    624	znode = znode->parent;
    625	if (!znode)
    626		return NULL;
    627	for (; n < znode->child_cnt; n++) {
    628		struct ubifs_zbranch *zbr = &znode->zbranch[n];
    629
    630		if (zbr->znode && ubifs_zn_dirty(zbr->znode))
    631			return find_first_dirty(zbr->znode);
    632	}
    633	return znode;
    634}
    635
    636/**
    637 * get_znodes_to_commit - create list of dirty znodes to commit.
    638 * @c: UBIFS file-system description object
    639 *
    640 * This function returns the number of znodes to commit.
    641 */
    642static int get_znodes_to_commit(struct ubifs_info *c)
    643{
    644	struct ubifs_znode *znode, *cnext;
    645	int cnt = 0;
    646
    647	c->cnext = find_first_dirty(c->zroot.znode);
    648	znode = c->enext = c->cnext;
    649	if (!znode) {
    650		dbg_cmt("no znodes to commit");
    651		return 0;
    652	}
    653	cnt += 1;
    654	while (1) {
    655		ubifs_assert(c, !ubifs_zn_cow(znode));
    656		__set_bit(COW_ZNODE, &znode->flags);
    657		znode->alt = 0;
    658		cnext = find_next_dirty(znode);
    659		if (!cnext) {
    660			znode->cnext = c->cnext;
    661			break;
    662		}
    663		znode->cparent = znode->parent;
    664		znode->ciip = znode->iip;
    665		znode->cnext = cnext;
    666		znode = cnext;
    667		cnt += 1;
    668	}
    669	dbg_cmt("committing %d znodes", cnt);
    670	ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
    671	return cnt;
    672}
    673
    674/**
    675 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
    676 * @c: UBIFS file-system description object
    677 * @cnt: number of znodes to commit
    678 *
    679 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
    680 * empty LEBs.  %0 is returned on success, otherwise a negative error code
    681 * is returned.
    682 */
    683static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
    684{
    685	int i, leb_cnt, lnum;
    686
    687	c->ileb_cnt = 0;
    688	c->ileb_nxt = 0;
    689	leb_cnt = get_leb_cnt(c, cnt);
    690	dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
    691	if (!leb_cnt)
    692		return 0;
    693	c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
    694	if (!c->ilebs)
    695		return -ENOMEM;
    696	for (i = 0; i < leb_cnt; i++) {
    697		lnum = ubifs_find_free_leb_for_idx(c);
    698		if (lnum < 0)
    699			return lnum;
    700		c->ilebs[c->ileb_cnt++] = lnum;
    701		dbg_cmt("LEB %d", lnum);
    702	}
    703	if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
    704		return -ENOSPC;
    705	return 0;
    706}
    707
    708/**
    709 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
    710 * @c: UBIFS file-system description object
    711 *
    712 * It is possible that we allocate more empty LEBs for the commit than we need.
    713 * This functions frees the surplus.
    714 *
    715 * This function returns %0 on success and a negative error code on failure.
    716 */
    717static int free_unused_idx_lebs(struct ubifs_info *c)
    718{
    719	int i, err = 0, lnum, er;
    720
    721	for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
    722		lnum = c->ilebs[i];
    723		dbg_cmt("LEB %d", lnum);
    724		er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
    725					 LPROPS_INDEX | LPROPS_TAKEN, 0);
    726		if (!err)
    727			err = er;
    728	}
    729	return err;
    730}
    731
    732/**
    733 * free_idx_lebs - free unused LEBs after commit end.
    734 * @c: UBIFS file-system description object
    735 *
    736 * This function returns %0 on success and a negative error code on failure.
    737 */
    738static int free_idx_lebs(struct ubifs_info *c)
    739{
    740	int err;
    741
    742	err = free_unused_idx_lebs(c);
    743	kfree(c->ilebs);
    744	c->ilebs = NULL;
    745	return err;
    746}
    747
    748/**
    749 * ubifs_tnc_start_commit - start TNC commit.
    750 * @c: UBIFS file-system description object
    751 * @zroot: new index root position is returned here
    752 *
    753 * This function prepares the list of indexing nodes to commit and lays out
    754 * their positions on flash. If there is not enough free space it uses the
    755 * in-gap commit method. Returns zero in case of success and a negative error
    756 * code in case of failure.
    757 */
    758int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
    759{
    760	int err = 0, cnt;
    761
    762	mutex_lock(&c->tnc_mutex);
    763	err = dbg_check_tnc(c, 1);
    764	if (err)
    765		goto out;
    766	cnt = get_znodes_to_commit(c);
    767	if (cnt != 0) {
    768		int no_space = 0;
    769
    770		err = alloc_idx_lebs(c, cnt);
    771		if (err == -ENOSPC)
    772			no_space = 1;
    773		else if (err)
    774			goto out_free;
    775		err = layout_commit(c, no_space, cnt);
    776		if (err)
    777			goto out_free;
    778		ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
    779		err = free_unused_idx_lebs(c);
    780		if (err)
    781			goto out;
    782	}
    783	destroy_old_idx(c);
    784	memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
    785
    786	err = ubifs_save_dirty_idx_lnums(c);
    787	if (err)
    788		goto out;
    789
    790	spin_lock(&c->space_lock);
    791	/*
    792	 * Although we have not finished committing yet, update size of the
    793	 * committed index ('c->bi.old_idx_sz') and zero out the index growth
    794	 * budget. It is OK to do this now, because we've reserved all the
    795	 * space which is needed to commit the index, and it is save for the
    796	 * budgeting subsystem to assume the index is already committed,
    797	 * even though it is not.
    798	 */
    799	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
    800	c->bi.old_idx_sz = c->calc_idx_sz;
    801	c->bi.uncommitted_idx = 0;
    802	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
    803	spin_unlock(&c->space_lock);
    804	mutex_unlock(&c->tnc_mutex);
    805
    806	dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
    807	dbg_cmt("size of index %llu", c->calc_idx_sz);
    808	return err;
    809
    810out_free:
    811	free_idx_lebs(c);
    812out:
    813	mutex_unlock(&c->tnc_mutex);
    814	return err;
    815}
    816
    817/**
    818 * write_index - write index nodes.
    819 * @c: UBIFS file-system description object
    820 *
    821 * This function writes the index nodes whose positions were laid out in the
    822 * layout_in_empty_space function.
    823 */
    824static int write_index(struct ubifs_info *c)
    825{
    826	struct ubifs_idx_node *idx;
    827	struct ubifs_znode *znode, *cnext;
    828	int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
    829	int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
    830
    831	cnext = c->enext;
    832	if (!cnext)
    833		return 0;
    834
    835	/*
    836	 * Always write index nodes to the index head so that index nodes and
    837	 * other types of nodes are never mixed in the same erase block.
    838	 */
    839	lnum = c->ihead_lnum;
    840	buf_offs = c->ihead_offs;
    841
    842	/* Allocate commit buffer */
    843	buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
    844	used = 0;
    845	avail = buf_len;
    846
    847	/* Ensure there is enough room for first write */
    848	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
    849	if (buf_offs + next_len > c->leb_size) {
    850		err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
    851					  LPROPS_TAKEN);
    852		if (err)
    853			return err;
    854		lnum = -1;
    855	}
    856
    857	while (1) {
    858		u8 hash[UBIFS_HASH_ARR_SZ];
    859
    860		cond_resched();
    861
    862		znode = cnext;
    863		idx = c->cbuf + used;
    864
    865		/* Make index node */
    866		idx->ch.node_type = UBIFS_IDX_NODE;
    867		idx->child_cnt = cpu_to_le16(znode->child_cnt);
    868		idx->level = cpu_to_le16(znode->level);
    869		for (i = 0; i < znode->child_cnt; i++) {
    870			struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
    871			struct ubifs_zbranch *zbr = &znode->zbranch[i];
    872
    873			key_write_idx(c, &zbr->key, &br->key);
    874			br->lnum = cpu_to_le32(zbr->lnum);
    875			br->offs = cpu_to_le32(zbr->offs);
    876			br->len = cpu_to_le32(zbr->len);
    877			ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
    878			if (!zbr->lnum || !zbr->len) {
    879				ubifs_err(c, "bad ref in znode");
    880				ubifs_dump_znode(c, znode);
    881				if (zbr->znode)
    882					ubifs_dump_znode(c, zbr->znode);
    883
    884				return -EINVAL;
    885			}
    886		}
    887		len = ubifs_idx_node_sz(c, znode->child_cnt);
    888		ubifs_prepare_node(c, idx, len, 0);
    889		ubifs_node_calc_hash(c, idx, hash);
    890
    891		mutex_lock(&c->tnc_mutex);
    892
    893		if (znode->cparent)
    894			ubifs_copy_hash(c, hash,
    895					znode->cparent->zbranch[znode->ciip].hash);
    896
    897		if (znode->parent) {
    898			if (!ubifs_zn_obsolete(znode))
    899				ubifs_copy_hash(c, hash,
    900					znode->parent->zbranch[znode->iip].hash);
    901		} else {
    902			ubifs_copy_hash(c, hash, c->zroot.hash);
    903		}
    904
    905		mutex_unlock(&c->tnc_mutex);
    906
    907		/* Determine the index node position */
    908		if (lnum == -1) {
    909			lnum = c->ilebs[lnum_pos++];
    910			buf_offs = 0;
    911			used = 0;
    912			avail = buf_len;
    913		}
    914		offs = buf_offs + used;
    915
    916		if (lnum != znode->lnum || offs != znode->offs ||
    917		    len != znode->len) {
    918			ubifs_err(c, "inconsistent znode posn");
    919			return -EINVAL;
    920		}
    921
    922		/* Grab some stuff from znode while we still can */
    923		cnext = znode->cnext;
    924
    925		ubifs_assert(c, ubifs_zn_dirty(znode));
    926		ubifs_assert(c, ubifs_zn_cow(znode));
    927
    928		/*
    929		 * It is important that other threads should see %DIRTY_ZNODE
    930		 * flag cleared before %COW_ZNODE. Specifically, it matters in
    931		 * the 'dirty_cow_znode()' function. This is the reason for the
    932		 * first barrier. Also, we want the bit changes to be seen to
    933		 * other threads ASAP, to avoid unnecessary copying, which is
    934		 * the reason for the second barrier.
    935		 */
    936		clear_bit(DIRTY_ZNODE, &znode->flags);
    937		smp_mb__before_atomic();
    938		clear_bit(COW_ZNODE, &znode->flags);
    939		smp_mb__after_atomic();
    940
    941		/*
    942		 * We have marked the znode as clean but have not updated the
    943		 * @c->clean_zn_cnt counter. If this znode becomes dirty again
    944		 * before 'free_obsolete_znodes()' is called, then
    945		 * @c->clean_zn_cnt will be decremented before it gets
    946		 * incremented (resulting in 2 decrements for the same znode).
    947		 * This means that @c->clean_zn_cnt may become negative for a
    948		 * while.
    949		 *
    950		 * Q: why we cannot increment @c->clean_zn_cnt?
    951		 * A: because we do not have the @c->tnc_mutex locked, and the
    952		 *    following code would be racy and buggy:
    953		 *
    954		 *    if (!ubifs_zn_obsolete(znode)) {
    955		 *            atomic_long_inc(&c->clean_zn_cnt);
    956		 *            atomic_long_inc(&ubifs_clean_zn_cnt);
    957		 *    }
    958		 *
    959		 *    Thus, we just delay the @c->clean_zn_cnt update until we
    960		 *    have the mutex locked.
    961		 */
    962
    963		/* Do not access znode from this point on */
    964
    965		/* Update buffer positions */
    966		wlen = used + len;
    967		used += ALIGN(len, 8);
    968		avail -= ALIGN(len, 8);
    969
    970		/*
    971		 * Calculate the next index node length to see if there is
    972		 * enough room for it
    973		 */
    974		if (cnext == c->cnext)
    975			next_len = 0;
    976		else
    977			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
    978
    979		nxt_offs = buf_offs + used + next_len;
    980		if (next_len && nxt_offs <= c->leb_size) {
    981			if (avail > 0)
    982				continue;
    983			else
    984				blen = buf_len;
    985		} else {
    986			wlen = ALIGN(wlen, 8);
    987			blen = ALIGN(wlen, c->min_io_size);
    988			ubifs_pad(c, c->cbuf + wlen, blen - wlen);
    989		}
    990
    991		/* The buffer is full or there are no more znodes to do */
    992		err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
    993		if (err)
    994			return err;
    995		buf_offs += blen;
    996		if (next_len) {
    997			if (nxt_offs > c->leb_size) {
    998				err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
    999							  0, LPROPS_TAKEN);
   1000				if (err)
   1001					return err;
   1002				lnum = -1;
   1003			}
   1004			used -= blen;
   1005			if (used < 0)
   1006				used = 0;
   1007			avail = buf_len - used;
   1008			memmove(c->cbuf, c->cbuf + blen, used);
   1009			continue;
   1010		}
   1011		break;
   1012	}
   1013
   1014	if (lnum != c->dbg->new_ihead_lnum ||
   1015	    buf_offs != c->dbg->new_ihead_offs) {
   1016		ubifs_err(c, "inconsistent ihead");
   1017		return -EINVAL;
   1018	}
   1019
   1020	c->ihead_lnum = lnum;
   1021	c->ihead_offs = buf_offs;
   1022
   1023	return 0;
   1024}
   1025
   1026/**
   1027 * free_obsolete_znodes - free obsolete znodes.
   1028 * @c: UBIFS file-system description object
   1029 *
   1030 * At the end of commit end, obsolete znodes are freed.
   1031 */
   1032static void free_obsolete_znodes(struct ubifs_info *c)
   1033{
   1034	struct ubifs_znode *znode, *cnext;
   1035
   1036	cnext = c->cnext;
   1037	do {
   1038		znode = cnext;
   1039		cnext = znode->cnext;
   1040		if (ubifs_zn_obsolete(znode))
   1041			kfree(znode);
   1042		else {
   1043			znode->cnext = NULL;
   1044			atomic_long_inc(&c->clean_zn_cnt);
   1045			atomic_long_inc(&ubifs_clean_zn_cnt);
   1046		}
   1047	} while (cnext != c->cnext);
   1048}
   1049
   1050/**
   1051 * return_gap_lebs - return LEBs used by the in-gap commit method.
   1052 * @c: UBIFS file-system description object
   1053 *
   1054 * This function clears the "taken" flag for the LEBs which were used by the
   1055 * "commit in-the-gaps" method.
   1056 */
   1057static int return_gap_lebs(struct ubifs_info *c)
   1058{
   1059	int *p, err;
   1060
   1061	if (!c->gap_lebs)
   1062		return 0;
   1063
   1064	dbg_cmt("");
   1065	for (p = c->gap_lebs; *p != -1; p++) {
   1066		err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
   1067					  LPROPS_TAKEN, 0);
   1068		if (err)
   1069			return err;
   1070	}
   1071
   1072	kfree(c->gap_lebs);
   1073	c->gap_lebs = NULL;
   1074	return 0;
   1075}
   1076
   1077/**
   1078 * ubifs_tnc_end_commit - update the TNC for commit end.
   1079 * @c: UBIFS file-system description object
   1080 *
   1081 * Write the dirty znodes.
   1082 */
   1083int ubifs_tnc_end_commit(struct ubifs_info *c)
   1084{
   1085	int err;
   1086
   1087	if (!c->cnext)
   1088		return 0;
   1089
   1090	err = return_gap_lebs(c);
   1091	if (err)
   1092		return err;
   1093
   1094	err = write_index(c);
   1095	if (err)
   1096		return err;
   1097
   1098	mutex_lock(&c->tnc_mutex);
   1099
   1100	dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
   1101
   1102	free_obsolete_znodes(c);
   1103
   1104	c->cnext = NULL;
   1105	kfree(c->ilebs);
   1106	c->ilebs = NULL;
   1107
   1108	mutex_unlock(&c->tnc_mutex);
   1109
   1110	return 0;
   1111}