cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

utf8-norm.c (16607B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2014 SGI.
      4 * All rights reserved.
      5 */
      6
      7#include "utf8n.h"
      8
      9int utf8version_is_supported(const struct unicode_map *um, unsigned int version)
     10{
     11	int i = um->tables->utf8agetab_size - 1;
     12
     13	while (i >= 0 && um->tables->utf8agetab[i] != 0) {
     14		if (version == um->tables->utf8agetab[i])
     15			return 1;
     16		i--;
     17	}
     18	return 0;
     19}
     20
     21/*
     22 * UTF-8 valid ranges.
     23 *
     24 * The UTF-8 encoding spreads the bits of a 32bit word over several
     25 * bytes. This table gives the ranges that can be held and how they'd
     26 * be represented.
     27 *
     28 * 0x00000000 0x0000007F: 0xxxxxxx
     29 * 0x00000000 0x000007FF: 110xxxxx 10xxxxxx
     30 * 0x00000000 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
     31 * 0x00000000 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
     32 * 0x00000000 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
     33 * 0x00000000 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
     34 *
     35 * There is an additional requirement on UTF-8, in that only the
     36 * shortest representation of a 32bit value is to be used.  A decoder
     37 * must not decode sequences that do not satisfy this requirement.
     38 * Thus the allowed ranges have a lower bound.
     39 *
     40 * 0x00000000 0x0000007F: 0xxxxxxx
     41 * 0x00000080 0x000007FF: 110xxxxx 10xxxxxx
     42 * 0x00000800 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
     43 * 0x00010000 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
     44 * 0x00200000 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
     45 * 0x04000000 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
     46 *
     47 * Actual unicode characters are limited to the range 0x0 - 0x10FFFF,
     48 * 17 planes of 65536 values.  This limits the sequences actually seen
     49 * even more, to just the following.
     50 *
     51 *          0 -     0x7F: 0                   - 0x7F
     52 *       0x80 -    0x7FF: 0xC2 0x80           - 0xDF 0xBF
     53 *      0x800 -   0xFFFF: 0xE0 0xA0 0x80      - 0xEF 0xBF 0xBF
     54 *    0x10000 - 0x10FFFF: 0xF0 0x90 0x80 0x80 - 0xF4 0x8F 0xBF 0xBF
     55 *
     56 * Within those ranges the surrogates 0xD800 - 0xDFFF are not allowed.
     57 *
     58 * Note that the longest sequence seen with valid usage is 4 bytes,
     59 * the same a single UTF-32 character.  This makes the UTF-8
     60 * representation of Unicode strictly smaller than UTF-32.
     61 *
     62 * The shortest sequence requirement was introduced by:
     63 *    Corrigendum #1: UTF-8 Shortest Form
     64 * It can be found here:
     65 *    http://www.unicode.org/versions/corrigendum1.html
     66 *
     67 */
     68
     69/*
     70 * Return the number of bytes used by the current UTF-8 sequence.
     71 * Assumes the input points to the first byte of a valid UTF-8
     72 * sequence.
     73 */
     74static inline int utf8clen(const char *s)
     75{
     76	unsigned char c = *s;
     77
     78	return 1 + (c >= 0xC0) + (c >= 0xE0) + (c >= 0xF0);
     79}
     80
     81/*
     82 * Decode a 3-byte UTF-8 sequence.
     83 */
     84static unsigned int
     85utf8decode3(const char *str)
     86{
     87	unsigned int		uc;
     88
     89	uc = *str++ & 0x0F;
     90	uc <<= 6;
     91	uc |= *str++ & 0x3F;
     92	uc <<= 6;
     93	uc |= *str++ & 0x3F;
     94
     95	return uc;
     96}
     97
     98/*
     99 * Encode a 3-byte UTF-8 sequence.
    100 */
    101static int
    102utf8encode3(char *str, unsigned int val)
    103{
    104	str[2] = (val & 0x3F) | 0x80;
    105	val >>= 6;
    106	str[1] = (val & 0x3F) | 0x80;
    107	val >>= 6;
    108	str[0] = val | 0xE0;
    109
    110	return 3;
    111}
    112
    113/*
    114 * utf8trie_t
    115 *
    116 * A compact binary tree, used to decode UTF-8 characters.
    117 *
    118 * Internal nodes are one byte for the node itself, and up to three
    119 * bytes for an offset into the tree.  The first byte contains the
    120 * following information:
    121 *  NEXTBYTE  - flag        - advance to next byte if set
    122 *  BITNUM    - 3 bit field - the bit number to tested
    123 *  OFFLEN    - 2 bit field - number of bytes in the offset
    124 * if offlen == 0 (non-branching node)
    125 *  RIGHTPATH - 1 bit field - set if the following node is for the
    126 *                            right-hand path (tested bit is set)
    127 *  TRIENODE  - 1 bit field - set if the following node is an internal
    128 *                            node, otherwise it is a leaf node
    129 * if offlen != 0 (branching node)
    130 *  LEFTNODE  - 1 bit field - set if the left-hand node is internal
    131 *  RIGHTNODE - 1 bit field - set if the right-hand node is internal
    132 *
    133 * Due to the way utf8 works, there cannot be branching nodes with
    134 * NEXTBYTE set, and moreover those nodes always have a righthand
    135 * descendant.
    136 */
    137typedef const unsigned char utf8trie_t;
    138#define BITNUM		0x07
    139#define NEXTBYTE	0x08
    140#define OFFLEN		0x30
    141#define OFFLEN_SHIFT	4
    142#define RIGHTPATH	0x40
    143#define TRIENODE	0x80
    144#define RIGHTNODE	0x40
    145#define LEFTNODE	0x80
    146
    147/*
    148 * utf8leaf_t
    149 *
    150 * The leaves of the trie are embedded in the trie, and so the same
    151 * underlying datatype: unsigned char.
    152 *
    153 * leaf[0]: The unicode version, stored as a generation number that is
    154 *          an index into ->utf8agetab[].  With this we can filter code
    155 *          points based on the unicode version in which they were
    156 *          defined.  The CCC of a non-defined code point is 0.
    157 * leaf[1]: Canonical Combining Class. During normalization, we need
    158 *          to do a stable sort into ascending order of all characters
    159 *          with a non-zero CCC that occur between two characters with
    160 *          a CCC of 0, or at the begin or end of a string.
    161 *          The unicode standard guarantees that all CCC values are
    162 *          between 0 and 254 inclusive, which leaves 255 available as
    163 *          a special value.
    164 *          Code points with CCC 0 are known as stoppers.
    165 * leaf[2]: Decomposition. If leaf[1] == 255, then leaf[2] is the
    166 *          start of a NUL-terminated string that is the decomposition
    167 *          of the character.
    168 *          The CCC of a decomposable character is the same as the CCC
    169 *          of the first character of its decomposition.
    170 *          Some characters decompose as the empty string: these are
    171 *          characters with the Default_Ignorable_Code_Point property.
    172 *          These do affect normalization, as they all have CCC 0.
    173 *
    174 * The decompositions in the trie have been fully expanded, with the
    175 * exception of Hangul syllables, which are decomposed algorithmically.
    176 *
    177 * Casefolding, if applicable, is also done using decompositions.
    178 *
    179 * The trie is constructed in such a way that leaves exist for all
    180 * UTF-8 sequences that match the criteria from the "UTF-8 valid
    181 * ranges" comment above, and only for those sequences.  Therefore a
    182 * lookup in the trie can be used to validate the UTF-8 input.
    183 */
    184typedef const unsigned char utf8leaf_t;
    185
    186#define LEAF_GEN(LEAF)	((LEAF)[0])
    187#define LEAF_CCC(LEAF)	((LEAF)[1])
    188#define LEAF_STR(LEAF)	((const char *)((LEAF) + 2))
    189
    190#define MINCCC		(0)
    191#define MAXCCC		(254)
    192#define STOPPER		(0)
    193#define	DECOMPOSE	(255)
    194
    195/* Marker for hangul syllable decomposition. */
    196#define HANGUL		((char)(255))
    197/* Size of the synthesized leaf used for Hangul syllable decomposition. */
    198#define UTF8HANGULLEAF	(12)
    199
    200/*
    201 * Hangul decomposition (algorithm from Section 3.12 of Unicode 6.3.0)
    202 *
    203 * AC00;<Hangul Syllable, First>;Lo;0;L;;;;;N;;;;;
    204 * D7A3;<Hangul Syllable, Last>;Lo;0;L;;;;;N;;;;;
    205 *
    206 * SBase = 0xAC00
    207 * LBase = 0x1100
    208 * VBase = 0x1161
    209 * TBase = 0x11A7
    210 * LCount = 19
    211 * VCount = 21
    212 * TCount = 28
    213 * NCount = 588 (VCount * TCount)
    214 * SCount = 11172 (LCount * NCount)
    215 *
    216 * Decomposition:
    217 *   SIndex = s - SBase
    218 *
    219 * LV (Canonical/Full)
    220 *   LIndex = SIndex / NCount
    221 *   VIndex = (Sindex % NCount) / TCount
    222 *   LPart = LBase + LIndex
    223 *   VPart = VBase + VIndex
    224 *
    225 * LVT (Canonical)
    226 *   LVIndex = (SIndex / TCount) * TCount
    227 *   TIndex = (Sindex % TCount)
    228 *   LVPart = SBase + LVIndex
    229 *   TPart = TBase + TIndex
    230 *
    231 * LVT (Full)
    232 *   LIndex = SIndex / NCount
    233 *   VIndex = (Sindex % NCount) / TCount
    234 *   TIndex = (Sindex % TCount)
    235 *   LPart = LBase + LIndex
    236 *   VPart = VBase + VIndex
    237 *   if (TIndex == 0) {
    238 *          d = <LPart, VPart>
    239 *   } else {
    240 *          TPart = TBase + TIndex
    241 *          d = <LPart, TPart, VPart>
    242 *   }
    243 */
    244
    245/* Constants */
    246#define SB	(0xAC00)
    247#define LB	(0x1100)
    248#define VB	(0x1161)
    249#define TB	(0x11A7)
    250#define LC	(19)
    251#define VC	(21)
    252#define TC	(28)
    253#define NC	(VC * TC)
    254#define SC	(LC * NC)
    255
    256/* Algorithmic decomposition of hangul syllable. */
    257static utf8leaf_t *
    258utf8hangul(const char *str, unsigned char *hangul)
    259{
    260	unsigned int	si;
    261	unsigned int	li;
    262	unsigned int	vi;
    263	unsigned int	ti;
    264	unsigned char	*h;
    265
    266	/* Calculate the SI, LI, VI, and TI values. */
    267	si = utf8decode3(str) - SB;
    268	li = si / NC;
    269	vi = (si % NC) / TC;
    270	ti = si % TC;
    271
    272	/* Fill in base of leaf. */
    273	h = hangul;
    274	LEAF_GEN(h) = 2;
    275	LEAF_CCC(h) = DECOMPOSE;
    276	h += 2;
    277
    278	/* Add LPart, a 3-byte UTF-8 sequence. */
    279	h += utf8encode3((char *)h, li + LB);
    280
    281	/* Add VPart, a 3-byte UTF-8 sequence. */
    282	h += utf8encode3((char *)h, vi + VB);
    283
    284	/* Add TPart if required, also a 3-byte UTF-8 sequence. */
    285	if (ti)
    286		h += utf8encode3((char *)h, ti + TB);
    287
    288	/* Terminate string. */
    289	h[0] = '\0';
    290
    291	return hangul;
    292}
    293
    294/*
    295 * Use trie to scan s, touching at most len bytes.
    296 * Returns the leaf if one exists, NULL otherwise.
    297 *
    298 * A non-NULL return guarantees that the UTF-8 sequence starting at s
    299 * is well-formed and corresponds to a known unicode code point.  The
    300 * shorthand for this will be "is valid UTF-8 unicode".
    301 */
    302static utf8leaf_t *utf8nlookup(const struct unicode_map *um,
    303		enum utf8_normalization n, unsigned char *hangul, const char *s,
    304		size_t len)
    305{
    306	utf8trie_t	*trie = um->tables->utf8data + um->ntab[n]->offset;
    307	int		offlen;
    308	int		offset;
    309	int		mask;
    310	int		node;
    311
    312	if (len == 0)
    313		return NULL;
    314
    315	node = 1;
    316	while (node) {
    317		offlen = (*trie & OFFLEN) >> OFFLEN_SHIFT;
    318		if (*trie & NEXTBYTE) {
    319			if (--len == 0)
    320				return NULL;
    321			s++;
    322		}
    323		mask = 1 << (*trie & BITNUM);
    324		if (*s & mask) {
    325			/* Right leg */
    326			if (offlen) {
    327				/* Right node at offset of trie */
    328				node = (*trie & RIGHTNODE);
    329				offset = trie[offlen];
    330				while (--offlen) {
    331					offset <<= 8;
    332					offset |= trie[offlen];
    333				}
    334				trie += offset;
    335			} else if (*trie & RIGHTPATH) {
    336				/* Right node after this node */
    337				node = (*trie & TRIENODE);
    338				trie++;
    339			} else {
    340				/* No right node. */
    341				return NULL;
    342			}
    343		} else {
    344			/* Left leg */
    345			if (offlen) {
    346				/* Left node after this node. */
    347				node = (*trie & LEFTNODE);
    348				trie += offlen + 1;
    349			} else if (*trie & RIGHTPATH) {
    350				/* No left node. */
    351				return NULL;
    352			} else {
    353				/* Left node after this node */
    354				node = (*trie & TRIENODE);
    355				trie++;
    356			}
    357		}
    358	}
    359	/*
    360	 * Hangul decomposition is done algorithmically. These are the
    361	 * codepoints >= 0xAC00 and <= 0xD7A3. Their UTF-8 encoding is
    362	 * always 3 bytes long, so s has been advanced twice, and the
    363	 * start of the sequence is at s-2.
    364	 */
    365	if (LEAF_CCC(trie) == DECOMPOSE && LEAF_STR(trie)[0] == HANGUL)
    366		trie = utf8hangul(s - 2, hangul);
    367	return trie;
    368}
    369
    370/*
    371 * Use trie to scan s.
    372 * Returns the leaf if one exists, NULL otherwise.
    373 *
    374 * Forwards to utf8nlookup().
    375 */
    376static utf8leaf_t *utf8lookup(const struct unicode_map *um,
    377		enum utf8_normalization n, unsigned char *hangul, const char *s)
    378{
    379	return utf8nlookup(um, n, hangul, s, (size_t)-1);
    380}
    381
    382/*
    383 * Length of the normalization of s, touch at most len bytes.
    384 * Return -1 if s is not valid UTF-8 unicode.
    385 */
    386ssize_t utf8nlen(const struct unicode_map *um, enum utf8_normalization n,
    387		const char *s, size_t len)
    388{
    389	utf8leaf_t	*leaf;
    390	size_t		ret = 0;
    391	unsigned char	hangul[UTF8HANGULLEAF];
    392
    393	while (len && *s) {
    394		leaf = utf8nlookup(um, n, hangul, s, len);
    395		if (!leaf)
    396			return -1;
    397		if (um->tables->utf8agetab[LEAF_GEN(leaf)] >
    398		    um->ntab[n]->maxage)
    399			ret += utf8clen(s);
    400		else if (LEAF_CCC(leaf) == DECOMPOSE)
    401			ret += strlen(LEAF_STR(leaf));
    402		else
    403			ret += utf8clen(s);
    404		len -= utf8clen(s);
    405		s += utf8clen(s);
    406	}
    407	return ret;
    408}
    409
    410/*
    411 * Set up an utf8cursor for use by utf8byte().
    412 *
    413 *   u8c    : pointer to cursor.
    414 *   data   : const struct utf8data to use for normalization.
    415 *   s      : string.
    416 *   len    : length of s.
    417 *
    418 * Returns -1 on error, 0 on success.
    419 */
    420int utf8ncursor(struct utf8cursor *u8c, const struct unicode_map *um,
    421		enum utf8_normalization n, const char *s, size_t len)
    422{
    423	if (!s)
    424		return -1;
    425	u8c->um = um;
    426	u8c->n = n;
    427	u8c->s = s;
    428	u8c->p = NULL;
    429	u8c->ss = NULL;
    430	u8c->sp = NULL;
    431	u8c->len = len;
    432	u8c->slen = 0;
    433	u8c->ccc = STOPPER;
    434	u8c->nccc = STOPPER;
    435	/* Check we didn't clobber the maximum length. */
    436	if (u8c->len != len)
    437		return -1;
    438	/* The first byte of s may not be an utf8 continuation. */
    439	if (len > 0 && (*s & 0xC0) == 0x80)
    440		return -1;
    441	return 0;
    442}
    443
    444/*
    445 * Get one byte from the normalized form of the string described by u8c.
    446 *
    447 * Returns the byte cast to an unsigned char on succes, and -1 on failure.
    448 *
    449 * The cursor keeps track of the location in the string in u8c->s.
    450 * When a character is decomposed, the current location is stored in
    451 * u8c->p, and u8c->s is set to the start of the decomposition. Note
    452 * that bytes from a decomposition do not count against u8c->len.
    453 *
    454 * Characters are emitted if they match the current CCC in u8c->ccc.
    455 * Hitting end-of-string while u8c->ccc == STOPPER means we're done,
    456 * and the function returns 0 in that case.
    457 *
    458 * Sorting by CCC is done by repeatedly scanning the string.  The
    459 * values of u8c->s and u8c->p are stored in u8c->ss and u8c->sp at
    460 * the start of the scan.  The first pass finds the lowest CCC to be
    461 * emitted and stores it in u8c->nccc, the second pass emits the
    462 * characters with this CCC and finds the next lowest CCC. This limits
    463 * the number of passes to 1 + the number of different CCCs in the
    464 * sequence being scanned.
    465 *
    466 * Therefore:
    467 *  u8c->p  != NULL -> a decomposition is being scanned.
    468 *  u8c->ss != NULL -> this is a repeating scan.
    469 *  u8c->ccc == -1   -> this is the first scan of a repeating scan.
    470 */
    471int utf8byte(struct utf8cursor *u8c)
    472{
    473	utf8leaf_t *leaf;
    474	int ccc;
    475
    476	for (;;) {
    477		/* Check for the end of a decomposed character. */
    478		if (u8c->p && *u8c->s == '\0') {
    479			u8c->s = u8c->p;
    480			u8c->p = NULL;
    481		}
    482
    483		/* Check for end-of-string. */
    484		if (!u8c->p && (u8c->len == 0 || *u8c->s == '\0')) {
    485			/* There is no next byte. */
    486			if (u8c->ccc == STOPPER)
    487				return 0;
    488			/* End-of-string during a scan counts as a stopper. */
    489			ccc = STOPPER;
    490			goto ccc_mismatch;
    491		} else if ((*u8c->s & 0xC0) == 0x80) {
    492			/* This is a continuation of the current character. */
    493			if (!u8c->p)
    494				u8c->len--;
    495			return (unsigned char)*u8c->s++;
    496		}
    497
    498		/* Look up the data for the current character. */
    499		if (u8c->p) {
    500			leaf = utf8lookup(u8c->um, u8c->n, u8c->hangul, u8c->s);
    501		} else {
    502			leaf = utf8nlookup(u8c->um, u8c->n, u8c->hangul,
    503					   u8c->s, u8c->len);
    504		}
    505
    506		/* No leaf found implies that the input is a binary blob. */
    507		if (!leaf)
    508			return -1;
    509
    510		ccc = LEAF_CCC(leaf);
    511		/* Characters that are too new have CCC 0. */
    512		if (u8c->um->tables->utf8agetab[LEAF_GEN(leaf)] >
    513		    u8c->um->ntab[u8c->n]->maxage) {
    514			ccc = STOPPER;
    515		} else if (ccc == DECOMPOSE) {
    516			u8c->len -= utf8clen(u8c->s);
    517			u8c->p = u8c->s + utf8clen(u8c->s);
    518			u8c->s = LEAF_STR(leaf);
    519			/* Empty decomposition implies CCC 0. */
    520			if (*u8c->s == '\0') {
    521				if (u8c->ccc == STOPPER)
    522					continue;
    523				ccc = STOPPER;
    524				goto ccc_mismatch;
    525			}
    526
    527			leaf = utf8lookup(u8c->um, u8c->n, u8c->hangul, u8c->s);
    528			if (!leaf)
    529				return -1;
    530			ccc = LEAF_CCC(leaf);
    531		}
    532
    533		/*
    534		 * If this is not a stopper, then see if it updates
    535		 * the next canonical class to be emitted.
    536		 */
    537		if (ccc != STOPPER && u8c->ccc < ccc && ccc < u8c->nccc)
    538			u8c->nccc = ccc;
    539
    540		/*
    541		 * Return the current byte if this is the current
    542		 * combining class.
    543		 */
    544		if (ccc == u8c->ccc) {
    545			if (!u8c->p)
    546				u8c->len--;
    547			return (unsigned char)*u8c->s++;
    548		}
    549
    550		/* Current combining class mismatch. */
    551ccc_mismatch:
    552		if (u8c->nccc == STOPPER) {
    553			/*
    554			 * Scan forward for the first canonical class
    555			 * to be emitted.  Save the position from
    556			 * which to restart.
    557			 */
    558			u8c->ccc = MINCCC - 1;
    559			u8c->nccc = ccc;
    560			u8c->sp = u8c->p;
    561			u8c->ss = u8c->s;
    562			u8c->slen = u8c->len;
    563			if (!u8c->p)
    564				u8c->len -= utf8clen(u8c->s);
    565			u8c->s += utf8clen(u8c->s);
    566		} else if (ccc != STOPPER) {
    567			/* Not a stopper, and not the ccc we're emitting. */
    568			if (!u8c->p)
    569				u8c->len -= utf8clen(u8c->s);
    570			u8c->s += utf8clen(u8c->s);
    571		} else if (u8c->nccc != MAXCCC + 1) {
    572			/* At a stopper, restart for next ccc. */
    573			u8c->ccc = u8c->nccc;
    574			u8c->nccc = MAXCCC + 1;
    575			u8c->s = u8c->ss;
    576			u8c->p = u8c->sp;
    577			u8c->len = u8c->slen;
    578		} else {
    579			/* All done, proceed from here. */
    580			u8c->ccc = STOPPER;
    581			u8c->nccc = STOPPER;
    582			u8c->sp = NULL;
    583			u8c->ss = NULL;
    584			u8c->slen = 0;
    585		}
    586	}
    587}
    588
    589#ifdef CONFIG_UNICODE_NORMALIZATION_SELFTEST_MODULE
    590EXPORT_SYMBOL_GPL(utf8version_is_supported);
    591EXPORT_SYMBOL_GPL(utf8nlen);
    592EXPORT_SYMBOL_GPL(utf8ncursor);
    593EXPORT_SYMBOL_GPL(utf8byte);
    594#endif