cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hash_algs.c (9248B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * fs-verity hash algorithms
      4 *
      5 * Copyright 2019 Google LLC
      6 */
      7
      8#include "fsverity_private.h"
      9
     10#include <crypto/hash.h>
     11#include <linux/scatterlist.h>
     12
     13/* The hash algorithms supported by fs-verity */
     14struct fsverity_hash_alg fsverity_hash_algs[] = {
     15	[FS_VERITY_HASH_ALG_SHA256] = {
     16		.name = "sha256",
     17		.digest_size = SHA256_DIGEST_SIZE,
     18		.block_size = SHA256_BLOCK_SIZE,
     19	},
     20	[FS_VERITY_HASH_ALG_SHA512] = {
     21		.name = "sha512",
     22		.digest_size = SHA512_DIGEST_SIZE,
     23		.block_size = SHA512_BLOCK_SIZE,
     24	},
     25};
     26
     27static DEFINE_MUTEX(fsverity_hash_alg_init_mutex);
     28
     29/**
     30 * fsverity_get_hash_alg() - validate and prepare a hash algorithm
     31 * @inode: optional inode for logging purposes
     32 * @num: the hash algorithm number
     33 *
     34 * Get the struct fsverity_hash_alg for the given hash algorithm number, and
     35 * ensure it has a hash transform ready to go.  The hash transforms are
     36 * allocated on-demand so that we don't waste resources unnecessarily, and
     37 * because the crypto modules may be initialized later than fs/verity/.
     38 *
     39 * Return: pointer to the hash alg on success, else an ERR_PTR()
     40 */
     41struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode,
     42						unsigned int num)
     43{
     44	struct fsverity_hash_alg *alg;
     45	struct crypto_ahash *tfm;
     46	int err;
     47
     48	if (num >= ARRAY_SIZE(fsverity_hash_algs) ||
     49	    !fsverity_hash_algs[num].name) {
     50		fsverity_warn(inode, "Unknown hash algorithm number: %u", num);
     51		return ERR_PTR(-EINVAL);
     52	}
     53	alg = &fsverity_hash_algs[num];
     54
     55	/* pairs with smp_store_release() below */
     56	if (likely(smp_load_acquire(&alg->tfm) != NULL))
     57		return alg;
     58
     59	mutex_lock(&fsverity_hash_alg_init_mutex);
     60
     61	if (alg->tfm != NULL)
     62		goto out_unlock;
     63
     64	/*
     65	 * Using the shash API would make things a bit simpler, but the ahash
     66	 * API is preferable as it allows the use of crypto accelerators.
     67	 */
     68	tfm = crypto_alloc_ahash(alg->name, 0, 0);
     69	if (IS_ERR(tfm)) {
     70		if (PTR_ERR(tfm) == -ENOENT) {
     71			fsverity_warn(inode,
     72				      "Missing crypto API support for hash algorithm \"%s\"",
     73				      alg->name);
     74			alg = ERR_PTR(-ENOPKG);
     75			goto out_unlock;
     76		}
     77		fsverity_err(inode,
     78			     "Error allocating hash algorithm \"%s\": %ld",
     79			     alg->name, PTR_ERR(tfm));
     80		alg = ERR_CAST(tfm);
     81		goto out_unlock;
     82	}
     83
     84	err = -EINVAL;
     85	if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm)))
     86		goto err_free_tfm;
     87	if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm)))
     88		goto err_free_tfm;
     89
     90	err = mempool_init_kmalloc_pool(&alg->req_pool, 1,
     91					sizeof(struct ahash_request) +
     92					crypto_ahash_reqsize(tfm));
     93	if (err)
     94		goto err_free_tfm;
     95
     96	pr_info("%s using implementation \"%s\"\n",
     97		alg->name, crypto_ahash_driver_name(tfm));
     98
     99	/* pairs with smp_load_acquire() above */
    100	smp_store_release(&alg->tfm, tfm);
    101	goto out_unlock;
    102
    103err_free_tfm:
    104	crypto_free_ahash(tfm);
    105	alg = ERR_PTR(err);
    106out_unlock:
    107	mutex_unlock(&fsverity_hash_alg_init_mutex);
    108	return alg;
    109}
    110
    111/**
    112 * fsverity_alloc_hash_request() - allocate a hash request object
    113 * @alg: the hash algorithm for which to allocate the request
    114 * @gfp_flags: memory allocation flags
    115 *
    116 * This is mempool-backed, so this never fails if __GFP_DIRECT_RECLAIM is set in
    117 * @gfp_flags.  However, in that case this might need to wait for all
    118 * previously-allocated requests to be freed.  So to avoid deadlocks, callers
    119 * must never need multiple requests at a time to make forward progress.
    120 *
    121 * Return: the request object on success; NULL on failure (but see above)
    122 */
    123struct ahash_request *fsverity_alloc_hash_request(struct fsverity_hash_alg *alg,
    124						  gfp_t gfp_flags)
    125{
    126	struct ahash_request *req = mempool_alloc(&alg->req_pool, gfp_flags);
    127
    128	if (req)
    129		ahash_request_set_tfm(req, alg->tfm);
    130	return req;
    131}
    132
    133/**
    134 * fsverity_free_hash_request() - free a hash request object
    135 * @alg: the hash algorithm
    136 * @req: the hash request object to free
    137 */
    138void fsverity_free_hash_request(struct fsverity_hash_alg *alg,
    139				struct ahash_request *req)
    140{
    141	if (req) {
    142		ahash_request_zero(req);
    143		mempool_free(req, &alg->req_pool);
    144	}
    145}
    146
    147/**
    148 * fsverity_prepare_hash_state() - precompute the initial hash state
    149 * @alg: hash algorithm
    150 * @salt: a salt which is to be prepended to all data to be hashed
    151 * @salt_size: salt size in bytes, possibly 0
    152 *
    153 * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed
    154 *	   initial hash state on success or an ERR_PTR() on failure.
    155 */
    156const u8 *fsverity_prepare_hash_state(struct fsverity_hash_alg *alg,
    157				      const u8 *salt, size_t salt_size)
    158{
    159	u8 *hashstate = NULL;
    160	struct ahash_request *req = NULL;
    161	u8 *padded_salt = NULL;
    162	size_t padded_salt_size;
    163	struct scatterlist sg;
    164	DECLARE_CRYPTO_WAIT(wait);
    165	int err;
    166
    167	if (salt_size == 0)
    168		return NULL;
    169
    170	hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL);
    171	if (!hashstate)
    172		return ERR_PTR(-ENOMEM);
    173
    174	/* This allocation never fails, since it's mempool-backed. */
    175	req = fsverity_alloc_hash_request(alg, GFP_KERNEL);
    176
    177	/*
    178	 * Zero-pad the salt to the next multiple of the input size of the hash
    179	 * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128
    180	 * bytes for SHA-512.  This ensures that the hash algorithm won't have
    181	 * any bytes buffered internally after processing the salt, thus making
    182	 * salted hashing just as fast as unsalted hashing.
    183	 */
    184	padded_salt_size = round_up(salt_size, alg->block_size);
    185	padded_salt = kzalloc(padded_salt_size, GFP_KERNEL);
    186	if (!padded_salt) {
    187		err = -ENOMEM;
    188		goto err_free;
    189	}
    190	memcpy(padded_salt, salt, salt_size);
    191
    192	sg_init_one(&sg, padded_salt, padded_salt_size);
    193	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
    194					CRYPTO_TFM_REQ_MAY_BACKLOG,
    195				   crypto_req_done, &wait);
    196	ahash_request_set_crypt(req, &sg, NULL, padded_salt_size);
    197
    198	err = crypto_wait_req(crypto_ahash_init(req), &wait);
    199	if (err)
    200		goto err_free;
    201
    202	err = crypto_wait_req(crypto_ahash_update(req), &wait);
    203	if (err)
    204		goto err_free;
    205
    206	err = crypto_ahash_export(req, hashstate);
    207	if (err)
    208		goto err_free;
    209out:
    210	fsverity_free_hash_request(alg, req);
    211	kfree(padded_salt);
    212	return hashstate;
    213
    214err_free:
    215	kfree(hashstate);
    216	hashstate = ERR_PTR(err);
    217	goto out;
    218}
    219
    220/**
    221 * fsverity_hash_page() - hash a single data or hash page
    222 * @params: the Merkle tree's parameters
    223 * @inode: inode for which the hashing is being done
    224 * @req: preallocated hash request
    225 * @page: the page to hash
    226 * @out: output digest, size 'params->digest_size' bytes
    227 *
    228 * Hash a single data or hash block, assuming block_size == PAGE_SIZE.
    229 * The hash is salted if a salt is specified in the Merkle tree parameters.
    230 *
    231 * Return: 0 on success, -errno on failure
    232 */
    233int fsverity_hash_page(const struct merkle_tree_params *params,
    234		       const struct inode *inode,
    235		       struct ahash_request *req, struct page *page, u8 *out)
    236{
    237	struct scatterlist sg;
    238	DECLARE_CRYPTO_WAIT(wait);
    239	int err;
    240
    241	if (WARN_ON(params->block_size != PAGE_SIZE))
    242		return -EINVAL;
    243
    244	sg_init_table(&sg, 1);
    245	sg_set_page(&sg, page, PAGE_SIZE, 0);
    246	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
    247					CRYPTO_TFM_REQ_MAY_BACKLOG,
    248				   crypto_req_done, &wait);
    249	ahash_request_set_crypt(req, &sg, out, PAGE_SIZE);
    250
    251	if (params->hashstate) {
    252		err = crypto_ahash_import(req, params->hashstate);
    253		if (err) {
    254			fsverity_err(inode,
    255				     "Error %d importing hash state", err);
    256			return err;
    257		}
    258		err = crypto_ahash_finup(req);
    259	} else {
    260		err = crypto_ahash_digest(req);
    261	}
    262
    263	err = crypto_wait_req(err, &wait);
    264	if (err)
    265		fsverity_err(inode, "Error %d computing page hash", err);
    266	return err;
    267}
    268
    269/**
    270 * fsverity_hash_buffer() - hash some data
    271 * @alg: the hash algorithm to use
    272 * @data: the data to hash
    273 * @size: size of data to hash, in bytes
    274 * @out: output digest, size 'alg->digest_size' bytes
    275 *
    276 * Hash some data which is located in physically contiguous memory (i.e. memory
    277 * allocated by kmalloc(), not by vmalloc()).  No salt is used.
    278 *
    279 * Return: 0 on success, -errno on failure
    280 */
    281int fsverity_hash_buffer(struct fsverity_hash_alg *alg,
    282			 const void *data, size_t size, u8 *out)
    283{
    284	struct ahash_request *req;
    285	struct scatterlist sg;
    286	DECLARE_CRYPTO_WAIT(wait);
    287	int err;
    288
    289	/* This allocation never fails, since it's mempool-backed. */
    290	req = fsverity_alloc_hash_request(alg, GFP_KERNEL);
    291
    292	sg_init_one(&sg, data, size);
    293	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
    294					CRYPTO_TFM_REQ_MAY_BACKLOG,
    295				   crypto_req_done, &wait);
    296	ahash_request_set_crypt(req, &sg, out, size);
    297
    298	err = crypto_wait_req(crypto_ahash_digest(req), &wait);
    299
    300	fsverity_free_hash_request(alg, req);
    301	return err;
    302}
    303
    304void __init fsverity_check_hash_algs(void)
    305{
    306	size_t i;
    307
    308	/*
    309	 * Sanity check the hash algorithms (could be a build-time check, but
    310	 * they're in an array)
    311	 */
    312	for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) {
    313		const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i];
    314
    315		if (!alg->name)
    316			continue;
    317
    318		BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE);
    319
    320		/*
    321		 * For efficiency, the implementation currently assumes the
    322		 * digest and block sizes are powers of 2.  This limitation can
    323		 * be lifted if the code is updated to handle other values.
    324		 */
    325		BUG_ON(!is_power_of_2(alg->digest_size));
    326		BUG_ON(!is_power_of_2(alg->block_size));
    327	}
    328}