cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

verify.c (9787B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Data verification functions, i.e. hooks for ->readahead()
      4 *
      5 * Copyright 2019 Google LLC
      6 */
      7
      8#include "fsverity_private.h"
      9
     10#include <crypto/hash.h>
     11#include <linux/bio.h>
     12#include <linux/ratelimit.h>
     13
     14static struct workqueue_struct *fsverity_read_workqueue;
     15
     16/**
     17 * hash_at_level() - compute the location of the block's hash at the given level
     18 *
     19 * @params:	(in) the Merkle tree parameters
     20 * @dindex:	(in) the index of the data block being verified
     21 * @level:	(in) the level of hash we want (0 is leaf level)
     22 * @hindex:	(out) the index of the hash block containing the wanted hash
     23 * @hoffset:	(out) the byte offset to the wanted hash within the hash block
     24 */
     25static void hash_at_level(const struct merkle_tree_params *params,
     26			  pgoff_t dindex, unsigned int level, pgoff_t *hindex,
     27			  unsigned int *hoffset)
     28{
     29	pgoff_t position;
     30
     31	/* Offset of the hash within the level's region, in hashes */
     32	position = dindex >> (level * params->log_arity);
     33
     34	/* Index of the hash block in the tree overall */
     35	*hindex = params->level_start[level] + (position >> params->log_arity);
     36
     37	/* Offset of the wanted hash (in bytes) within the hash block */
     38	*hoffset = (position & ((1 << params->log_arity) - 1)) <<
     39		   (params->log_blocksize - params->log_arity);
     40}
     41
     42/* Extract a hash from a hash page */
     43static void extract_hash(struct page *hpage, unsigned int hoffset,
     44			 unsigned int hsize, u8 *out)
     45{
     46	void *virt = kmap_atomic(hpage);
     47
     48	memcpy(out, virt + hoffset, hsize);
     49	kunmap_atomic(virt);
     50}
     51
     52static inline int cmp_hashes(const struct fsverity_info *vi,
     53			     const u8 *want_hash, const u8 *real_hash,
     54			     pgoff_t index, int level)
     55{
     56	const unsigned int hsize = vi->tree_params.digest_size;
     57
     58	if (memcmp(want_hash, real_hash, hsize) == 0)
     59		return 0;
     60
     61	fsverity_err(vi->inode,
     62		     "FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
     63		     index, level,
     64		     vi->tree_params.hash_alg->name, hsize, want_hash,
     65		     vi->tree_params.hash_alg->name, hsize, real_hash);
     66	return -EBADMSG;
     67}
     68
     69/*
     70 * Verify a single data page against the file's Merkle tree.
     71 *
     72 * In principle, we need to verify the entire path to the root node.  However,
     73 * for efficiency the filesystem may cache the hash pages.  Therefore we need
     74 * only ascend the tree until an already-verified page is seen, as indicated by
     75 * the PageChecked bit being set; then verify the path to that page.
     76 *
     77 * This code currently only supports the case where the verity block size is
     78 * equal to PAGE_SIZE.  Doing otherwise would be possible but tricky, since we
     79 * wouldn't be able to use the PageChecked bit.
     80 *
     81 * Note that multiple processes may race to verify a hash page and mark it
     82 * Checked, but it doesn't matter; the result will be the same either way.
     83 *
     84 * Return: true if the page is valid, else false.
     85 */
     86static bool verify_page(struct inode *inode, const struct fsverity_info *vi,
     87			struct ahash_request *req, struct page *data_page,
     88			unsigned long level0_ra_pages)
     89{
     90	const struct merkle_tree_params *params = &vi->tree_params;
     91	const unsigned int hsize = params->digest_size;
     92	const pgoff_t index = data_page->index;
     93	int level;
     94	u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
     95	const u8 *want_hash;
     96	u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
     97	struct page *hpages[FS_VERITY_MAX_LEVELS];
     98	unsigned int hoffsets[FS_VERITY_MAX_LEVELS];
     99	int err;
    100
    101	if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page)))
    102		return false;
    103
    104	pr_debug_ratelimited("Verifying data page %lu...\n", index);
    105
    106	/*
    107	 * Starting at the leaf level, ascend the tree saving hash pages along
    108	 * the way until we find a verified hash page, indicated by PageChecked;
    109	 * or until we reach the root.
    110	 */
    111	for (level = 0; level < params->num_levels; level++) {
    112		pgoff_t hindex;
    113		unsigned int hoffset;
    114		struct page *hpage;
    115
    116		hash_at_level(params, index, level, &hindex, &hoffset);
    117
    118		pr_debug_ratelimited("Level %d: hindex=%lu, hoffset=%u\n",
    119				     level, hindex, hoffset);
    120
    121		hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex,
    122				level == 0 ? level0_ra_pages : 0);
    123		if (IS_ERR(hpage)) {
    124			err = PTR_ERR(hpage);
    125			fsverity_err(inode,
    126				     "Error %d reading Merkle tree page %lu",
    127				     err, hindex);
    128			goto out;
    129		}
    130
    131		if (PageChecked(hpage)) {
    132			extract_hash(hpage, hoffset, hsize, _want_hash);
    133			want_hash = _want_hash;
    134			put_page(hpage);
    135			pr_debug_ratelimited("Hash page already checked, want %s:%*phN\n",
    136					     params->hash_alg->name,
    137					     hsize, want_hash);
    138			goto descend;
    139		}
    140		pr_debug_ratelimited("Hash page not yet checked\n");
    141		hpages[level] = hpage;
    142		hoffsets[level] = hoffset;
    143	}
    144
    145	want_hash = vi->root_hash;
    146	pr_debug("Want root hash: %s:%*phN\n",
    147		 params->hash_alg->name, hsize, want_hash);
    148descend:
    149	/* Descend the tree verifying hash pages */
    150	for (; level > 0; level--) {
    151		struct page *hpage = hpages[level - 1];
    152		unsigned int hoffset = hoffsets[level - 1];
    153
    154		err = fsverity_hash_page(params, inode, req, hpage, real_hash);
    155		if (err)
    156			goto out;
    157		err = cmp_hashes(vi, want_hash, real_hash, index, level - 1);
    158		if (err)
    159			goto out;
    160		SetPageChecked(hpage);
    161		extract_hash(hpage, hoffset, hsize, _want_hash);
    162		want_hash = _want_hash;
    163		put_page(hpage);
    164		pr_debug("Verified hash page at level %d, now want %s:%*phN\n",
    165			 level - 1, params->hash_alg->name, hsize, want_hash);
    166	}
    167
    168	/* Finally, verify the data page */
    169	err = fsverity_hash_page(params, inode, req, data_page, real_hash);
    170	if (err)
    171		goto out;
    172	err = cmp_hashes(vi, want_hash, real_hash, index, -1);
    173out:
    174	for (; level > 0; level--)
    175		put_page(hpages[level - 1]);
    176
    177	return err == 0;
    178}
    179
    180/**
    181 * fsverity_verify_page() - verify a data page
    182 * @page: the page to verity
    183 *
    184 * Verify a page that has just been read from a verity file.  The page must be a
    185 * pagecache page that is still locked and not yet uptodate.
    186 *
    187 * Return: true if the page is valid, else false.
    188 */
    189bool fsverity_verify_page(struct page *page)
    190{
    191	struct inode *inode = page->mapping->host;
    192	const struct fsverity_info *vi = inode->i_verity_info;
    193	struct ahash_request *req;
    194	bool valid;
    195
    196	/* This allocation never fails, since it's mempool-backed. */
    197	req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
    198
    199	valid = verify_page(inode, vi, req, page, 0);
    200
    201	fsverity_free_hash_request(vi->tree_params.hash_alg, req);
    202
    203	return valid;
    204}
    205EXPORT_SYMBOL_GPL(fsverity_verify_page);
    206
    207#ifdef CONFIG_BLOCK
    208/**
    209 * fsverity_verify_bio() - verify a 'read' bio that has just completed
    210 * @bio: the bio to verify
    211 *
    212 * Verify a set of pages that have just been read from a verity file.  The pages
    213 * must be pagecache pages that are still locked and not yet uptodate.  Pages
    214 * that fail verification are set to the Error state.  Verification is skipped
    215 * for pages already in the Error state, e.g. due to fscrypt decryption failure.
    216 *
    217 * This is a helper function for use by the ->readahead() method of filesystems
    218 * that issue bios to read data directly into the page cache.  Filesystems that
    219 * populate the page cache without issuing bios (e.g. non block-based
    220 * filesystems) must instead call fsverity_verify_page() directly on each page.
    221 * All filesystems must also call fsverity_verify_page() on holes.
    222 */
    223void fsverity_verify_bio(struct bio *bio)
    224{
    225	struct inode *inode = bio_first_page_all(bio)->mapping->host;
    226	const struct fsverity_info *vi = inode->i_verity_info;
    227	const struct merkle_tree_params *params = &vi->tree_params;
    228	struct ahash_request *req;
    229	struct bio_vec *bv;
    230	struct bvec_iter_all iter_all;
    231	unsigned long max_ra_pages = 0;
    232
    233	/* This allocation never fails, since it's mempool-backed. */
    234	req = fsverity_alloc_hash_request(params->hash_alg, GFP_NOFS);
    235
    236	if (bio->bi_opf & REQ_RAHEAD) {
    237		/*
    238		 * If this bio is for data readahead, then we also do readahead
    239		 * of the first (largest) level of the Merkle tree.  Namely,
    240		 * when a Merkle tree page is read, we also try to piggy-back on
    241		 * some additional pages -- up to 1/4 the number of data pages.
    242		 *
    243		 * This improves sequential read performance, as it greatly
    244		 * reduces the number of I/O requests made to the Merkle tree.
    245		 */
    246		bio_for_each_segment_all(bv, bio, iter_all)
    247			max_ra_pages++;
    248		max_ra_pages /= 4;
    249	}
    250
    251	bio_for_each_segment_all(bv, bio, iter_all) {
    252		struct page *page = bv->bv_page;
    253		unsigned long level0_index = page->index >> params->log_arity;
    254		unsigned long level0_ra_pages =
    255			min(max_ra_pages, params->level0_blocks - level0_index);
    256
    257		if (!PageError(page) &&
    258		    !verify_page(inode, vi, req, page, level0_ra_pages))
    259			SetPageError(page);
    260	}
    261
    262	fsverity_free_hash_request(params->hash_alg, req);
    263}
    264EXPORT_SYMBOL_GPL(fsverity_verify_bio);
    265#endif /* CONFIG_BLOCK */
    266
    267/**
    268 * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
    269 * @work: the work to enqueue
    270 *
    271 * Enqueue verification work for asynchronous processing.
    272 */
    273void fsverity_enqueue_verify_work(struct work_struct *work)
    274{
    275	queue_work(fsverity_read_workqueue, work);
    276}
    277EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
    278
    279int __init fsverity_init_workqueue(void)
    280{
    281	/*
    282	 * Use an unbound workqueue to allow bios to be verified in parallel
    283	 * even when they happen to complete on the same CPU.  This sacrifices
    284	 * locality, but it's worthwhile since hashing is CPU-intensive.
    285	 *
    286	 * Also use a high-priority workqueue to prioritize verification work,
    287	 * which blocks reads from completing, over regular application tasks.
    288	 */
    289	fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
    290						  WQ_UNBOUND | WQ_HIGHPRI,
    291						  num_online_cpus());
    292	if (!fsverity_read_workqueue)
    293		return -ENOMEM;
    294	return 0;
    295}
    296
    297void __init fsverity_exit_workqueue(void)
    298{
    299	destroy_workqueue(fsverity_read_workqueue);
    300	fsverity_read_workqueue = NULL;
    301}