xfs_btree.c (134453B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6#include "xfs.h" 7#include "xfs_fs.h" 8#include "xfs_shared.h" 9#include "xfs_format.h" 10#include "xfs_log_format.h" 11#include "xfs_trans_resv.h" 12#include "xfs_bit.h" 13#include "xfs_mount.h" 14#include "xfs_inode.h" 15#include "xfs_trans.h" 16#include "xfs_buf_item.h" 17#include "xfs_btree.h" 18#include "xfs_errortag.h" 19#include "xfs_error.h" 20#include "xfs_trace.h" 21#include "xfs_alloc.h" 22#include "xfs_log.h" 23#include "xfs_btree_staging.h" 24#include "xfs_ag.h" 25#include "xfs_alloc_btree.h" 26#include "xfs_ialloc_btree.h" 27#include "xfs_bmap_btree.h" 28#include "xfs_rmap_btree.h" 29#include "xfs_refcount_btree.h" 30 31/* 32 * Btree magic numbers. 33 */ 34static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = { 35 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC, 36 XFS_FIBT_MAGIC, 0 }, 37 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC, 38 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC, 39 XFS_REFC_CRC_MAGIC } 40}; 41 42uint32_t 43xfs_btree_magic( 44 int crc, 45 xfs_btnum_t btnum) 46{ 47 uint32_t magic = xfs_magics[crc][btnum]; 48 49 /* Ensure we asked for crc for crc-only magics. */ 50 ASSERT(magic != 0); 51 return magic; 52} 53 54/* 55 * These sibling pointer checks are optimised for null sibling pointers. This 56 * happens a lot, and we don't need to byte swap at runtime if the sibling 57 * pointer is NULL. 58 * 59 * These are explicitly marked at inline because the cost of calling them as 60 * functions instead of inlining them is about 36 bytes extra code per call site 61 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these 62 * two sibling check functions reduces the compiled code size by over 300 63 * bytes. 64 */ 65static inline xfs_failaddr_t 66xfs_btree_check_lblock_siblings( 67 struct xfs_mount *mp, 68 struct xfs_btree_cur *cur, 69 int level, 70 xfs_fsblock_t fsb, 71 __be64 dsibling) 72{ 73 xfs_fsblock_t sibling; 74 75 if (dsibling == cpu_to_be64(NULLFSBLOCK)) 76 return NULL; 77 78 sibling = be64_to_cpu(dsibling); 79 if (sibling == fsb) 80 return __this_address; 81 if (level >= 0) { 82 if (!xfs_btree_check_lptr(cur, sibling, level + 1)) 83 return __this_address; 84 } else { 85 if (!xfs_verify_fsbno(mp, sibling)) 86 return __this_address; 87 } 88 89 return NULL; 90} 91 92static inline xfs_failaddr_t 93xfs_btree_check_sblock_siblings( 94 struct xfs_mount *mp, 95 struct xfs_btree_cur *cur, 96 int level, 97 xfs_agnumber_t agno, 98 xfs_agblock_t agbno, 99 __be32 dsibling) 100{ 101 xfs_agblock_t sibling; 102 103 if (dsibling == cpu_to_be32(NULLAGBLOCK)) 104 return NULL; 105 106 sibling = be32_to_cpu(dsibling); 107 if (sibling == agbno) 108 return __this_address; 109 if (level >= 0) { 110 if (!xfs_btree_check_sptr(cur, sibling, level + 1)) 111 return __this_address; 112 } else { 113 if (!xfs_verify_agbno(mp, agno, sibling)) 114 return __this_address; 115 } 116 return NULL; 117} 118 119/* 120 * Check a long btree block header. Return the address of the failing check, 121 * or NULL if everything is ok. 122 */ 123xfs_failaddr_t 124__xfs_btree_check_lblock( 125 struct xfs_btree_cur *cur, 126 struct xfs_btree_block *block, 127 int level, 128 struct xfs_buf *bp) 129{ 130 struct xfs_mount *mp = cur->bc_mp; 131 xfs_btnum_t btnum = cur->bc_btnum; 132 int crc = xfs_has_crc(mp); 133 xfs_failaddr_t fa; 134 xfs_fsblock_t fsb = NULLFSBLOCK; 135 136 if (crc) { 137 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 138 return __this_address; 139 if (block->bb_u.l.bb_blkno != 140 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL)) 141 return __this_address; 142 if (block->bb_u.l.bb_pad != cpu_to_be32(0)) 143 return __this_address; 144 } 145 146 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 147 return __this_address; 148 if (be16_to_cpu(block->bb_level) != level) 149 return __this_address; 150 if (be16_to_cpu(block->bb_numrecs) > 151 cur->bc_ops->get_maxrecs(cur, level)) 152 return __this_address; 153 154 if (bp) 155 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 156 157 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb, 158 block->bb_u.l.bb_leftsib); 159 if (!fa) 160 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb, 161 block->bb_u.l.bb_rightsib); 162 return fa; 163} 164 165/* Check a long btree block header. */ 166static int 167xfs_btree_check_lblock( 168 struct xfs_btree_cur *cur, 169 struct xfs_btree_block *block, 170 int level, 171 struct xfs_buf *bp) 172{ 173 struct xfs_mount *mp = cur->bc_mp; 174 xfs_failaddr_t fa; 175 176 fa = __xfs_btree_check_lblock(cur, block, level, bp); 177 if (XFS_IS_CORRUPT(mp, fa != NULL) || 178 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) { 179 if (bp) 180 trace_xfs_btree_corrupt(bp, _RET_IP_); 181 return -EFSCORRUPTED; 182 } 183 return 0; 184} 185 186/* 187 * Check a short btree block header. Return the address of the failing check, 188 * or NULL if everything is ok. 189 */ 190xfs_failaddr_t 191__xfs_btree_check_sblock( 192 struct xfs_btree_cur *cur, 193 struct xfs_btree_block *block, 194 int level, 195 struct xfs_buf *bp) 196{ 197 struct xfs_mount *mp = cur->bc_mp; 198 xfs_btnum_t btnum = cur->bc_btnum; 199 int crc = xfs_has_crc(mp); 200 xfs_failaddr_t fa; 201 xfs_agblock_t agbno = NULLAGBLOCK; 202 xfs_agnumber_t agno = NULLAGNUMBER; 203 204 if (crc) { 205 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 206 return __this_address; 207 if (block->bb_u.s.bb_blkno != 208 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL)) 209 return __this_address; 210 } 211 212 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 213 return __this_address; 214 if (be16_to_cpu(block->bb_level) != level) 215 return __this_address; 216 if (be16_to_cpu(block->bb_numrecs) > 217 cur->bc_ops->get_maxrecs(cur, level)) 218 return __this_address; 219 220 if (bp) { 221 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp)); 222 agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp)); 223 } 224 225 fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno, agbno, 226 block->bb_u.s.bb_leftsib); 227 if (!fa) 228 fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno, 229 agbno, block->bb_u.s.bb_rightsib); 230 return fa; 231} 232 233/* Check a short btree block header. */ 234STATIC int 235xfs_btree_check_sblock( 236 struct xfs_btree_cur *cur, 237 struct xfs_btree_block *block, 238 int level, 239 struct xfs_buf *bp) 240{ 241 struct xfs_mount *mp = cur->bc_mp; 242 xfs_failaddr_t fa; 243 244 fa = __xfs_btree_check_sblock(cur, block, level, bp); 245 if (XFS_IS_CORRUPT(mp, fa != NULL) || 246 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) { 247 if (bp) 248 trace_xfs_btree_corrupt(bp, _RET_IP_); 249 return -EFSCORRUPTED; 250 } 251 return 0; 252} 253 254/* 255 * Debug routine: check that block header is ok. 256 */ 257int 258xfs_btree_check_block( 259 struct xfs_btree_cur *cur, /* btree cursor */ 260 struct xfs_btree_block *block, /* generic btree block pointer */ 261 int level, /* level of the btree block */ 262 struct xfs_buf *bp) /* buffer containing block, if any */ 263{ 264 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 265 return xfs_btree_check_lblock(cur, block, level, bp); 266 else 267 return xfs_btree_check_sblock(cur, block, level, bp); 268} 269 270/* Check that this long pointer is valid and points within the fs. */ 271bool 272xfs_btree_check_lptr( 273 struct xfs_btree_cur *cur, 274 xfs_fsblock_t fsbno, 275 int level) 276{ 277 if (level <= 0) 278 return false; 279 return xfs_verify_fsbno(cur->bc_mp, fsbno); 280} 281 282/* Check that this short pointer is valid and points within the AG. */ 283bool 284xfs_btree_check_sptr( 285 struct xfs_btree_cur *cur, 286 xfs_agblock_t agbno, 287 int level) 288{ 289 if (level <= 0) 290 return false; 291 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno); 292} 293 294/* 295 * Check that a given (indexed) btree pointer at a certain level of a 296 * btree is valid and doesn't point past where it should. 297 */ 298static int 299xfs_btree_check_ptr( 300 struct xfs_btree_cur *cur, 301 const union xfs_btree_ptr *ptr, 302 int index, 303 int level) 304{ 305 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 306 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]), 307 level)) 308 return 0; 309 xfs_err(cur->bc_mp, 310"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.", 311 cur->bc_ino.ip->i_ino, 312 cur->bc_ino.whichfork, cur->bc_btnum, 313 level, index); 314 } else { 315 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]), 316 level)) 317 return 0; 318 xfs_err(cur->bc_mp, 319"AG %u: Corrupt btree %d pointer at level %d index %d.", 320 cur->bc_ag.pag->pag_agno, cur->bc_btnum, 321 level, index); 322 } 323 324 return -EFSCORRUPTED; 325} 326 327#ifdef DEBUG 328# define xfs_btree_debug_check_ptr xfs_btree_check_ptr 329#else 330# define xfs_btree_debug_check_ptr(...) (0) 331#endif 332 333/* 334 * Calculate CRC on the whole btree block and stuff it into the 335 * long-form btree header. 336 * 337 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 338 * it into the buffer so recovery knows what the last modification was that made 339 * it to disk. 340 */ 341void 342xfs_btree_lblock_calc_crc( 343 struct xfs_buf *bp) 344{ 345 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 346 struct xfs_buf_log_item *bip = bp->b_log_item; 347 348 if (!xfs_has_crc(bp->b_mount)) 349 return; 350 if (bip) 351 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 352 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 353} 354 355bool 356xfs_btree_lblock_verify_crc( 357 struct xfs_buf *bp) 358{ 359 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 360 struct xfs_mount *mp = bp->b_mount; 361 362 if (xfs_has_crc(mp)) { 363 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) 364 return false; 365 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 366 } 367 368 return true; 369} 370 371/* 372 * Calculate CRC on the whole btree block and stuff it into the 373 * short-form btree header. 374 * 375 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 376 * it into the buffer so recovery knows what the last modification was that made 377 * it to disk. 378 */ 379void 380xfs_btree_sblock_calc_crc( 381 struct xfs_buf *bp) 382{ 383 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 384 struct xfs_buf_log_item *bip = bp->b_log_item; 385 386 if (!xfs_has_crc(bp->b_mount)) 387 return; 388 if (bip) 389 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 390 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 391} 392 393bool 394xfs_btree_sblock_verify_crc( 395 struct xfs_buf *bp) 396{ 397 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 398 struct xfs_mount *mp = bp->b_mount; 399 400 if (xfs_has_crc(mp)) { 401 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) 402 return false; 403 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 404 } 405 406 return true; 407} 408 409static int 410xfs_btree_free_block( 411 struct xfs_btree_cur *cur, 412 struct xfs_buf *bp) 413{ 414 int error; 415 416 error = cur->bc_ops->free_block(cur, bp); 417 if (!error) { 418 xfs_trans_binval(cur->bc_tp, bp); 419 XFS_BTREE_STATS_INC(cur, free); 420 } 421 return error; 422} 423 424/* 425 * Delete the btree cursor. 426 */ 427void 428xfs_btree_del_cursor( 429 struct xfs_btree_cur *cur, /* btree cursor */ 430 int error) /* del because of error */ 431{ 432 int i; /* btree level */ 433 434 /* 435 * Clear the buffer pointers and release the buffers. If we're doing 436 * this because of an error, inspect all of the entries in the bc_bufs 437 * array for buffers to be unlocked. This is because some of the btree 438 * code works from level n down to 0, and if we get an error along the 439 * way we won't have initialized all the entries down to 0. 440 */ 441 for (i = 0; i < cur->bc_nlevels; i++) { 442 if (cur->bc_levels[i].bp) 443 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp); 444 else if (!error) 445 break; 446 } 447 448 /* 449 * If we are doing a BMBT update, the number of unaccounted blocks 450 * allocated during this cursor life time should be zero. If it's not 451 * zero, then we should be shut down or on our way to shutdown due to 452 * cancelling a dirty transaction on error. 453 */ 454 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 || 455 xfs_is_shutdown(cur->bc_mp) || error != 0); 456 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) 457 kmem_free(cur->bc_ops); 458 if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag) 459 xfs_perag_put(cur->bc_ag.pag); 460 kmem_cache_free(cur->bc_cache, cur); 461} 462 463/* 464 * Duplicate the btree cursor. 465 * Allocate a new one, copy the record, re-get the buffers. 466 */ 467int /* error */ 468xfs_btree_dup_cursor( 469 struct xfs_btree_cur *cur, /* input cursor */ 470 struct xfs_btree_cur **ncur) /* output cursor */ 471{ 472 struct xfs_buf *bp; /* btree block's buffer pointer */ 473 int error; /* error return value */ 474 int i; /* level number of btree block */ 475 xfs_mount_t *mp; /* mount structure for filesystem */ 476 struct xfs_btree_cur *new; /* new cursor value */ 477 xfs_trans_t *tp; /* transaction pointer, can be NULL */ 478 479 tp = cur->bc_tp; 480 mp = cur->bc_mp; 481 482 /* 483 * Allocate a new cursor like the old one. 484 */ 485 new = cur->bc_ops->dup_cursor(cur); 486 487 /* 488 * Copy the record currently in the cursor. 489 */ 490 new->bc_rec = cur->bc_rec; 491 492 /* 493 * For each level current, re-get the buffer and copy the ptr value. 494 */ 495 for (i = 0; i < new->bc_nlevels; i++) { 496 new->bc_levels[i].ptr = cur->bc_levels[i].ptr; 497 new->bc_levels[i].ra = cur->bc_levels[i].ra; 498 bp = cur->bc_levels[i].bp; 499 if (bp) { 500 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 501 xfs_buf_daddr(bp), mp->m_bsize, 502 0, &bp, 503 cur->bc_ops->buf_ops); 504 if (error) { 505 xfs_btree_del_cursor(new, error); 506 *ncur = NULL; 507 return error; 508 } 509 } 510 new->bc_levels[i].bp = bp; 511 } 512 *ncur = new; 513 return 0; 514} 515 516/* 517 * XFS btree block layout and addressing: 518 * 519 * There are two types of blocks in the btree: leaf and non-leaf blocks. 520 * 521 * The leaf record start with a header then followed by records containing 522 * the values. A non-leaf block also starts with the same header, and 523 * then first contains lookup keys followed by an equal number of pointers 524 * to the btree blocks at the previous level. 525 * 526 * +--------+-------+-------+-------+-------+-------+-------+ 527 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | 528 * +--------+-------+-------+-------+-------+-------+-------+ 529 * 530 * +--------+-------+-------+-------+-------+-------+-------+ 531 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | 532 * +--------+-------+-------+-------+-------+-------+-------+ 533 * 534 * The header is called struct xfs_btree_block for reasons better left unknown 535 * and comes in different versions for short (32bit) and long (64bit) block 536 * pointers. The record and key structures are defined by the btree instances 537 * and opaque to the btree core. The block pointers are simple disk endian 538 * integers, available in a short (32bit) and long (64bit) variant. 539 * 540 * The helpers below calculate the offset of a given record, key or pointer 541 * into a btree block (xfs_btree_*_offset) or return a pointer to the given 542 * record, key or pointer (xfs_btree_*_addr). Note that all addressing 543 * inside the btree block is done using indices starting at one, not zero! 544 * 545 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing 546 * overlapping intervals. In such a tree, records are still sorted lowest to 547 * highest and indexed by the smallest key value that refers to the record. 548 * However, nodes are different: each pointer has two associated keys -- one 549 * indexing the lowest key available in the block(s) below (the same behavior 550 * as the key in a regular btree) and another indexing the highest key 551 * available in the block(s) below. Because records are /not/ sorted by the 552 * highest key, all leaf block updates require us to compute the highest key 553 * that matches any record in the leaf and to recursively update the high keys 554 * in the nodes going further up in the tree, if necessary. Nodes look like 555 * this: 556 * 557 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 558 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | 559 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 560 * 561 * To perform an interval query on an overlapped tree, perform the usual 562 * depth-first search and use the low and high keys to decide if we can skip 563 * that particular node. If a leaf node is reached, return the records that 564 * intersect the interval. Note that an interval query may return numerous 565 * entries. For a non-overlapped tree, simply search for the record associated 566 * with the lowest key and iterate forward until a non-matching record is 567 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by 568 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in 569 * more detail. 570 * 571 * Why do we care about overlapping intervals? Let's say you have a bunch of 572 * reverse mapping records on a reflink filesystem: 573 * 574 * 1: +- file A startblock B offset C length D -----------+ 575 * 2: +- file E startblock F offset G length H --------------+ 576 * 3: +- file I startblock F offset J length K --+ 577 * 4: +- file L... --+ 578 * 579 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, 580 * we'd simply increment the length of record 1. But how do we find the record 581 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return 582 * record 3 because the keys are ordered first by startblock. An interval 583 * query would return records 1 and 2 because they both overlap (B+D-1), and 584 * from that we can pick out record 1 as the appropriate left neighbor. 585 * 586 * In the non-overlapped case you can do a LE lookup and decrement the cursor 587 * because a record's interval must end before the next record. 588 */ 589 590/* 591 * Return size of the btree block header for this btree instance. 592 */ 593static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) 594{ 595 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 596 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 597 return XFS_BTREE_LBLOCK_CRC_LEN; 598 return XFS_BTREE_LBLOCK_LEN; 599 } 600 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 601 return XFS_BTREE_SBLOCK_CRC_LEN; 602 return XFS_BTREE_SBLOCK_LEN; 603} 604 605/* 606 * Return size of btree block pointers for this btree instance. 607 */ 608static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur) 609{ 610 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 611 sizeof(__be64) : sizeof(__be32); 612} 613 614/* 615 * Calculate offset of the n-th record in a btree block. 616 */ 617STATIC size_t 618xfs_btree_rec_offset( 619 struct xfs_btree_cur *cur, 620 int n) 621{ 622 return xfs_btree_block_len(cur) + 623 (n - 1) * cur->bc_ops->rec_len; 624} 625 626/* 627 * Calculate offset of the n-th key in a btree block. 628 */ 629STATIC size_t 630xfs_btree_key_offset( 631 struct xfs_btree_cur *cur, 632 int n) 633{ 634 return xfs_btree_block_len(cur) + 635 (n - 1) * cur->bc_ops->key_len; 636} 637 638/* 639 * Calculate offset of the n-th high key in a btree block. 640 */ 641STATIC size_t 642xfs_btree_high_key_offset( 643 struct xfs_btree_cur *cur, 644 int n) 645{ 646 return xfs_btree_block_len(cur) + 647 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); 648} 649 650/* 651 * Calculate offset of the n-th block pointer in a btree block. 652 */ 653STATIC size_t 654xfs_btree_ptr_offset( 655 struct xfs_btree_cur *cur, 656 int n, 657 int level) 658{ 659 return xfs_btree_block_len(cur) + 660 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + 661 (n - 1) * xfs_btree_ptr_len(cur); 662} 663 664/* 665 * Return a pointer to the n-th record in the btree block. 666 */ 667union xfs_btree_rec * 668xfs_btree_rec_addr( 669 struct xfs_btree_cur *cur, 670 int n, 671 struct xfs_btree_block *block) 672{ 673 return (union xfs_btree_rec *) 674 ((char *)block + xfs_btree_rec_offset(cur, n)); 675} 676 677/* 678 * Return a pointer to the n-th key in the btree block. 679 */ 680union xfs_btree_key * 681xfs_btree_key_addr( 682 struct xfs_btree_cur *cur, 683 int n, 684 struct xfs_btree_block *block) 685{ 686 return (union xfs_btree_key *) 687 ((char *)block + xfs_btree_key_offset(cur, n)); 688} 689 690/* 691 * Return a pointer to the n-th high key in the btree block. 692 */ 693union xfs_btree_key * 694xfs_btree_high_key_addr( 695 struct xfs_btree_cur *cur, 696 int n, 697 struct xfs_btree_block *block) 698{ 699 return (union xfs_btree_key *) 700 ((char *)block + xfs_btree_high_key_offset(cur, n)); 701} 702 703/* 704 * Return a pointer to the n-th block pointer in the btree block. 705 */ 706union xfs_btree_ptr * 707xfs_btree_ptr_addr( 708 struct xfs_btree_cur *cur, 709 int n, 710 struct xfs_btree_block *block) 711{ 712 int level = xfs_btree_get_level(block); 713 714 ASSERT(block->bb_level != 0); 715 716 return (union xfs_btree_ptr *) 717 ((char *)block + xfs_btree_ptr_offset(cur, n, level)); 718} 719 720struct xfs_ifork * 721xfs_btree_ifork_ptr( 722 struct xfs_btree_cur *cur) 723{ 724 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 725 726 if (cur->bc_flags & XFS_BTREE_STAGING) 727 return cur->bc_ino.ifake->if_fork; 728 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork); 729} 730 731/* 732 * Get the root block which is stored in the inode. 733 * 734 * For now this btree implementation assumes the btree root is always 735 * stored in the if_broot field of an inode fork. 736 */ 737STATIC struct xfs_btree_block * 738xfs_btree_get_iroot( 739 struct xfs_btree_cur *cur) 740{ 741 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); 742 743 return (struct xfs_btree_block *)ifp->if_broot; 744} 745 746/* 747 * Retrieve the block pointer from the cursor at the given level. 748 * This may be an inode btree root or from a buffer. 749 */ 750struct xfs_btree_block * /* generic btree block pointer */ 751xfs_btree_get_block( 752 struct xfs_btree_cur *cur, /* btree cursor */ 753 int level, /* level in btree */ 754 struct xfs_buf **bpp) /* buffer containing the block */ 755{ 756 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 757 (level == cur->bc_nlevels - 1)) { 758 *bpp = NULL; 759 return xfs_btree_get_iroot(cur); 760 } 761 762 *bpp = cur->bc_levels[level].bp; 763 return XFS_BUF_TO_BLOCK(*bpp); 764} 765 766/* 767 * Change the cursor to point to the first record at the given level. 768 * Other levels are unaffected. 769 */ 770STATIC int /* success=1, failure=0 */ 771xfs_btree_firstrec( 772 struct xfs_btree_cur *cur, /* btree cursor */ 773 int level) /* level to change */ 774{ 775 struct xfs_btree_block *block; /* generic btree block pointer */ 776 struct xfs_buf *bp; /* buffer containing block */ 777 778 /* 779 * Get the block pointer for this level. 780 */ 781 block = xfs_btree_get_block(cur, level, &bp); 782 if (xfs_btree_check_block(cur, block, level, bp)) 783 return 0; 784 /* 785 * It's empty, there is no such record. 786 */ 787 if (!block->bb_numrecs) 788 return 0; 789 /* 790 * Set the ptr value to 1, that's the first record/key. 791 */ 792 cur->bc_levels[level].ptr = 1; 793 return 1; 794} 795 796/* 797 * Change the cursor to point to the last record in the current block 798 * at the given level. Other levels are unaffected. 799 */ 800STATIC int /* success=1, failure=0 */ 801xfs_btree_lastrec( 802 struct xfs_btree_cur *cur, /* btree cursor */ 803 int level) /* level to change */ 804{ 805 struct xfs_btree_block *block; /* generic btree block pointer */ 806 struct xfs_buf *bp; /* buffer containing block */ 807 808 /* 809 * Get the block pointer for this level. 810 */ 811 block = xfs_btree_get_block(cur, level, &bp); 812 if (xfs_btree_check_block(cur, block, level, bp)) 813 return 0; 814 /* 815 * It's empty, there is no such record. 816 */ 817 if (!block->bb_numrecs) 818 return 0; 819 /* 820 * Set the ptr value to numrecs, that's the last record/key. 821 */ 822 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs); 823 return 1; 824} 825 826/* 827 * Compute first and last byte offsets for the fields given. 828 * Interprets the offsets table, which contains struct field offsets. 829 */ 830void 831xfs_btree_offsets( 832 uint32_t fields, /* bitmask of fields */ 833 const short *offsets, /* table of field offsets */ 834 int nbits, /* number of bits to inspect */ 835 int *first, /* output: first byte offset */ 836 int *last) /* output: last byte offset */ 837{ 838 int i; /* current bit number */ 839 uint32_t imask; /* mask for current bit number */ 840 841 ASSERT(fields != 0); 842 /* 843 * Find the lowest bit, so the first byte offset. 844 */ 845 for (i = 0, imask = 1u; ; i++, imask <<= 1) { 846 if (imask & fields) { 847 *first = offsets[i]; 848 break; 849 } 850 } 851 /* 852 * Find the highest bit, so the last byte offset. 853 */ 854 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) { 855 if (imask & fields) { 856 *last = offsets[i + 1] - 1; 857 break; 858 } 859 } 860} 861 862/* 863 * Get a buffer for the block, return it read in. 864 * Long-form addressing. 865 */ 866int 867xfs_btree_read_bufl( 868 struct xfs_mount *mp, /* file system mount point */ 869 struct xfs_trans *tp, /* transaction pointer */ 870 xfs_fsblock_t fsbno, /* file system block number */ 871 struct xfs_buf **bpp, /* buffer for fsbno */ 872 int refval, /* ref count value for buffer */ 873 const struct xfs_buf_ops *ops) 874{ 875 struct xfs_buf *bp; /* return value */ 876 xfs_daddr_t d; /* real disk block address */ 877 int error; 878 879 if (!xfs_verify_fsbno(mp, fsbno)) 880 return -EFSCORRUPTED; 881 d = XFS_FSB_TO_DADDR(mp, fsbno); 882 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d, 883 mp->m_bsize, 0, &bp, ops); 884 if (error) 885 return error; 886 if (bp) 887 xfs_buf_set_ref(bp, refval); 888 *bpp = bp; 889 return 0; 890} 891 892/* 893 * Read-ahead the block, don't wait for it, don't return a buffer. 894 * Long-form addressing. 895 */ 896/* ARGSUSED */ 897void 898xfs_btree_reada_bufl( 899 struct xfs_mount *mp, /* file system mount point */ 900 xfs_fsblock_t fsbno, /* file system block number */ 901 xfs_extlen_t count, /* count of filesystem blocks */ 902 const struct xfs_buf_ops *ops) 903{ 904 xfs_daddr_t d; 905 906 ASSERT(fsbno != NULLFSBLOCK); 907 d = XFS_FSB_TO_DADDR(mp, fsbno); 908 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 909} 910 911/* 912 * Read-ahead the block, don't wait for it, don't return a buffer. 913 * Short-form addressing. 914 */ 915/* ARGSUSED */ 916void 917xfs_btree_reada_bufs( 918 struct xfs_mount *mp, /* file system mount point */ 919 xfs_agnumber_t agno, /* allocation group number */ 920 xfs_agblock_t agbno, /* allocation group block number */ 921 xfs_extlen_t count, /* count of filesystem blocks */ 922 const struct xfs_buf_ops *ops) 923{ 924 xfs_daddr_t d; 925 926 ASSERT(agno != NULLAGNUMBER); 927 ASSERT(agbno != NULLAGBLOCK); 928 d = XFS_AGB_TO_DADDR(mp, agno, agbno); 929 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 930} 931 932STATIC int 933xfs_btree_readahead_lblock( 934 struct xfs_btree_cur *cur, 935 int lr, 936 struct xfs_btree_block *block) 937{ 938 int rval = 0; 939 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 940 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 941 942 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 943 xfs_btree_reada_bufl(cur->bc_mp, left, 1, 944 cur->bc_ops->buf_ops); 945 rval++; 946 } 947 948 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 949 xfs_btree_reada_bufl(cur->bc_mp, right, 1, 950 cur->bc_ops->buf_ops); 951 rval++; 952 } 953 954 return rval; 955} 956 957STATIC int 958xfs_btree_readahead_sblock( 959 struct xfs_btree_cur *cur, 960 int lr, 961 struct xfs_btree_block *block) 962{ 963 int rval = 0; 964 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); 965 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); 966 967 968 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { 969 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno, 970 left, 1, cur->bc_ops->buf_ops); 971 rval++; 972 } 973 974 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { 975 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno, 976 right, 1, cur->bc_ops->buf_ops); 977 rval++; 978 } 979 980 return rval; 981} 982 983/* 984 * Read-ahead btree blocks, at the given level. 985 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. 986 */ 987STATIC int 988xfs_btree_readahead( 989 struct xfs_btree_cur *cur, /* btree cursor */ 990 int lev, /* level in btree */ 991 int lr) /* left/right bits */ 992{ 993 struct xfs_btree_block *block; 994 995 /* 996 * No readahead needed if we are at the root level and the 997 * btree root is stored in the inode. 998 */ 999 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 1000 (lev == cur->bc_nlevels - 1)) 1001 return 0; 1002 1003 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra) 1004 return 0; 1005 1006 cur->bc_levels[lev].ra |= lr; 1007 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp); 1008 1009 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1010 return xfs_btree_readahead_lblock(cur, lr, block); 1011 return xfs_btree_readahead_sblock(cur, lr, block); 1012} 1013 1014STATIC int 1015xfs_btree_ptr_to_daddr( 1016 struct xfs_btree_cur *cur, 1017 const union xfs_btree_ptr *ptr, 1018 xfs_daddr_t *daddr) 1019{ 1020 xfs_fsblock_t fsbno; 1021 xfs_agblock_t agbno; 1022 int error; 1023 1024 error = xfs_btree_check_ptr(cur, ptr, 0, 1); 1025 if (error) 1026 return error; 1027 1028 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1029 fsbno = be64_to_cpu(ptr->l); 1030 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno); 1031 } else { 1032 agbno = be32_to_cpu(ptr->s); 1033 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno, 1034 agbno); 1035 } 1036 1037 return 0; 1038} 1039 1040/* 1041 * Readahead @count btree blocks at the given @ptr location. 1042 * 1043 * We don't need to care about long or short form btrees here as we have a 1044 * method of converting the ptr directly to a daddr available to us. 1045 */ 1046STATIC void 1047xfs_btree_readahead_ptr( 1048 struct xfs_btree_cur *cur, 1049 union xfs_btree_ptr *ptr, 1050 xfs_extlen_t count) 1051{ 1052 xfs_daddr_t daddr; 1053 1054 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr)) 1055 return; 1056 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr, 1057 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops); 1058} 1059 1060/* 1061 * Set the buffer for level "lev" in the cursor to bp, releasing 1062 * any previous buffer. 1063 */ 1064STATIC void 1065xfs_btree_setbuf( 1066 struct xfs_btree_cur *cur, /* btree cursor */ 1067 int lev, /* level in btree */ 1068 struct xfs_buf *bp) /* new buffer to set */ 1069{ 1070 struct xfs_btree_block *b; /* btree block */ 1071 1072 if (cur->bc_levels[lev].bp) 1073 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp); 1074 cur->bc_levels[lev].bp = bp; 1075 cur->bc_levels[lev].ra = 0; 1076 1077 b = XFS_BUF_TO_BLOCK(bp); 1078 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1079 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) 1080 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA; 1081 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) 1082 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA; 1083 } else { 1084 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) 1085 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA; 1086 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 1087 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA; 1088 } 1089} 1090 1091bool 1092xfs_btree_ptr_is_null( 1093 struct xfs_btree_cur *cur, 1094 const union xfs_btree_ptr *ptr) 1095{ 1096 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1097 return ptr->l == cpu_to_be64(NULLFSBLOCK); 1098 else 1099 return ptr->s == cpu_to_be32(NULLAGBLOCK); 1100} 1101 1102void 1103xfs_btree_set_ptr_null( 1104 struct xfs_btree_cur *cur, 1105 union xfs_btree_ptr *ptr) 1106{ 1107 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1108 ptr->l = cpu_to_be64(NULLFSBLOCK); 1109 else 1110 ptr->s = cpu_to_be32(NULLAGBLOCK); 1111} 1112 1113/* 1114 * Get/set/init sibling pointers 1115 */ 1116void 1117xfs_btree_get_sibling( 1118 struct xfs_btree_cur *cur, 1119 struct xfs_btree_block *block, 1120 union xfs_btree_ptr *ptr, 1121 int lr) 1122{ 1123 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1124 1125 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1126 if (lr == XFS_BB_RIGHTSIB) 1127 ptr->l = block->bb_u.l.bb_rightsib; 1128 else 1129 ptr->l = block->bb_u.l.bb_leftsib; 1130 } else { 1131 if (lr == XFS_BB_RIGHTSIB) 1132 ptr->s = block->bb_u.s.bb_rightsib; 1133 else 1134 ptr->s = block->bb_u.s.bb_leftsib; 1135 } 1136} 1137 1138void 1139xfs_btree_set_sibling( 1140 struct xfs_btree_cur *cur, 1141 struct xfs_btree_block *block, 1142 const union xfs_btree_ptr *ptr, 1143 int lr) 1144{ 1145 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1146 1147 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1148 if (lr == XFS_BB_RIGHTSIB) 1149 block->bb_u.l.bb_rightsib = ptr->l; 1150 else 1151 block->bb_u.l.bb_leftsib = ptr->l; 1152 } else { 1153 if (lr == XFS_BB_RIGHTSIB) 1154 block->bb_u.s.bb_rightsib = ptr->s; 1155 else 1156 block->bb_u.s.bb_leftsib = ptr->s; 1157 } 1158} 1159 1160void 1161xfs_btree_init_block_int( 1162 struct xfs_mount *mp, 1163 struct xfs_btree_block *buf, 1164 xfs_daddr_t blkno, 1165 xfs_btnum_t btnum, 1166 __u16 level, 1167 __u16 numrecs, 1168 __u64 owner, 1169 unsigned int flags) 1170{ 1171 int crc = xfs_has_crc(mp); 1172 __u32 magic = xfs_btree_magic(crc, btnum); 1173 1174 buf->bb_magic = cpu_to_be32(magic); 1175 buf->bb_level = cpu_to_be16(level); 1176 buf->bb_numrecs = cpu_to_be16(numrecs); 1177 1178 if (flags & XFS_BTREE_LONG_PTRS) { 1179 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); 1180 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); 1181 if (crc) { 1182 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); 1183 buf->bb_u.l.bb_owner = cpu_to_be64(owner); 1184 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); 1185 buf->bb_u.l.bb_pad = 0; 1186 buf->bb_u.l.bb_lsn = 0; 1187 } 1188 } else { 1189 /* owner is a 32 bit value on short blocks */ 1190 __u32 __owner = (__u32)owner; 1191 1192 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); 1193 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); 1194 if (crc) { 1195 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); 1196 buf->bb_u.s.bb_owner = cpu_to_be32(__owner); 1197 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); 1198 buf->bb_u.s.bb_lsn = 0; 1199 } 1200 } 1201} 1202 1203void 1204xfs_btree_init_block( 1205 struct xfs_mount *mp, 1206 struct xfs_buf *bp, 1207 xfs_btnum_t btnum, 1208 __u16 level, 1209 __u16 numrecs, 1210 __u64 owner) 1211{ 1212 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp), 1213 btnum, level, numrecs, owner, 0); 1214} 1215 1216void 1217xfs_btree_init_block_cur( 1218 struct xfs_btree_cur *cur, 1219 struct xfs_buf *bp, 1220 int level, 1221 int numrecs) 1222{ 1223 __u64 owner; 1224 1225 /* 1226 * we can pull the owner from the cursor right now as the different 1227 * owners align directly with the pointer size of the btree. This may 1228 * change in future, but is safe for current users of the generic btree 1229 * code. 1230 */ 1231 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1232 owner = cur->bc_ino.ip->i_ino; 1233 else 1234 owner = cur->bc_ag.pag->pag_agno; 1235 1236 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), 1237 xfs_buf_daddr(bp), cur->bc_btnum, level, 1238 numrecs, owner, cur->bc_flags); 1239} 1240 1241/* 1242 * Return true if ptr is the last record in the btree and 1243 * we need to track updates to this record. The decision 1244 * will be further refined in the update_lastrec method. 1245 */ 1246STATIC int 1247xfs_btree_is_lastrec( 1248 struct xfs_btree_cur *cur, 1249 struct xfs_btree_block *block, 1250 int level) 1251{ 1252 union xfs_btree_ptr ptr; 1253 1254 if (level > 0) 1255 return 0; 1256 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE)) 1257 return 0; 1258 1259 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1260 if (!xfs_btree_ptr_is_null(cur, &ptr)) 1261 return 0; 1262 return 1; 1263} 1264 1265STATIC void 1266xfs_btree_buf_to_ptr( 1267 struct xfs_btree_cur *cur, 1268 struct xfs_buf *bp, 1269 union xfs_btree_ptr *ptr) 1270{ 1271 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1272 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, 1273 xfs_buf_daddr(bp))); 1274 else { 1275 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, 1276 xfs_buf_daddr(bp))); 1277 } 1278} 1279 1280STATIC void 1281xfs_btree_set_refs( 1282 struct xfs_btree_cur *cur, 1283 struct xfs_buf *bp) 1284{ 1285 switch (cur->bc_btnum) { 1286 case XFS_BTNUM_BNO: 1287 case XFS_BTNUM_CNT: 1288 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF); 1289 break; 1290 case XFS_BTNUM_INO: 1291 case XFS_BTNUM_FINO: 1292 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF); 1293 break; 1294 case XFS_BTNUM_BMAP: 1295 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF); 1296 break; 1297 case XFS_BTNUM_RMAP: 1298 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF); 1299 break; 1300 case XFS_BTNUM_REFC: 1301 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF); 1302 break; 1303 default: 1304 ASSERT(0); 1305 } 1306} 1307 1308int 1309xfs_btree_get_buf_block( 1310 struct xfs_btree_cur *cur, 1311 const union xfs_btree_ptr *ptr, 1312 struct xfs_btree_block **block, 1313 struct xfs_buf **bpp) 1314{ 1315 struct xfs_mount *mp = cur->bc_mp; 1316 xfs_daddr_t d; 1317 int error; 1318 1319 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1320 if (error) 1321 return error; 1322 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize, 1323 0, bpp); 1324 if (error) 1325 return error; 1326 1327 (*bpp)->b_ops = cur->bc_ops->buf_ops; 1328 *block = XFS_BUF_TO_BLOCK(*bpp); 1329 return 0; 1330} 1331 1332/* 1333 * Read in the buffer at the given ptr and return the buffer and 1334 * the block pointer within the buffer. 1335 */ 1336STATIC int 1337xfs_btree_read_buf_block( 1338 struct xfs_btree_cur *cur, 1339 const union xfs_btree_ptr *ptr, 1340 int flags, 1341 struct xfs_btree_block **block, 1342 struct xfs_buf **bpp) 1343{ 1344 struct xfs_mount *mp = cur->bc_mp; 1345 xfs_daddr_t d; 1346 int error; 1347 1348 /* need to sort out how callers deal with failures first */ 1349 ASSERT(!(flags & XBF_TRYLOCK)); 1350 1351 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1352 if (error) 1353 return error; 1354 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d, 1355 mp->m_bsize, flags, bpp, 1356 cur->bc_ops->buf_ops); 1357 if (error) 1358 return error; 1359 1360 xfs_btree_set_refs(cur, *bpp); 1361 *block = XFS_BUF_TO_BLOCK(*bpp); 1362 return 0; 1363} 1364 1365/* 1366 * Copy keys from one btree block to another. 1367 */ 1368void 1369xfs_btree_copy_keys( 1370 struct xfs_btree_cur *cur, 1371 union xfs_btree_key *dst_key, 1372 const union xfs_btree_key *src_key, 1373 int numkeys) 1374{ 1375 ASSERT(numkeys >= 0); 1376 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); 1377} 1378 1379/* 1380 * Copy records from one btree block to another. 1381 */ 1382STATIC void 1383xfs_btree_copy_recs( 1384 struct xfs_btree_cur *cur, 1385 union xfs_btree_rec *dst_rec, 1386 union xfs_btree_rec *src_rec, 1387 int numrecs) 1388{ 1389 ASSERT(numrecs >= 0); 1390 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); 1391} 1392 1393/* 1394 * Copy block pointers from one btree block to another. 1395 */ 1396void 1397xfs_btree_copy_ptrs( 1398 struct xfs_btree_cur *cur, 1399 union xfs_btree_ptr *dst_ptr, 1400 const union xfs_btree_ptr *src_ptr, 1401 int numptrs) 1402{ 1403 ASSERT(numptrs >= 0); 1404 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur)); 1405} 1406 1407/* 1408 * Shift keys one index left/right inside a single btree block. 1409 */ 1410STATIC void 1411xfs_btree_shift_keys( 1412 struct xfs_btree_cur *cur, 1413 union xfs_btree_key *key, 1414 int dir, 1415 int numkeys) 1416{ 1417 char *dst_key; 1418 1419 ASSERT(numkeys >= 0); 1420 ASSERT(dir == 1 || dir == -1); 1421 1422 dst_key = (char *)key + (dir * cur->bc_ops->key_len); 1423 memmove(dst_key, key, numkeys * cur->bc_ops->key_len); 1424} 1425 1426/* 1427 * Shift records one index left/right inside a single btree block. 1428 */ 1429STATIC void 1430xfs_btree_shift_recs( 1431 struct xfs_btree_cur *cur, 1432 union xfs_btree_rec *rec, 1433 int dir, 1434 int numrecs) 1435{ 1436 char *dst_rec; 1437 1438 ASSERT(numrecs >= 0); 1439 ASSERT(dir == 1 || dir == -1); 1440 1441 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); 1442 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); 1443} 1444 1445/* 1446 * Shift block pointers one index left/right inside a single btree block. 1447 */ 1448STATIC void 1449xfs_btree_shift_ptrs( 1450 struct xfs_btree_cur *cur, 1451 union xfs_btree_ptr *ptr, 1452 int dir, 1453 int numptrs) 1454{ 1455 char *dst_ptr; 1456 1457 ASSERT(numptrs >= 0); 1458 ASSERT(dir == 1 || dir == -1); 1459 1460 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur)); 1461 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur)); 1462} 1463 1464/* 1465 * Log key values from the btree block. 1466 */ 1467STATIC void 1468xfs_btree_log_keys( 1469 struct xfs_btree_cur *cur, 1470 struct xfs_buf *bp, 1471 int first, 1472 int last) 1473{ 1474 1475 if (bp) { 1476 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1477 xfs_trans_log_buf(cur->bc_tp, bp, 1478 xfs_btree_key_offset(cur, first), 1479 xfs_btree_key_offset(cur, last + 1) - 1); 1480 } else { 1481 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1482 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1483 } 1484} 1485 1486/* 1487 * Log record values from the btree block. 1488 */ 1489void 1490xfs_btree_log_recs( 1491 struct xfs_btree_cur *cur, 1492 struct xfs_buf *bp, 1493 int first, 1494 int last) 1495{ 1496 1497 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1498 xfs_trans_log_buf(cur->bc_tp, bp, 1499 xfs_btree_rec_offset(cur, first), 1500 xfs_btree_rec_offset(cur, last + 1) - 1); 1501 1502} 1503 1504/* 1505 * Log block pointer fields from a btree block (nonleaf). 1506 */ 1507STATIC void 1508xfs_btree_log_ptrs( 1509 struct xfs_btree_cur *cur, /* btree cursor */ 1510 struct xfs_buf *bp, /* buffer containing btree block */ 1511 int first, /* index of first pointer to log */ 1512 int last) /* index of last pointer to log */ 1513{ 1514 1515 if (bp) { 1516 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 1517 int level = xfs_btree_get_level(block); 1518 1519 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1520 xfs_trans_log_buf(cur->bc_tp, bp, 1521 xfs_btree_ptr_offset(cur, first, level), 1522 xfs_btree_ptr_offset(cur, last + 1, level) - 1); 1523 } else { 1524 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1525 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1526 } 1527 1528} 1529 1530/* 1531 * Log fields from a btree block header. 1532 */ 1533void 1534xfs_btree_log_block( 1535 struct xfs_btree_cur *cur, /* btree cursor */ 1536 struct xfs_buf *bp, /* buffer containing btree block */ 1537 uint32_t fields) /* mask of fields: XFS_BB_... */ 1538{ 1539 int first; /* first byte offset logged */ 1540 int last; /* last byte offset logged */ 1541 static const short soffsets[] = { /* table of offsets (short) */ 1542 offsetof(struct xfs_btree_block, bb_magic), 1543 offsetof(struct xfs_btree_block, bb_level), 1544 offsetof(struct xfs_btree_block, bb_numrecs), 1545 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), 1546 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), 1547 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), 1548 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), 1549 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), 1550 offsetof(struct xfs_btree_block, bb_u.s.bb_owner), 1551 offsetof(struct xfs_btree_block, bb_u.s.bb_crc), 1552 XFS_BTREE_SBLOCK_CRC_LEN 1553 }; 1554 static const short loffsets[] = { /* table of offsets (long) */ 1555 offsetof(struct xfs_btree_block, bb_magic), 1556 offsetof(struct xfs_btree_block, bb_level), 1557 offsetof(struct xfs_btree_block, bb_numrecs), 1558 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), 1559 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), 1560 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), 1561 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), 1562 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), 1563 offsetof(struct xfs_btree_block, bb_u.l.bb_owner), 1564 offsetof(struct xfs_btree_block, bb_u.l.bb_crc), 1565 offsetof(struct xfs_btree_block, bb_u.l.bb_pad), 1566 XFS_BTREE_LBLOCK_CRC_LEN 1567 }; 1568 1569 if (bp) { 1570 int nbits; 1571 1572 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 1573 /* 1574 * We don't log the CRC when updating a btree 1575 * block but instead recreate it during log 1576 * recovery. As the log buffers have checksums 1577 * of their own this is safe and avoids logging a crc 1578 * update in a lot of places. 1579 */ 1580 if (fields == XFS_BB_ALL_BITS) 1581 fields = XFS_BB_ALL_BITS_CRC; 1582 nbits = XFS_BB_NUM_BITS_CRC; 1583 } else { 1584 nbits = XFS_BB_NUM_BITS; 1585 } 1586 xfs_btree_offsets(fields, 1587 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 1588 loffsets : soffsets, 1589 nbits, &first, &last); 1590 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1591 xfs_trans_log_buf(cur->bc_tp, bp, first, last); 1592 } else { 1593 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1594 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1595 } 1596} 1597 1598/* 1599 * Increment cursor by one record at the level. 1600 * For nonzero levels the leaf-ward information is untouched. 1601 */ 1602int /* error */ 1603xfs_btree_increment( 1604 struct xfs_btree_cur *cur, 1605 int level, 1606 int *stat) /* success/failure */ 1607{ 1608 struct xfs_btree_block *block; 1609 union xfs_btree_ptr ptr; 1610 struct xfs_buf *bp; 1611 int error; /* error return value */ 1612 int lev; 1613 1614 ASSERT(level < cur->bc_nlevels); 1615 1616 /* Read-ahead to the right at this level. */ 1617 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 1618 1619 /* Get a pointer to the btree block. */ 1620 block = xfs_btree_get_block(cur, level, &bp); 1621 1622#ifdef DEBUG 1623 error = xfs_btree_check_block(cur, block, level, bp); 1624 if (error) 1625 goto error0; 1626#endif 1627 1628 /* We're done if we remain in the block after the increment. */ 1629 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block)) 1630 goto out1; 1631 1632 /* Fail if we just went off the right edge of the tree. */ 1633 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1634 if (xfs_btree_ptr_is_null(cur, &ptr)) 1635 goto out0; 1636 1637 XFS_BTREE_STATS_INC(cur, increment); 1638 1639 /* 1640 * March up the tree incrementing pointers. 1641 * Stop when we don't go off the right edge of a block. 1642 */ 1643 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1644 block = xfs_btree_get_block(cur, lev, &bp); 1645 1646#ifdef DEBUG 1647 error = xfs_btree_check_block(cur, block, lev, bp); 1648 if (error) 1649 goto error0; 1650#endif 1651 1652 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block)) 1653 break; 1654 1655 /* Read-ahead the right block for the next loop. */ 1656 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); 1657 } 1658 1659 /* 1660 * If we went off the root then we are either seriously 1661 * confused or have the tree root in an inode. 1662 */ 1663 if (lev == cur->bc_nlevels) { 1664 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1665 goto out0; 1666 ASSERT(0); 1667 error = -EFSCORRUPTED; 1668 goto error0; 1669 } 1670 ASSERT(lev < cur->bc_nlevels); 1671 1672 /* 1673 * Now walk back down the tree, fixing up the cursor's buffer 1674 * pointers and key numbers. 1675 */ 1676 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1677 union xfs_btree_ptr *ptrp; 1678 1679 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block); 1680 --lev; 1681 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1682 if (error) 1683 goto error0; 1684 1685 xfs_btree_setbuf(cur, lev, bp); 1686 cur->bc_levels[lev].ptr = 1; 1687 } 1688out1: 1689 *stat = 1; 1690 return 0; 1691 1692out0: 1693 *stat = 0; 1694 return 0; 1695 1696error0: 1697 return error; 1698} 1699 1700/* 1701 * Decrement cursor by one record at the level. 1702 * For nonzero levels the leaf-ward information is untouched. 1703 */ 1704int /* error */ 1705xfs_btree_decrement( 1706 struct xfs_btree_cur *cur, 1707 int level, 1708 int *stat) /* success/failure */ 1709{ 1710 struct xfs_btree_block *block; 1711 struct xfs_buf *bp; 1712 int error; /* error return value */ 1713 int lev; 1714 union xfs_btree_ptr ptr; 1715 1716 ASSERT(level < cur->bc_nlevels); 1717 1718 /* Read-ahead to the left at this level. */ 1719 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); 1720 1721 /* We're done if we remain in the block after the decrement. */ 1722 if (--cur->bc_levels[level].ptr > 0) 1723 goto out1; 1724 1725 /* Get a pointer to the btree block. */ 1726 block = xfs_btree_get_block(cur, level, &bp); 1727 1728#ifdef DEBUG 1729 error = xfs_btree_check_block(cur, block, level, bp); 1730 if (error) 1731 goto error0; 1732#endif 1733 1734 /* Fail if we just went off the left edge of the tree. */ 1735 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 1736 if (xfs_btree_ptr_is_null(cur, &ptr)) 1737 goto out0; 1738 1739 XFS_BTREE_STATS_INC(cur, decrement); 1740 1741 /* 1742 * March up the tree decrementing pointers. 1743 * Stop when we don't go off the left edge of a block. 1744 */ 1745 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1746 if (--cur->bc_levels[lev].ptr > 0) 1747 break; 1748 /* Read-ahead the left block for the next loop. */ 1749 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); 1750 } 1751 1752 /* 1753 * If we went off the root then we are seriously confused. 1754 * or the root of the tree is in an inode. 1755 */ 1756 if (lev == cur->bc_nlevels) { 1757 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1758 goto out0; 1759 ASSERT(0); 1760 error = -EFSCORRUPTED; 1761 goto error0; 1762 } 1763 ASSERT(lev < cur->bc_nlevels); 1764 1765 /* 1766 * Now walk back down the tree, fixing up the cursor's buffer 1767 * pointers and key numbers. 1768 */ 1769 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1770 union xfs_btree_ptr *ptrp; 1771 1772 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block); 1773 --lev; 1774 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1775 if (error) 1776 goto error0; 1777 xfs_btree_setbuf(cur, lev, bp); 1778 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block); 1779 } 1780out1: 1781 *stat = 1; 1782 return 0; 1783 1784out0: 1785 *stat = 0; 1786 return 0; 1787 1788error0: 1789 return error; 1790} 1791 1792int 1793xfs_btree_lookup_get_block( 1794 struct xfs_btree_cur *cur, /* btree cursor */ 1795 int level, /* level in the btree */ 1796 const union xfs_btree_ptr *pp, /* ptr to btree block */ 1797 struct xfs_btree_block **blkp) /* return btree block */ 1798{ 1799 struct xfs_buf *bp; /* buffer pointer for btree block */ 1800 xfs_daddr_t daddr; 1801 int error = 0; 1802 1803 /* special case the root block if in an inode */ 1804 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 1805 (level == cur->bc_nlevels - 1)) { 1806 *blkp = xfs_btree_get_iroot(cur); 1807 return 0; 1808 } 1809 1810 /* 1811 * If the old buffer at this level for the disk address we are 1812 * looking for re-use it. 1813 * 1814 * Otherwise throw it away and get a new one. 1815 */ 1816 bp = cur->bc_levels[level].bp; 1817 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr); 1818 if (error) 1819 return error; 1820 if (bp && xfs_buf_daddr(bp) == daddr) { 1821 *blkp = XFS_BUF_TO_BLOCK(bp); 1822 return 0; 1823 } 1824 1825 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); 1826 if (error) 1827 return error; 1828 1829 /* Check the inode owner since the verifiers don't. */ 1830 if (xfs_has_crc(cur->bc_mp) && 1831 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) && 1832 (cur->bc_flags & XFS_BTREE_LONG_PTRS) && 1833 be64_to_cpu((*blkp)->bb_u.l.bb_owner) != 1834 cur->bc_ino.ip->i_ino) 1835 goto out_bad; 1836 1837 /* Did we get the level we were looking for? */ 1838 if (be16_to_cpu((*blkp)->bb_level) != level) 1839 goto out_bad; 1840 1841 /* Check that internal nodes have at least one record. */ 1842 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) 1843 goto out_bad; 1844 1845 xfs_btree_setbuf(cur, level, bp); 1846 return 0; 1847 1848out_bad: 1849 *blkp = NULL; 1850 xfs_buf_mark_corrupt(bp); 1851 xfs_trans_brelse(cur->bc_tp, bp); 1852 return -EFSCORRUPTED; 1853} 1854 1855/* 1856 * Get current search key. For level 0 we don't actually have a key 1857 * structure so we make one up from the record. For all other levels 1858 * we just return the right key. 1859 */ 1860STATIC union xfs_btree_key * 1861xfs_lookup_get_search_key( 1862 struct xfs_btree_cur *cur, 1863 int level, 1864 int keyno, 1865 struct xfs_btree_block *block, 1866 union xfs_btree_key *kp) 1867{ 1868 if (level == 0) { 1869 cur->bc_ops->init_key_from_rec(kp, 1870 xfs_btree_rec_addr(cur, keyno, block)); 1871 return kp; 1872 } 1873 1874 return xfs_btree_key_addr(cur, keyno, block); 1875} 1876 1877/* 1878 * Lookup the record. The cursor is made to point to it, based on dir. 1879 * stat is set to 0 if can't find any such record, 1 for success. 1880 */ 1881int /* error */ 1882xfs_btree_lookup( 1883 struct xfs_btree_cur *cur, /* btree cursor */ 1884 xfs_lookup_t dir, /* <=, ==, or >= */ 1885 int *stat) /* success/failure */ 1886{ 1887 struct xfs_btree_block *block; /* current btree block */ 1888 int64_t diff; /* difference for the current key */ 1889 int error; /* error return value */ 1890 int keyno; /* current key number */ 1891 int level; /* level in the btree */ 1892 union xfs_btree_ptr *pp; /* ptr to btree block */ 1893 union xfs_btree_ptr ptr; /* ptr to btree block */ 1894 1895 XFS_BTREE_STATS_INC(cur, lookup); 1896 1897 /* No such thing as a zero-level tree. */ 1898 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) 1899 return -EFSCORRUPTED; 1900 1901 block = NULL; 1902 keyno = 0; 1903 1904 /* initialise start pointer from cursor */ 1905 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 1906 pp = &ptr; 1907 1908 /* 1909 * Iterate over each level in the btree, starting at the root. 1910 * For each level above the leaves, find the key we need, based 1911 * on the lookup record, then follow the corresponding block 1912 * pointer down to the next level. 1913 */ 1914 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { 1915 /* Get the block we need to do the lookup on. */ 1916 error = xfs_btree_lookup_get_block(cur, level, pp, &block); 1917 if (error) 1918 goto error0; 1919 1920 if (diff == 0) { 1921 /* 1922 * If we already had a key match at a higher level, we 1923 * know we need to use the first entry in this block. 1924 */ 1925 keyno = 1; 1926 } else { 1927 /* Otherwise search this block. Do a binary search. */ 1928 1929 int high; /* high entry number */ 1930 int low; /* low entry number */ 1931 1932 /* Set low and high entry numbers, 1-based. */ 1933 low = 1; 1934 high = xfs_btree_get_numrecs(block); 1935 if (!high) { 1936 /* Block is empty, must be an empty leaf. */ 1937 if (level != 0 || cur->bc_nlevels != 1) { 1938 XFS_CORRUPTION_ERROR(__func__, 1939 XFS_ERRLEVEL_LOW, 1940 cur->bc_mp, block, 1941 sizeof(*block)); 1942 return -EFSCORRUPTED; 1943 } 1944 1945 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE; 1946 *stat = 0; 1947 return 0; 1948 } 1949 1950 /* Binary search the block. */ 1951 while (low <= high) { 1952 union xfs_btree_key key; 1953 union xfs_btree_key *kp; 1954 1955 XFS_BTREE_STATS_INC(cur, compare); 1956 1957 /* keyno is average of low and high. */ 1958 keyno = (low + high) >> 1; 1959 1960 /* Get current search key */ 1961 kp = xfs_lookup_get_search_key(cur, level, 1962 keyno, block, &key); 1963 1964 /* 1965 * Compute difference to get next direction: 1966 * - less than, move right 1967 * - greater than, move left 1968 * - equal, we're done 1969 */ 1970 diff = cur->bc_ops->key_diff(cur, kp); 1971 if (diff < 0) 1972 low = keyno + 1; 1973 else if (diff > 0) 1974 high = keyno - 1; 1975 else 1976 break; 1977 } 1978 } 1979 1980 /* 1981 * If there are more levels, set up for the next level 1982 * by getting the block number and filling in the cursor. 1983 */ 1984 if (level > 0) { 1985 /* 1986 * If we moved left, need the previous key number, 1987 * unless there isn't one. 1988 */ 1989 if (diff > 0 && --keyno < 1) 1990 keyno = 1; 1991 pp = xfs_btree_ptr_addr(cur, keyno, block); 1992 1993 error = xfs_btree_debug_check_ptr(cur, pp, 0, level); 1994 if (error) 1995 goto error0; 1996 1997 cur->bc_levels[level].ptr = keyno; 1998 } 1999 } 2000 2001 /* Done with the search. See if we need to adjust the results. */ 2002 if (dir != XFS_LOOKUP_LE && diff < 0) { 2003 keyno++; 2004 /* 2005 * If ge search and we went off the end of the block, but it's 2006 * not the last block, we're in the wrong block. 2007 */ 2008 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 2009 if (dir == XFS_LOOKUP_GE && 2010 keyno > xfs_btree_get_numrecs(block) && 2011 !xfs_btree_ptr_is_null(cur, &ptr)) { 2012 int i; 2013 2014 cur->bc_levels[0].ptr = keyno; 2015 error = xfs_btree_increment(cur, 0, &i); 2016 if (error) 2017 goto error0; 2018 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 2019 return -EFSCORRUPTED; 2020 *stat = 1; 2021 return 0; 2022 } 2023 } else if (dir == XFS_LOOKUP_LE && diff > 0) 2024 keyno--; 2025 cur->bc_levels[0].ptr = keyno; 2026 2027 /* Return if we succeeded or not. */ 2028 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) 2029 *stat = 0; 2030 else if (dir != XFS_LOOKUP_EQ || diff == 0) 2031 *stat = 1; 2032 else 2033 *stat = 0; 2034 return 0; 2035 2036error0: 2037 return error; 2038} 2039 2040/* Find the high key storage area from a regular key. */ 2041union xfs_btree_key * 2042xfs_btree_high_key_from_key( 2043 struct xfs_btree_cur *cur, 2044 union xfs_btree_key *key) 2045{ 2046 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2047 return (union xfs_btree_key *)((char *)key + 2048 (cur->bc_ops->key_len / 2)); 2049} 2050 2051/* Determine the low (and high if overlapped) keys of a leaf block */ 2052STATIC void 2053xfs_btree_get_leaf_keys( 2054 struct xfs_btree_cur *cur, 2055 struct xfs_btree_block *block, 2056 union xfs_btree_key *key) 2057{ 2058 union xfs_btree_key max_hkey; 2059 union xfs_btree_key hkey; 2060 union xfs_btree_rec *rec; 2061 union xfs_btree_key *high; 2062 int n; 2063 2064 rec = xfs_btree_rec_addr(cur, 1, block); 2065 cur->bc_ops->init_key_from_rec(key, rec); 2066 2067 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2068 2069 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); 2070 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2071 rec = xfs_btree_rec_addr(cur, n, block); 2072 cur->bc_ops->init_high_key_from_rec(&hkey, rec); 2073 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey) 2074 > 0) 2075 max_hkey = hkey; 2076 } 2077 2078 high = xfs_btree_high_key_from_key(cur, key); 2079 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); 2080 } 2081} 2082 2083/* Determine the low (and high if overlapped) keys of a node block */ 2084STATIC void 2085xfs_btree_get_node_keys( 2086 struct xfs_btree_cur *cur, 2087 struct xfs_btree_block *block, 2088 union xfs_btree_key *key) 2089{ 2090 union xfs_btree_key *hkey; 2091 union xfs_btree_key *max_hkey; 2092 union xfs_btree_key *high; 2093 int n; 2094 2095 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2096 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2097 cur->bc_ops->key_len / 2); 2098 2099 max_hkey = xfs_btree_high_key_addr(cur, 1, block); 2100 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2101 hkey = xfs_btree_high_key_addr(cur, n, block); 2102 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0) 2103 max_hkey = hkey; 2104 } 2105 2106 high = xfs_btree_high_key_from_key(cur, key); 2107 memcpy(high, max_hkey, cur->bc_ops->key_len / 2); 2108 } else { 2109 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2110 cur->bc_ops->key_len); 2111 } 2112} 2113 2114/* Derive the keys for any btree block. */ 2115void 2116xfs_btree_get_keys( 2117 struct xfs_btree_cur *cur, 2118 struct xfs_btree_block *block, 2119 union xfs_btree_key *key) 2120{ 2121 if (be16_to_cpu(block->bb_level) == 0) 2122 xfs_btree_get_leaf_keys(cur, block, key); 2123 else 2124 xfs_btree_get_node_keys(cur, block, key); 2125} 2126 2127/* 2128 * Decide if we need to update the parent keys of a btree block. For 2129 * a standard btree this is only necessary if we're updating the first 2130 * record/key. For an overlapping btree, we must always update the 2131 * keys because the highest key can be in any of the records or keys 2132 * in the block. 2133 */ 2134static inline bool 2135xfs_btree_needs_key_update( 2136 struct xfs_btree_cur *cur, 2137 int ptr) 2138{ 2139 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1; 2140} 2141 2142/* 2143 * Update the low and high parent keys of the given level, progressing 2144 * towards the root. If force_all is false, stop if the keys for a given 2145 * level do not need updating. 2146 */ 2147STATIC int 2148__xfs_btree_updkeys( 2149 struct xfs_btree_cur *cur, 2150 int level, 2151 struct xfs_btree_block *block, 2152 struct xfs_buf *bp0, 2153 bool force_all) 2154{ 2155 union xfs_btree_key key; /* keys from current level */ 2156 union xfs_btree_key *lkey; /* keys from the next level up */ 2157 union xfs_btree_key *hkey; 2158 union xfs_btree_key *nlkey; /* keys from the next level up */ 2159 union xfs_btree_key *nhkey; 2160 struct xfs_buf *bp; 2161 int ptr; 2162 2163 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2164 2165 /* Exit if there aren't any parent levels to update. */ 2166 if (level + 1 >= cur->bc_nlevels) 2167 return 0; 2168 2169 trace_xfs_btree_updkeys(cur, level, bp0); 2170 2171 lkey = &key; 2172 hkey = xfs_btree_high_key_from_key(cur, lkey); 2173 xfs_btree_get_keys(cur, block, lkey); 2174 for (level++; level < cur->bc_nlevels; level++) { 2175#ifdef DEBUG 2176 int error; 2177#endif 2178 block = xfs_btree_get_block(cur, level, &bp); 2179 trace_xfs_btree_updkeys(cur, level, bp); 2180#ifdef DEBUG 2181 error = xfs_btree_check_block(cur, block, level, bp); 2182 if (error) 2183 return error; 2184#endif 2185 ptr = cur->bc_levels[level].ptr; 2186 nlkey = xfs_btree_key_addr(cur, ptr, block); 2187 nhkey = xfs_btree_high_key_addr(cur, ptr, block); 2188 if (!force_all && 2189 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 || 2190 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0)) 2191 break; 2192 xfs_btree_copy_keys(cur, nlkey, lkey, 1); 2193 xfs_btree_log_keys(cur, bp, ptr, ptr); 2194 if (level + 1 >= cur->bc_nlevels) 2195 break; 2196 xfs_btree_get_node_keys(cur, block, lkey); 2197 } 2198 2199 return 0; 2200} 2201 2202/* Update all the keys from some level in cursor back to the root. */ 2203STATIC int 2204xfs_btree_updkeys_force( 2205 struct xfs_btree_cur *cur, 2206 int level) 2207{ 2208 struct xfs_buf *bp; 2209 struct xfs_btree_block *block; 2210 2211 block = xfs_btree_get_block(cur, level, &bp); 2212 return __xfs_btree_updkeys(cur, level, block, bp, true); 2213} 2214 2215/* 2216 * Update the parent keys of the given level, progressing towards the root. 2217 */ 2218STATIC int 2219xfs_btree_update_keys( 2220 struct xfs_btree_cur *cur, 2221 int level) 2222{ 2223 struct xfs_btree_block *block; 2224 struct xfs_buf *bp; 2225 union xfs_btree_key *kp; 2226 union xfs_btree_key key; 2227 int ptr; 2228 2229 ASSERT(level >= 0); 2230 2231 block = xfs_btree_get_block(cur, level, &bp); 2232 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) 2233 return __xfs_btree_updkeys(cur, level, block, bp, false); 2234 2235 /* 2236 * Go up the tree from this level toward the root. 2237 * At each level, update the key value to the value input. 2238 * Stop when we reach a level where the cursor isn't pointing 2239 * at the first entry in the block. 2240 */ 2241 xfs_btree_get_keys(cur, block, &key); 2242 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { 2243#ifdef DEBUG 2244 int error; 2245#endif 2246 block = xfs_btree_get_block(cur, level, &bp); 2247#ifdef DEBUG 2248 error = xfs_btree_check_block(cur, block, level, bp); 2249 if (error) 2250 return error; 2251#endif 2252 ptr = cur->bc_levels[level].ptr; 2253 kp = xfs_btree_key_addr(cur, ptr, block); 2254 xfs_btree_copy_keys(cur, kp, &key, 1); 2255 xfs_btree_log_keys(cur, bp, ptr, ptr); 2256 } 2257 2258 return 0; 2259} 2260 2261/* 2262 * Update the record referred to by cur to the value in the 2263 * given record. This either works (return 0) or gets an 2264 * EFSCORRUPTED error. 2265 */ 2266int 2267xfs_btree_update( 2268 struct xfs_btree_cur *cur, 2269 union xfs_btree_rec *rec) 2270{ 2271 struct xfs_btree_block *block; 2272 struct xfs_buf *bp; 2273 int error; 2274 int ptr; 2275 union xfs_btree_rec *rp; 2276 2277 /* Pick up the current block. */ 2278 block = xfs_btree_get_block(cur, 0, &bp); 2279 2280#ifdef DEBUG 2281 error = xfs_btree_check_block(cur, block, 0, bp); 2282 if (error) 2283 goto error0; 2284#endif 2285 /* Get the address of the rec to be updated. */ 2286 ptr = cur->bc_levels[0].ptr; 2287 rp = xfs_btree_rec_addr(cur, ptr, block); 2288 2289 /* Fill in the new contents and log them. */ 2290 xfs_btree_copy_recs(cur, rp, rec, 1); 2291 xfs_btree_log_recs(cur, bp, ptr, ptr); 2292 2293 /* 2294 * If we are tracking the last record in the tree and 2295 * we are at the far right edge of the tree, update it. 2296 */ 2297 if (xfs_btree_is_lastrec(cur, block, 0)) { 2298 cur->bc_ops->update_lastrec(cur, block, rec, 2299 ptr, LASTREC_UPDATE); 2300 } 2301 2302 /* Pass new key value up to our parent. */ 2303 if (xfs_btree_needs_key_update(cur, ptr)) { 2304 error = xfs_btree_update_keys(cur, 0); 2305 if (error) 2306 goto error0; 2307 } 2308 2309 return 0; 2310 2311error0: 2312 return error; 2313} 2314 2315/* 2316 * Move 1 record left from cur/level if possible. 2317 * Update cur to reflect the new path. 2318 */ 2319STATIC int /* error */ 2320xfs_btree_lshift( 2321 struct xfs_btree_cur *cur, 2322 int level, 2323 int *stat) /* success/failure */ 2324{ 2325 struct xfs_buf *lbp; /* left buffer pointer */ 2326 struct xfs_btree_block *left; /* left btree block */ 2327 int lrecs; /* left record count */ 2328 struct xfs_buf *rbp; /* right buffer pointer */ 2329 struct xfs_btree_block *right; /* right btree block */ 2330 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2331 int rrecs; /* right record count */ 2332 union xfs_btree_ptr lptr; /* left btree pointer */ 2333 union xfs_btree_key *rkp = NULL; /* right btree key */ 2334 union xfs_btree_ptr *rpp = NULL; /* right address pointer */ 2335 union xfs_btree_rec *rrp = NULL; /* right record pointer */ 2336 int error; /* error return value */ 2337 int i; 2338 2339 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2340 level == cur->bc_nlevels - 1) 2341 goto out0; 2342 2343 /* Set up variables for this block as "right". */ 2344 right = xfs_btree_get_block(cur, level, &rbp); 2345 2346#ifdef DEBUG 2347 error = xfs_btree_check_block(cur, right, level, rbp); 2348 if (error) 2349 goto error0; 2350#endif 2351 2352 /* If we've got no left sibling then we can't shift an entry left. */ 2353 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2354 if (xfs_btree_ptr_is_null(cur, &lptr)) 2355 goto out0; 2356 2357 /* 2358 * If the cursor entry is the one that would be moved, don't 2359 * do it... it's too complicated. 2360 */ 2361 if (cur->bc_levels[level].ptr <= 1) 2362 goto out0; 2363 2364 /* Set up the left neighbor as "left". */ 2365 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 2366 if (error) 2367 goto error0; 2368 2369 /* If it's full, it can't take another entry. */ 2370 lrecs = xfs_btree_get_numrecs(left); 2371 if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) 2372 goto out0; 2373 2374 rrecs = xfs_btree_get_numrecs(right); 2375 2376 /* 2377 * We add one entry to the left side and remove one for the right side. 2378 * Account for it here, the changes will be updated on disk and logged 2379 * later. 2380 */ 2381 lrecs++; 2382 rrecs--; 2383 2384 XFS_BTREE_STATS_INC(cur, lshift); 2385 XFS_BTREE_STATS_ADD(cur, moves, 1); 2386 2387 /* 2388 * If non-leaf, copy a key and a ptr to the left block. 2389 * Log the changes to the left block. 2390 */ 2391 if (level > 0) { 2392 /* It's a non-leaf. Move keys and pointers. */ 2393 union xfs_btree_key *lkp; /* left btree key */ 2394 union xfs_btree_ptr *lpp; /* left address pointer */ 2395 2396 lkp = xfs_btree_key_addr(cur, lrecs, left); 2397 rkp = xfs_btree_key_addr(cur, 1, right); 2398 2399 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2400 rpp = xfs_btree_ptr_addr(cur, 1, right); 2401 2402 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level); 2403 if (error) 2404 goto error0; 2405 2406 xfs_btree_copy_keys(cur, lkp, rkp, 1); 2407 xfs_btree_copy_ptrs(cur, lpp, rpp, 1); 2408 2409 xfs_btree_log_keys(cur, lbp, lrecs, lrecs); 2410 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); 2411 2412 ASSERT(cur->bc_ops->keys_inorder(cur, 2413 xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); 2414 } else { 2415 /* It's a leaf. Move records. */ 2416 union xfs_btree_rec *lrp; /* left record pointer */ 2417 2418 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2419 rrp = xfs_btree_rec_addr(cur, 1, right); 2420 2421 xfs_btree_copy_recs(cur, lrp, rrp, 1); 2422 xfs_btree_log_recs(cur, lbp, lrecs, lrecs); 2423 2424 ASSERT(cur->bc_ops->recs_inorder(cur, 2425 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); 2426 } 2427 2428 xfs_btree_set_numrecs(left, lrecs); 2429 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2430 2431 xfs_btree_set_numrecs(right, rrecs); 2432 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2433 2434 /* 2435 * Slide the contents of right down one entry. 2436 */ 2437 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); 2438 if (level > 0) { 2439 /* It's a nonleaf. operate on keys and ptrs */ 2440 for (i = 0; i < rrecs; i++) { 2441 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level); 2442 if (error) 2443 goto error0; 2444 } 2445 2446 xfs_btree_shift_keys(cur, 2447 xfs_btree_key_addr(cur, 2, right), 2448 -1, rrecs); 2449 xfs_btree_shift_ptrs(cur, 2450 xfs_btree_ptr_addr(cur, 2, right), 2451 -1, rrecs); 2452 2453 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2454 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2455 } else { 2456 /* It's a leaf. operate on records */ 2457 xfs_btree_shift_recs(cur, 2458 xfs_btree_rec_addr(cur, 2, right), 2459 -1, rrecs); 2460 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2461 } 2462 2463 /* 2464 * Using a temporary cursor, update the parent key values of the 2465 * block on the left. 2466 */ 2467 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2468 error = xfs_btree_dup_cursor(cur, &tcur); 2469 if (error) 2470 goto error0; 2471 i = xfs_btree_firstrec(tcur, level); 2472 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2473 error = -EFSCORRUPTED; 2474 goto error0; 2475 } 2476 2477 error = xfs_btree_decrement(tcur, level, &i); 2478 if (error) 2479 goto error1; 2480 2481 /* Update the parent high keys of the left block, if needed. */ 2482 error = xfs_btree_update_keys(tcur, level); 2483 if (error) 2484 goto error1; 2485 2486 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2487 } 2488 2489 /* Update the parent keys of the right block. */ 2490 error = xfs_btree_update_keys(cur, level); 2491 if (error) 2492 goto error0; 2493 2494 /* Slide the cursor value left one. */ 2495 cur->bc_levels[level].ptr--; 2496 2497 *stat = 1; 2498 return 0; 2499 2500out0: 2501 *stat = 0; 2502 return 0; 2503 2504error0: 2505 return error; 2506 2507error1: 2508 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2509 return error; 2510} 2511 2512/* 2513 * Move 1 record right from cur/level if possible. 2514 * Update cur to reflect the new path. 2515 */ 2516STATIC int /* error */ 2517xfs_btree_rshift( 2518 struct xfs_btree_cur *cur, 2519 int level, 2520 int *stat) /* success/failure */ 2521{ 2522 struct xfs_buf *lbp; /* left buffer pointer */ 2523 struct xfs_btree_block *left; /* left btree block */ 2524 struct xfs_buf *rbp; /* right buffer pointer */ 2525 struct xfs_btree_block *right; /* right btree block */ 2526 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2527 union xfs_btree_ptr rptr; /* right block pointer */ 2528 union xfs_btree_key *rkp; /* right btree key */ 2529 int rrecs; /* right record count */ 2530 int lrecs; /* left record count */ 2531 int error; /* error return value */ 2532 int i; /* loop counter */ 2533 2534 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2535 (level == cur->bc_nlevels - 1)) 2536 goto out0; 2537 2538 /* Set up variables for this block as "left". */ 2539 left = xfs_btree_get_block(cur, level, &lbp); 2540 2541#ifdef DEBUG 2542 error = xfs_btree_check_block(cur, left, level, lbp); 2543 if (error) 2544 goto error0; 2545#endif 2546 2547 /* If we've got no right sibling then we can't shift an entry right. */ 2548 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2549 if (xfs_btree_ptr_is_null(cur, &rptr)) 2550 goto out0; 2551 2552 /* 2553 * If the cursor entry is the one that would be moved, don't 2554 * do it... it's too complicated. 2555 */ 2556 lrecs = xfs_btree_get_numrecs(left); 2557 if (cur->bc_levels[level].ptr >= lrecs) 2558 goto out0; 2559 2560 /* Set up the right neighbor as "right". */ 2561 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 2562 if (error) 2563 goto error0; 2564 2565 /* If it's full, it can't take another entry. */ 2566 rrecs = xfs_btree_get_numrecs(right); 2567 if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) 2568 goto out0; 2569 2570 XFS_BTREE_STATS_INC(cur, rshift); 2571 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2572 2573 /* 2574 * Make a hole at the start of the right neighbor block, then 2575 * copy the last left block entry to the hole. 2576 */ 2577 if (level > 0) { 2578 /* It's a nonleaf. make a hole in the keys and ptrs */ 2579 union xfs_btree_key *lkp; 2580 union xfs_btree_ptr *lpp; 2581 union xfs_btree_ptr *rpp; 2582 2583 lkp = xfs_btree_key_addr(cur, lrecs, left); 2584 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2585 rkp = xfs_btree_key_addr(cur, 1, right); 2586 rpp = xfs_btree_ptr_addr(cur, 1, right); 2587 2588 for (i = rrecs - 1; i >= 0; i--) { 2589 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 2590 if (error) 2591 goto error0; 2592 } 2593 2594 xfs_btree_shift_keys(cur, rkp, 1, rrecs); 2595 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); 2596 2597 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level); 2598 if (error) 2599 goto error0; 2600 2601 /* Now put the new data in, and log it. */ 2602 xfs_btree_copy_keys(cur, rkp, lkp, 1); 2603 xfs_btree_copy_ptrs(cur, rpp, lpp, 1); 2604 2605 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); 2606 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); 2607 2608 ASSERT(cur->bc_ops->keys_inorder(cur, rkp, 2609 xfs_btree_key_addr(cur, 2, right))); 2610 } else { 2611 /* It's a leaf. make a hole in the records */ 2612 union xfs_btree_rec *lrp; 2613 union xfs_btree_rec *rrp; 2614 2615 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2616 rrp = xfs_btree_rec_addr(cur, 1, right); 2617 2618 xfs_btree_shift_recs(cur, rrp, 1, rrecs); 2619 2620 /* Now put the new data in, and log it. */ 2621 xfs_btree_copy_recs(cur, rrp, lrp, 1); 2622 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); 2623 } 2624 2625 /* 2626 * Decrement and log left's numrecs, bump and log right's numrecs. 2627 */ 2628 xfs_btree_set_numrecs(left, --lrecs); 2629 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2630 2631 xfs_btree_set_numrecs(right, ++rrecs); 2632 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2633 2634 /* 2635 * Using a temporary cursor, update the parent key values of the 2636 * block on the right. 2637 */ 2638 error = xfs_btree_dup_cursor(cur, &tcur); 2639 if (error) 2640 goto error0; 2641 i = xfs_btree_lastrec(tcur, level); 2642 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2643 error = -EFSCORRUPTED; 2644 goto error0; 2645 } 2646 2647 error = xfs_btree_increment(tcur, level, &i); 2648 if (error) 2649 goto error1; 2650 2651 /* Update the parent high keys of the left block, if needed. */ 2652 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2653 error = xfs_btree_update_keys(cur, level); 2654 if (error) 2655 goto error1; 2656 } 2657 2658 /* Update the parent keys of the right block. */ 2659 error = xfs_btree_update_keys(tcur, level); 2660 if (error) 2661 goto error1; 2662 2663 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2664 2665 *stat = 1; 2666 return 0; 2667 2668out0: 2669 *stat = 0; 2670 return 0; 2671 2672error0: 2673 return error; 2674 2675error1: 2676 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2677 return error; 2678} 2679 2680/* 2681 * Split cur/level block in half. 2682 * Return new block number and the key to its first 2683 * record (to be inserted into parent). 2684 */ 2685STATIC int /* error */ 2686__xfs_btree_split( 2687 struct xfs_btree_cur *cur, 2688 int level, 2689 union xfs_btree_ptr *ptrp, 2690 union xfs_btree_key *key, 2691 struct xfs_btree_cur **curp, 2692 int *stat) /* success/failure */ 2693{ 2694 union xfs_btree_ptr lptr; /* left sibling block ptr */ 2695 struct xfs_buf *lbp; /* left buffer pointer */ 2696 struct xfs_btree_block *left; /* left btree block */ 2697 union xfs_btree_ptr rptr; /* right sibling block ptr */ 2698 struct xfs_buf *rbp; /* right buffer pointer */ 2699 struct xfs_btree_block *right; /* right btree block */ 2700 union xfs_btree_ptr rrptr; /* right-right sibling ptr */ 2701 struct xfs_buf *rrbp; /* right-right buffer pointer */ 2702 struct xfs_btree_block *rrblock; /* right-right btree block */ 2703 int lrecs; 2704 int rrecs; 2705 int src_index; 2706 int error; /* error return value */ 2707 int i; 2708 2709 XFS_BTREE_STATS_INC(cur, split); 2710 2711 /* Set up left block (current one). */ 2712 left = xfs_btree_get_block(cur, level, &lbp); 2713 2714#ifdef DEBUG 2715 error = xfs_btree_check_block(cur, left, level, lbp); 2716 if (error) 2717 goto error0; 2718#endif 2719 2720 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 2721 2722 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2723 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat); 2724 if (error) 2725 goto error0; 2726 if (*stat == 0) 2727 goto out0; 2728 XFS_BTREE_STATS_INC(cur, alloc); 2729 2730 /* Set up the new block as "right". */ 2731 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp); 2732 if (error) 2733 goto error0; 2734 2735 /* Fill in the btree header for the new right block. */ 2736 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); 2737 2738 /* 2739 * Split the entries between the old and the new block evenly. 2740 * Make sure that if there's an odd number of entries now, that 2741 * each new block will have the same number of entries. 2742 */ 2743 lrecs = xfs_btree_get_numrecs(left); 2744 rrecs = lrecs / 2; 2745 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1) 2746 rrecs++; 2747 src_index = (lrecs - rrecs + 1); 2748 2749 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2750 2751 /* Adjust numrecs for the later get_*_keys() calls. */ 2752 lrecs -= rrecs; 2753 xfs_btree_set_numrecs(left, lrecs); 2754 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); 2755 2756 /* 2757 * Copy btree block entries from the left block over to the 2758 * new block, the right. Update the right block and log the 2759 * changes. 2760 */ 2761 if (level > 0) { 2762 /* It's a non-leaf. Move keys and pointers. */ 2763 union xfs_btree_key *lkp; /* left btree key */ 2764 union xfs_btree_ptr *lpp; /* left address pointer */ 2765 union xfs_btree_key *rkp; /* right btree key */ 2766 union xfs_btree_ptr *rpp; /* right address pointer */ 2767 2768 lkp = xfs_btree_key_addr(cur, src_index, left); 2769 lpp = xfs_btree_ptr_addr(cur, src_index, left); 2770 rkp = xfs_btree_key_addr(cur, 1, right); 2771 rpp = xfs_btree_ptr_addr(cur, 1, right); 2772 2773 for (i = src_index; i < rrecs; i++) { 2774 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 2775 if (error) 2776 goto error0; 2777 } 2778 2779 /* Copy the keys & pointers to the new block. */ 2780 xfs_btree_copy_keys(cur, rkp, lkp, rrecs); 2781 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); 2782 2783 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2784 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2785 2786 /* Stash the keys of the new block for later insertion. */ 2787 xfs_btree_get_node_keys(cur, right, key); 2788 } else { 2789 /* It's a leaf. Move records. */ 2790 union xfs_btree_rec *lrp; /* left record pointer */ 2791 union xfs_btree_rec *rrp; /* right record pointer */ 2792 2793 lrp = xfs_btree_rec_addr(cur, src_index, left); 2794 rrp = xfs_btree_rec_addr(cur, 1, right); 2795 2796 /* Copy records to the new block. */ 2797 xfs_btree_copy_recs(cur, rrp, lrp, rrecs); 2798 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2799 2800 /* Stash the keys of the new block for later insertion. */ 2801 xfs_btree_get_leaf_keys(cur, right, key); 2802 } 2803 2804 /* 2805 * Find the left block number by looking in the buffer. 2806 * Adjust sibling pointers. 2807 */ 2808 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); 2809 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); 2810 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2811 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2812 2813 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); 2814 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 2815 2816 /* 2817 * If there's a block to the new block's right, make that block 2818 * point back to right instead of to left. 2819 */ 2820 if (!xfs_btree_ptr_is_null(cur, &rrptr)) { 2821 error = xfs_btree_read_buf_block(cur, &rrptr, 2822 0, &rrblock, &rrbp); 2823 if (error) 2824 goto error0; 2825 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); 2826 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 2827 } 2828 2829 /* Update the parent high keys of the left block, if needed. */ 2830 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2831 error = xfs_btree_update_keys(cur, level); 2832 if (error) 2833 goto error0; 2834 } 2835 2836 /* 2837 * If the cursor is really in the right block, move it there. 2838 * If it's just pointing past the last entry in left, then we'll 2839 * insert there, so don't change anything in that case. 2840 */ 2841 if (cur->bc_levels[level].ptr > lrecs + 1) { 2842 xfs_btree_setbuf(cur, level, rbp); 2843 cur->bc_levels[level].ptr -= lrecs; 2844 } 2845 /* 2846 * If there are more levels, we'll need another cursor which refers 2847 * the right block, no matter where this cursor was. 2848 */ 2849 if (level + 1 < cur->bc_nlevels) { 2850 error = xfs_btree_dup_cursor(cur, curp); 2851 if (error) 2852 goto error0; 2853 (*curp)->bc_levels[level + 1].ptr++; 2854 } 2855 *ptrp = rptr; 2856 *stat = 1; 2857 return 0; 2858out0: 2859 *stat = 0; 2860 return 0; 2861 2862error0: 2863 return error; 2864} 2865 2866#ifdef __KERNEL__ 2867struct xfs_btree_split_args { 2868 struct xfs_btree_cur *cur; 2869 int level; 2870 union xfs_btree_ptr *ptrp; 2871 union xfs_btree_key *key; 2872 struct xfs_btree_cur **curp; 2873 int *stat; /* success/failure */ 2874 int result; 2875 bool kswapd; /* allocation in kswapd context */ 2876 struct completion *done; 2877 struct work_struct work; 2878}; 2879 2880/* 2881 * Stack switching interfaces for allocation 2882 */ 2883static void 2884xfs_btree_split_worker( 2885 struct work_struct *work) 2886{ 2887 struct xfs_btree_split_args *args = container_of(work, 2888 struct xfs_btree_split_args, work); 2889 unsigned long pflags; 2890 unsigned long new_pflags = 0; 2891 2892 /* 2893 * we are in a transaction context here, but may also be doing work 2894 * in kswapd context, and hence we may need to inherit that state 2895 * temporarily to ensure that we don't block waiting for memory reclaim 2896 * in any way. 2897 */ 2898 if (args->kswapd) 2899 new_pflags |= PF_MEMALLOC | PF_KSWAPD; 2900 2901 current_set_flags_nested(&pflags, new_pflags); 2902 xfs_trans_set_context(args->cur->bc_tp); 2903 2904 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, 2905 args->key, args->curp, args->stat); 2906 2907 xfs_trans_clear_context(args->cur->bc_tp); 2908 current_restore_flags_nested(&pflags, new_pflags); 2909 2910 /* 2911 * Do not access args after complete() has run here. We don't own args 2912 * and the owner may run and free args before we return here. 2913 */ 2914 complete(args->done); 2915 2916} 2917 2918/* 2919 * BMBT split requests often come in with little stack to work on. Push 2920 * them off to a worker thread so there is lots of stack to use. For the other 2921 * btree types, just call directly to avoid the context switch overhead here. 2922 */ 2923STATIC int /* error */ 2924xfs_btree_split( 2925 struct xfs_btree_cur *cur, 2926 int level, 2927 union xfs_btree_ptr *ptrp, 2928 union xfs_btree_key *key, 2929 struct xfs_btree_cur **curp, 2930 int *stat) /* success/failure */ 2931{ 2932 struct xfs_btree_split_args args; 2933 DECLARE_COMPLETION_ONSTACK(done); 2934 2935 if (cur->bc_btnum != XFS_BTNUM_BMAP) 2936 return __xfs_btree_split(cur, level, ptrp, key, curp, stat); 2937 2938 args.cur = cur; 2939 args.level = level; 2940 args.ptrp = ptrp; 2941 args.key = key; 2942 args.curp = curp; 2943 args.stat = stat; 2944 args.done = &done; 2945 args.kswapd = current_is_kswapd(); 2946 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); 2947 queue_work(xfs_alloc_wq, &args.work); 2948 wait_for_completion(&done); 2949 destroy_work_on_stack(&args.work); 2950 return args.result; 2951} 2952#else 2953#define xfs_btree_split __xfs_btree_split 2954#endif /* __KERNEL__ */ 2955 2956 2957/* 2958 * Copy the old inode root contents into a real block and make the 2959 * broot point to it. 2960 */ 2961int /* error */ 2962xfs_btree_new_iroot( 2963 struct xfs_btree_cur *cur, /* btree cursor */ 2964 int *logflags, /* logging flags for inode */ 2965 int *stat) /* return status - 0 fail */ 2966{ 2967 struct xfs_buf *cbp; /* buffer for cblock */ 2968 struct xfs_btree_block *block; /* btree block */ 2969 struct xfs_btree_block *cblock; /* child btree block */ 2970 union xfs_btree_key *ckp; /* child key pointer */ 2971 union xfs_btree_ptr *cpp; /* child ptr pointer */ 2972 union xfs_btree_key *kp; /* pointer to btree key */ 2973 union xfs_btree_ptr *pp; /* pointer to block addr */ 2974 union xfs_btree_ptr nptr; /* new block addr */ 2975 int level; /* btree level */ 2976 int error; /* error return code */ 2977 int i; /* loop counter */ 2978 2979 XFS_BTREE_STATS_INC(cur, newroot); 2980 2981 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 2982 2983 level = cur->bc_nlevels - 1; 2984 2985 block = xfs_btree_get_iroot(cur); 2986 pp = xfs_btree_ptr_addr(cur, 1, block); 2987 2988 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2989 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat); 2990 if (error) 2991 goto error0; 2992 if (*stat == 0) 2993 return 0; 2994 2995 XFS_BTREE_STATS_INC(cur, alloc); 2996 2997 /* Copy the root into a real block. */ 2998 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp); 2999 if (error) 3000 goto error0; 3001 3002 /* 3003 * we can't just memcpy() the root in for CRC enabled btree blocks. 3004 * In that case have to also ensure the blkno remains correct 3005 */ 3006 memcpy(cblock, block, xfs_btree_block_len(cur)); 3007 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 3008 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp)); 3009 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 3010 cblock->bb_u.l.bb_blkno = bno; 3011 else 3012 cblock->bb_u.s.bb_blkno = bno; 3013 } 3014 3015 be16_add_cpu(&block->bb_level, 1); 3016 xfs_btree_set_numrecs(block, 1); 3017 cur->bc_nlevels++; 3018 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels); 3019 cur->bc_levels[level + 1].ptr = 1; 3020 3021 kp = xfs_btree_key_addr(cur, 1, block); 3022 ckp = xfs_btree_key_addr(cur, 1, cblock); 3023 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); 3024 3025 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3026 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { 3027 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3028 if (error) 3029 goto error0; 3030 } 3031 3032 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); 3033 3034 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level); 3035 if (error) 3036 goto error0; 3037 3038 xfs_btree_copy_ptrs(cur, pp, &nptr, 1); 3039 3040 xfs_iroot_realloc(cur->bc_ino.ip, 3041 1 - xfs_btree_get_numrecs(cblock), 3042 cur->bc_ino.whichfork); 3043 3044 xfs_btree_setbuf(cur, level, cbp); 3045 3046 /* 3047 * Do all this logging at the end so that 3048 * the root is at the right level. 3049 */ 3050 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); 3051 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 3052 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 3053 3054 *logflags |= 3055 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork); 3056 *stat = 1; 3057 return 0; 3058error0: 3059 return error; 3060} 3061 3062/* 3063 * Allocate a new root block, fill it in. 3064 */ 3065STATIC int /* error */ 3066xfs_btree_new_root( 3067 struct xfs_btree_cur *cur, /* btree cursor */ 3068 int *stat) /* success/failure */ 3069{ 3070 struct xfs_btree_block *block; /* one half of the old root block */ 3071 struct xfs_buf *bp; /* buffer containing block */ 3072 int error; /* error return value */ 3073 struct xfs_buf *lbp; /* left buffer pointer */ 3074 struct xfs_btree_block *left; /* left btree block */ 3075 struct xfs_buf *nbp; /* new (root) buffer */ 3076 struct xfs_btree_block *new; /* new (root) btree block */ 3077 int nptr; /* new value for key index, 1 or 2 */ 3078 struct xfs_buf *rbp; /* right buffer pointer */ 3079 struct xfs_btree_block *right; /* right btree block */ 3080 union xfs_btree_ptr rptr; 3081 union xfs_btree_ptr lptr; 3082 3083 XFS_BTREE_STATS_INC(cur, newroot); 3084 3085 /* initialise our start point from the cursor */ 3086 cur->bc_ops->init_ptr_from_cur(cur, &rptr); 3087 3088 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 3089 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat); 3090 if (error) 3091 goto error0; 3092 if (*stat == 0) 3093 goto out0; 3094 XFS_BTREE_STATS_INC(cur, alloc); 3095 3096 /* Set up the new block. */ 3097 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp); 3098 if (error) 3099 goto error0; 3100 3101 /* Set the root in the holding structure increasing the level by 1. */ 3102 cur->bc_ops->set_root(cur, &lptr, 1); 3103 3104 /* 3105 * At the previous root level there are now two blocks: the old root, 3106 * and the new block generated when it was split. We don't know which 3107 * one the cursor is pointing at, so we set up variables "left" and 3108 * "right" for each case. 3109 */ 3110 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); 3111 3112#ifdef DEBUG 3113 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); 3114 if (error) 3115 goto error0; 3116#endif 3117 3118 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3119 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3120 /* Our block is left, pick up the right block. */ 3121 lbp = bp; 3122 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 3123 left = block; 3124 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3125 if (error) 3126 goto error0; 3127 bp = rbp; 3128 nptr = 1; 3129 } else { 3130 /* Our block is right, pick up the left block. */ 3131 rbp = bp; 3132 xfs_btree_buf_to_ptr(cur, rbp, &rptr); 3133 right = block; 3134 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 3135 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3136 if (error) 3137 goto error0; 3138 bp = lbp; 3139 nptr = 2; 3140 } 3141 3142 /* Fill in the new block's btree header and log it. */ 3143 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); 3144 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); 3145 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && 3146 !xfs_btree_ptr_is_null(cur, &rptr)); 3147 3148 /* Fill in the key data in the new root. */ 3149 if (xfs_btree_get_level(left) > 0) { 3150 /* 3151 * Get the keys for the left block's keys and put them directly 3152 * in the parent block. Do the same for the right block. 3153 */ 3154 xfs_btree_get_node_keys(cur, left, 3155 xfs_btree_key_addr(cur, 1, new)); 3156 xfs_btree_get_node_keys(cur, right, 3157 xfs_btree_key_addr(cur, 2, new)); 3158 } else { 3159 /* 3160 * Get the keys for the left block's records and put them 3161 * directly in the parent block. Do the same for the right 3162 * block. 3163 */ 3164 xfs_btree_get_leaf_keys(cur, left, 3165 xfs_btree_key_addr(cur, 1, new)); 3166 xfs_btree_get_leaf_keys(cur, right, 3167 xfs_btree_key_addr(cur, 2, new)); 3168 } 3169 xfs_btree_log_keys(cur, nbp, 1, 2); 3170 3171 /* Fill in the pointer data in the new root. */ 3172 xfs_btree_copy_ptrs(cur, 3173 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); 3174 xfs_btree_copy_ptrs(cur, 3175 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); 3176 xfs_btree_log_ptrs(cur, nbp, 1, 2); 3177 3178 /* Fix up the cursor. */ 3179 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); 3180 cur->bc_levels[cur->bc_nlevels].ptr = nptr; 3181 cur->bc_nlevels++; 3182 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels); 3183 *stat = 1; 3184 return 0; 3185error0: 3186 return error; 3187out0: 3188 *stat = 0; 3189 return 0; 3190} 3191 3192STATIC int 3193xfs_btree_make_block_unfull( 3194 struct xfs_btree_cur *cur, /* btree cursor */ 3195 int level, /* btree level */ 3196 int numrecs,/* # of recs in block */ 3197 int *oindex,/* old tree index */ 3198 int *index, /* new tree index */ 3199 union xfs_btree_ptr *nptr, /* new btree ptr */ 3200 struct xfs_btree_cur **ncur, /* new btree cursor */ 3201 union xfs_btree_key *key, /* key of new block */ 3202 int *stat) 3203{ 3204 int error = 0; 3205 3206 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3207 level == cur->bc_nlevels - 1) { 3208 struct xfs_inode *ip = cur->bc_ino.ip; 3209 3210 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { 3211 /* A root block that can be made bigger. */ 3212 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork); 3213 *stat = 1; 3214 } else { 3215 /* A root block that needs replacing */ 3216 int logflags = 0; 3217 3218 error = xfs_btree_new_iroot(cur, &logflags, stat); 3219 if (error || *stat == 0) 3220 return error; 3221 3222 xfs_trans_log_inode(cur->bc_tp, ip, logflags); 3223 } 3224 3225 return 0; 3226 } 3227 3228 /* First, try shifting an entry to the right neighbor. */ 3229 error = xfs_btree_rshift(cur, level, stat); 3230 if (error || *stat) 3231 return error; 3232 3233 /* Next, try shifting an entry to the left neighbor. */ 3234 error = xfs_btree_lshift(cur, level, stat); 3235 if (error) 3236 return error; 3237 3238 if (*stat) { 3239 *oindex = *index = cur->bc_levels[level].ptr; 3240 return 0; 3241 } 3242 3243 /* 3244 * Next, try splitting the current block in half. 3245 * 3246 * If this works we have to re-set our variables because we 3247 * could be in a different block now. 3248 */ 3249 error = xfs_btree_split(cur, level, nptr, key, ncur, stat); 3250 if (error || *stat == 0) 3251 return error; 3252 3253 3254 *index = cur->bc_levels[level].ptr; 3255 return 0; 3256} 3257 3258/* 3259 * Insert one record/level. Return information to the caller 3260 * allowing the next level up to proceed if necessary. 3261 */ 3262STATIC int 3263xfs_btree_insrec( 3264 struct xfs_btree_cur *cur, /* btree cursor */ 3265 int level, /* level to insert record at */ 3266 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ 3267 union xfs_btree_rec *rec, /* record to insert */ 3268 union xfs_btree_key *key, /* i/o: block key for ptrp */ 3269 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ 3270 int *stat) /* success/failure */ 3271{ 3272 struct xfs_btree_block *block; /* btree block */ 3273 struct xfs_buf *bp; /* buffer for block */ 3274 union xfs_btree_ptr nptr; /* new block ptr */ 3275 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */ 3276 union xfs_btree_key nkey; /* new block key */ 3277 union xfs_btree_key *lkey; 3278 int optr; /* old key/record index */ 3279 int ptr; /* key/record index */ 3280 int numrecs;/* number of records */ 3281 int error; /* error return value */ 3282 int i; 3283 xfs_daddr_t old_bn; 3284 3285 ncur = NULL; 3286 lkey = &nkey; 3287 3288 /* 3289 * If we have an external root pointer, and we've made it to the 3290 * root level, allocate a new root block and we're done. 3291 */ 3292 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3293 (level >= cur->bc_nlevels)) { 3294 error = xfs_btree_new_root(cur, stat); 3295 xfs_btree_set_ptr_null(cur, ptrp); 3296 3297 return error; 3298 } 3299 3300 /* If we're off the left edge, return failure. */ 3301 ptr = cur->bc_levels[level].ptr; 3302 if (ptr == 0) { 3303 *stat = 0; 3304 return 0; 3305 } 3306 3307 optr = ptr; 3308 3309 XFS_BTREE_STATS_INC(cur, insrec); 3310 3311 /* Get pointers to the btree buffer and block. */ 3312 block = xfs_btree_get_block(cur, level, &bp); 3313 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL; 3314 numrecs = xfs_btree_get_numrecs(block); 3315 3316#ifdef DEBUG 3317 error = xfs_btree_check_block(cur, block, level, bp); 3318 if (error) 3319 goto error0; 3320 3321 /* Check that the new entry is being inserted in the right place. */ 3322 if (ptr <= numrecs) { 3323 if (level == 0) { 3324 ASSERT(cur->bc_ops->recs_inorder(cur, rec, 3325 xfs_btree_rec_addr(cur, ptr, block))); 3326 } else { 3327 ASSERT(cur->bc_ops->keys_inorder(cur, key, 3328 xfs_btree_key_addr(cur, ptr, block))); 3329 } 3330 } 3331#endif 3332 3333 /* 3334 * If the block is full, we can't insert the new entry until we 3335 * make the block un-full. 3336 */ 3337 xfs_btree_set_ptr_null(cur, &nptr); 3338 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { 3339 error = xfs_btree_make_block_unfull(cur, level, numrecs, 3340 &optr, &ptr, &nptr, &ncur, lkey, stat); 3341 if (error || *stat == 0) 3342 goto error0; 3343 } 3344 3345 /* 3346 * The current block may have changed if the block was 3347 * previously full and we have just made space in it. 3348 */ 3349 block = xfs_btree_get_block(cur, level, &bp); 3350 numrecs = xfs_btree_get_numrecs(block); 3351 3352#ifdef DEBUG 3353 error = xfs_btree_check_block(cur, block, level, bp); 3354 if (error) 3355 goto error0; 3356#endif 3357 3358 /* 3359 * At this point we know there's room for our new entry in the block 3360 * we're pointing at. 3361 */ 3362 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); 3363 3364 if (level > 0) { 3365 /* It's a nonleaf. make a hole in the keys and ptrs */ 3366 union xfs_btree_key *kp; 3367 union xfs_btree_ptr *pp; 3368 3369 kp = xfs_btree_key_addr(cur, ptr, block); 3370 pp = xfs_btree_ptr_addr(cur, ptr, block); 3371 3372 for (i = numrecs - ptr; i >= 0; i--) { 3373 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3374 if (error) 3375 goto error0; 3376 } 3377 3378 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); 3379 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); 3380 3381 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level); 3382 if (error) 3383 goto error0; 3384 3385 /* Now put the new data in, bump numrecs and log it. */ 3386 xfs_btree_copy_keys(cur, kp, key, 1); 3387 xfs_btree_copy_ptrs(cur, pp, ptrp, 1); 3388 numrecs++; 3389 xfs_btree_set_numrecs(block, numrecs); 3390 xfs_btree_log_ptrs(cur, bp, ptr, numrecs); 3391 xfs_btree_log_keys(cur, bp, ptr, numrecs); 3392#ifdef DEBUG 3393 if (ptr < numrecs) { 3394 ASSERT(cur->bc_ops->keys_inorder(cur, kp, 3395 xfs_btree_key_addr(cur, ptr + 1, block))); 3396 } 3397#endif 3398 } else { 3399 /* It's a leaf. make a hole in the records */ 3400 union xfs_btree_rec *rp; 3401 3402 rp = xfs_btree_rec_addr(cur, ptr, block); 3403 3404 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); 3405 3406 /* Now put the new data in, bump numrecs and log it. */ 3407 xfs_btree_copy_recs(cur, rp, rec, 1); 3408 xfs_btree_set_numrecs(block, ++numrecs); 3409 xfs_btree_log_recs(cur, bp, ptr, numrecs); 3410#ifdef DEBUG 3411 if (ptr < numrecs) { 3412 ASSERT(cur->bc_ops->recs_inorder(cur, rp, 3413 xfs_btree_rec_addr(cur, ptr + 1, block))); 3414 } 3415#endif 3416 } 3417 3418 /* Log the new number of records in the btree header. */ 3419 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3420 3421 /* 3422 * If we just inserted into a new tree block, we have to 3423 * recalculate nkey here because nkey is out of date. 3424 * 3425 * Otherwise we're just updating an existing block (having shoved 3426 * some records into the new tree block), so use the regular key 3427 * update mechanism. 3428 */ 3429 if (bp && xfs_buf_daddr(bp) != old_bn) { 3430 xfs_btree_get_keys(cur, block, lkey); 3431 } else if (xfs_btree_needs_key_update(cur, optr)) { 3432 error = xfs_btree_update_keys(cur, level); 3433 if (error) 3434 goto error0; 3435 } 3436 3437 /* 3438 * If we are tracking the last record in the tree and 3439 * we are at the far right edge of the tree, update it. 3440 */ 3441 if (xfs_btree_is_lastrec(cur, block, level)) { 3442 cur->bc_ops->update_lastrec(cur, block, rec, 3443 ptr, LASTREC_INSREC); 3444 } 3445 3446 /* 3447 * Return the new block number, if any. 3448 * If there is one, give back a record value and a cursor too. 3449 */ 3450 *ptrp = nptr; 3451 if (!xfs_btree_ptr_is_null(cur, &nptr)) { 3452 xfs_btree_copy_keys(cur, key, lkey, 1); 3453 *curp = ncur; 3454 } 3455 3456 *stat = 1; 3457 return 0; 3458 3459error0: 3460 if (ncur) 3461 xfs_btree_del_cursor(ncur, error); 3462 return error; 3463} 3464 3465/* 3466 * Insert the record at the point referenced by cur. 3467 * 3468 * A multi-level split of the tree on insert will invalidate the original 3469 * cursor. All callers of this function should assume that the cursor is 3470 * no longer valid and revalidate it. 3471 */ 3472int 3473xfs_btree_insert( 3474 struct xfs_btree_cur *cur, 3475 int *stat) 3476{ 3477 int error; /* error return value */ 3478 int i; /* result value, 0 for failure */ 3479 int level; /* current level number in btree */ 3480 union xfs_btree_ptr nptr; /* new block number (split result) */ 3481 struct xfs_btree_cur *ncur; /* new cursor (split result) */ 3482 struct xfs_btree_cur *pcur; /* previous level's cursor */ 3483 union xfs_btree_key bkey; /* key of block to insert */ 3484 union xfs_btree_key *key; 3485 union xfs_btree_rec rec; /* record to insert */ 3486 3487 level = 0; 3488 ncur = NULL; 3489 pcur = cur; 3490 key = &bkey; 3491 3492 xfs_btree_set_ptr_null(cur, &nptr); 3493 3494 /* Make a key out of the record data to be inserted, and save it. */ 3495 cur->bc_ops->init_rec_from_cur(cur, &rec); 3496 cur->bc_ops->init_key_from_rec(key, &rec); 3497 3498 /* 3499 * Loop going up the tree, starting at the leaf level. 3500 * Stop when we don't get a split block, that must mean that 3501 * the insert is finished with this level. 3502 */ 3503 do { 3504 /* 3505 * Insert nrec/nptr into this level of the tree. 3506 * Note if we fail, nptr will be null. 3507 */ 3508 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, 3509 &ncur, &i); 3510 if (error) { 3511 if (pcur != cur) 3512 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); 3513 goto error0; 3514 } 3515 3516 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3517 error = -EFSCORRUPTED; 3518 goto error0; 3519 } 3520 level++; 3521 3522 /* 3523 * See if the cursor we just used is trash. 3524 * Can't trash the caller's cursor, but otherwise we should 3525 * if ncur is a new cursor or we're about to be done. 3526 */ 3527 if (pcur != cur && 3528 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { 3529 /* Save the state from the cursor before we trash it */ 3530 if (cur->bc_ops->update_cursor) 3531 cur->bc_ops->update_cursor(pcur, cur); 3532 cur->bc_nlevels = pcur->bc_nlevels; 3533 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); 3534 } 3535 /* If we got a new cursor, switch to it. */ 3536 if (ncur) { 3537 pcur = ncur; 3538 ncur = NULL; 3539 } 3540 } while (!xfs_btree_ptr_is_null(cur, &nptr)); 3541 3542 *stat = i; 3543 return 0; 3544error0: 3545 return error; 3546} 3547 3548/* 3549 * Try to merge a non-leaf block back into the inode root. 3550 * 3551 * Note: the killroot names comes from the fact that we're effectively 3552 * killing the old root block. But because we can't just delete the 3553 * inode we have to copy the single block it was pointing to into the 3554 * inode. 3555 */ 3556STATIC int 3557xfs_btree_kill_iroot( 3558 struct xfs_btree_cur *cur) 3559{ 3560 int whichfork = cur->bc_ino.whichfork; 3561 struct xfs_inode *ip = cur->bc_ino.ip; 3562 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 3563 struct xfs_btree_block *block; 3564 struct xfs_btree_block *cblock; 3565 union xfs_btree_key *kp; 3566 union xfs_btree_key *ckp; 3567 union xfs_btree_ptr *pp; 3568 union xfs_btree_ptr *cpp; 3569 struct xfs_buf *cbp; 3570 int level; 3571 int index; 3572 int numrecs; 3573 int error; 3574#ifdef DEBUG 3575 union xfs_btree_ptr ptr; 3576#endif 3577 int i; 3578 3579 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 3580 ASSERT(cur->bc_nlevels > 1); 3581 3582 /* 3583 * Don't deal with the root block needs to be a leaf case. 3584 * We're just going to turn the thing back into extents anyway. 3585 */ 3586 level = cur->bc_nlevels - 1; 3587 if (level == 1) 3588 goto out0; 3589 3590 /* 3591 * Give up if the root has multiple children. 3592 */ 3593 block = xfs_btree_get_iroot(cur); 3594 if (xfs_btree_get_numrecs(block) != 1) 3595 goto out0; 3596 3597 cblock = xfs_btree_get_block(cur, level - 1, &cbp); 3598 numrecs = xfs_btree_get_numrecs(cblock); 3599 3600 /* 3601 * Only do this if the next level will fit. 3602 * Then the data must be copied up to the inode, 3603 * instead of freeing the root you free the next level. 3604 */ 3605 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) 3606 goto out0; 3607 3608 XFS_BTREE_STATS_INC(cur, killroot); 3609 3610#ifdef DEBUG 3611 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 3612 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3613 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 3614 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3615#endif 3616 3617 index = numrecs - cur->bc_ops->get_maxrecs(cur, level); 3618 if (index) { 3619 xfs_iroot_realloc(cur->bc_ino.ip, index, 3620 cur->bc_ino.whichfork); 3621 block = ifp->if_broot; 3622 } 3623 3624 be16_add_cpu(&block->bb_numrecs, index); 3625 ASSERT(block->bb_numrecs == cblock->bb_numrecs); 3626 3627 kp = xfs_btree_key_addr(cur, 1, block); 3628 ckp = xfs_btree_key_addr(cur, 1, cblock); 3629 xfs_btree_copy_keys(cur, kp, ckp, numrecs); 3630 3631 pp = xfs_btree_ptr_addr(cur, 1, block); 3632 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3633 3634 for (i = 0; i < numrecs; i++) { 3635 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1); 3636 if (error) 3637 return error; 3638 } 3639 3640 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); 3641 3642 error = xfs_btree_free_block(cur, cbp); 3643 if (error) 3644 return error; 3645 3646 cur->bc_levels[level - 1].bp = NULL; 3647 be16_add_cpu(&block->bb_level, -1); 3648 xfs_trans_log_inode(cur->bc_tp, ip, 3649 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork)); 3650 cur->bc_nlevels--; 3651out0: 3652 return 0; 3653} 3654 3655/* 3656 * Kill the current root node, and replace it with it's only child node. 3657 */ 3658STATIC int 3659xfs_btree_kill_root( 3660 struct xfs_btree_cur *cur, 3661 struct xfs_buf *bp, 3662 int level, 3663 union xfs_btree_ptr *newroot) 3664{ 3665 int error; 3666 3667 XFS_BTREE_STATS_INC(cur, killroot); 3668 3669 /* 3670 * Update the root pointer, decreasing the level by 1 and then 3671 * free the old root. 3672 */ 3673 cur->bc_ops->set_root(cur, newroot, -1); 3674 3675 error = xfs_btree_free_block(cur, bp); 3676 if (error) 3677 return error; 3678 3679 cur->bc_levels[level].bp = NULL; 3680 cur->bc_levels[level].ra = 0; 3681 cur->bc_nlevels--; 3682 3683 return 0; 3684} 3685 3686STATIC int 3687xfs_btree_dec_cursor( 3688 struct xfs_btree_cur *cur, 3689 int level, 3690 int *stat) 3691{ 3692 int error; 3693 int i; 3694 3695 if (level > 0) { 3696 error = xfs_btree_decrement(cur, level, &i); 3697 if (error) 3698 return error; 3699 } 3700 3701 *stat = 1; 3702 return 0; 3703} 3704 3705/* 3706 * Single level of the btree record deletion routine. 3707 * Delete record pointed to by cur/level. 3708 * Remove the record from its block then rebalance the tree. 3709 * Return 0 for error, 1 for done, 2 to go on to the next level. 3710 */ 3711STATIC int /* error */ 3712xfs_btree_delrec( 3713 struct xfs_btree_cur *cur, /* btree cursor */ 3714 int level, /* level removing record from */ 3715 int *stat) /* fail/done/go-on */ 3716{ 3717 struct xfs_btree_block *block; /* btree block */ 3718 union xfs_btree_ptr cptr; /* current block ptr */ 3719 struct xfs_buf *bp; /* buffer for block */ 3720 int error; /* error return value */ 3721 int i; /* loop counter */ 3722 union xfs_btree_ptr lptr; /* left sibling block ptr */ 3723 struct xfs_buf *lbp; /* left buffer pointer */ 3724 struct xfs_btree_block *left; /* left btree block */ 3725 int lrecs = 0; /* left record count */ 3726 int ptr; /* key/record index */ 3727 union xfs_btree_ptr rptr; /* right sibling block ptr */ 3728 struct xfs_buf *rbp; /* right buffer pointer */ 3729 struct xfs_btree_block *right; /* right btree block */ 3730 struct xfs_btree_block *rrblock; /* right-right btree block */ 3731 struct xfs_buf *rrbp; /* right-right buffer pointer */ 3732 int rrecs = 0; /* right record count */ 3733 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 3734 int numrecs; /* temporary numrec count */ 3735 3736 tcur = NULL; 3737 3738 /* Get the index of the entry being deleted, check for nothing there. */ 3739 ptr = cur->bc_levels[level].ptr; 3740 if (ptr == 0) { 3741 *stat = 0; 3742 return 0; 3743 } 3744 3745 /* Get the buffer & block containing the record or key/ptr. */ 3746 block = xfs_btree_get_block(cur, level, &bp); 3747 numrecs = xfs_btree_get_numrecs(block); 3748 3749#ifdef DEBUG 3750 error = xfs_btree_check_block(cur, block, level, bp); 3751 if (error) 3752 goto error0; 3753#endif 3754 3755 /* Fail if we're off the end of the block. */ 3756 if (ptr > numrecs) { 3757 *stat = 0; 3758 return 0; 3759 } 3760 3761 XFS_BTREE_STATS_INC(cur, delrec); 3762 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); 3763 3764 /* Excise the entries being deleted. */ 3765 if (level > 0) { 3766 /* It's a nonleaf. operate on keys and ptrs */ 3767 union xfs_btree_key *lkp; 3768 union xfs_btree_ptr *lpp; 3769 3770 lkp = xfs_btree_key_addr(cur, ptr + 1, block); 3771 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); 3772 3773 for (i = 0; i < numrecs - ptr; i++) { 3774 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 3775 if (error) 3776 goto error0; 3777 } 3778 3779 if (ptr < numrecs) { 3780 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); 3781 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); 3782 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); 3783 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); 3784 } 3785 } else { 3786 /* It's a leaf. operate on records */ 3787 if (ptr < numrecs) { 3788 xfs_btree_shift_recs(cur, 3789 xfs_btree_rec_addr(cur, ptr + 1, block), 3790 -1, numrecs - ptr); 3791 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); 3792 } 3793 } 3794 3795 /* 3796 * Decrement and log the number of entries in the block. 3797 */ 3798 xfs_btree_set_numrecs(block, --numrecs); 3799 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3800 3801 /* 3802 * If we are tracking the last record in the tree and 3803 * we are at the far right edge of the tree, update it. 3804 */ 3805 if (xfs_btree_is_lastrec(cur, block, level)) { 3806 cur->bc_ops->update_lastrec(cur, block, NULL, 3807 ptr, LASTREC_DELREC); 3808 } 3809 3810 /* 3811 * We're at the root level. First, shrink the root block in-memory. 3812 * Try to get rid of the next level down. If we can't then there's 3813 * nothing left to do. 3814 */ 3815 if (level == cur->bc_nlevels - 1) { 3816 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3817 xfs_iroot_realloc(cur->bc_ino.ip, -1, 3818 cur->bc_ino.whichfork); 3819 3820 error = xfs_btree_kill_iroot(cur); 3821 if (error) 3822 goto error0; 3823 3824 error = xfs_btree_dec_cursor(cur, level, stat); 3825 if (error) 3826 goto error0; 3827 *stat = 1; 3828 return 0; 3829 } 3830 3831 /* 3832 * If this is the root level, and there's only one entry left, 3833 * and it's NOT the leaf level, then we can get rid of this 3834 * level. 3835 */ 3836 if (numrecs == 1 && level > 0) { 3837 union xfs_btree_ptr *pp; 3838 /* 3839 * pp is still set to the first pointer in the block. 3840 * Make it the new root of the btree. 3841 */ 3842 pp = xfs_btree_ptr_addr(cur, 1, block); 3843 error = xfs_btree_kill_root(cur, bp, level, pp); 3844 if (error) 3845 goto error0; 3846 } else if (level > 0) { 3847 error = xfs_btree_dec_cursor(cur, level, stat); 3848 if (error) 3849 goto error0; 3850 } 3851 *stat = 1; 3852 return 0; 3853 } 3854 3855 /* 3856 * If we deleted the leftmost entry in the block, update the 3857 * key values above us in the tree. 3858 */ 3859 if (xfs_btree_needs_key_update(cur, ptr)) { 3860 error = xfs_btree_update_keys(cur, level); 3861 if (error) 3862 goto error0; 3863 } 3864 3865 /* 3866 * If the number of records remaining in the block is at least 3867 * the minimum, we're done. 3868 */ 3869 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { 3870 error = xfs_btree_dec_cursor(cur, level, stat); 3871 if (error) 3872 goto error0; 3873 return 0; 3874 } 3875 3876 /* 3877 * Otherwise, we have to move some records around to keep the 3878 * tree balanced. Look at the left and right sibling blocks to 3879 * see if we can re-balance by moving only one record. 3880 */ 3881 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3882 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); 3883 3884 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3885 /* 3886 * One child of root, need to get a chance to copy its contents 3887 * into the root and delete it. Can't go up to next level, 3888 * there's nothing to delete there. 3889 */ 3890 if (xfs_btree_ptr_is_null(cur, &rptr) && 3891 xfs_btree_ptr_is_null(cur, &lptr) && 3892 level == cur->bc_nlevels - 2) { 3893 error = xfs_btree_kill_iroot(cur); 3894 if (!error) 3895 error = xfs_btree_dec_cursor(cur, level, stat); 3896 if (error) 3897 goto error0; 3898 return 0; 3899 } 3900 } 3901 3902 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || 3903 !xfs_btree_ptr_is_null(cur, &lptr)); 3904 3905 /* 3906 * Duplicate the cursor so our btree manipulations here won't 3907 * disrupt the next level up. 3908 */ 3909 error = xfs_btree_dup_cursor(cur, &tcur); 3910 if (error) 3911 goto error0; 3912 3913 /* 3914 * If there's a right sibling, see if it's ok to shift an entry 3915 * out of it. 3916 */ 3917 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3918 /* 3919 * Move the temp cursor to the last entry in the next block. 3920 * Actually any entry but the first would suffice. 3921 */ 3922 i = xfs_btree_lastrec(tcur, level); 3923 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3924 error = -EFSCORRUPTED; 3925 goto error0; 3926 } 3927 3928 error = xfs_btree_increment(tcur, level, &i); 3929 if (error) 3930 goto error0; 3931 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3932 error = -EFSCORRUPTED; 3933 goto error0; 3934 } 3935 3936 i = xfs_btree_lastrec(tcur, level); 3937 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3938 error = -EFSCORRUPTED; 3939 goto error0; 3940 } 3941 3942 /* Grab a pointer to the block. */ 3943 right = xfs_btree_get_block(tcur, level, &rbp); 3944#ifdef DEBUG 3945 error = xfs_btree_check_block(tcur, right, level, rbp); 3946 if (error) 3947 goto error0; 3948#endif 3949 /* Grab the current block number, for future use. */ 3950 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); 3951 3952 /* 3953 * If right block is full enough so that removing one entry 3954 * won't make it too empty, and left-shifting an entry out 3955 * of right to us works, we're done. 3956 */ 3957 if (xfs_btree_get_numrecs(right) - 1 >= 3958 cur->bc_ops->get_minrecs(tcur, level)) { 3959 error = xfs_btree_lshift(tcur, level, &i); 3960 if (error) 3961 goto error0; 3962 if (i) { 3963 ASSERT(xfs_btree_get_numrecs(block) >= 3964 cur->bc_ops->get_minrecs(tcur, level)); 3965 3966 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3967 tcur = NULL; 3968 3969 error = xfs_btree_dec_cursor(cur, level, stat); 3970 if (error) 3971 goto error0; 3972 return 0; 3973 } 3974 } 3975 3976 /* 3977 * Otherwise, grab the number of records in right for 3978 * future reference, and fix up the temp cursor to point 3979 * to our block again (last record). 3980 */ 3981 rrecs = xfs_btree_get_numrecs(right); 3982 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3983 i = xfs_btree_firstrec(tcur, level); 3984 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3985 error = -EFSCORRUPTED; 3986 goto error0; 3987 } 3988 3989 error = xfs_btree_decrement(tcur, level, &i); 3990 if (error) 3991 goto error0; 3992 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3993 error = -EFSCORRUPTED; 3994 goto error0; 3995 } 3996 } 3997 } 3998 3999 /* 4000 * If there's a left sibling, see if it's ok to shift an entry 4001 * out of it. 4002 */ 4003 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 4004 /* 4005 * Move the temp cursor to the first entry in the 4006 * previous block. 4007 */ 4008 i = xfs_btree_firstrec(tcur, level); 4009 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4010 error = -EFSCORRUPTED; 4011 goto error0; 4012 } 4013 4014 error = xfs_btree_decrement(tcur, level, &i); 4015 if (error) 4016 goto error0; 4017 i = xfs_btree_firstrec(tcur, level); 4018 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 4019 error = -EFSCORRUPTED; 4020 goto error0; 4021 } 4022 4023 /* Grab a pointer to the block. */ 4024 left = xfs_btree_get_block(tcur, level, &lbp); 4025#ifdef DEBUG 4026 error = xfs_btree_check_block(cur, left, level, lbp); 4027 if (error) 4028 goto error0; 4029#endif 4030 /* Grab the current block number, for future use. */ 4031 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); 4032 4033 /* 4034 * If left block is full enough so that removing one entry 4035 * won't make it too empty, and right-shifting an entry out 4036 * of left to us works, we're done. 4037 */ 4038 if (xfs_btree_get_numrecs(left) - 1 >= 4039 cur->bc_ops->get_minrecs(tcur, level)) { 4040 error = xfs_btree_rshift(tcur, level, &i); 4041 if (error) 4042 goto error0; 4043 if (i) { 4044 ASSERT(xfs_btree_get_numrecs(block) >= 4045 cur->bc_ops->get_minrecs(tcur, level)); 4046 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 4047 tcur = NULL; 4048 if (level == 0) 4049 cur->bc_levels[0].ptr++; 4050 4051 *stat = 1; 4052 return 0; 4053 } 4054 } 4055 4056 /* 4057 * Otherwise, grab the number of records in right for 4058 * future reference. 4059 */ 4060 lrecs = xfs_btree_get_numrecs(left); 4061 } 4062 4063 /* Delete the temp cursor, we're done with it. */ 4064 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 4065 tcur = NULL; 4066 4067 /* If here, we need to do a join to keep the tree balanced. */ 4068 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); 4069 4070 if (!xfs_btree_ptr_is_null(cur, &lptr) && 4071 lrecs + xfs_btree_get_numrecs(block) <= 4072 cur->bc_ops->get_maxrecs(cur, level)) { 4073 /* 4074 * Set "right" to be the starting block, 4075 * "left" to be the left neighbor. 4076 */ 4077 rptr = cptr; 4078 right = block; 4079 rbp = bp; 4080 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 4081 if (error) 4082 goto error0; 4083 4084 /* 4085 * If that won't work, see if we can join with the right neighbor block. 4086 */ 4087 } else if (!xfs_btree_ptr_is_null(cur, &rptr) && 4088 rrecs + xfs_btree_get_numrecs(block) <= 4089 cur->bc_ops->get_maxrecs(cur, level)) { 4090 /* 4091 * Set "left" to be the starting block, 4092 * "right" to be the right neighbor. 4093 */ 4094 lptr = cptr; 4095 left = block; 4096 lbp = bp; 4097 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 4098 if (error) 4099 goto error0; 4100 4101 /* 4102 * Otherwise, we can't fix the imbalance. 4103 * Just return. This is probably a logic error, but it's not fatal. 4104 */ 4105 } else { 4106 error = xfs_btree_dec_cursor(cur, level, stat); 4107 if (error) 4108 goto error0; 4109 return 0; 4110 } 4111 4112 rrecs = xfs_btree_get_numrecs(right); 4113 lrecs = xfs_btree_get_numrecs(left); 4114 4115 /* 4116 * We're now going to join "left" and "right" by moving all the stuff 4117 * in "right" to "left" and deleting "right". 4118 */ 4119 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 4120 if (level > 0) { 4121 /* It's a non-leaf. Move keys and pointers. */ 4122 union xfs_btree_key *lkp; /* left btree key */ 4123 union xfs_btree_ptr *lpp; /* left address pointer */ 4124 union xfs_btree_key *rkp; /* right btree key */ 4125 union xfs_btree_ptr *rpp; /* right address pointer */ 4126 4127 lkp = xfs_btree_key_addr(cur, lrecs + 1, left); 4128 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); 4129 rkp = xfs_btree_key_addr(cur, 1, right); 4130 rpp = xfs_btree_ptr_addr(cur, 1, right); 4131 4132 for (i = 1; i < rrecs; i++) { 4133 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 4134 if (error) 4135 goto error0; 4136 } 4137 4138 xfs_btree_copy_keys(cur, lkp, rkp, rrecs); 4139 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); 4140 4141 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); 4142 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); 4143 } else { 4144 /* It's a leaf. Move records. */ 4145 union xfs_btree_rec *lrp; /* left record pointer */ 4146 union xfs_btree_rec *rrp; /* right record pointer */ 4147 4148 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); 4149 rrp = xfs_btree_rec_addr(cur, 1, right); 4150 4151 xfs_btree_copy_recs(cur, lrp, rrp, rrecs); 4152 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); 4153 } 4154 4155 XFS_BTREE_STATS_INC(cur, join); 4156 4157 /* 4158 * Fix up the number of records and right block pointer in the 4159 * surviving block, and log it. 4160 */ 4161 xfs_btree_set_numrecs(left, lrecs + rrecs); 4162 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB); 4163 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4164 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 4165 4166 /* If there is a right sibling, point it to the remaining block. */ 4167 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4168 if (!xfs_btree_ptr_is_null(cur, &cptr)) { 4169 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); 4170 if (error) 4171 goto error0; 4172 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); 4173 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 4174 } 4175 4176 /* Free the deleted block. */ 4177 error = xfs_btree_free_block(cur, rbp); 4178 if (error) 4179 goto error0; 4180 4181 /* 4182 * If we joined with the left neighbor, set the buffer in the 4183 * cursor to the left block, and fix up the index. 4184 */ 4185 if (bp != lbp) { 4186 cur->bc_levels[level].bp = lbp; 4187 cur->bc_levels[level].ptr += lrecs; 4188 cur->bc_levels[level].ra = 0; 4189 } 4190 /* 4191 * If we joined with the right neighbor and there's a level above 4192 * us, increment the cursor at that level. 4193 */ 4194 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) || 4195 (level + 1 < cur->bc_nlevels)) { 4196 error = xfs_btree_increment(cur, level + 1, &i); 4197 if (error) 4198 goto error0; 4199 } 4200 4201 /* 4202 * Readjust the ptr at this level if it's not a leaf, since it's 4203 * still pointing at the deletion point, which makes the cursor 4204 * inconsistent. If this makes the ptr 0, the caller fixes it up. 4205 * We can't use decrement because it would change the next level up. 4206 */ 4207 if (level > 0) 4208 cur->bc_levels[level].ptr--; 4209 4210 /* 4211 * We combined blocks, so we have to update the parent keys if the 4212 * btree supports overlapped intervals. However, 4213 * bc_levels[level + 1].ptr points to the old block so that the caller 4214 * knows which record to delete. Therefore, the caller must be savvy 4215 * enough to call updkeys for us if we return stat == 2. The other 4216 * exit points from this function don't require deletions further up 4217 * the tree, so they can call updkeys directly. 4218 */ 4219 4220 /* Return value means the next level up has something to do. */ 4221 *stat = 2; 4222 return 0; 4223 4224error0: 4225 if (tcur) 4226 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 4227 return error; 4228} 4229 4230/* 4231 * Delete the record pointed to by cur. 4232 * The cursor refers to the place where the record was (could be inserted) 4233 * when the operation returns. 4234 */ 4235int /* error */ 4236xfs_btree_delete( 4237 struct xfs_btree_cur *cur, 4238 int *stat) /* success/failure */ 4239{ 4240 int error; /* error return value */ 4241 int level; 4242 int i; 4243 bool joined = false; 4244 4245 /* 4246 * Go up the tree, starting at leaf level. 4247 * 4248 * If 2 is returned then a join was done; go to the next level. 4249 * Otherwise we are done. 4250 */ 4251 for (level = 0, i = 2; i == 2; level++) { 4252 error = xfs_btree_delrec(cur, level, &i); 4253 if (error) 4254 goto error0; 4255 if (i == 2) 4256 joined = true; 4257 } 4258 4259 /* 4260 * If we combined blocks as part of deleting the record, delrec won't 4261 * have updated the parent high keys so we have to do that here. 4262 */ 4263 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) { 4264 error = xfs_btree_updkeys_force(cur, 0); 4265 if (error) 4266 goto error0; 4267 } 4268 4269 if (i == 0) { 4270 for (level = 1; level < cur->bc_nlevels; level++) { 4271 if (cur->bc_levels[level].ptr == 0) { 4272 error = xfs_btree_decrement(cur, level, &i); 4273 if (error) 4274 goto error0; 4275 break; 4276 } 4277 } 4278 } 4279 4280 *stat = i; 4281 return 0; 4282error0: 4283 return error; 4284} 4285 4286/* 4287 * Get the data from the pointed-to record. 4288 */ 4289int /* error */ 4290xfs_btree_get_rec( 4291 struct xfs_btree_cur *cur, /* btree cursor */ 4292 union xfs_btree_rec **recp, /* output: btree record */ 4293 int *stat) /* output: success/failure */ 4294{ 4295 struct xfs_btree_block *block; /* btree block */ 4296 struct xfs_buf *bp; /* buffer pointer */ 4297 int ptr; /* record number */ 4298#ifdef DEBUG 4299 int error; /* error return value */ 4300#endif 4301 4302 ptr = cur->bc_levels[0].ptr; 4303 block = xfs_btree_get_block(cur, 0, &bp); 4304 4305#ifdef DEBUG 4306 error = xfs_btree_check_block(cur, block, 0, bp); 4307 if (error) 4308 return error; 4309#endif 4310 4311 /* 4312 * Off the right end or left end, return failure. 4313 */ 4314 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { 4315 *stat = 0; 4316 return 0; 4317 } 4318 4319 /* 4320 * Point to the record and extract its data. 4321 */ 4322 *recp = xfs_btree_rec_addr(cur, ptr, block); 4323 *stat = 1; 4324 return 0; 4325} 4326 4327/* Visit a block in a btree. */ 4328STATIC int 4329xfs_btree_visit_block( 4330 struct xfs_btree_cur *cur, 4331 int level, 4332 xfs_btree_visit_blocks_fn fn, 4333 void *data) 4334{ 4335 struct xfs_btree_block *block; 4336 struct xfs_buf *bp; 4337 union xfs_btree_ptr rptr; 4338 int error; 4339 4340 /* do right sibling readahead */ 4341 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 4342 block = xfs_btree_get_block(cur, level, &bp); 4343 4344 /* process the block */ 4345 error = fn(cur, level, data); 4346 if (error) 4347 return error; 4348 4349 /* now read rh sibling block for next iteration */ 4350 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4351 if (xfs_btree_ptr_is_null(cur, &rptr)) 4352 return -ENOENT; 4353 4354 /* 4355 * We only visit blocks once in this walk, so we have to avoid the 4356 * internal xfs_btree_lookup_get_block() optimisation where it will 4357 * return the same block without checking if the right sibling points 4358 * back to us and creates a cyclic reference in the btree. 4359 */ 4360 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 4361 if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp, 4362 xfs_buf_daddr(bp))) 4363 return -EFSCORRUPTED; 4364 } else { 4365 if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp, 4366 xfs_buf_daddr(bp))) 4367 return -EFSCORRUPTED; 4368 } 4369 return xfs_btree_lookup_get_block(cur, level, &rptr, &block); 4370} 4371 4372 4373/* Visit every block in a btree. */ 4374int 4375xfs_btree_visit_blocks( 4376 struct xfs_btree_cur *cur, 4377 xfs_btree_visit_blocks_fn fn, 4378 unsigned int flags, 4379 void *data) 4380{ 4381 union xfs_btree_ptr lptr; 4382 int level; 4383 struct xfs_btree_block *block = NULL; 4384 int error = 0; 4385 4386 cur->bc_ops->init_ptr_from_cur(cur, &lptr); 4387 4388 /* for each level */ 4389 for (level = cur->bc_nlevels - 1; level >= 0; level--) { 4390 /* grab the left hand block */ 4391 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); 4392 if (error) 4393 return error; 4394 4395 /* readahead the left most block for the next level down */ 4396 if (level > 0) { 4397 union xfs_btree_ptr *ptr; 4398 4399 ptr = xfs_btree_ptr_addr(cur, 1, block); 4400 xfs_btree_readahead_ptr(cur, ptr, 1); 4401 4402 /* save for the next iteration of the loop */ 4403 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); 4404 4405 if (!(flags & XFS_BTREE_VISIT_LEAVES)) 4406 continue; 4407 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) { 4408 continue; 4409 } 4410 4411 /* for each buffer in the level */ 4412 do { 4413 error = xfs_btree_visit_block(cur, level, fn, data); 4414 } while (!error); 4415 4416 if (error != -ENOENT) 4417 return error; 4418 } 4419 4420 return 0; 4421} 4422 4423/* 4424 * Change the owner of a btree. 4425 * 4426 * The mechanism we use here is ordered buffer logging. Because we don't know 4427 * how many buffers were are going to need to modify, we don't really want to 4428 * have to make transaction reservations for the worst case of every buffer in a 4429 * full size btree as that may be more space that we can fit in the log.... 4430 * 4431 * We do the btree walk in the most optimal manner possible - we have sibling 4432 * pointers so we can just walk all the blocks on each level from left to right 4433 * in a single pass, and then move to the next level and do the same. We can 4434 * also do readahead on the sibling pointers to get IO moving more quickly, 4435 * though for slow disks this is unlikely to make much difference to performance 4436 * as the amount of CPU work we have to do before moving to the next block is 4437 * relatively small. 4438 * 4439 * For each btree block that we load, modify the owner appropriately, set the 4440 * buffer as an ordered buffer and log it appropriately. We need to ensure that 4441 * we mark the region we change dirty so that if the buffer is relogged in 4442 * a subsequent transaction the changes we make here as an ordered buffer are 4443 * correctly relogged in that transaction. If we are in recovery context, then 4444 * just queue the modified buffer as delayed write buffer so the transaction 4445 * recovery completion writes the changes to disk. 4446 */ 4447struct xfs_btree_block_change_owner_info { 4448 uint64_t new_owner; 4449 struct list_head *buffer_list; 4450}; 4451 4452static int 4453xfs_btree_block_change_owner( 4454 struct xfs_btree_cur *cur, 4455 int level, 4456 void *data) 4457{ 4458 struct xfs_btree_block_change_owner_info *bbcoi = data; 4459 struct xfs_btree_block *block; 4460 struct xfs_buf *bp; 4461 4462 /* modify the owner */ 4463 block = xfs_btree_get_block(cur, level, &bp); 4464 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 4465 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) 4466 return 0; 4467 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); 4468 } else { 4469 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) 4470 return 0; 4471 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); 4472 } 4473 4474 /* 4475 * If the block is a root block hosted in an inode, we might not have a 4476 * buffer pointer here and we shouldn't attempt to log the change as the 4477 * information is already held in the inode and discarded when the root 4478 * block is formatted into the on-disk inode fork. We still change it, 4479 * though, so everything is consistent in memory. 4480 */ 4481 if (!bp) { 4482 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 4483 ASSERT(level == cur->bc_nlevels - 1); 4484 return 0; 4485 } 4486 4487 if (cur->bc_tp) { 4488 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { 4489 xfs_btree_log_block(cur, bp, XFS_BB_OWNER); 4490 return -EAGAIN; 4491 } 4492 } else { 4493 xfs_buf_delwri_queue(bp, bbcoi->buffer_list); 4494 } 4495 4496 return 0; 4497} 4498 4499int 4500xfs_btree_change_owner( 4501 struct xfs_btree_cur *cur, 4502 uint64_t new_owner, 4503 struct list_head *buffer_list) 4504{ 4505 struct xfs_btree_block_change_owner_info bbcoi; 4506 4507 bbcoi.new_owner = new_owner; 4508 bbcoi.buffer_list = buffer_list; 4509 4510 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, 4511 XFS_BTREE_VISIT_ALL, &bbcoi); 4512} 4513 4514/* Verify the v5 fields of a long-format btree block. */ 4515xfs_failaddr_t 4516xfs_btree_lblock_v5hdr_verify( 4517 struct xfs_buf *bp, 4518 uint64_t owner) 4519{ 4520 struct xfs_mount *mp = bp->b_mount; 4521 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4522 4523 if (!xfs_has_crc(mp)) 4524 return __this_address; 4525 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4526 return __this_address; 4527 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) 4528 return __this_address; 4529 if (owner != XFS_RMAP_OWN_UNKNOWN && 4530 be64_to_cpu(block->bb_u.l.bb_owner) != owner) 4531 return __this_address; 4532 return NULL; 4533} 4534 4535/* Verify a long-format btree block. */ 4536xfs_failaddr_t 4537xfs_btree_lblock_verify( 4538 struct xfs_buf *bp, 4539 unsigned int max_recs) 4540{ 4541 struct xfs_mount *mp = bp->b_mount; 4542 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4543 xfs_fsblock_t fsb; 4544 xfs_failaddr_t fa; 4545 4546 /* numrecs verification */ 4547 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4548 return __this_address; 4549 4550 /* sibling pointer verification */ 4551 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 4552 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb, 4553 block->bb_u.l.bb_leftsib); 4554 if (!fa) 4555 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb, 4556 block->bb_u.l.bb_rightsib); 4557 return fa; 4558} 4559 4560/** 4561 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format 4562 * btree block 4563 * 4564 * @bp: buffer containing the btree block 4565 */ 4566xfs_failaddr_t 4567xfs_btree_sblock_v5hdr_verify( 4568 struct xfs_buf *bp) 4569{ 4570 struct xfs_mount *mp = bp->b_mount; 4571 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4572 struct xfs_perag *pag = bp->b_pag; 4573 4574 if (!xfs_has_crc(mp)) 4575 return __this_address; 4576 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4577 return __this_address; 4578 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp))) 4579 return __this_address; 4580 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) 4581 return __this_address; 4582 return NULL; 4583} 4584 4585/** 4586 * xfs_btree_sblock_verify() -- verify a short-format btree block 4587 * 4588 * @bp: buffer containing the btree block 4589 * @max_recs: maximum records allowed in this btree node 4590 */ 4591xfs_failaddr_t 4592xfs_btree_sblock_verify( 4593 struct xfs_buf *bp, 4594 unsigned int max_recs) 4595{ 4596 struct xfs_mount *mp = bp->b_mount; 4597 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4598 xfs_agnumber_t agno; 4599 xfs_agblock_t agbno; 4600 xfs_failaddr_t fa; 4601 4602 /* numrecs verification */ 4603 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4604 return __this_address; 4605 4606 /* sibling pointer verification */ 4607 agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp)); 4608 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp)); 4609 fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno, 4610 block->bb_u.s.bb_leftsib); 4611 if (!fa) 4612 fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno, 4613 block->bb_u.s.bb_rightsib); 4614 return fa; 4615} 4616 4617/* 4618 * For the given limits on leaf and keyptr records per block, calculate the 4619 * height of the tree needed to index the number of leaf records. 4620 */ 4621unsigned int 4622xfs_btree_compute_maxlevels( 4623 const unsigned int *limits, 4624 unsigned long long records) 4625{ 4626 unsigned long long level_blocks = howmany_64(records, limits[0]); 4627 unsigned int height = 1; 4628 4629 while (level_blocks > 1) { 4630 level_blocks = howmany_64(level_blocks, limits[1]); 4631 height++; 4632 } 4633 4634 return height; 4635} 4636 4637/* 4638 * For the given limits on leaf and keyptr records per block, calculate the 4639 * number of blocks needed to index the given number of leaf records. 4640 */ 4641unsigned long long 4642xfs_btree_calc_size( 4643 const unsigned int *limits, 4644 unsigned long long records) 4645{ 4646 unsigned long long level_blocks = howmany_64(records, limits[0]); 4647 unsigned long long blocks = level_blocks; 4648 4649 while (level_blocks > 1) { 4650 level_blocks = howmany_64(level_blocks, limits[1]); 4651 blocks += level_blocks; 4652 } 4653 4654 return blocks; 4655} 4656 4657/* 4658 * Given a number of available blocks for the btree to consume with records and 4659 * pointers, calculate the height of the tree needed to index all the records 4660 * that space can hold based on the number of pointers each interior node 4661 * holds. 4662 * 4663 * We start by assuming a single level tree consumes a single block, then track 4664 * the number of blocks each node level consumes until we no longer have space 4665 * to store the next node level. At this point, we are indexing all the leaf 4666 * blocks in the space, and there's no more free space to split the tree any 4667 * further. That's our maximum btree height. 4668 */ 4669unsigned int 4670xfs_btree_space_to_height( 4671 const unsigned int *limits, 4672 unsigned long long leaf_blocks) 4673{ 4674 unsigned long long node_blocks = limits[1]; 4675 unsigned long long blocks_left = leaf_blocks - 1; 4676 unsigned int height = 1; 4677 4678 if (leaf_blocks < 1) 4679 return 0; 4680 4681 while (node_blocks < blocks_left) { 4682 blocks_left -= node_blocks; 4683 node_blocks *= limits[1]; 4684 height++; 4685 } 4686 4687 return height; 4688} 4689 4690/* 4691 * Query a regular btree for all records overlapping a given interval. 4692 * Start with a LE lookup of the key of low_rec and return all records 4693 * until we find a record with a key greater than the key of high_rec. 4694 */ 4695STATIC int 4696xfs_btree_simple_query_range( 4697 struct xfs_btree_cur *cur, 4698 const union xfs_btree_key *low_key, 4699 const union xfs_btree_key *high_key, 4700 xfs_btree_query_range_fn fn, 4701 void *priv) 4702{ 4703 union xfs_btree_rec *recp; 4704 union xfs_btree_key rec_key; 4705 int64_t diff; 4706 int stat; 4707 bool firstrec = true; 4708 int error; 4709 4710 ASSERT(cur->bc_ops->init_high_key_from_rec); 4711 ASSERT(cur->bc_ops->diff_two_keys); 4712 4713 /* 4714 * Find the leftmost record. The btree cursor must be set 4715 * to the low record used to generate low_key. 4716 */ 4717 stat = 0; 4718 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 4719 if (error) 4720 goto out; 4721 4722 /* Nothing? See if there's anything to the right. */ 4723 if (!stat) { 4724 error = xfs_btree_increment(cur, 0, &stat); 4725 if (error) 4726 goto out; 4727 } 4728 4729 while (stat) { 4730 /* Find the record. */ 4731 error = xfs_btree_get_rec(cur, &recp, &stat); 4732 if (error || !stat) 4733 break; 4734 4735 /* Skip if high_key(rec) < low_key. */ 4736 if (firstrec) { 4737 cur->bc_ops->init_high_key_from_rec(&rec_key, recp); 4738 firstrec = false; 4739 diff = cur->bc_ops->diff_two_keys(cur, low_key, 4740 &rec_key); 4741 if (diff > 0) 4742 goto advloop; 4743 } 4744 4745 /* Stop if high_key < low_key(rec). */ 4746 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4747 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key); 4748 if (diff > 0) 4749 break; 4750 4751 /* Callback */ 4752 error = fn(cur, recp, priv); 4753 if (error) 4754 break; 4755 4756advloop: 4757 /* Move on to the next record. */ 4758 error = xfs_btree_increment(cur, 0, &stat); 4759 if (error) 4760 break; 4761 } 4762 4763out: 4764 return error; 4765} 4766 4767/* 4768 * Query an overlapped interval btree for all records overlapping a given 4769 * interval. This function roughly follows the algorithm given in 4770 * "Interval Trees" of _Introduction to Algorithms_, which is section 4771 * 14.3 in the 2nd and 3rd editions. 4772 * 4773 * First, generate keys for the low and high records passed in. 4774 * 4775 * For any leaf node, generate the high and low keys for the record. 4776 * If the record keys overlap with the query low/high keys, pass the 4777 * record to the function iterator. 4778 * 4779 * For any internal node, compare the low and high keys of each 4780 * pointer against the query low/high keys. If there's an overlap, 4781 * follow the pointer. 4782 * 4783 * As an optimization, we stop scanning a block when we find a low key 4784 * that is greater than the query's high key. 4785 */ 4786STATIC int 4787xfs_btree_overlapped_query_range( 4788 struct xfs_btree_cur *cur, 4789 const union xfs_btree_key *low_key, 4790 const union xfs_btree_key *high_key, 4791 xfs_btree_query_range_fn fn, 4792 void *priv) 4793{ 4794 union xfs_btree_ptr ptr; 4795 union xfs_btree_ptr *pp; 4796 union xfs_btree_key rec_key; 4797 union xfs_btree_key rec_hkey; 4798 union xfs_btree_key *lkp; 4799 union xfs_btree_key *hkp; 4800 union xfs_btree_rec *recp; 4801 struct xfs_btree_block *block; 4802 int64_t ldiff; 4803 int64_t hdiff; 4804 int level; 4805 struct xfs_buf *bp; 4806 int i; 4807 int error; 4808 4809 /* Load the root of the btree. */ 4810 level = cur->bc_nlevels - 1; 4811 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 4812 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); 4813 if (error) 4814 return error; 4815 xfs_btree_get_block(cur, level, &bp); 4816 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4817#ifdef DEBUG 4818 error = xfs_btree_check_block(cur, block, level, bp); 4819 if (error) 4820 goto out; 4821#endif 4822 cur->bc_levels[level].ptr = 1; 4823 4824 while (level < cur->bc_nlevels) { 4825 block = xfs_btree_get_block(cur, level, &bp); 4826 4827 /* End of node, pop back towards the root. */ 4828 if (cur->bc_levels[level].ptr > 4829 be16_to_cpu(block->bb_numrecs)) { 4830pop_up: 4831 if (level < cur->bc_nlevels - 1) 4832 cur->bc_levels[level + 1].ptr++; 4833 level++; 4834 continue; 4835 } 4836 4837 if (level == 0) { 4838 /* Handle a leaf node. */ 4839 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr, 4840 block); 4841 4842 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); 4843 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey, 4844 low_key); 4845 4846 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4847 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, 4848 &rec_key); 4849 4850 /* 4851 * If (record's high key >= query's low key) and 4852 * (query's high key >= record's low key), then 4853 * this record overlaps the query range; callback. 4854 */ 4855 if (ldiff >= 0 && hdiff >= 0) { 4856 error = fn(cur, recp, priv); 4857 if (error) 4858 break; 4859 } else if (hdiff < 0) { 4860 /* Record is larger than high key; pop. */ 4861 goto pop_up; 4862 } 4863 cur->bc_levels[level].ptr++; 4864 continue; 4865 } 4866 4867 /* Handle an internal node. */ 4868 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block); 4869 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr, 4870 block); 4871 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block); 4872 4873 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key); 4874 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp); 4875 4876 /* 4877 * If (pointer's high key >= query's low key) and 4878 * (query's high key >= pointer's low key), then 4879 * this record overlaps the query range; follow pointer. 4880 */ 4881 if (ldiff >= 0 && hdiff >= 0) { 4882 level--; 4883 error = xfs_btree_lookup_get_block(cur, level, pp, 4884 &block); 4885 if (error) 4886 goto out; 4887 xfs_btree_get_block(cur, level, &bp); 4888 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4889#ifdef DEBUG 4890 error = xfs_btree_check_block(cur, block, level, bp); 4891 if (error) 4892 goto out; 4893#endif 4894 cur->bc_levels[level].ptr = 1; 4895 continue; 4896 } else if (hdiff < 0) { 4897 /* The low key is larger than the upper range; pop. */ 4898 goto pop_up; 4899 } 4900 cur->bc_levels[level].ptr++; 4901 } 4902 4903out: 4904 /* 4905 * If we don't end this function with the cursor pointing at a record 4906 * block, a subsequent non-error cursor deletion will not release 4907 * node-level buffers, causing a buffer leak. This is quite possible 4908 * with a zero-results range query, so release the buffers if we 4909 * failed to return any results. 4910 */ 4911 if (cur->bc_levels[0].bp == NULL) { 4912 for (i = 0; i < cur->bc_nlevels; i++) { 4913 if (cur->bc_levels[i].bp) { 4914 xfs_trans_brelse(cur->bc_tp, 4915 cur->bc_levels[i].bp); 4916 cur->bc_levels[i].bp = NULL; 4917 cur->bc_levels[i].ptr = 0; 4918 cur->bc_levels[i].ra = 0; 4919 } 4920 } 4921 } 4922 4923 return error; 4924} 4925 4926/* 4927 * Query a btree for all records overlapping a given interval of keys. The 4928 * supplied function will be called with each record found; return one of the 4929 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error 4930 * code. This function returns -ECANCELED, zero, or a negative error code. 4931 */ 4932int 4933xfs_btree_query_range( 4934 struct xfs_btree_cur *cur, 4935 const union xfs_btree_irec *low_rec, 4936 const union xfs_btree_irec *high_rec, 4937 xfs_btree_query_range_fn fn, 4938 void *priv) 4939{ 4940 union xfs_btree_rec rec; 4941 union xfs_btree_key low_key; 4942 union xfs_btree_key high_key; 4943 4944 /* Find the keys of both ends of the interval. */ 4945 cur->bc_rec = *high_rec; 4946 cur->bc_ops->init_rec_from_cur(cur, &rec); 4947 cur->bc_ops->init_key_from_rec(&high_key, &rec); 4948 4949 cur->bc_rec = *low_rec; 4950 cur->bc_ops->init_rec_from_cur(cur, &rec); 4951 cur->bc_ops->init_key_from_rec(&low_key, &rec); 4952 4953 /* Enforce low key < high key. */ 4954 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0) 4955 return -EINVAL; 4956 4957 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING)) 4958 return xfs_btree_simple_query_range(cur, &low_key, 4959 &high_key, fn, priv); 4960 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, 4961 fn, priv); 4962} 4963 4964/* Query a btree for all records. */ 4965int 4966xfs_btree_query_all( 4967 struct xfs_btree_cur *cur, 4968 xfs_btree_query_range_fn fn, 4969 void *priv) 4970{ 4971 union xfs_btree_key low_key; 4972 union xfs_btree_key high_key; 4973 4974 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 4975 memset(&low_key, 0, sizeof(low_key)); 4976 memset(&high_key, 0xFF, sizeof(high_key)); 4977 4978 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); 4979} 4980 4981static int 4982xfs_btree_count_blocks_helper( 4983 struct xfs_btree_cur *cur, 4984 int level, 4985 void *data) 4986{ 4987 xfs_extlen_t *blocks = data; 4988 (*blocks)++; 4989 4990 return 0; 4991} 4992 4993/* Count the blocks in a btree and return the result in *blocks. */ 4994int 4995xfs_btree_count_blocks( 4996 struct xfs_btree_cur *cur, 4997 xfs_extlen_t *blocks) 4998{ 4999 *blocks = 0; 5000 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, 5001 XFS_BTREE_VISIT_ALL, blocks); 5002} 5003 5004/* Compare two btree pointers. */ 5005int64_t 5006xfs_btree_diff_two_ptrs( 5007 struct xfs_btree_cur *cur, 5008 const union xfs_btree_ptr *a, 5009 const union xfs_btree_ptr *b) 5010{ 5011 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 5012 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l); 5013 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s); 5014} 5015 5016/* If there's an extent, we're done. */ 5017STATIC int 5018xfs_btree_has_record_helper( 5019 struct xfs_btree_cur *cur, 5020 const union xfs_btree_rec *rec, 5021 void *priv) 5022{ 5023 return -ECANCELED; 5024} 5025 5026/* Is there a record covering a given range of keys? */ 5027int 5028xfs_btree_has_record( 5029 struct xfs_btree_cur *cur, 5030 const union xfs_btree_irec *low, 5031 const union xfs_btree_irec *high, 5032 bool *exists) 5033{ 5034 int error; 5035 5036 error = xfs_btree_query_range(cur, low, high, 5037 &xfs_btree_has_record_helper, NULL); 5038 if (error == -ECANCELED) { 5039 *exists = true; 5040 return 0; 5041 } 5042 *exists = false; 5043 return error; 5044} 5045 5046/* Are there more records in this btree? */ 5047bool 5048xfs_btree_has_more_records( 5049 struct xfs_btree_cur *cur) 5050{ 5051 struct xfs_btree_block *block; 5052 struct xfs_buf *bp; 5053 5054 block = xfs_btree_get_block(cur, 0, &bp); 5055 5056 /* There are still records in this block. */ 5057 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block)) 5058 return true; 5059 5060 /* There are more record blocks. */ 5061 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 5062 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK); 5063 else 5064 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK); 5065} 5066 5067/* Set up all the btree cursor caches. */ 5068int __init 5069xfs_btree_init_cur_caches(void) 5070{ 5071 int error; 5072 5073 error = xfs_allocbt_init_cur_cache(); 5074 if (error) 5075 return error; 5076 error = xfs_inobt_init_cur_cache(); 5077 if (error) 5078 goto err; 5079 error = xfs_bmbt_init_cur_cache(); 5080 if (error) 5081 goto err; 5082 error = xfs_rmapbt_init_cur_cache(); 5083 if (error) 5084 goto err; 5085 error = xfs_refcountbt_init_cur_cache(); 5086 if (error) 5087 goto err; 5088 5089 return 0; 5090err: 5091 xfs_btree_destroy_cur_caches(); 5092 return error; 5093} 5094 5095/* Destroy all the btree cursor caches, if they've been allocated. */ 5096void 5097xfs_btree_destroy_cur_caches(void) 5098{ 5099 xfs_allocbt_destroy_cur_cache(); 5100 xfs_inobt_destroy_cur_cache(); 5101 xfs_bmbt_destroy_cur_cache(); 5102 xfs_rmapbt_destroy_cur_cache(); 5103 xfs_refcountbt_destroy_cur_cache(); 5104}