cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xfs_btree.c (134453B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
      4 * All Rights Reserved.
      5 */
      6#include "xfs.h"
      7#include "xfs_fs.h"
      8#include "xfs_shared.h"
      9#include "xfs_format.h"
     10#include "xfs_log_format.h"
     11#include "xfs_trans_resv.h"
     12#include "xfs_bit.h"
     13#include "xfs_mount.h"
     14#include "xfs_inode.h"
     15#include "xfs_trans.h"
     16#include "xfs_buf_item.h"
     17#include "xfs_btree.h"
     18#include "xfs_errortag.h"
     19#include "xfs_error.h"
     20#include "xfs_trace.h"
     21#include "xfs_alloc.h"
     22#include "xfs_log.h"
     23#include "xfs_btree_staging.h"
     24#include "xfs_ag.h"
     25#include "xfs_alloc_btree.h"
     26#include "xfs_ialloc_btree.h"
     27#include "xfs_bmap_btree.h"
     28#include "xfs_rmap_btree.h"
     29#include "xfs_refcount_btree.h"
     30
     31/*
     32 * Btree magic numbers.
     33 */
     34static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
     35	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
     36	  XFS_FIBT_MAGIC, 0 },
     37	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
     38	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
     39	  XFS_REFC_CRC_MAGIC }
     40};
     41
     42uint32_t
     43xfs_btree_magic(
     44	int			crc,
     45	xfs_btnum_t		btnum)
     46{
     47	uint32_t		magic = xfs_magics[crc][btnum];
     48
     49	/* Ensure we asked for crc for crc-only magics. */
     50	ASSERT(magic != 0);
     51	return magic;
     52}
     53
     54/*
     55 * These sibling pointer checks are optimised for null sibling pointers. This
     56 * happens a lot, and we don't need to byte swap at runtime if the sibling
     57 * pointer is NULL.
     58 *
     59 * These are explicitly marked at inline because the cost of calling them as
     60 * functions instead of inlining them is about 36 bytes extra code per call site
     61 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
     62 * two sibling check functions reduces the compiled code size by over 300
     63 * bytes.
     64 */
     65static inline xfs_failaddr_t
     66xfs_btree_check_lblock_siblings(
     67	struct xfs_mount	*mp,
     68	struct xfs_btree_cur	*cur,
     69	int			level,
     70	xfs_fsblock_t		fsb,
     71	__be64			dsibling)
     72{
     73	xfs_fsblock_t		sibling;
     74
     75	if (dsibling == cpu_to_be64(NULLFSBLOCK))
     76		return NULL;
     77
     78	sibling = be64_to_cpu(dsibling);
     79	if (sibling == fsb)
     80		return __this_address;
     81	if (level >= 0) {
     82		if (!xfs_btree_check_lptr(cur, sibling, level + 1))
     83			return __this_address;
     84	} else {
     85		if (!xfs_verify_fsbno(mp, sibling))
     86			return __this_address;
     87	}
     88
     89	return NULL;
     90}
     91
     92static inline xfs_failaddr_t
     93xfs_btree_check_sblock_siblings(
     94	struct xfs_mount	*mp,
     95	struct xfs_btree_cur	*cur,
     96	int			level,
     97	xfs_agnumber_t		agno,
     98	xfs_agblock_t		agbno,
     99	__be32			dsibling)
    100{
    101	xfs_agblock_t		sibling;
    102
    103	if (dsibling == cpu_to_be32(NULLAGBLOCK))
    104		return NULL;
    105
    106	sibling = be32_to_cpu(dsibling);
    107	if (sibling == agbno)
    108		return __this_address;
    109	if (level >= 0) {
    110		if (!xfs_btree_check_sptr(cur, sibling, level + 1))
    111			return __this_address;
    112	} else {
    113		if (!xfs_verify_agbno(mp, agno, sibling))
    114			return __this_address;
    115	}
    116	return NULL;
    117}
    118
    119/*
    120 * Check a long btree block header.  Return the address of the failing check,
    121 * or NULL if everything is ok.
    122 */
    123xfs_failaddr_t
    124__xfs_btree_check_lblock(
    125	struct xfs_btree_cur	*cur,
    126	struct xfs_btree_block	*block,
    127	int			level,
    128	struct xfs_buf		*bp)
    129{
    130	struct xfs_mount	*mp = cur->bc_mp;
    131	xfs_btnum_t		btnum = cur->bc_btnum;
    132	int			crc = xfs_has_crc(mp);
    133	xfs_failaddr_t		fa;
    134	xfs_fsblock_t		fsb = NULLFSBLOCK;
    135
    136	if (crc) {
    137		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
    138			return __this_address;
    139		if (block->bb_u.l.bb_blkno !=
    140		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
    141			return __this_address;
    142		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
    143			return __this_address;
    144	}
    145
    146	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
    147		return __this_address;
    148	if (be16_to_cpu(block->bb_level) != level)
    149		return __this_address;
    150	if (be16_to_cpu(block->bb_numrecs) >
    151	    cur->bc_ops->get_maxrecs(cur, level))
    152		return __this_address;
    153
    154	if (bp)
    155		fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
    156
    157	fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
    158			block->bb_u.l.bb_leftsib);
    159	if (!fa)
    160		fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
    161				block->bb_u.l.bb_rightsib);
    162	return fa;
    163}
    164
    165/* Check a long btree block header. */
    166static int
    167xfs_btree_check_lblock(
    168	struct xfs_btree_cur	*cur,
    169	struct xfs_btree_block	*block,
    170	int			level,
    171	struct xfs_buf		*bp)
    172{
    173	struct xfs_mount	*mp = cur->bc_mp;
    174	xfs_failaddr_t		fa;
    175
    176	fa = __xfs_btree_check_lblock(cur, block, level, bp);
    177	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
    178	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
    179		if (bp)
    180			trace_xfs_btree_corrupt(bp, _RET_IP_);
    181		return -EFSCORRUPTED;
    182	}
    183	return 0;
    184}
    185
    186/*
    187 * Check a short btree block header.  Return the address of the failing check,
    188 * or NULL if everything is ok.
    189 */
    190xfs_failaddr_t
    191__xfs_btree_check_sblock(
    192	struct xfs_btree_cur	*cur,
    193	struct xfs_btree_block	*block,
    194	int			level,
    195	struct xfs_buf		*bp)
    196{
    197	struct xfs_mount	*mp = cur->bc_mp;
    198	xfs_btnum_t		btnum = cur->bc_btnum;
    199	int			crc = xfs_has_crc(mp);
    200	xfs_failaddr_t		fa;
    201	xfs_agblock_t		agbno = NULLAGBLOCK;
    202	xfs_agnumber_t		agno = NULLAGNUMBER;
    203
    204	if (crc) {
    205		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
    206			return __this_address;
    207		if (block->bb_u.s.bb_blkno !=
    208		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
    209			return __this_address;
    210	}
    211
    212	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
    213		return __this_address;
    214	if (be16_to_cpu(block->bb_level) != level)
    215		return __this_address;
    216	if (be16_to_cpu(block->bb_numrecs) >
    217	    cur->bc_ops->get_maxrecs(cur, level))
    218		return __this_address;
    219
    220	if (bp) {
    221		agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
    222		agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
    223	}
    224
    225	fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno, agbno,
    226			block->bb_u.s.bb_leftsib);
    227	if (!fa)
    228		fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno,
    229				 agbno, block->bb_u.s.bb_rightsib);
    230	return fa;
    231}
    232
    233/* Check a short btree block header. */
    234STATIC int
    235xfs_btree_check_sblock(
    236	struct xfs_btree_cur	*cur,
    237	struct xfs_btree_block	*block,
    238	int			level,
    239	struct xfs_buf		*bp)
    240{
    241	struct xfs_mount	*mp = cur->bc_mp;
    242	xfs_failaddr_t		fa;
    243
    244	fa = __xfs_btree_check_sblock(cur, block, level, bp);
    245	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
    246	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
    247		if (bp)
    248			trace_xfs_btree_corrupt(bp, _RET_IP_);
    249		return -EFSCORRUPTED;
    250	}
    251	return 0;
    252}
    253
    254/*
    255 * Debug routine: check that block header is ok.
    256 */
    257int
    258xfs_btree_check_block(
    259	struct xfs_btree_cur	*cur,	/* btree cursor */
    260	struct xfs_btree_block	*block,	/* generic btree block pointer */
    261	int			level,	/* level of the btree block */
    262	struct xfs_buf		*bp)	/* buffer containing block, if any */
    263{
    264	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
    265		return xfs_btree_check_lblock(cur, block, level, bp);
    266	else
    267		return xfs_btree_check_sblock(cur, block, level, bp);
    268}
    269
    270/* Check that this long pointer is valid and points within the fs. */
    271bool
    272xfs_btree_check_lptr(
    273	struct xfs_btree_cur	*cur,
    274	xfs_fsblock_t		fsbno,
    275	int			level)
    276{
    277	if (level <= 0)
    278		return false;
    279	return xfs_verify_fsbno(cur->bc_mp, fsbno);
    280}
    281
    282/* Check that this short pointer is valid and points within the AG. */
    283bool
    284xfs_btree_check_sptr(
    285	struct xfs_btree_cur	*cur,
    286	xfs_agblock_t		agbno,
    287	int			level)
    288{
    289	if (level <= 0)
    290		return false;
    291	return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno);
    292}
    293
    294/*
    295 * Check that a given (indexed) btree pointer at a certain level of a
    296 * btree is valid and doesn't point past where it should.
    297 */
    298static int
    299xfs_btree_check_ptr(
    300	struct xfs_btree_cur		*cur,
    301	const union xfs_btree_ptr	*ptr,
    302	int				index,
    303	int				level)
    304{
    305	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
    306		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
    307				level))
    308			return 0;
    309		xfs_err(cur->bc_mp,
    310"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
    311				cur->bc_ino.ip->i_ino,
    312				cur->bc_ino.whichfork, cur->bc_btnum,
    313				level, index);
    314	} else {
    315		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
    316				level))
    317			return 0;
    318		xfs_err(cur->bc_mp,
    319"AG %u: Corrupt btree %d pointer at level %d index %d.",
    320				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
    321				level, index);
    322	}
    323
    324	return -EFSCORRUPTED;
    325}
    326
    327#ifdef DEBUG
    328# define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
    329#else
    330# define xfs_btree_debug_check_ptr(...)	(0)
    331#endif
    332
    333/*
    334 * Calculate CRC on the whole btree block and stuff it into the
    335 * long-form btree header.
    336 *
    337 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
    338 * it into the buffer so recovery knows what the last modification was that made
    339 * it to disk.
    340 */
    341void
    342xfs_btree_lblock_calc_crc(
    343	struct xfs_buf		*bp)
    344{
    345	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
    346	struct xfs_buf_log_item	*bip = bp->b_log_item;
    347
    348	if (!xfs_has_crc(bp->b_mount))
    349		return;
    350	if (bip)
    351		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
    352	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
    353}
    354
    355bool
    356xfs_btree_lblock_verify_crc(
    357	struct xfs_buf		*bp)
    358{
    359	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
    360	struct xfs_mount	*mp = bp->b_mount;
    361
    362	if (xfs_has_crc(mp)) {
    363		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
    364			return false;
    365		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
    366	}
    367
    368	return true;
    369}
    370
    371/*
    372 * Calculate CRC on the whole btree block and stuff it into the
    373 * short-form btree header.
    374 *
    375 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
    376 * it into the buffer so recovery knows what the last modification was that made
    377 * it to disk.
    378 */
    379void
    380xfs_btree_sblock_calc_crc(
    381	struct xfs_buf		*bp)
    382{
    383	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
    384	struct xfs_buf_log_item	*bip = bp->b_log_item;
    385
    386	if (!xfs_has_crc(bp->b_mount))
    387		return;
    388	if (bip)
    389		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
    390	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
    391}
    392
    393bool
    394xfs_btree_sblock_verify_crc(
    395	struct xfs_buf		*bp)
    396{
    397	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
    398	struct xfs_mount	*mp = bp->b_mount;
    399
    400	if (xfs_has_crc(mp)) {
    401		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
    402			return false;
    403		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
    404	}
    405
    406	return true;
    407}
    408
    409static int
    410xfs_btree_free_block(
    411	struct xfs_btree_cur	*cur,
    412	struct xfs_buf		*bp)
    413{
    414	int			error;
    415
    416	error = cur->bc_ops->free_block(cur, bp);
    417	if (!error) {
    418		xfs_trans_binval(cur->bc_tp, bp);
    419		XFS_BTREE_STATS_INC(cur, free);
    420	}
    421	return error;
    422}
    423
    424/*
    425 * Delete the btree cursor.
    426 */
    427void
    428xfs_btree_del_cursor(
    429	struct xfs_btree_cur	*cur,		/* btree cursor */
    430	int			error)		/* del because of error */
    431{
    432	int			i;		/* btree level */
    433
    434	/*
    435	 * Clear the buffer pointers and release the buffers. If we're doing
    436	 * this because of an error, inspect all of the entries in the bc_bufs
    437	 * array for buffers to be unlocked. This is because some of the btree
    438	 * code works from level n down to 0, and if we get an error along the
    439	 * way we won't have initialized all the entries down to 0.
    440	 */
    441	for (i = 0; i < cur->bc_nlevels; i++) {
    442		if (cur->bc_levels[i].bp)
    443			xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
    444		else if (!error)
    445			break;
    446	}
    447
    448	/*
    449	 * If we are doing a BMBT update, the number of unaccounted blocks
    450	 * allocated during this cursor life time should be zero. If it's not
    451	 * zero, then we should be shut down or on our way to shutdown due to
    452	 * cancelling a dirty transaction on error.
    453	 */
    454	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
    455	       xfs_is_shutdown(cur->bc_mp) || error != 0);
    456	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
    457		kmem_free(cur->bc_ops);
    458	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
    459		xfs_perag_put(cur->bc_ag.pag);
    460	kmem_cache_free(cur->bc_cache, cur);
    461}
    462
    463/*
    464 * Duplicate the btree cursor.
    465 * Allocate a new one, copy the record, re-get the buffers.
    466 */
    467int					/* error */
    468xfs_btree_dup_cursor(
    469	struct xfs_btree_cur *cur,		/* input cursor */
    470	struct xfs_btree_cur **ncur)		/* output cursor */
    471{
    472	struct xfs_buf	*bp;		/* btree block's buffer pointer */
    473	int		error;		/* error return value */
    474	int		i;		/* level number of btree block */
    475	xfs_mount_t	*mp;		/* mount structure for filesystem */
    476	struct xfs_btree_cur *new;		/* new cursor value */
    477	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
    478
    479	tp = cur->bc_tp;
    480	mp = cur->bc_mp;
    481
    482	/*
    483	 * Allocate a new cursor like the old one.
    484	 */
    485	new = cur->bc_ops->dup_cursor(cur);
    486
    487	/*
    488	 * Copy the record currently in the cursor.
    489	 */
    490	new->bc_rec = cur->bc_rec;
    491
    492	/*
    493	 * For each level current, re-get the buffer and copy the ptr value.
    494	 */
    495	for (i = 0; i < new->bc_nlevels; i++) {
    496		new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
    497		new->bc_levels[i].ra = cur->bc_levels[i].ra;
    498		bp = cur->bc_levels[i].bp;
    499		if (bp) {
    500			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
    501						   xfs_buf_daddr(bp), mp->m_bsize,
    502						   0, &bp,
    503						   cur->bc_ops->buf_ops);
    504			if (error) {
    505				xfs_btree_del_cursor(new, error);
    506				*ncur = NULL;
    507				return error;
    508			}
    509		}
    510		new->bc_levels[i].bp = bp;
    511	}
    512	*ncur = new;
    513	return 0;
    514}
    515
    516/*
    517 * XFS btree block layout and addressing:
    518 *
    519 * There are two types of blocks in the btree: leaf and non-leaf blocks.
    520 *
    521 * The leaf record start with a header then followed by records containing
    522 * the values.  A non-leaf block also starts with the same header, and
    523 * then first contains lookup keys followed by an equal number of pointers
    524 * to the btree blocks at the previous level.
    525 *
    526 *		+--------+-------+-------+-------+-------+-------+-------+
    527 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
    528 *		+--------+-------+-------+-------+-------+-------+-------+
    529 *
    530 *		+--------+-------+-------+-------+-------+-------+-------+
    531 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
    532 *		+--------+-------+-------+-------+-------+-------+-------+
    533 *
    534 * The header is called struct xfs_btree_block for reasons better left unknown
    535 * and comes in different versions for short (32bit) and long (64bit) block
    536 * pointers.  The record and key structures are defined by the btree instances
    537 * and opaque to the btree core.  The block pointers are simple disk endian
    538 * integers, available in a short (32bit) and long (64bit) variant.
    539 *
    540 * The helpers below calculate the offset of a given record, key or pointer
    541 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
    542 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
    543 * inside the btree block is done using indices starting at one, not zero!
    544 *
    545 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
    546 * overlapping intervals.  In such a tree, records are still sorted lowest to
    547 * highest and indexed by the smallest key value that refers to the record.
    548 * However, nodes are different: each pointer has two associated keys -- one
    549 * indexing the lowest key available in the block(s) below (the same behavior
    550 * as the key in a regular btree) and another indexing the highest key
    551 * available in the block(s) below.  Because records are /not/ sorted by the
    552 * highest key, all leaf block updates require us to compute the highest key
    553 * that matches any record in the leaf and to recursively update the high keys
    554 * in the nodes going further up in the tree, if necessary.  Nodes look like
    555 * this:
    556 *
    557 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
    558 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
    559 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
    560 *
    561 * To perform an interval query on an overlapped tree, perform the usual
    562 * depth-first search and use the low and high keys to decide if we can skip
    563 * that particular node.  If a leaf node is reached, return the records that
    564 * intersect the interval.  Note that an interval query may return numerous
    565 * entries.  For a non-overlapped tree, simply search for the record associated
    566 * with the lowest key and iterate forward until a non-matching record is
    567 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
    568 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
    569 * more detail.
    570 *
    571 * Why do we care about overlapping intervals?  Let's say you have a bunch of
    572 * reverse mapping records on a reflink filesystem:
    573 *
    574 * 1: +- file A startblock B offset C length D -----------+
    575 * 2:      +- file E startblock F offset G length H --------------+
    576 * 3:      +- file I startblock F offset J length K --+
    577 * 4:                                                        +- file L... --+
    578 *
    579 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
    580 * we'd simply increment the length of record 1.  But how do we find the record
    581 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
    582 * record 3 because the keys are ordered first by startblock.  An interval
    583 * query would return records 1 and 2 because they both overlap (B+D-1), and
    584 * from that we can pick out record 1 as the appropriate left neighbor.
    585 *
    586 * In the non-overlapped case you can do a LE lookup and decrement the cursor
    587 * because a record's interval must end before the next record.
    588 */
    589
    590/*
    591 * Return size of the btree block header for this btree instance.
    592 */
    593static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
    594{
    595	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
    596		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
    597			return XFS_BTREE_LBLOCK_CRC_LEN;
    598		return XFS_BTREE_LBLOCK_LEN;
    599	}
    600	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
    601		return XFS_BTREE_SBLOCK_CRC_LEN;
    602	return XFS_BTREE_SBLOCK_LEN;
    603}
    604
    605/*
    606 * Return size of btree block pointers for this btree instance.
    607 */
    608static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
    609{
    610	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
    611		sizeof(__be64) : sizeof(__be32);
    612}
    613
    614/*
    615 * Calculate offset of the n-th record in a btree block.
    616 */
    617STATIC size_t
    618xfs_btree_rec_offset(
    619	struct xfs_btree_cur	*cur,
    620	int			n)
    621{
    622	return xfs_btree_block_len(cur) +
    623		(n - 1) * cur->bc_ops->rec_len;
    624}
    625
    626/*
    627 * Calculate offset of the n-th key in a btree block.
    628 */
    629STATIC size_t
    630xfs_btree_key_offset(
    631	struct xfs_btree_cur	*cur,
    632	int			n)
    633{
    634	return xfs_btree_block_len(cur) +
    635		(n - 1) * cur->bc_ops->key_len;
    636}
    637
    638/*
    639 * Calculate offset of the n-th high key in a btree block.
    640 */
    641STATIC size_t
    642xfs_btree_high_key_offset(
    643	struct xfs_btree_cur	*cur,
    644	int			n)
    645{
    646	return xfs_btree_block_len(cur) +
    647		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
    648}
    649
    650/*
    651 * Calculate offset of the n-th block pointer in a btree block.
    652 */
    653STATIC size_t
    654xfs_btree_ptr_offset(
    655	struct xfs_btree_cur	*cur,
    656	int			n,
    657	int			level)
    658{
    659	return xfs_btree_block_len(cur) +
    660		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
    661		(n - 1) * xfs_btree_ptr_len(cur);
    662}
    663
    664/*
    665 * Return a pointer to the n-th record in the btree block.
    666 */
    667union xfs_btree_rec *
    668xfs_btree_rec_addr(
    669	struct xfs_btree_cur	*cur,
    670	int			n,
    671	struct xfs_btree_block	*block)
    672{
    673	return (union xfs_btree_rec *)
    674		((char *)block + xfs_btree_rec_offset(cur, n));
    675}
    676
    677/*
    678 * Return a pointer to the n-th key in the btree block.
    679 */
    680union xfs_btree_key *
    681xfs_btree_key_addr(
    682	struct xfs_btree_cur	*cur,
    683	int			n,
    684	struct xfs_btree_block	*block)
    685{
    686	return (union xfs_btree_key *)
    687		((char *)block + xfs_btree_key_offset(cur, n));
    688}
    689
    690/*
    691 * Return a pointer to the n-th high key in the btree block.
    692 */
    693union xfs_btree_key *
    694xfs_btree_high_key_addr(
    695	struct xfs_btree_cur	*cur,
    696	int			n,
    697	struct xfs_btree_block	*block)
    698{
    699	return (union xfs_btree_key *)
    700		((char *)block + xfs_btree_high_key_offset(cur, n));
    701}
    702
    703/*
    704 * Return a pointer to the n-th block pointer in the btree block.
    705 */
    706union xfs_btree_ptr *
    707xfs_btree_ptr_addr(
    708	struct xfs_btree_cur	*cur,
    709	int			n,
    710	struct xfs_btree_block	*block)
    711{
    712	int			level = xfs_btree_get_level(block);
    713
    714	ASSERT(block->bb_level != 0);
    715
    716	return (union xfs_btree_ptr *)
    717		((char *)block + xfs_btree_ptr_offset(cur, n, level));
    718}
    719
    720struct xfs_ifork *
    721xfs_btree_ifork_ptr(
    722	struct xfs_btree_cur	*cur)
    723{
    724	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
    725
    726	if (cur->bc_flags & XFS_BTREE_STAGING)
    727		return cur->bc_ino.ifake->if_fork;
    728	return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
    729}
    730
    731/*
    732 * Get the root block which is stored in the inode.
    733 *
    734 * For now this btree implementation assumes the btree root is always
    735 * stored in the if_broot field of an inode fork.
    736 */
    737STATIC struct xfs_btree_block *
    738xfs_btree_get_iroot(
    739	struct xfs_btree_cur	*cur)
    740{
    741	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
    742
    743	return (struct xfs_btree_block *)ifp->if_broot;
    744}
    745
    746/*
    747 * Retrieve the block pointer from the cursor at the given level.
    748 * This may be an inode btree root or from a buffer.
    749 */
    750struct xfs_btree_block *		/* generic btree block pointer */
    751xfs_btree_get_block(
    752	struct xfs_btree_cur	*cur,	/* btree cursor */
    753	int			level,	/* level in btree */
    754	struct xfs_buf		**bpp)	/* buffer containing the block */
    755{
    756	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
    757	    (level == cur->bc_nlevels - 1)) {
    758		*bpp = NULL;
    759		return xfs_btree_get_iroot(cur);
    760	}
    761
    762	*bpp = cur->bc_levels[level].bp;
    763	return XFS_BUF_TO_BLOCK(*bpp);
    764}
    765
    766/*
    767 * Change the cursor to point to the first record at the given level.
    768 * Other levels are unaffected.
    769 */
    770STATIC int				/* success=1, failure=0 */
    771xfs_btree_firstrec(
    772	struct xfs_btree_cur	*cur,	/* btree cursor */
    773	int			level)	/* level to change */
    774{
    775	struct xfs_btree_block	*block;	/* generic btree block pointer */
    776	struct xfs_buf		*bp;	/* buffer containing block */
    777
    778	/*
    779	 * Get the block pointer for this level.
    780	 */
    781	block = xfs_btree_get_block(cur, level, &bp);
    782	if (xfs_btree_check_block(cur, block, level, bp))
    783		return 0;
    784	/*
    785	 * It's empty, there is no such record.
    786	 */
    787	if (!block->bb_numrecs)
    788		return 0;
    789	/*
    790	 * Set the ptr value to 1, that's the first record/key.
    791	 */
    792	cur->bc_levels[level].ptr = 1;
    793	return 1;
    794}
    795
    796/*
    797 * Change the cursor to point to the last record in the current block
    798 * at the given level.  Other levels are unaffected.
    799 */
    800STATIC int				/* success=1, failure=0 */
    801xfs_btree_lastrec(
    802	struct xfs_btree_cur	*cur,	/* btree cursor */
    803	int			level)	/* level to change */
    804{
    805	struct xfs_btree_block	*block;	/* generic btree block pointer */
    806	struct xfs_buf		*bp;	/* buffer containing block */
    807
    808	/*
    809	 * Get the block pointer for this level.
    810	 */
    811	block = xfs_btree_get_block(cur, level, &bp);
    812	if (xfs_btree_check_block(cur, block, level, bp))
    813		return 0;
    814	/*
    815	 * It's empty, there is no such record.
    816	 */
    817	if (!block->bb_numrecs)
    818		return 0;
    819	/*
    820	 * Set the ptr value to numrecs, that's the last record/key.
    821	 */
    822	cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
    823	return 1;
    824}
    825
    826/*
    827 * Compute first and last byte offsets for the fields given.
    828 * Interprets the offsets table, which contains struct field offsets.
    829 */
    830void
    831xfs_btree_offsets(
    832	uint32_t	fields,		/* bitmask of fields */
    833	const short	*offsets,	/* table of field offsets */
    834	int		nbits,		/* number of bits to inspect */
    835	int		*first,		/* output: first byte offset */
    836	int		*last)		/* output: last byte offset */
    837{
    838	int		i;		/* current bit number */
    839	uint32_t	imask;		/* mask for current bit number */
    840
    841	ASSERT(fields != 0);
    842	/*
    843	 * Find the lowest bit, so the first byte offset.
    844	 */
    845	for (i = 0, imask = 1u; ; i++, imask <<= 1) {
    846		if (imask & fields) {
    847			*first = offsets[i];
    848			break;
    849		}
    850	}
    851	/*
    852	 * Find the highest bit, so the last byte offset.
    853	 */
    854	for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
    855		if (imask & fields) {
    856			*last = offsets[i + 1] - 1;
    857			break;
    858		}
    859	}
    860}
    861
    862/*
    863 * Get a buffer for the block, return it read in.
    864 * Long-form addressing.
    865 */
    866int
    867xfs_btree_read_bufl(
    868	struct xfs_mount	*mp,		/* file system mount point */
    869	struct xfs_trans	*tp,		/* transaction pointer */
    870	xfs_fsblock_t		fsbno,		/* file system block number */
    871	struct xfs_buf		**bpp,		/* buffer for fsbno */
    872	int			refval,		/* ref count value for buffer */
    873	const struct xfs_buf_ops *ops)
    874{
    875	struct xfs_buf		*bp;		/* return value */
    876	xfs_daddr_t		d;		/* real disk block address */
    877	int			error;
    878
    879	if (!xfs_verify_fsbno(mp, fsbno))
    880		return -EFSCORRUPTED;
    881	d = XFS_FSB_TO_DADDR(mp, fsbno);
    882	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
    883				   mp->m_bsize, 0, &bp, ops);
    884	if (error)
    885		return error;
    886	if (bp)
    887		xfs_buf_set_ref(bp, refval);
    888	*bpp = bp;
    889	return 0;
    890}
    891
    892/*
    893 * Read-ahead the block, don't wait for it, don't return a buffer.
    894 * Long-form addressing.
    895 */
    896/* ARGSUSED */
    897void
    898xfs_btree_reada_bufl(
    899	struct xfs_mount	*mp,		/* file system mount point */
    900	xfs_fsblock_t		fsbno,		/* file system block number */
    901	xfs_extlen_t		count,		/* count of filesystem blocks */
    902	const struct xfs_buf_ops *ops)
    903{
    904	xfs_daddr_t		d;
    905
    906	ASSERT(fsbno != NULLFSBLOCK);
    907	d = XFS_FSB_TO_DADDR(mp, fsbno);
    908	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
    909}
    910
    911/*
    912 * Read-ahead the block, don't wait for it, don't return a buffer.
    913 * Short-form addressing.
    914 */
    915/* ARGSUSED */
    916void
    917xfs_btree_reada_bufs(
    918	struct xfs_mount	*mp,		/* file system mount point */
    919	xfs_agnumber_t		agno,		/* allocation group number */
    920	xfs_agblock_t		agbno,		/* allocation group block number */
    921	xfs_extlen_t		count,		/* count of filesystem blocks */
    922	const struct xfs_buf_ops *ops)
    923{
    924	xfs_daddr_t		d;
    925
    926	ASSERT(agno != NULLAGNUMBER);
    927	ASSERT(agbno != NULLAGBLOCK);
    928	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
    929	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
    930}
    931
    932STATIC int
    933xfs_btree_readahead_lblock(
    934	struct xfs_btree_cur	*cur,
    935	int			lr,
    936	struct xfs_btree_block	*block)
    937{
    938	int			rval = 0;
    939	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
    940	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
    941
    942	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
    943		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
    944				     cur->bc_ops->buf_ops);
    945		rval++;
    946	}
    947
    948	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
    949		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
    950				     cur->bc_ops->buf_ops);
    951		rval++;
    952	}
    953
    954	return rval;
    955}
    956
    957STATIC int
    958xfs_btree_readahead_sblock(
    959	struct xfs_btree_cur	*cur,
    960	int			lr,
    961	struct xfs_btree_block *block)
    962{
    963	int			rval = 0;
    964	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
    965	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
    966
    967
    968	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
    969		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
    970				     left, 1, cur->bc_ops->buf_ops);
    971		rval++;
    972	}
    973
    974	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
    975		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
    976				     right, 1, cur->bc_ops->buf_ops);
    977		rval++;
    978	}
    979
    980	return rval;
    981}
    982
    983/*
    984 * Read-ahead btree blocks, at the given level.
    985 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
    986 */
    987STATIC int
    988xfs_btree_readahead(
    989	struct xfs_btree_cur	*cur,		/* btree cursor */
    990	int			lev,		/* level in btree */
    991	int			lr)		/* left/right bits */
    992{
    993	struct xfs_btree_block	*block;
    994
    995	/*
    996	 * No readahead needed if we are at the root level and the
    997	 * btree root is stored in the inode.
    998	 */
    999	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
   1000	    (lev == cur->bc_nlevels - 1))
   1001		return 0;
   1002
   1003	if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
   1004		return 0;
   1005
   1006	cur->bc_levels[lev].ra |= lr;
   1007	block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
   1008
   1009	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
   1010		return xfs_btree_readahead_lblock(cur, lr, block);
   1011	return xfs_btree_readahead_sblock(cur, lr, block);
   1012}
   1013
   1014STATIC int
   1015xfs_btree_ptr_to_daddr(
   1016	struct xfs_btree_cur		*cur,
   1017	const union xfs_btree_ptr	*ptr,
   1018	xfs_daddr_t			*daddr)
   1019{
   1020	xfs_fsblock_t		fsbno;
   1021	xfs_agblock_t		agbno;
   1022	int			error;
   1023
   1024	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
   1025	if (error)
   1026		return error;
   1027
   1028	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
   1029		fsbno = be64_to_cpu(ptr->l);
   1030		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
   1031	} else {
   1032		agbno = be32_to_cpu(ptr->s);
   1033		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
   1034				agbno);
   1035	}
   1036
   1037	return 0;
   1038}
   1039
   1040/*
   1041 * Readahead @count btree blocks at the given @ptr location.
   1042 *
   1043 * We don't need to care about long or short form btrees here as we have a
   1044 * method of converting the ptr directly to a daddr available to us.
   1045 */
   1046STATIC void
   1047xfs_btree_readahead_ptr(
   1048	struct xfs_btree_cur	*cur,
   1049	union xfs_btree_ptr	*ptr,
   1050	xfs_extlen_t		count)
   1051{
   1052	xfs_daddr_t		daddr;
   1053
   1054	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
   1055		return;
   1056	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
   1057			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
   1058}
   1059
   1060/*
   1061 * Set the buffer for level "lev" in the cursor to bp, releasing
   1062 * any previous buffer.
   1063 */
   1064STATIC void
   1065xfs_btree_setbuf(
   1066	struct xfs_btree_cur	*cur,	/* btree cursor */
   1067	int			lev,	/* level in btree */
   1068	struct xfs_buf		*bp)	/* new buffer to set */
   1069{
   1070	struct xfs_btree_block	*b;	/* btree block */
   1071
   1072	if (cur->bc_levels[lev].bp)
   1073		xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
   1074	cur->bc_levels[lev].bp = bp;
   1075	cur->bc_levels[lev].ra = 0;
   1076
   1077	b = XFS_BUF_TO_BLOCK(bp);
   1078	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
   1079		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
   1080			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
   1081		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
   1082			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
   1083	} else {
   1084		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
   1085			cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
   1086		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
   1087			cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
   1088	}
   1089}
   1090
   1091bool
   1092xfs_btree_ptr_is_null(
   1093	struct xfs_btree_cur		*cur,
   1094	const union xfs_btree_ptr	*ptr)
   1095{
   1096	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
   1097		return ptr->l == cpu_to_be64(NULLFSBLOCK);
   1098	else
   1099		return ptr->s == cpu_to_be32(NULLAGBLOCK);
   1100}
   1101
   1102void
   1103xfs_btree_set_ptr_null(
   1104	struct xfs_btree_cur	*cur,
   1105	union xfs_btree_ptr	*ptr)
   1106{
   1107	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
   1108		ptr->l = cpu_to_be64(NULLFSBLOCK);
   1109	else
   1110		ptr->s = cpu_to_be32(NULLAGBLOCK);
   1111}
   1112
   1113/*
   1114 * Get/set/init sibling pointers
   1115 */
   1116void
   1117xfs_btree_get_sibling(
   1118	struct xfs_btree_cur	*cur,
   1119	struct xfs_btree_block	*block,
   1120	union xfs_btree_ptr	*ptr,
   1121	int			lr)
   1122{
   1123	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
   1124
   1125	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
   1126		if (lr == XFS_BB_RIGHTSIB)
   1127			ptr->l = block->bb_u.l.bb_rightsib;
   1128		else
   1129			ptr->l = block->bb_u.l.bb_leftsib;
   1130	} else {
   1131		if (lr == XFS_BB_RIGHTSIB)
   1132			ptr->s = block->bb_u.s.bb_rightsib;
   1133		else
   1134			ptr->s = block->bb_u.s.bb_leftsib;
   1135	}
   1136}
   1137
   1138void
   1139xfs_btree_set_sibling(
   1140	struct xfs_btree_cur		*cur,
   1141	struct xfs_btree_block		*block,
   1142	const union xfs_btree_ptr	*ptr,
   1143	int				lr)
   1144{
   1145	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
   1146
   1147	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
   1148		if (lr == XFS_BB_RIGHTSIB)
   1149			block->bb_u.l.bb_rightsib = ptr->l;
   1150		else
   1151			block->bb_u.l.bb_leftsib = ptr->l;
   1152	} else {
   1153		if (lr == XFS_BB_RIGHTSIB)
   1154			block->bb_u.s.bb_rightsib = ptr->s;
   1155		else
   1156			block->bb_u.s.bb_leftsib = ptr->s;
   1157	}
   1158}
   1159
   1160void
   1161xfs_btree_init_block_int(
   1162	struct xfs_mount	*mp,
   1163	struct xfs_btree_block	*buf,
   1164	xfs_daddr_t		blkno,
   1165	xfs_btnum_t		btnum,
   1166	__u16			level,
   1167	__u16			numrecs,
   1168	__u64			owner,
   1169	unsigned int		flags)
   1170{
   1171	int			crc = xfs_has_crc(mp);
   1172	__u32			magic = xfs_btree_magic(crc, btnum);
   1173
   1174	buf->bb_magic = cpu_to_be32(magic);
   1175	buf->bb_level = cpu_to_be16(level);
   1176	buf->bb_numrecs = cpu_to_be16(numrecs);
   1177
   1178	if (flags & XFS_BTREE_LONG_PTRS) {
   1179		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
   1180		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
   1181		if (crc) {
   1182			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
   1183			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
   1184			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
   1185			buf->bb_u.l.bb_pad = 0;
   1186			buf->bb_u.l.bb_lsn = 0;
   1187		}
   1188	} else {
   1189		/* owner is a 32 bit value on short blocks */
   1190		__u32 __owner = (__u32)owner;
   1191
   1192		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
   1193		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
   1194		if (crc) {
   1195			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
   1196			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
   1197			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
   1198			buf->bb_u.s.bb_lsn = 0;
   1199		}
   1200	}
   1201}
   1202
   1203void
   1204xfs_btree_init_block(
   1205	struct xfs_mount *mp,
   1206	struct xfs_buf	*bp,
   1207	xfs_btnum_t	btnum,
   1208	__u16		level,
   1209	__u16		numrecs,
   1210	__u64		owner)
   1211{
   1212	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
   1213				 btnum, level, numrecs, owner, 0);
   1214}
   1215
   1216void
   1217xfs_btree_init_block_cur(
   1218	struct xfs_btree_cur	*cur,
   1219	struct xfs_buf		*bp,
   1220	int			level,
   1221	int			numrecs)
   1222{
   1223	__u64			owner;
   1224
   1225	/*
   1226	 * we can pull the owner from the cursor right now as the different
   1227	 * owners align directly with the pointer size of the btree. This may
   1228	 * change in future, but is safe for current users of the generic btree
   1229	 * code.
   1230	 */
   1231	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
   1232		owner = cur->bc_ino.ip->i_ino;
   1233	else
   1234		owner = cur->bc_ag.pag->pag_agno;
   1235
   1236	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
   1237				xfs_buf_daddr(bp), cur->bc_btnum, level,
   1238				numrecs, owner, cur->bc_flags);
   1239}
   1240
   1241/*
   1242 * Return true if ptr is the last record in the btree and
   1243 * we need to track updates to this record.  The decision
   1244 * will be further refined in the update_lastrec method.
   1245 */
   1246STATIC int
   1247xfs_btree_is_lastrec(
   1248	struct xfs_btree_cur	*cur,
   1249	struct xfs_btree_block	*block,
   1250	int			level)
   1251{
   1252	union xfs_btree_ptr	ptr;
   1253
   1254	if (level > 0)
   1255		return 0;
   1256	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
   1257		return 0;
   1258
   1259	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
   1260	if (!xfs_btree_ptr_is_null(cur, &ptr))
   1261		return 0;
   1262	return 1;
   1263}
   1264
   1265STATIC void
   1266xfs_btree_buf_to_ptr(
   1267	struct xfs_btree_cur	*cur,
   1268	struct xfs_buf		*bp,
   1269	union xfs_btree_ptr	*ptr)
   1270{
   1271	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
   1272		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
   1273					xfs_buf_daddr(bp)));
   1274	else {
   1275		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
   1276					xfs_buf_daddr(bp)));
   1277	}
   1278}
   1279
   1280STATIC void
   1281xfs_btree_set_refs(
   1282	struct xfs_btree_cur	*cur,
   1283	struct xfs_buf		*bp)
   1284{
   1285	switch (cur->bc_btnum) {
   1286	case XFS_BTNUM_BNO:
   1287	case XFS_BTNUM_CNT:
   1288		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
   1289		break;
   1290	case XFS_BTNUM_INO:
   1291	case XFS_BTNUM_FINO:
   1292		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
   1293		break;
   1294	case XFS_BTNUM_BMAP:
   1295		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
   1296		break;
   1297	case XFS_BTNUM_RMAP:
   1298		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
   1299		break;
   1300	case XFS_BTNUM_REFC:
   1301		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
   1302		break;
   1303	default:
   1304		ASSERT(0);
   1305	}
   1306}
   1307
   1308int
   1309xfs_btree_get_buf_block(
   1310	struct xfs_btree_cur		*cur,
   1311	const union xfs_btree_ptr	*ptr,
   1312	struct xfs_btree_block		**block,
   1313	struct xfs_buf			**bpp)
   1314{
   1315	struct xfs_mount	*mp = cur->bc_mp;
   1316	xfs_daddr_t		d;
   1317	int			error;
   1318
   1319	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
   1320	if (error)
   1321		return error;
   1322	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
   1323			0, bpp);
   1324	if (error)
   1325		return error;
   1326
   1327	(*bpp)->b_ops = cur->bc_ops->buf_ops;
   1328	*block = XFS_BUF_TO_BLOCK(*bpp);
   1329	return 0;
   1330}
   1331
   1332/*
   1333 * Read in the buffer at the given ptr and return the buffer and
   1334 * the block pointer within the buffer.
   1335 */
   1336STATIC int
   1337xfs_btree_read_buf_block(
   1338	struct xfs_btree_cur		*cur,
   1339	const union xfs_btree_ptr	*ptr,
   1340	int				flags,
   1341	struct xfs_btree_block		**block,
   1342	struct xfs_buf			**bpp)
   1343{
   1344	struct xfs_mount	*mp = cur->bc_mp;
   1345	xfs_daddr_t		d;
   1346	int			error;
   1347
   1348	/* need to sort out how callers deal with failures first */
   1349	ASSERT(!(flags & XBF_TRYLOCK));
   1350
   1351	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
   1352	if (error)
   1353		return error;
   1354	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
   1355				   mp->m_bsize, flags, bpp,
   1356				   cur->bc_ops->buf_ops);
   1357	if (error)
   1358		return error;
   1359
   1360	xfs_btree_set_refs(cur, *bpp);
   1361	*block = XFS_BUF_TO_BLOCK(*bpp);
   1362	return 0;
   1363}
   1364
   1365/*
   1366 * Copy keys from one btree block to another.
   1367 */
   1368void
   1369xfs_btree_copy_keys(
   1370	struct xfs_btree_cur		*cur,
   1371	union xfs_btree_key		*dst_key,
   1372	const union xfs_btree_key	*src_key,
   1373	int				numkeys)
   1374{
   1375	ASSERT(numkeys >= 0);
   1376	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
   1377}
   1378
   1379/*
   1380 * Copy records from one btree block to another.
   1381 */
   1382STATIC void
   1383xfs_btree_copy_recs(
   1384	struct xfs_btree_cur	*cur,
   1385	union xfs_btree_rec	*dst_rec,
   1386	union xfs_btree_rec	*src_rec,
   1387	int			numrecs)
   1388{
   1389	ASSERT(numrecs >= 0);
   1390	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
   1391}
   1392
   1393/*
   1394 * Copy block pointers from one btree block to another.
   1395 */
   1396void
   1397xfs_btree_copy_ptrs(
   1398	struct xfs_btree_cur	*cur,
   1399	union xfs_btree_ptr	*dst_ptr,
   1400	const union xfs_btree_ptr *src_ptr,
   1401	int			numptrs)
   1402{
   1403	ASSERT(numptrs >= 0);
   1404	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
   1405}
   1406
   1407/*
   1408 * Shift keys one index left/right inside a single btree block.
   1409 */
   1410STATIC void
   1411xfs_btree_shift_keys(
   1412	struct xfs_btree_cur	*cur,
   1413	union xfs_btree_key	*key,
   1414	int			dir,
   1415	int			numkeys)
   1416{
   1417	char			*dst_key;
   1418
   1419	ASSERT(numkeys >= 0);
   1420	ASSERT(dir == 1 || dir == -1);
   1421
   1422	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
   1423	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
   1424}
   1425
   1426/*
   1427 * Shift records one index left/right inside a single btree block.
   1428 */
   1429STATIC void
   1430xfs_btree_shift_recs(
   1431	struct xfs_btree_cur	*cur,
   1432	union xfs_btree_rec	*rec,
   1433	int			dir,
   1434	int			numrecs)
   1435{
   1436	char			*dst_rec;
   1437
   1438	ASSERT(numrecs >= 0);
   1439	ASSERT(dir == 1 || dir == -1);
   1440
   1441	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
   1442	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
   1443}
   1444
   1445/*
   1446 * Shift block pointers one index left/right inside a single btree block.
   1447 */
   1448STATIC void
   1449xfs_btree_shift_ptrs(
   1450	struct xfs_btree_cur	*cur,
   1451	union xfs_btree_ptr	*ptr,
   1452	int			dir,
   1453	int			numptrs)
   1454{
   1455	char			*dst_ptr;
   1456
   1457	ASSERT(numptrs >= 0);
   1458	ASSERT(dir == 1 || dir == -1);
   1459
   1460	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
   1461	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
   1462}
   1463
   1464/*
   1465 * Log key values from the btree block.
   1466 */
   1467STATIC void
   1468xfs_btree_log_keys(
   1469	struct xfs_btree_cur	*cur,
   1470	struct xfs_buf		*bp,
   1471	int			first,
   1472	int			last)
   1473{
   1474
   1475	if (bp) {
   1476		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
   1477		xfs_trans_log_buf(cur->bc_tp, bp,
   1478				  xfs_btree_key_offset(cur, first),
   1479				  xfs_btree_key_offset(cur, last + 1) - 1);
   1480	} else {
   1481		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
   1482				xfs_ilog_fbroot(cur->bc_ino.whichfork));
   1483	}
   1484}
   1485
   1486/*
   1487 * Log record values from the btree block.
   1488 */
   1489void
   1490xfs_btree_log_recs(
   1491	struct xfs_btree_cur	*cur,
   1492	struct xfs_buf		*bp,
   1493	int			first,
   1494	int			last)
   1495{
   1496
   1497	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
   1498	xfs_trans_log_buf(cur->bc_tp, bp,
   1499			  xfs_btree_rec_offset(cur, first),
   1500			  xfs_btree_rec_offset(cur, last + 1) - 1);
   1501
   1502}
   1503
   1504/*
   1505 * Log block pointer fields from a btree block (nonleaf).
   1506 */
   1507STATIC void
   1508xfs_btree_log_ptrs(
   1509	struct xfs_btree_cur	*cur,	/* btree cursor */
   1510	struct xfs_buf		*bp,	/* buffer containing btree block */
   1511	int			first,	/* index of first pointer to log */
   1512	int			last)	/* index of last pointer to log */
   1513{
   1514
   1515	if (bp) {
   1516		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
   1517		int			level = xfs_btree_get_level(block);
   1518
   1519		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
   1520		xfs_trans_log_buf(cur->bc_tp, bp,
   1521				xfs_btree_ptr_offset(cur, first, level),
   1522				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
   1523	} else {
   1524		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
   1525			xfs_ilog_fbroot(cur->bc_ino.whichfork));
   1526	}
   1527
   1528}
   1529
   1530/*
   1531 * Log fields from a btree block header.
   1532 */
   1533void
   1534xfs_btree_log_block(
   1535	struct xfs_btree_cur	*cur,	/* btree cursor */
   1536	struct xfs_buf		*bp,	/* buffer containing btree block */
   1537	uint32_t		fields)	/* mask of fields: XFS_BB_... */
   1538{
   1539	int			first;	/* first byte offset logged */
   1540	int			last;	/* last byte offset logged */
   1541	static const short	soffsets[] = {	/* table of offsets (short) */
   1542		offsetof(struct xfs_btree_block, bb_magic),
   1543		offsetof(struct xfs_btree_block, bb_level),
   1544		offsetof(struct xfs_btree_block, bb_numrecs),
   1545		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
   1546		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
   1547		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
   1548		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
   1549		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
   1550		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
   1551		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
   1552		XFS_BTREE_SBLOCK_CRC_LEN
   1553	};
   1554	static const short	loffsets[] = {	/* table of offsets (long) */
   1555		offsetof(struct xfs_btree_block, bb_magic),
   1556		offsetof(struct xfs_btree_block, bb_level),
   1557		offsetof(struct xfs_btree_block, bb_numrecs),
   1558		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
   1559		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
   1560		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
   1561		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
   1562		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
   1563		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
   1564		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
   1565		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
   1566		XFS_BTREE_LBLOCK_CRC_LEN
   1567	};
   1568
   1569	if (bp) {
   1570		int nbits;
   1571
   1572		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
   1573			/*
   1574			 * We don't log the CRC when updating a btree
   1575			 * block but instead recreate it during log
   1576			 * recovery.  As the log buffers have checksums
   1577			 * of their own this is safe and avoids logging a crc
   1578			 * update in a lot of places.
   1579			 */
   1580			if (fields == XFS_BB_ALL_BITS)
   1581				fields = XFS_BB_ALL_BITS_CRC;
   1582			nbits = XFS_BB_NUM_BITS_CRC;
   1583		} else {
   1584			nbits = XFS_BB_NUM_BITS;
   1585		}
   1586		xfs_btree_offsets(fields,
   1587				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
   1588					loffsets : soffsets,
   1589				  nbits, &first, &last);
   1590		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
   1591		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
   1592	} else {
   1593		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
   1594			xfs_ilog_fbroot(cur->bc_ino.whichfork));
   1595	}
   1596}
   1597
   1598/*
   1599 * Increment cursor by one record at the level.
   1600 * For nonzero levels the leaf-ward information is untouched.
   1601 */
   1602int						/* error */
   1603xfs_btree_increment(
   1604	struct xfs_btree_cur	*cur,
   1605	int			level,
   1606	int			*stat)		/* success/failure */
   1607{
   1608	struct xfs_btree_block	*block;
   1609	union xfs_btree_ptr	ptr;
   1610	struct xfs_buf		*bp;
   1611	int			error;		/* error return value */
   1612	int			lev;
   1613
   1614	ASSERT(level < cur->bc_nlevels);
   1615
   1616	/* Read-ahead to the right at this level. */
   1617	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
   1618
   1619	/* Get a pointer to the btree block. */
   1620	block = xfs_btree_get_block(cur, level, &bp);
   1621
   1622#ifdef DEBUG
   1623	error = xfs_btree_check_block(cur, block, level, bp);
   1624	if (error)
   1625		goto error0;
   1626#endif
   1627
   1628	/* We're done if we remain in the block after the increment. */
   1629	if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
   1630		goto out1;
   1631
   1632	/* Fail if we just went off the right edge of the tree. */
   1633	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
   1634	if (xfs_btree_ptr_is_null(cur, &ptr))
   1635		goto out0;
   1636
   1637	XFS_BTREE_STATS_INC(cur, increment);
   1638
   1639	/*
   1640	 * March up the tree incrementing pointers.
   1641	 * Stop when we don't go off the right edge of a block.
   1642	 */
   1643	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
   1644		block = xfs_btree_get_block(cur, lev, &bp);
   1645
   1646#ifdef DEBUG
   1647		error = xfs_btree_check_block(cur, block, lev, bp);
   1648		if (error)
   1649			goto error0;
   1650#endif
   1651
   1652		if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
   1653			break;
   1654
   1655		/* Read-ahead the right block for the next loop. */
   1656		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
   1657	}
   1658
   1659	/*
   1660	 * If we went off the root then we are either seriously
   1661	 * confused or have the tree root in an inode.
   1662	 */
   1663	if (lev == cur->bc_nlevels) {
   1664		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
   1665			goto out0;
   1666		ASSERT(0);
   1667		error = -EFSCORRUPTED;
   1668		goto error0;
   1669	}
   1670	ASSERT(lev < cur->bc_nlevels);
   1671
   1672	/*
   1673	 * Now walk back down the tree, fixing up the cursor's buffer
   1674	 * pointers and key numbers.
   1675	 */
   1676	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
   1677		union xfs_btree_ptr	*ptrp;
   1678
   1679		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
   1680		--lev;
   1681		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
   1682		if (error)
   1683			goto error0;
   1684
   1685		xfs_btree_setbuf(cur, lev, bp);
   1686		cur->bc_levels[lev].ptr = 1;
   1687	}
   1688out1:
   1689	*stat = 1;
   1690	return 0;
   1691
   1692out0:
   1693	*stat = 0;
   1694	return 0;
   1695
   1696error0:
   1697	return error;
   1698}
   1699
   1700/*
   1701 * Decrement cursor by one record at the level.
   1702 * For nonzero levels the leaf-ward information is untouched.
   1703 */
   1704int						/* error */
   1705xfs_btree_decrement(
   1706	struct xfs_btree_cur	*cur,
   1707	int			level,
   1708	int			*stat)		/* success/failure */
   1709{
   1710	struct xfs_btree_block	*block;
   1711	struct xfs_buf		*bp;
   1712	int			error;		/* error return value */
   1713	int			lev;
   1714	union xfs_btree_ptr	ptr;
   1715
   1716	ASSERT(level < cur->bc_nlevels);
   1717
   1718	/* Read-ahead to the left at this level. */
   1719	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
   1720
   1721	/* We're done if we remain in the block after the decrement. */
   1722	if (--cur->bc_levels[level].ptr > 0)
   1723		goto out1;
   1724
   1725	/* Get a pointer to the btree block. */
   1726	block = xfs_btree_get_block(cur, level, &bp);
   1727
   1728#ifdef DEBUG
   1729	error = xfs_btree_check_block(cur, block, level, bp);
   1730	if (error)
   1731		goto error0;
   1732#endif
   1733
   1734	/* Fail if we just went off the left edge of the tree. */
   1735	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
   1736	if (xfs_btree_ptr_is_null(cur, &ptr))
   1737		goto out0;
   1738
   1739	XFS_BTREE_STATS_INC(cur, decrement);
   1740
   1741	/*
   1742	 * March up the tree decrementing pointers.
   1743	 * Stop when we don't go off the left edge of a block.
   1744	 */
   1745	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
   1746		if (--cur->bc_levels[lev].ptr > 0)
   1747			break;
   1748		/* Read-ahead the left block for the next loop. */
   1749		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
   1750	}
   1751
   1752	/*
   1753	 * If we went off the root then we are seriously confused.
   1754	 * or the root of the tree is in an inode.
   1755	 */
   1756	if (lev == cur->bc_nlevels) {
   1757		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
   1758			goto out0;
   1759		ASSERT(0);
   1760		error = -EFSCORRUPTED;
   1761		goto error0;
   1762	}
   1763	ASSERT(lev < cur->bc_nlevels);
   1764
   1765	/*
   1766	 * Now walk back down the tree, fixing up the cursor's buffer
   1767	 * pointers and key numbers.
   1768	 */
   1769	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
   1770		union xfs_btree_ptr	*ptrp;
   1771
   1772		ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
   1773		--lev;
   1774		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
   1775		if (error)
   1776			goto error0;
   1777		xfs_btree_setbuf(cur, lev, bp);
   1778		cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
   1779	}
   1780out1:
   1781	*stat = 1;
   1782	return 0;
   1783
   1784out0:
   1785	*stat = 0;
   1786	return 0;
   1787
   1788error0:
   1789	return error;
   1790}
   1791
   1792int
   1793xfs_btree_lookup_get_block(
   1794	struct xfs_btree_cur		*cur,	/* btree cursor */
   1795	int				level,	/* level in the btree */
   1796	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
   1797	struct xfs_btree_block		**blkp) /* return btree block */
   1798{
   1799	struct xfs_buf		*bp;	/* buffer pointer for btree block */
   1800	xfs_daddr_t		daddr;
   1801	int			error = 0;
   1802
   1803	/* special case the root block if in an inode */
   1804	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
   1805	    (level == cur->bc_nlevels - 1)) {
   1806		*blkp = xfs_btree_get_iroot(cur);
   1807		return 0;
   1808	}
   1809
   1810	/*
   1811	 * If the old buffer at this level for the disk address we are
   1812	 * looking for re-use it.
   1813	 *
   1814	 * Otherwise throw it away and get a new one.
   1815	 */
   1816	bp = cur->bc_levels[level].bp;
   1817	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
   1818	if (error)
   1819		return error;
   1820	if (bp && xfs_buf_daddr(bp) == daddr) {
   1821		*blkp = XFS_BUF_TO_BLOCK(bp);
   1822		return 0;
   1823	}
   1824
   1825	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
   1826	if (error)
   1827		return error;
   1828
   1829	/* Check the inode owner since the verifiers don't. */
   1830	if (xfs_has_crc(cur->bc_mp) &&
   1831	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
   1832	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
   1833	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
   1834			cur->bc_ino.ip->i_ino)
   1835		goto out_bad;
   1836
   1837	/* Did we get the level we were looking for? */
   1838	if (be16_to_cpu((*blkp)->bb_level) != level)
   1839		goto out_bad;
   1840
   1841	/* Check that internal nodes have at least one record. */
   1842	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
   1843		goto out_bad;
   1844
   1845	xfs_btree_setbuf(cur, level, bp);
   1846	return 0;
   1847
   1848out_bad:
   1849	*blkp = NULL;
   1850	xfs_buf_mark_corrupt(bp);
   1851	xfs_trans_brelse(cur->bc_tp, bp);
   1852	return -EFSCORRUPTED;
   1853}
   1854
   1855/*
   1856 * Get current search key.  For level 0 we don't actually have a key
   1857 * structure so we make one up from the record.  For all other levels
   1858 * we just return the right key.
   1859 */
   1860STATIC union xfs_btree_key *
   1861xfs_lookup_get_search_key(
   1862	struct xfs_btree_cur	*cur,
   1863	int			level,
   1864	int			keyno,
   1865	struct xfs_btree_block	*block,
   1866	union xfs_btree_key	*kp)
   1867{
   1868	if (level == 0) {
   1869		cur->bc_ops->init_key_from_rec(kp,
   1870				xfs_btree_rec_addr(cur, keyno, block));
   1871		return kp;
   1872	}
   1873
   1874	return xfs_btree_key_addr(cur, keyno, block);
   1875}
   1876
   1877/*
   1878 * Lookup the record.  The cursor is made to point to it, based on dir.
   1879 * stat is set to 0 if can't find any such record, 1 for success.
   1880 */
   1881int					/* error */
   1882xfs_btree_lookup(
   1883	struct xfs_btree_cur	*cur,	/* btree cursor */
   1884	xfs_lookup_t		dir,	/* <=, ==, or >= */
   1885	int			*stat)	/* success/failure */
   1886{
   1887	struct xfs_btree_block	*block;	/* current btree block */
   1888	int64_t			diff;	/* difference for the current key */
   1889	int			error;	/* error return value */
   1890	int			keyno;	/* current key number */
   1891	int			level;	/* level in the btree */
   1892	union xfs_btree_ptr	*pp;	/* ptr to btree block */
   1893	union xfs_btree_ptr	ptr;	/* ptr to btree block */
   1894
   1895	XFS_BTREE_STATS_INC(cur, lookup);
   1896
   1897	/* No such thing as a zero-level tree. */
   1898	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
   1899		return -EFSCORRUPTED;
   1900
   1901	block = NULL;
   1902	keyno = 0;
   1903
   1904	/* initialise start pointer from cursor */
   1905	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
   1906	pp = &ptr;
   1907
   1908	/*
   1909	 * Iterate over each level in the btree, starting at the root.
   1910	 * For each level above the leaves, find the key we need, based
   1911	 * on the lookup record, then follow the corresponding block
   1912	 * pointer down to the next level.
   1913	 */
   1914	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
   1915		/* Get the block we need to do the lookup on. */
   1916		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
   1917		if (error)
   1918			goto error0;
   1919
   1920		if (diff == 0) {
   1921			/*
   1922			 * If we already had a key match at a higher level, we
   1923			 * know we need to use the first entry in this block.
   1924			 */
   1925			keyno = 1;
   1926		} else {
   1927			/* Otherwise search this block. Do a binary search. */
   1928
   1929			int	high;	/* high entry number */
   1930			int	low;	/* low entry number */
   1931
   1932			/* Set low and high entry numbers, 1-based. */
   1933			low = 1;
   1934			high = xfs_btree_get_numrecs(block);
   1935			if (!high) {
   1936				/* Block is empty, must be an empty leaf. */
   1937				if (level != 0 || cur->bc_nlevels != 1) {
   1938					XFS_CORRUPTION_ERROR(__func__,
   1939							XFS_ERRLEVEL_LOW,
   1940							cur->bc_mp, block,
   1941							sizeof(*block));
   1942					return -EFSCORRUPTED;
   1943				}
   1944
   1945				cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
   1946				*stat = 0;
   1947				return 0;
   1948			}
   1949
   1950			/* Binary search the block. */
   1951			while (low <= high) {
   1952				union xfs_btree_key	key;
   1953				union xfs_btree_key	*kp;
   1954
   1955				XFS_BTREE_STATS_INC(cur, compare);
   1956
   1957				/* keyno is average of low and high. */
   1958				keyno = (low + high) >> 1;
   1959
   1960				/* Get current search key */
   1961				kp = xfs_lookup_get_search_key(cur, level,
   1962						keyno, block, &key);
   1963
   1964				/*
   1965				 * Compute difference to get next direction:
   1966				 *  - less than, move right
   1967				 *  - greater than, move left
   1968				 *  - equal, we're done
   1969				 */
   1970				diff = cur->bc_ops->key_diff(cur, kp);
   1971				if (diff < 0)
   1972					low = keyno + 1;
   1973				else if (diff > 0)
   1974					high = keyno - 1;
   1975				else
   1976					break;
   1977			}
   1978		}
   1979
   1980		/*
   1981		 * If there are more levels, set up for the next level
   1982		 * by getting the block number and filling in the cursor.
   1983		 */
   1984		if (level > 0) {
   1985			/*
   1986			 * If we moved left, need the previous key number,
   1987			 * unless there isn't one.
   1988			 */
   1989			if (diff > 0 && --keyno < 1)
   1990				keyno = 1;
   1991			pp = xfs_btree_ptr_addr(cur, keyno, block);
   1992
   1993			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
   1994			if (error)
   1995				goto error0;
   1996
   1997			cur->bc_levels[level].ptr = keyno;
   1998		}
   1999	}
   2000
   2001	/* Done with the search. See if we need to adjust the results. */
   2002	if (dir != XFS_LOOKUP_LE && diff < 0) {
   2003		keyno++;
   2004		/*
   2005		 * If ge search and we went off the end of the block, but it's
   2006		 * not the last block, we're in the wrong block.
   2007		 */
   2008		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
   2009		if (dir == XFS_LOOKUP_GE &&
   2010		    keyno > xfs_btree_get_numrecs(block) &&
   2011		    !xfs_btree_ptr_is_null(cur, &ptr)) {
   2012			int	i;
   2013
   2014			cur->bc_levels[0].ptr = keyno;
   2015			error = xfs_btree_increment(cur, 0, &i);
   2016			if (error)
   2017				goto error0;
   2018			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
   2019				return -EFSCORRUPTED;
   2020			*stat = 1;
   2021			return 0;
   2022		}
   2023	} else if (dir == XFS_LOOKUP_LE && diff > 0)
   2024		keyno--;
   2025	cur->bc_levels[0].ptr = keyno;
   2026
   2027	/* Return if we succeeded or not. */
   2028	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
   2029		*stat = 0;
   2030	else if (dir != XFS_LOOKUP_EQ || diff == 0)
   2031		*stat = 1;
   2032	else
   2033		*stat = 0;
   2034	return 0;
   2035
   2036error0:
   2037	return error;
   2038}
   2039
   2040/* Find the high key storage area from a regular key. */
   2041union xfs_btree_key *
   2042xfs_btree_high_key_from_key(
   2043	struct xfs_btree_cur	*cur,
   2044	union xfs_btree_key	*key)
   2045{
   2046	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
   2047	return (union xfs_btree_key *)((char *)key +
   2048			(cur->bc_ops->key_len / 2));
   2049}
   2050
   2051/* Determine the low (and high if overlapped) keys of a leaf block */
   2052STATIC void
   2053xfs_btree_get_leaf_keys(
   2054	struct xfs_btree_cur	*cur,
   2055	struct xfs_btree_block	*block,
   2056	union xfs_btree_key	*key)
   2057{
   2058	union xfs_btree_key	max_hkey;
   2059	union xfs_btree_key	hkey;
   2060	union xfs_btree_rec	*rec;
   2061	union xfs_btree_key	*high;
   2062	int			n;
   2063
   2064	rec = xfs_btree_rec_addr(cur, 1, block);
   2065	cur->bc_ops->init_key_from_rec(key, rec);
   2066
   2067	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
   2068
   2069		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
   2070		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
   2071			rec = xfs_btree_rec_addr(cur, n, block);
   2072			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
   2073			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
   2074					> 0)
   2075				max_hkey = hkey;
   2076		}
   2077
   2078		high = xfs_btree_high_key_from_key(cur, key);
   2079		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
   2080	}
   2081}
   2082
   2083/* Determine the low (and high if overlapped) keys of a node block */
   2084STATIC void
   2085xfs_btree_get_node_keys(
   2086	struct xfs_btree_cur	*cur,
   2087	struct xfs_btree_block	*block,
   2088	union xfs_btree_key	*key)
   2089{
   2090	union xfs_btree_key	*hkey;
   2091	union xfs_btree_key	*max_hkey;
   2092	union xfs_btree_key	*high;
   2093	int			n;
   2094
   2095	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
   2096		memcpy(key, xfs_btree_key_addr(cur, 1, block),
   2097				cur->bc_ops->key_len / 2);
   2098
   2099		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
   2100		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
   2101			hkey = xfs_btree_high_key_addr(cur, n, block);
   2102			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
   2103				max_hkey = hkey;
   2104		}
   2105
   2106		high = xfs_btree_high_key_from_key(cur, key);
   2107		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
   2108	} else {
   2109		memcpy(key, xfs_btree_key_addr(cur, 1, block),
   2110				cur->bc_ops->key_len);
   2111	}
   2112}
   2113
   2114/* Derive the keys for any btree block. */
   2115void
   2116xfs_btree_get_keys(
   2117	struct xfs_btree_cur	*cur,
   2118	struct xfs_btree_block	*block,
   2119	union xfs_btree_key	*key)
   2120{
   2121	if (be16_to_cpu(block->bb_level) == 0)
   2122		xfs_btree_get_leaf_keys(cur, block, key);
   2123	else
   2124		xfs_btree_get_node_keys(cur, block, key);
   2125}
   2126
   2127/*
   2128 * Decide if we need to update the parent keys of a btree block.  For
   2129 * a standard btree this is only necessary if we're updating the first
   2130 * record/key.  For an overlapping btree, we must always update the
   2131 * keys because the highest key can be in any of the records or keys
   2132 * in the block.
   2133 */
   2134static inline bool
   2135xfs_btree_needs_key_update(
   2136	struct xfs_btree_cur	*cur,
   2137	int			ptr)
   2138{
   2139	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
   2140}
   2141
   2142/*
   2143 * Update the low and high parent keys of the given level, progressing
   2144 * towards the root.  If force_all is false, stop if the keys for a given
   2145 * level do not need updating.
   2146 */
   2147STATIC int
   2148__xfs_btree_updkeys(
   2149	struct xfs_btree_cur	*cur,
   2150	int			level,
   2151	struct xfs_btree_block	*block,
   2152	struct xfs_buf		*bp0,
   2153	bool			force_all)
   2154{
   2155	union xfs_btree_key	key;	/* keys from current level */
   2156	union xfs_btree_key	*lkey;	/* keys from the next level up */
   2157	union xfs_btree_key	*hkey;
   2158	union xfs_btree_key	*nlkey;	/* keys from the next level up */
   2159	union xfs_btree_key	*nhkey;
   2160	struct xfs_buf		*bp;
   2161	int			ptr;
   2162
   2163	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
   2164
   2165	/* Exit if there aren't any parent levels to update. */
   2166	if (level + 1 >= cur->bc_nlevels)
   2167		return 0;
   2168
   2169	trace_xfs_btree_updkeys(cur, level, bp0);
   2170
   2171	lkey = &key;
   2172	hkey = xfs_btree_high_key_from_key(cur, lkey);
   2173	xfs_btree_get_keys(cur, block, lkey);
   2174	for (level++; level < cur->bc_nlevels; level++) {
   2175#ifdef DEBUG
   2176		int		error;
   2177#endif
   2178		block = xfs_btree_get_block(cur, level, &bp);
   2179		trace_xfs_btree_updkeys(cur, level, bp);
   2180#ifdef DEBUG
   2181		error = xfs_btree_check_block(cur, block, level, bp);
   2182		if (error)
   2183			return error;
   2184#endif
   2185		ptr = cur->bc_levels[level].ptr;
   2186		nlkey = xfs_btree_key_addr(cur, ptr, block);
   2187		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
   2188		if (!force_all &&
   2189		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
   2190		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
   2191			break;
   2192		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
   2193		xfs_btree_log_keys(cur, bp, ptr, ptr);
   2194		if (level + 1 >= cur->bc_nlevels)
   2195			break;
   2196		xfs_btree_get_node_keys(cur, block, lkey);
   2197	}
   2198
   2199	return 0;
   2200}
   2201
   2202/* Update all the keys from some level in cursor back to the root. */
   2203STATIC int
   2204xfs_btree_updkeys_force(
   2205	struct xfs_btree_cur	*cur,
   2206	int			level)
   2207{
   2208	struct xfs_buf		*bp;
   2209	struct xfs_btree_block	*block;
   2210
   2211	block = xfs_btree_get_block(cur, level, &bp);
   2212	return __xfs_btree_updkeys(cur, level, block, bp, true);
   2213}
   2214
   2215/*
   2216 * Update the parent keys of the given level, progressing towards the root.
   2217 */
   2218STATIC int
   2219xfs_btree_update_keys(
   2220	struct xfs_btree_cur	*cur,
   2221	int			level)
   2222{
   2223	struct xfs_btree_block	*block;
   2224	struct xfs_buf		*bp;
   2225	union xfs_btree_key	*kp;
   2226	union xfs_btree_key	key;
   2227	int			ptr;
   2228
   2229	ASSERT(level >= 0);
   2230
   2231	block = xfs_btree_get_block(cur, level, &bp);
   2232	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
   2233		return __xfs_btree_updkeys(cur, level, block, bp, false);
   2234
   2235	/*
   2236	 * Go up the tree from this level toward the root.
   2237	 * At each level, update the key value to the value input.
   2238	 * Stop when we reach a level where the cursor isn't pointing
   2239	 * at the first entry in the block.
   2240	 */
   2241	xfs_btree_get_keys(cur, block, &key);
   2242	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
   2243#ifdef DEBUG
   2244		int		error;
   2245#endif
   2246		block = xfs_btree_get_block(cur, level, &bp);
   2247#ifdef DEBUG
   2248		error = xfs_btree_check_block(cur, block, level, bp);
   2249		if (error)
   2250			return error;
   2251#endif
   2252		ptr = cur->bc_levels[level].ptr;
   2253		kp = xfs_btree_key_addr(cur, ptr, block);
   2254		xfs_btree_copy_keys(cur, kp, &key, 1);
   2255		xfs_btree_log_keys(cur, bp, ptr, ptr);
   2256	}
   2257
   2258	return 0;
   2259}
   2260
   2261/*
   2262 * Update the record referred to by cur to the value in the
   2263 * given record. This either works (return 0) or gets an
   2264 * EFSCORRUPTED error.
   2265 */
   2266int
   2267xfs_btree_update(
   2268	struct xfs_btree_cur	*cur,
   2269	union xfs_btree_rec	*rec)
   2270{
   2271	struct xfs_btree_block	*block;
   2272	struct xfs_buf		*bp;
   2273	int			error;
   2274	int			ptr;
   2275	union xfs_btree_rec	*rp;
   2276
   2277	/* Pick up the current block. */
   2278	block = xfs_btree_get_block(cur, 0, &bp);
   2279
   2280#ifdef DEBUG
   2281	error = xfs_btree_check_block(cur, block, 0, bp);
   2282	if (error)
   2283		goto error0;
   2284#endif
   2285	/* Get the address of the rec to be updated. */
   2286	ptr = cur->bc_levels[0].ptr;
   2287	rp = xfs_btree_rec_addr(cur, ptr, block);
   2288
   2289	/* Fill in the new contents and log them. */
   2290	xfs_btree_copy_recs(cur, rp, rec, 1);
   2291	xfs_btree_log_recs(cur, bp, ptr, ptr);
   2292
   2293	/*
   2294	 * If we are tracking the last record in the tree and
   2295	 * we are at the far right edge of the tree, update it.
   2296	 */
   2297	if (xfs_btree_is_lastrec(cur, block, 0)) {
   2298		cur->bc_ops->update_lastrec(cur, block, rec,
   2299					    ptr, LASTREC_UPDATE);
   2300	}
   2301
   2302	/* Pass new key value up to our parent. */
   2303	if (xfs_btree_needs_key_update(cur, ptr)) {
   2304		error = xfs_btree_update_keys(cur, 0);
   2305		if (error)
   2306			goto error0;
   2307	}
   2308
   2309	return 0;
   2310
   2311error0:
   2312	return error;
   2313}
   2314
   2315/*
   2316 * Move 1 record left from cur/level if possible.
   2317 * Update cur to reflect the new path.
   2318 */
   2319STATIC int					/* error */
   2320xfs_btree_lshift(
   2321	struct xfs_btree_cur	*cur,
   2322	int			level,
   2323	int			*stat)		/* success/failure */
   2324{
   2325	struct xfs_buf		*lbp;		/* left buffer pointer */
   2326	struct xfs_btree_block	*left;		/* left btree block */
   2327	int			lrecs;		/* left record count */
   2328	struct xfs_buf		*rbp;		/* right buffer pointer */
   2329	struct xfs_btree_block	*right;		/* right btree block */
   2330	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
   2331	int			rrecs;		/* right record count */
   2332	union xfs_btree_ptr	lptr;		/* left btree pointer */
   2333	union xfs_btree_key	*rkp = NULL;	/* right btree key */
   2334	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
   2335	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
   2336	int			error;		/* error return value */
   2337	int			i;
   2338
   2339	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
   2340	    level == cur->bc_nlevels - 1)
   2341		goto out0;
   2342
   2343	/* Set up variables for this block as "right". */
   2344	right = xfs_btree_get_block(cur, level, &rbp);
   2345
   2346#ifdef DEBUG
   2347	error = xfs_btree_check_block(cur, right, level, rbp);
   2348	if (error)
   2349		goto error0;
   2350#endif
   2351
   2352	/* If we've got no left sibling then we can't shift an entry left. */
   2353	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
   2354	if (xfs_btree_ptr_is_null(cur, &lptr))
   2355		goto out0;
   2356
   2357	/*
   2358	 * If the cursor entry is the one that would be moved, don't
   2359	 * do it... it's too complicated.
   2360	 */
   2361	if (cur->bc_levels[level].ptr <= 1)
   2362		goto out0;
   2363
   2364	/* Set up the left neighbor as "left". */
   2365	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
   2366	if (error)
   2367		goto error0;
   2368
   2369	/* If it's full, it can't take another entry. */
   2370	lrecs = xfs_btree_get_numrecs(left);
   2371	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
   2372		goto out0;
   2373
   2374	rrecs = xfs_btree_get_numrecs(right);
   2375
   2376	/*
   2377	 * We add one entry to the left side and remove one for the right side.
   2378	 * Account for it here, the changes will be updated on disk and logged
   2379	 * later.
   2380	 */
   2381	lrecs++;
   2382	rrecs--;
   2383
   2384	XFS_BTREE_STATS_INC(cur, lshift);
   2385	XFS_BTREE_STATS_ADD(cur, moves, 1);
   2386
   2387	/*
   2388	 * If non-leaf, copy a key and a ptr to the left block.
   2389	 * Log the changes to the left block.
   2390	 */
   2391	if (level > 0) {
   2392		/* It's a non-leaf.  Move keys and pointers. */
   2393		union xfs_btree_key	*lkp;	/* left btree key */
   2394		union xfs_btree_ptr	*lpp;	/* left address pointer */
   2395
   2396		lkp = xfs_btree_key_addr(cur, lrecs, left);
   2397		rkp = xfs_btree_key_addr(cur, 1, right);
   2398
   2399		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
   2400		rpp = xfs_btree_ptr_addr(cur, 1, right);
   2401
   2402		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
   2403		if (error)
   2404			goto error0;
   2405
   2406		xfs_btree_copy_keys(cur, lkp, rkp, 1);
   2407		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
   2408
   2409		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
   2410		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
   2411
   2412		ASSERT(cur->bc_ops->keys_inorder(cur,
   2413			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
   2414	} else {
   2415		/* It's a leaf.  Move records.  */
   2416		union xfs_btree_rec	*lrp;	/* left record pointer */
   2417
   2418		lrp = xfs_btree_rec_addr(cur, lrecs, left);
   2419		rrp = xfs_btree_rec_addr(cur, 1, right);
   2420
   2421		xfs_btree_copy_recs(cur, lrp, rrp, 1);
   2422		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
   2423
   2424		ASSERT(cur->bc_ops->recs_inorder(cur,
   2425			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
   2426	}
   2427
   2428	xfs_btree_set_numrecs(left, lrecs);
   2429	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
   2430
   2431	xfs_btree_set_numrecs(right, rrecs);
   2432	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
   2433
   2434	/*
   2435	 * Slide the contents of right down one entry.
   2436	 */
   2437	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
   2438	if (level > 0) {
   2439		/* It's a nonleaf. operate on keys and ptrs */
   2440		for (i = 0; i < rrecs; i++) {
   2441			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
   2442			if (error)
   2443				goto error0;
   2444		}
   2445
   2446		xfs_btree_shift_keys(cur,
   2447				xfs_btree_key_addr(cur, 2, right),
   2448				-1, rrecs);
   2449		xfs_btree_shift_ptrs(cur,
   2450				xfs_btree_ptr_addr(cur, 2, right),
   2451				-1, rrecs);
   2452
   2453		xfs_btree_log_keys(cur, rbp, 1, rrecs);
   2454		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
   2455	} else {
   2456		/* It's a leaf. operate on records */
   2457		xfs_btree_shift_recs(cur,
   2458			xfs_btree_rec_addr(cur, 2, right),
   2459			-1, rrecs);
   2460		xfs_btree_log_recs(cur, rbp, 1, rrecs);
   2461	}
   2462
   2463	/*
   2464	 * Using a temporary cursor, update the parent key values of the
   2465	 * block on the left.
   2466	 */
   2467	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
   2468		error = xfs_btree_dup_cursor(cur, &tcur);
   2469		if (error)
   2470			goto error0;
   2471		i = xfs_btree_firstrec(tcur, level);
   2472		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
   2473			error = -EFSCORRUPTED;
   2474			goto error0;
   2475		}
   2476
   2477		error = xfs_btree_decrement(tcur, level, &i);
   2478		if (error)
   2479			goto error1;
   2480
   2481		/* Update the parent high keys of the left block, if needed. */
   2482		error = xfs_btree_update_keys(tcur, level);
   2483		if (error)
   2484			goto error1;
   2485
   2486		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
   2487	}
   2488
   2489	/* Update the parent keys of the right block. */
   2490	error = xfs_btree_update_keys(cur, level);
   2491	if (error)
   2492		goto error0;
   2493
   2494	/* Slide the cursor value left one. */
   2495	cur->bc_levels[level].ptr--;
   2496
   2497	*stat = 1;
   2498	return 0;
   2499
   2500out0:
   2501	*stat = 0;
   2502	return 0;
   2503
   2504error0:
   2505	return error;
   2506
   2507error1:
   2508	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
   2509	return error;
   2510}
   2511
   2512/*
   2513 * Move 1 record right from cur/level if possible.
   2514 * Update cur to reflect the new path.
   2515 */
   2516STATIC int					/* error */
   2517xfs_btree_rshift(
   2518	struct xfs_btree_cur	*cur,
   2519	int			level,
   2520	int			*stat)		/* success/failure */
   2521{
   2522	struct xfs_buf		*lbp;		/* left buffer pointer */
   2523	struct xfs_btree_block	*left;		/* left btree block */
   2524	struct xfs_buf		*rbp;		/* right buffer pointer */
   2525	struct xfs_btree_block	*right;		/* right btree block */
   2526	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
   2527	union xfs_btree_ptr	rptr;		/* right block pointer */
   2528	union xfs_btree_key	*rkp;		/* right btree key */
   2529	int			rrecs;		/* right record count */
   2530	int			lrecs;		/* left record count */
   2531	int			error;		/* error return value */
   2532	int			i;		/* loop counter */
   2533
   2534	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
   2535	    (level == cur->bc_nlevels - 1))
   2536		goto out0;
   2537
   2538	/* Set up variables for this block as "left". */
   2539	left = xfs_btree_get_block(cur, level, &lbp);
   2540
   2541#ifdef DEBUG
   2542	error = xfs_btree_check_block(cur, left, level, lbp);
   2543	if (error)
   2544		goto error0;
   2545#endif
   2546
   2547	/* If we've got no right sibling then we can't shift an entry right. */
   2548	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
   2549	if (xfs_btree_ptr_is_null(cur, &rptr))
   2550		goto out0;
   2551
   2552	/*
   2553	 * If the cursor entry is the one that would be moved, don't
   2554	 * do it... it's too complicated.
   2555	 */
   2556	lrecs = xfs_btree_get_numrecs(left);
   2557	if (cur->bc_levels[level].ptr >= lrecs)
   2558		goto out0;
   2559
   2560	/* Set up the right neighbor as "right". */
   2561	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
   2562	if (error)
   2563		goto error0;
   2564
   2565	/* If it's full, it can't take another entry. */
   2566	rrecs = xfs_btree_get_numrecs(right);
   2567	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
   2568		goto out0;
   2569
   2570	XFS_BTREE_STATS_INC(cur, rshift);
   2571	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
   2572
   2573	/*
   2574	 * Make a hole at the start of the right neighbor block, then
   2575	 * copy the last left block entry to the hole.
   2576	 */
   2577	if (level > 0) {
   2578		/* It's a nonleaf. make a hole in the keys and ptrs */
   2579		union xfs_btree_key	*lkp;
   2580		union xfs_btree_ptr	*lpp;
   2581		union xfs_btree_ptr	*rpp;
   2582
   2583		lkp = xfs_btree_key_addr(cur, lrecs, left);
   2584		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
   2585		rkp = xfs_btree_key_addr(cur, 1, right);
   2586		rpp = xfs_btree_ptr_addr(cur, 1, right);
   2587
   2588		for (i = rrecs - 1; i >= 0; i--) {
   2589			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
   2590			if (error)
   2591				goto error0;
   2592		}
   2593
   2594		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
   2595		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
   2596
   2597		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
   2598		if (error)
   2599			goto error0;
   2600
   2601		/* Now put the new data in, and log it. */
   2602		xfs_btree_copy_keys(cur, rkp, lkp, 1);
   2603		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
   2604
   2605		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
   2606		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
   2607
   2608		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
   2609			xfs_btree_key_addr(cur, 2, right)));
   2610	} else {
   2611		/* It's a leaf. make a hole in the records */
   2612		union xfs_btree_rec	*lrp;
   2613		union xfs_btree_rec	*rrp;
   2614
   2615		lrp = xfs_btree_rec_addr(cur, lrecs, left);
   2616		rrp = xfs_btree_rec_addr(cur, 1, right);
   2617
   2618		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
   2619
   2620		/* Now put the new data in, and log it. */
   2621		xfs_btree_copy_recs(cur, rrp, lrp, 1);
   2622		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
   2623	}
   2624
   2625	/*
   2626	 * Decrement and log left's numrecs, bump and log right's numrecs.
   2627	 */
   2628	xfs_btree_set_numrecs(left, --lrecs);
   2629	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
   2630
   2631	xfs_btree_set_numrecs(right, ++rrecs);
   2632	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
   2633
   2634	/*
   2635	 * Using a temporary cursor, update the parent key values of the
   2636	 * block on the right.
   2637	 */
   2638	error = xfs_btree_dup_cursor(cur, &tcur);
   2639	if (error)
   2640		goto error0;
   2641	i = xfs_btree_lastrec(tcur, level);
   2642	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
   2643		error = -EFSCORRUPTED;
   2644		goto error0;
   2645	}
   2646
   2647	error = xfs_btree_increment(tcur, level, &i);
   2648	if (error)
   2649		goto error1;
   2650
   2651	/* Update the parent high keys of the left block, if needed. */
   2652	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
   2653		error = xfs_btree_update_keys(cur, level);
   2654		if (error)
   2655			goto error1;
   2656	}
   2657
   2658	/* Update the parent keys of the right block. */
   2659	error = xfs_btree_update_keys(tcur, level);
   2660	if (error)
   2661		goto error1;
   2662
   2663	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
   2664
   2665	*stat = 1;
   2666	return 0;
   2667
   2668out0:
   2669	*stat = 0;
   2670	return 0;
   2671
   2672error0:
   2673	return error;
   2674
   2675error1:
   2676	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
   2677	return error;
   2678}
   2679
   2680/*
   2681 * Split cur/level block in half.
   2682 * Return new block number and the key to its first
   2683 * record (to be inserted into parent).
   2684 */
   2685STATIC int					/* error */
   2686__xfs_btree_split(
   2687	struct xfs_btree_cur	*cur,
   2688	int			level,
   2689	union xfs_btree_ptr	*ptrp,
   2690	union xfs_btree_key	*key,
   2691	struct xfs_btree_cur	**curp,
   2692	int			*stat)		/* success/failure */
   2693{
   2694	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
   2695	struct xfs_buf		*lbp;		/* left buffer pointer */
   2696	struct xfs_btree_block	*left;		/* left btree block */
   2697	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
   2698	struct xfs_buf		*rbp;		/* right buffer pointer */
   2699	struct xfs_btree_block	*right;		/* right btree block */
   2700	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
   2701	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
   2702	struct xfs_btree_block	*rrblock;	/* right-right btree block */
   2703	int			lrecs;
   2704	int			rrecs;
   2705	int			src_index;
   2706	int			error;		/* error return value */
   2707	int			i;
   2708
   2709	XFS_BTREE_STATS_INC(cur, split);
   2710
   2711	/* Set up left block (current one). */
   2712	left = xfs_btree_get_block(cur, level, &lbp);
   2713
   2714#ifdef DEBUG
   2715	error = xfs_btree_check_block(cur, left, level, lbp);
   2716	if (error)
   2717		goto error0;
   2718#endif
   2719
   2720	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
   2721
   2722	/* Allocate the new block. If we can't do it, we're toast. Give up. */
   2723	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
   2724	if (error)
   2725		goto error0;
   2726	if (*stat == 0)
   2727		goto out0;
   2728	XFS_BTREE_STATS_INC(cur, alloc);
   2729
   2730	/* Set up the new block as "right". */
   2731	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
   2732	if (error)
   2733		goto error0;
   2734
   2735	/* Fill in the btree header for the new right block. */
   2736	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
   2737
   2738	/*
   2739	 * Split the entries between the old and the new block evenly.
   2740	 * Make sure that if there's an odd number of entries now, that
   2741	 * each new block will have the same number of entries.
   2742	 */
   2743	lrecs = xfs_btree_get_numrecs(left);
   2744	rrecs = lrecs / 2;
   2745	if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
   2746		rrecs++;
   2747	src_index = (lrecs - rrecs + 1);
   2748
   2749	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
   2750
   2751	/* Adjust numrecs for the later get_*_keys() calls. */
   2752	lrecs -= rrecs;
   2753	xfs_btree_set_numrecs(left, lrecs);
   2754	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
   2755
   2756	/*
   2757	 * Copy btree block entries from the left block over to the
   2758	 * new block, the right. Update the right block and log the
   2759	 * changes.
   2760	 */
   2761	if (level > 0) {
   2762		/* It's a non-leaf.  Move keys and pointers. */
   2763		union xfs_btree_key	*lkp;	/* left btree key */
   2764		union xfs_btree_ptr	*lpp;	/* left address pointer */
   2765		union xfs_btree_key	*rkp;	/* right btree key */
   2766		union xfs_btree_ptr	*rpp;	/* right address pointer */
   2767
   2768		lkp = xfs_btree_key_addr(cur, src_index, left);
   2769		lpp = xfs_btree_ptr_addr(cur, src_index, left);
   2770		rkp = xfs_btree_key_addr(cur, 1, right);
   2771		rpp = xfs_btree_ptr_addr(cur, 1, right);
   2772
   2773		for (i = src_index; i < rrecs; i++) {
   2774			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
   2775			if (error)
   2776				goto error0;
   2777		}
   2778
   2779		/* Copy the keys & pointers to the new block. */
   2780		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
   2781		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
   2782
   2783		xfs_btree_log_keys(cur, rbp, 1, rrecs);
   2784		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
   2785
   2786		/* Stash the keys of the new block for later insertion. */
   2787		xfs_btree_get_node_keys(cur, right, key);
   2788	} else {
   2789		/* It's a leaf.  Move records.  */
   2790		union xfs_btree_rec	*lrp;	/* left record pointer */
   2791		union xfs_btree_rec	*rrp;	/* right record pointer */
   2792
   2793		lrp = xfs_btree_rec_addr(cur, src_index, left);
   2794		rrp = xfs_btree_rec_addr(cur, 1, right);
   2795
   2796		/* Copy records to the new block. */
   2797		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
   2798		xfs_btree_log_recs(cur, rbp, 1, rrecs);
   2799
   2800		/* Stash the keys of the new block for later insertion. */
   2801		xfs_btree_get_leaf_keys(cur, right, key);
   2802	}
   2803
   2804	/*
   2805	 * Find the left block number by looking in the buffer.
   2806	 * Adjust sibling pointers.
   2807	 */
   2808	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
   2809	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
   2810	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
   2811	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
   2812
   2813	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
   2814	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
   2815
   2816	/*
   2817	 * If there's a block to the new block's right, make that block
   2818	 * point back to right instead of to left.
   2819	 */
   2820	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
   2821		error = xfs_btree_read_buf_block(cur, &rrptr,
   2822							0, &rrblock, &rrbp);
   2823		if (error)
   2824			goto error0;
   2825		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
   2826		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
   2827	}
   2828
   2829	/* Update the parent high keys of the left block, if needed. */
   2830	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
   2831		error = xfs_btree_update_keys(cur, level);
   2832		if (error)
   2833			goto error0;
   2834	}
   2835
   2836	/*
   2837	 * If the cursor is really in the right block, move it there.
   2838	 * If it's just pointing past the last entry in left, then we'll
   2839	 * insert there, so don't change anything in that case.
   2840	 */
   2841	if (cur->bc_levels[level].ptr > lrecs + 1) {
   2842		xfs_btree_setbuf(cur, level, rbp);
   2843		cur->bc_levels[level].ptr -= lrecs;
   2844	}
   2845	/*
   2846	 * If there are more levels, we'll need another cursor which refers
   2847	 * the right block, no matter where this cursor was.
   2848	 */
   2849	if (level + 1 < cur->bc_nlevels) {
   2850		error = xfs_btree_dup_cursor(cur, curp);
   2851		if (error)
   2852			goto error0;
   2853		(*curp)->bc_levels[level + 1].ptr++;
   2854	}
   2855	*ptrp = rptr;
   2856	*stat = 1;
   2857	return 0;
   2858out0:
   2859	*stat = 0;
   2860	return 0;
   2861
   2862error0:
   2863	return error;
   2864}
   2865
   2866#ifdef __KERNEL__
   2867struct xfs_btree_split_args {
   2868	struct xfs_btree_cur	*cur;
   2869	int			level;
   2870	union xfs_btree_ptr	*ptrp;
   2871	union xfs_btree_key	*key;
   2872	struct xfs_btree_cur	**curp;
   2873	int			*stat;		/* success/failure */
   2874	int			result;
   2875	bool			kswapd;	/* allocation in kswapd context */
   2876	struct completion	*done;
   2877	struct work_struct	work;
   2878};
   2879
   2880/*
   2881 * Stack switching interfaces for allocation
   2882 */
   2883static void
   2884xfs_btree_split_worker(
   2885	struct work_struct	*work)
   2886{
   2887	struct xfs_btree_split_args	*args = container_of(work,
   2888						struct xfs_btree_split_args, work);
   2889	unsigned long		pflags;
   2890	unsigned long		new_pflags = 0;
   2891
   2892	/*
   2893	 * we are in a transaction context here, but may also be doing work
   2894	 * in kswapd context, and hence we may need to inherit that state
   2895	 * temporarily to ensure that we don't block waiting for memory reclaim
   2896	 * in any way.
   2897	 */
   2898	if (args->kswapd)
   2899		new_pflags |= PF_MEMALLOC | PF_KSWAPD;
   2900
   2901	current_set_flags_nested(&pflags, new_pflags);
   2902	xfs_trans_set_context(args->cur->bc_tp);
   2903
   2904	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
   2905					 args->key, args->curp, args->stat);
   2906
   2907	xfs_trans_clear_context(args->cur->bc_tp);
   2908	current_restore_flags_nested(&pflags, new_pflags);
   2909
   2910	/*
   2911	 * Do not access args after complete() has run here. We don't own args
   2912	 * and the owner may run and free args before we return here.
   2913	 */
   2914	complete(args->done);
   2915
   2916}
   2917
   2918/*
   2919 * BMBT split requests often come in with little stack to work on. Push
   2920 * them off to a worker thread so there is lots of stack to use. For the other
   2921 * btree types, just call directly to avoid the context switch overhead here.
   2922 */
   2923STATIC int					/* error */
   2924xfs_btree_split(
   2925	struct xfs_btree_cur	*cur,
   2926	int			level,
   2927	union xfs_btree_ptr	*ptrp,
   2928	union xfs_btree_key	*key,
   2929	struct xfs_btree_cur	**curp,
   2930	int			*stat)		/* success/failure */
   2931{
   2932	struct xfs_btree_split_args	args;
   2933	DECLARE_COMPLETION_ONSTACK(done);
   2934
   2935	if (cur->bc_btnum != XFS_BTNUM_BMAP)
   2936		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
   2937
   2938	args.cur = cur;
   2939	args.level = level;
   2940	args.ptrp = ptrp;
   2941	args.key = key;
   2942	args.curp = curp;
   2943	args.stat = stat;
   2944	args.done = &done;
   2945	args.kswapd = current_is_kswapd();
   2946	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
   2947	queue_work(xfs_alloc_wq, &args.work);
   2948	wait_for_completion(&done);
   2949	destroy_work_on_stack(&args.work);
   2950	return args.result;
   2951}
   2952#else
   2953#define xfs_btree_split	__xfs_btree_split
   2954#endif /* __KERNEL__ */
   2955
   2956
   2957/*
   2958 * Copy the old inode root contents into a real block and make the
   2959 * broot point to it.
   2960 */
   2961int						/* error */
   2962xfs_btree_new_iroot(
   2963	struct xfs_btree_cur	*cur,		/* btree cursor */
   2964	int			*logflags,	/* logging flags for inode */
   2965	int			*stat)		/* return status - 0 fail */
   2966{
   2967	struct xfs_buf		*cbp;		/* buffer for cblock */
   2968	struct xfs_btree_block	*block;		/* btree block */
   2969	struct xfs_btree_block	*cblock;	/* child btree block */
   2970	union xfs_btree_key	*ckp;		/* child key pointer */
   2971	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
   2972	union xfs_btree_key	*kp;		/* pointer to btree key */
   2973	union xfs_btree_ptr	*pp;		/* pointer to block addr */
   2974	union xfs_btree_ptr	nptr;		/* new block addr */
   2975	int			level;		/* btree level */
   2976	int			error;		/* error return code */
   2977	int			i;		/* loop counter */
   2978
   2979	XFS_BTREE_STATS_INC(cur, newroot);
   2980
   2981	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
   2982
   2983	level = cur->bc_nlevels - 1;
   2984
   2985	block = xfs_btree_get_iroot(cur);
   2986	pp = xfs_btree_ptr_addr(cur, 1, block);
   2987
   2988	/* Allocate the new block. If we can't do it, we're toast. Give up. */
   2989	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
   2990	if (error)
   2991		goto error0;
   2992	if (*stat == 0)
   2993		return 0;
   2994
   2995	XFS_BTREE_STATS_INC(cur, alloc);
   2996
   2997	/* Copy the root into a real block. */
   2998	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
   2999	if (error)
   3000		goto error0;
   3001
   3002	/*
   3003	 * we can't just memcpy() the root in for CRC enabled btree blocks.
   3004	 * In that case have to also ensure the blkno remains correct
   3005	 */
   3006	memcpy(cblock, block, xfs_btree_block_len(cur));
   3007	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
   3008		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
   3009		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
   3010			cblock->bb_u.l.bb_blkno = bno;
   3011		else
   3012			cblock->bb_u.s.bb_blkno = bno;
   3013	}
   3014
   3015	be16_add_cpu(&block->bb_level, 1);
   3016	xfs_btree_set_numrecs(block, 1);
   3017	cur->bc_nlevels++;
   3018	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
   3019	cur->bc_levels[level + 1].ptr = 1;
   3020
   3021	kp = xfs_btree_key_addr(cur, 1, block);
   3022	ckp = xfs_btree_key_addr(cur, 1, cblock);
   3023	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
   3024
   3025	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
   3026	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
   3027		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
   3028		if (error)
   3029			goto error0;
   3030	}
   3031
   3032	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
   3033
   3034	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
   3035	if (error)
   3036		goto error0;
   3037
   3038	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
   3039
   3040	xfs_iroot_realloc(cur->bc_ino.ip,
   3041			  1 - xfs_btree_get_numrecs(cblock),
   3042			  cur->bc_ino.whichfork);
   3043
   3044	xfs_btree_setbuf(cur, level, cbp);
   3045
   3046	/*
   3047	 * Do all this logging at the end so that
   3048	 * the root is at the right level.
   3049	 */
   3050	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
   3051	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
   3052	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
   3053
   3054	*logflags |=
   3055		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
   3056	*stat = 1;
   3057	return 0;
   3058error0:
   3059	return error;
   3060}
   3061
   3062/*
   3063 * Allocate a new root block, fill it in.
   3064 */
   3065STATIC int				/* error */
   3066xfs_btree_new_root(
   3067	struct xfs_btree_cur	*cur,	/* btree cursor */
   3068	int			*stat)	/* success/failure */
   3069{
   3070	struct xfs_btree_block	*block;	/* one half of the old root block */
   3071	struct xfs_buf		*bp;	/* buffer containing block */
   3072	int			error;	/* error return value */
   3073	struct xfs_buf		*lbp;	/* left buffer pointer */
   3074	struct xfs_btree_block	*left;	/* left btree block */
   3075	struct xfs_buf		*nbp;	/* new (root) buffer */
   3076	struct xfs_btree_block	*new;	/* new (root) btree block */
   3077	int			nptr;	/* new value for key index, 1 or 2 */
   3078	struct xfs_buf		*rbp;	/* right buffer pointer */
   3079	struct xfs_btree_block	*right;	/* right btree block */
   3080	union xfs_btree_ptr	rptr;
   3081	union xfs_btree_ptr	lptr;
   3082
   3083	XFS_BTREE_STATS_INC(cur, newroot);
   3084
   3085	/* initialise our start point from the cursor */
   3086	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
   3087
   3088	/* Allocate the new block. If we can't do it, we're toast. Give up. */
   3089	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
   3090	if (error)
   3091		goto error0;
   3092	if (*stat == 0)
   3093		goto out0;
   3094	XFS_BTREE_STATS_INC(cur, alloc);
   3095
   3096	/* Set up the new block. */
   3097	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
   3098	if (error)
   3099		goto error0;
   3100
   3101	/* Set the root in the holding structure  increasing the level by 1. */
   3102	cur->bc_ops->set_root(cur, &lptr, 1);
   3103
   3104	/*
   3105	 * At the previous root level there are now two blocks: the old root,
   3106	 * and the new block generated when it was split.  We don't know which
   3107	 * one the cursor is pointing at, so we set up variables "left" and
   3108	 * "right" for each case.
   3109	 */
   3110	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
   3111
   3112#ifdef DEBUG
   3113	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
   3114	if (error)
   3115		goto error0;
   3116#endif
   3117
   3118	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
   3119	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
   3120		/* Our block is left, pick up the right block. */
   3121		lbp = bp;
   3122		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
   3123		left = block;
   3124		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
   3125		if (error)
   3126			goto error0;
   3127		bp = rbp;
   3128		nptr = 1;
   3129	} else {
   3130		/* Our block is right, pick up the left block. */
   3131		rbp = bp;
   3132		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
   3133		right = block;
   3134		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
   3135		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
   3136		if (error)
   3137			goto error0;
   3138		bp = lbp;
   3139		nptr = 2;
   3140	}
   3141
   3142	/* Fill in the new block's btree header and log it. */
   3143	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
   3144	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
   3145	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
   3146			!xfs_btree_ptr_is_null(cur, &rptr));
   3147
   3148	/* Fill in the key data in the new root. */
   3149	if (xfs_btree_get_level(left) > 0) {
   3150		/*
   3151		 * Get the keys for the left block's keys and put them directly
   3152		 * in the parent block.  Do the same for the right block.
   3153		 */
   3154		xfs_btree_get_node_keys(cur, left,
   3155				xfs_btree_key_addr(cur, 1, new));
   3156		xfs_btree_get_node_keys(cur, right,
   3157				xfs_btree_key_addr(cur, 2, new));
   3158	} else {
   3159		/*
   3160		 * Get the keys for the left block's records and put them
   3161		 * directly in the parent block.  Do the same for the right
   3162		 * block.
   3163		 */
   3164		xfs_btree_get_leaf_keys(cur, left,
   3165			xfs_btree_key_addr(cur, 1, new));
   3166		xfs_btree_get_leaf_keys(cur, right,
   3167			xfs_btree_key_addr(cur, 2, new));
   3168	}
   3169	xfs_btree_log_keys(cur, nbp, 1, 2);
   3170
   3171	/* Fill in the pointer data in the new root. */
   3172	xfs_btree_copy_ptrs(cur,
   3173		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
   3174	xfs_btree_copy_ptrs(cur,
   3175		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
   3176	xfs_btree_log_ptrs(cur, nbp, 1, 2);
   3177
   3178	/* Fix up the cursor. */
   3179	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
   3180	cur->bc_levels[cur->bc_nlevels].ptr = nptr;
   3181	cur->bc_nlevels++;
   3182	ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
   3183	*stat = 1;
   3184	return 0;
   3185error0:
   3186	return error;
   3187out0:
   3188	*stat = 0;
   3189	return 0;
   3190}
   3191
   3192STATIC int
   3193xfs_btree_make_block_unfull(
   3194	struct xfs_btree_cur	*cur,	/* btree cursor */
   3195	int			level,	/* btree level */
   3196	int			numrecs,/* # of recs in block */
   3197	int			*oindex,/* old tree index */
   3198	int			*index,	/* new tree index */
   3199	union xfs_btree_ptr	*nptr,	/* new btree ptr */
   3200	struct xfs_btree_cur	**ncur,	/* new btree cursor */
   3201	union xfs_btree_key	*key,	/* key of new block */
   3202	int			*stat)
   3203{
   3204	int			error = 0;
   3205
   3206	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
   3207	    level == cur->bc_nlevels - 1) {
   3208		struct xfs_inode *ip = cur->bc_ino.ip;
   3209
   3210		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
   3211			/* A root block that can be made bigger. */
   3212			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
   3213			*stat = 1;
   3214		} else {
   3215			/* A root block that needs replacing */
   3216			int	logflags = 0;
   3217
   3218			error = xfs_btree_new_iroot(cur, &logflags, stat);
   3219			if (error || *stat == 0)
   3220				return error;
   3221
   3222			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
   3223		}
   3224
   3225		return 0;
   3226	}
   3227
   3228	/* First, try shifting an entry to the right neighbor. */
   3229	error = xfs_btree_rshift(cur, level, stat);
   3230	if (error || *stat)
   3231		return error;
   3232
   3233	/* Next, try shifting an entry to the left neighbor. */
   3234	error = xfs_btree_lshift(cur, level, stat);
   3235	if (error)
   3236		return error;
   3237
   3238	if (*stat) {
   3239		*oindex = *index = cur->bc_levels[level].ptr;
   3240		return 0;
   3241	}
   3242
   3243	/*
   3244	 * Next, try splitting the current block in half.
   3245	 *
   3246	 * If this works we have to re-set our variables because we
   3247	 * could be in a different block now.
   3248	 */
   3249	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
   3250	if (error || *stat == 0)
   3251		return error;
   3252
   3253
   3254	*index = cur->bc_levels[level].ptr;
   3255	return 0;
   3256}
   3257
   3258/*
   3259 * Insert one record/level.  Return information to the caller
   3260 * allowing the next level up to proceed if necessary.
   3261 */
   3262STATIC int
   3263xfs_btree_insrec(
   3264	struct xfs_btree_cur	*cur,	/* btree cursor */
   3265	int			level,	/* level to insert record at */
   3266	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
   3267	union xfs_btree_rec	*rec,	/* record to insert */
   3268	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
   3269	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
   3270	int			*stat)	/* success/failure */
   3271{
   3272	struct xfs_btree_block	*block;	/* btree block */
   3273	struct xfs_buf		*bp;	/* buffer for block */
   3274	union xfs_btree_ptr	nptr;	/* new block ptr */
   3275	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
   3276	union xfs_btree_key	nkey;	/* new block key */
   3277	union xfs_btree_key	*lkey;
   3278	int			optr;	/* old key/record index */
   3279	int			ptr;	/* key/record index */
   3280	int			numrecs;/* number of records */
   3281	int			error;	/* error return value */
   3282	int			i;
   3283	xfs_daddr_t		old_bn;
   3284
   3285	ncur = NULL;
   3286	lkey = &nkey;
   3287
   3288	/*
   3289	 * If we have an external root pointer, and we've made it to the
   3290	 * root level, allocate a new root block and we're done.
   3291	 */
   3292	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
   3293	    (level >= cur->bc_nlevels)) {
   3294		error = xfs_btree_new_root(cur, stat);
   3295		xfs_btree_set_ptr_null(cur, ptrp);
   3296
   3297		return error;
   3298	}
   3299
   3300	/* If we're off the left edge, return failure. */
   3301	ptr = cur->bc_levels[level].ptr;
   3302	if (ptr == 0) {
   3303		*stat = 0;
   3304		return 0;
   3305	}
   3306
   3307	optr = ptr;
   3308
   3309	XFS_BTREE_STATS_INC(cur, insrec);
   3310
   3311	/* Get pointers to the btree buffer and block. */
   3312	block = xfs_btree_get_block(cur, level, &bp);
   3313	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
   3314	numrecs = xfs_btree_get_numrecs(block);
   3315
   3316#ifdef DEBUG
   3317	error = xfs_btree_check_block(cur, block, level, bp);
   3318	if (error)
   3319		goto error0;
   3320
   3321	/* Check that the new entry is being inserted in the right place. */
   3322	if (ptr <= numrecs) {
   3323		if (level == 0) {
   3324			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
   3325				xfs_btree_rec_addr(cur, ptr, block)));
   3326		} else {
   3327			ASSERT(cur->bc_ops->keys_inorder(cur, key,
   3328				xfs_btree_key_addr(cur, ptr, block)));
   3329		}
   3330	}
   3331#endif
   3332
   3333	/*
   3334	 * If the block is full, we can't insert the new entry until we
   3335	 * make the block un-full.
   3336	 */
   3337	xfs_btree_set_ptr_null(cur, &nptr);
   3338	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
   3339		error = xfs_btree_make_block_unfull(cur, level, numrecs,
   3340					&optr, &ptr, &nptr, &ncur, lkey, stat);
   3341		if (error || *stat == 0)
   3342			goto error0;
   3343	}
   3344
   3345	/*
   3346	 * The current block may have changed if the block was
   3347	 * previously full and we have just made space in it.
   3348	 */
   3349	block = xfs_btree_get_block(cur, level, &bp);
   3350	numrecs = xfs_btree_get_numrecs(block);
   3351
   3352#ifdef DEBUG
   3353	error = xfs_btree_check_block(cur, block, level, bp);
   3354	if (error)
   3355		goto error0;
   3356#endif
   3357
   3358	/*
   3359	 * At this point we know there's room for our new entry in the block
   3360	 * we're pointing at.
   3361	 */
   3362	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
   3363
   3364	if (level > 0) {
   3365		/* It's a nonleaf. make a hole in the keys and ptrs */
   3366		union xfs_btree_key	*kp;
   3367		union xfs_btree_ptr	*pp;
   3368
   3369		kp = xfs_btree_key_addr(cur, ptr, block);
   3370		pp = xfs_btree_ptr_addr(cur, ptr, block);
   3371
   3372		for (i = numrecs - ptr; i >= 0; i--) {
   3373			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
   3374			if (error)
   3375				goto error0;
   3376		}
   3377
   3378		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
   3379		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
   3380
   3381		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
   3382		if (error)
   3383			goto error0;
   3384
   3385		/* Now put the new data in, bump numrecs and log it. */
   3386		xfs_btree_copy_keys(cur, kp, key, 1);
   3387		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
   3388		numrecs++;
   3389		xfs_btree_set_numrecs(block, numrecs);
   3390		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
   3391		xfs_btree_log_keys(cur, bp, ptr, numrecs);
   3392#ifdef DEBUG
   3393		if (ptr < numrecs) {
   3394			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
   3395				xfs_btree_key_addr(cur, ptr + 1, block)));
   3396		}
   3397#endif
   3398	} else {
   3399		/* It's a leaf. make a hole in the records */
   3400		union xfs_btree_rec             *rp;
   3401
   3402		rp = xfs_btree_rec_addr(cur, ptr, block);
   3403
   3404		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
   3405
   3406		/* Now put the new data in, bump numrecs and log it. */
   3407		xfs_btree_copy_recs(cur, rp, rec, 1);
   3408		xfs_btree_set_numrecs(block, ++numrecs);
   3409		xfs_btree_log_recs(cur, bp, ptr, numrecs);
   3410#ifdef DEBUG
   3411		if (ptr < numrecs) {
   3412			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
   3413				xfs_btree_rec_addr(cur, ptr + 1, block)));
   3414		}
   3415#endif
   3416	}
   3417
   3418	/* Log the new number of records in the btree header. */
   3419	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
   3420
   3421	/*
   3422	 * If we just inserted into a new tree block, we have to
   3423	 * recalculate nkey here because nkey is out of date.
   3424	 *
   3425	 * Otherwise we're just updating an existing block (having shoved
   3426	 * some records into the new tree block), so use the regular key
   3427	 * update mechanism.
   3428	 */
   3429	if (bp && xfs_buf_daddr(bp) != old_bn) {
   3430		xfs_btree_get_keys(cur, block, lkey);
   3431	} else if (xfs_btree_needs_key_update(cur, optr)) {
   3432		error = xfs_btree_update_keys(cur, level);
   3433		if (error)
   3434			goto error0;
   3435	}
   3436
   3437	/*
   3438	 * If we are tracking the last record in the tree and
   3439	 * we are at the far right edge of the tree, update it.
   3440	 */
   3441	if (xfs_btree_is_lastrec(cur, block, level)) {
   3442		cur->bc_ops->update_lastrec(cur, block, rec,
   3443					    ptr, LASTREC_INSREC);
   3444	}
   3445
   3446	/*
   3447	 * Return the new block number, if any.
   3448	 * If there is one, give back a record value and a cursor too.
   3449	 */
   3450	*ptrp = nptr;
   3451	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
   3452		xfs_btree_copy_keys(cur, key, lkey, 1);
   3453		*curp = ncur;
   3454	}
   3455
   3456	*stat = 1;
   3457	return 0;
   3458
   3459error0:
   3460	if (ncur)
   3461		xfs_btree_del_cursor(ncur, error);
   3462	return error;
   3463}
   3464
   3465/*
   3466 * Insert the record at the point referenced by cur.
   3467 *
   3468 * A multi-level split of the tree on insert will invalidate the original
   3469 * cursor.  All callers of this function should assume that the cursor is
   3470 * no longer valid and revalidate it.
   3471 */
   3472int
   3473xfs_btree_insert(
   3474	struct xfs_btree_cur	*cur,
   3475	int			*stat)
   3476{
   3477	int			error;	/* error return value */
   3478	int			i;	/* result value, 0 for failure */
   3479	int			level;	/* current level number in btree */
   3480	union xfs_btree_ptr	nptr;	/* new block number (split result) */
   3481	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
   3482	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
   3483	union xfs_btree_key	bkey;	/* key of block to insert */
   3484	union xfs_btree_key	*key;
   3485	union xfs_btree_rec	rec;	/* record to insert */
   3486
   3487	level = 0;
   3488	ncur = NULL;
   3489	pcur = cur;
   3490	key = &bkey;
   3491
   3492	xfs_btree_set_ptr_null(cur, &nptr);
   3493
   3494	/* Make a key out of the record data to be inserted, and save it. */
   3495	cur->bc_ops->init_rec_from_cur(cur, &rec);
   3496	cur->bc_ops->init_key_from_rec(key, &rec);
   3497
   3498	/*
   3499	 * Loop going up the tree, starting at the leaf level.
   3500	 * Stop when we don't get a split block, that must mean that
   3501	 * the insert is finished with this level.
   3502	 */
   3503	do {
   3504		/*
   3505		 * Insert nrec/nptr into this level of the tree.
   3506		 * Note if we fail, nptr will be null.
   3507		 */
   3508		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
   3509				&ncur, &i);
   3510		if (error) {
   3511			if (pcur != cur)
   3512				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
   3513			goto error0;
   3514		}
   3515
   3516		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
   3517			error = -EFSCORRUPTED;
   3518			goto error0;
   3519		}
   3520		level++;
   3521
   3522		/*
   3523		 * See if the cursor we just used is trash.
   3524		 * Can't trash the caller's cursor, but otherwise we should
   3525		 * if ncur is a new cursor or we're about to be done.
   3526		 */
   3527		if (pcur != cur &&
   3528		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
   3529			/* Save the state from the cursor before we trash it */
   3530			if (cur->bc_ops->update_cursor)
   3531				cur->bc_ops->update_cursor(pcur, cur);
   3532			cur->bc_nlevels = pcur->bc_nlevels;
   3533			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
   3534		}
   3535		/* If we got a new cursor, switch to it. */
   3536		if (ncur) {
   3537			pcur = ncur;
   3538			ncur = NULL;
   3539		}
   3540	} while (!xfs_btree_ptr_is_null(cur, &nptr));
   3541
   3542	*stat = i;
   3543	return 0;
   3544error0:
   3545	return error;
   3546}
   3547
   3548/*
   3549 * Try to merge a non-leaf block back into the inode root.
   3550 *
   3551 * Note: the killroot names comes from the fact that we're effectively
   3552 * killing the old root block.  But because we can't just delete the
   3553 * inode we have to copy the single block it was pointing to into the
   3554 * inode.
   3555 */
   3556STATIC int
   3557xfs_btree_kill_iroot(
   3558	struct xfs_btree_cur	*cur)
   3559{
   3560	int			whichfork = cur->bc_ino.whichfork;
   3561	struct xfs_inode	*ip = cur->bc_ino.ip;
   3562	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
   3563	struct xfs_btree_block	*block;
   3564	struct xfs_btree_block	*cblock;
   3565	union xfs_btree_key	*kp;
   3566	union xfs_btree_key	*ckp;
   3567	union xfs_btree_ptr	*pp;
   3568	union xfs_btree_ptr	*cpp;
   3569	struct xfs_buf		*cbp;
   3570	int			level;
   3571	int			index;
   3572	int			numrecs;
   3573	int			error;
   3574#ifdef DEBUG
   3575	union xfs_btree_ptr	ptr;
   3576#endif
   3577	int			i;
   3578
   3579	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
   3580	ASSERT(cur->bc_nlevels > 1);
   3581
   3582	/*
   3583	 * Don't deal with the root block needs to be a leaf case.
   3584	 * We're just going to turn the thing back into extents anyway.
   3585	 */
   3586	level = cur->bc_nlevels - 1;
   3587	if (level == 1)
   3588		goto out0;
   3589
   3590	/*
   3591	 * Give up if the root has multiple children.
   3592	 */
   3593	block = xfs_btree_get_iroot(cur);
   3594	if (xfs_btree_get_numrecs(block) != 1)
   3595		goto out0;
   3596
   3597	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
   3598	numrecs = xfs_btree_get_numrecs(cblock);
   3599
   3600	/*
   3601	 * Only do this if the next level will fit.
   3602	 * Then the data must be copied up to the inode,
   3603	 * instead of freeing the root you free the next level.
   3604	 */
   3605	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
   3606		goto out0;
   3607
   3608	XFS_BTREE_STATS_INC(cur, killroot);
   3609
   3610#ifdef DEBUG
   3611	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
   3612	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
   3613	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
   3614	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
   3615#endif
   3616
   3617	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
   3618	if (index) {
   3619		xfs_iroot_realloc(cur->bc_ino.ip, index,
   3620				  cur->bc_ino.whichfork);
   3621		block = ifp->if_broot;
   3622	}
   3623
   3624	be16_add_cpu(&block->bb_numrecs, index);
   3625	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
   3626
   3627	kp = xfs_btree_key_addr(cur, 1, block);
   3628	ckp = xfs_btree_key_addr(cur, 1, cblock);
   3629	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
   3630
   3631	pp = xfs_btree_ptr_addr(cur, 1, block);
   3632	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
   3633
   3634	for (i = 0; i < numrecs; i++) {
   3635		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
   3636		if (error)
   3637			return error;
   3638	}
   3639
   3640	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
   3641
   3642	error = xfs_btree_free_block(cur, cbp);
   3643	if (error)
   3644		return error;
   3645
   3646	cur->bc_levels[level - 1].bp = NULL;
   3647	be16_add_cpu(&block->bb_level, -1);
   3648	xfs_trans_log_inode(cur->bc_tp, ip,
   3649		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
   3650	cur->bc_nlevels--;
   3651out0:
   3652	return 0;
   3653}
   3654
   3655/*
   3656 * Kill the current root node, and replace it with it's only child node.
   3657 */
   3658STATIC int
   3659xfs_btree_kill_root(
   3660	struct xfs_btree_cur	*cur,
   3661	struct xfs_buf		*bp,
   3662	int			level,
   3663	union xfs_btree_ptr	*newroot)
   3664{
   3665	int			error;
   3666
   3667	XFS_BTREE_STATS_INC(cur, killroot);
   3668
   3669	/*
   3670	 * Update the root pointer, decreasing the level by 1 and then
   3671	 * free the old root.
   3672	 */
   3673	cur->bc_ops->set_root(cur, newroot, -1);
   3674
   3675	error = xfs_btree_free_block(cur, bp);
   3676	if (error)
   3677		return error;
   3678
   3679	cur->bc_levels[level].bp = NULL;
   3680	cur->bc_levels[level].ra = 0;
   3681	cur->bc_nlevels--;
   3682
   3683	return 0;
   3684}
   3685
   3686STATIC int
   3687xfs_btree_dec_cursor(
   3688	struct xfs_btree_cur	*cur,
   3689	int			level,
   3690	int			*stat)
   3691{
   3692	int			error;
   3693	int			i;
   3694
   3695	if (level > 0) {
   3696		error = xfs_btree_decrement(cur, level, &i);
   3697		if (error)
   3698			return error;
   3699	}
   3700
   3701	*stat = 1;
   3702	return 0;
   3703}
   3704
   3705/*
   3706 * Single level of the btree record deletion routine.
   3707 * Delete record pointed to by cur/level.
   3708 * Remove the record from its block then rebalance the tree.
   3709 * Return 0 for error, 1 for done, 2 to go on to the next level.
   3710 */
   3711STATIC int					/* error */
   3712xfs_btree_delrec(
   3713	struct xfs_btree_cur	*cur,		/* btree cursor */
   3714	int			level,		/* level removing record from */
   3715	int			*stat)		/* fail/done/go-on */
   3716{
   3717	struct xfs_btree_block	*block;		/* btree block */
   3718	union xfs_btree_ptr	cptr;		/* current block ptr */
   3719	struct xfs_buf		*bp;		/* buffer for block */
   3720	int			error;		/* error return value */
   3721	int			i;		/* loop counter */
   3722	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
   3723	struct xfs_buf		*lbp;		/* left buffer pointer */
   3724	struct xfs_btree_block	*left;		/* left btree block */
   3725	int			lrecs = 0;	/* left record count */
   3726	int			ptr;		/* key/record index */
   3727	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
   3728	struct xfs_buf		*rbp;		/* right buffer pointer */
   3729	struct xfs_btree_block	*right;		/* right btree block */
   3730	struct xfs_btree_block	*rrblock;	/* right-right btree block */
   3731	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
   3732	int			rrecs = 0;	/* right record count */
   3733	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
   3734	int			numrecs;	/* temporary numrec count */
   3735
   3736	tcur = NULL;
   3737
   3738	/* Get the index of the entry being deleted, check for nothing there. */
   3739	ptr = cur->bc_levels[level].ptr;
   3740	if (ptr == 0) {
   3741		*stat = 0;
   3742		return 0;
   3743	}
   3744
   3745	/* Get the buffer & block containing the record or key/ptr. */
   3746	block = xfs_btree_get_block(cur, level, &bp);
   3747	numrecs = xfs_btree_get_numrecs(block);
   3748
   3749#ifdef DEBUG
   3750	error = xfs_btree_check_block(cur, block, level, bp);
   3751	if (error)
   3752		goto error0;
   3753#endif
   3754
   3755	/* Fail if we're off the end of the block. */
   3756	if (ptr > numrecs) {
   3757		*stat = 0;
   3758		return 0;
   3759	}
   3760
   3761	XFS_BTREE_STATS_INC(cur, delrec);
   3762	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
   3763
   3764	/* Excise the entries being deleted. */
   3765	if (level > 0) {
   3766		/* It's a nonleaf. operate on keys and ptrs */
   3767		union xfs_btree_key	*lkp;
   3768		union xfs_btree_ptr	*lpp;
   3769
   3770		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
   3771		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
   3772
   3773		for (i = 0; i < numrecs - ptr; i++) {
   3774			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
   3775			if (error)
   3776				goto error0;
   3777		}
   3778
   3779		if (ptr < numrecs) {
   3780			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
   3781			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
   3782			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
   3783			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
   3784		}
   3785	} else {
   3786		/* It's a leaf. operate on records */
   3787		if (ptr < numrecs) {
   3788			xfs_btree_shift_recs(cur,
   3789				xfs_btree_rec_addr(cur, ptr + 1, block),
   3790				-1, numrecs - ptr);
   3791			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
   3792		}
   3793	}
   3794
   3795	/*
   3796	 * Decrement and log the number of entries in the block.
   3797	 */
   3798	xfs_btree_set_numrecs(block, --numrecs);
   3799	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
   3800
   3801	/*
   3802	 * If we are tracking the last record in the tree and
   3803	 * we are at the far right edge of the tree, update it.
   3804	 */
   3805	if (xfs_btree_is_lastrec(cur, block, level)) {
   3806		cur->bc_ops->update_lastrec(cur, block, NULL,
   3807					    ptr, LASTREC_DELREC);
   3808	}
   3809
   3810	/*
   3811	 * We're at the root level.  First, shrink the root block in-memory.
   3812	 * Try to get rid of the next level down.  If we can't then there's
   3813	 * nothing left to do.
   3814	 */
   3815	if (level == cur->bc_nlevels - 1) {
   3816		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
   3817			xfs_iroot_realloc(cur->bc_ino.ip, -1,
   3818					  cur->bc_ino.whichfork);
   3819
   3820			error = xfs_btree_kill_iroot(cur);
   3821			if (error)
   3822				goto error0;
   3823
   3824			error = xfs_btree_dec_cursor(cur, level, stat);
   3825			if (error)
   3826				goto error0;
   3827			*stat = 1;
   3828			return 0;
   3829		}
   3830
   3831		/*
   3832		 * If this is the root level, and there's only one entry left,
   3833		 * and it's NOT the leaf level, then we can get rid of this
   3834		 * level.
   3835		 */
   3836		if (numrecs == 1 && level > 0) {
   3837			union xfs_btree_ptr	*pp;
   3838			/*
   3839			 * pp is still set to the first pointer in the block.
   3840			 * Make it the new root of the btree.
   3841			 */
   3842			pp = xfs_btree_ptr_addr(cur, 1, block);
   3843			error = xfs_btree_kill_root(cur, bp, level, pp);
   3844			if (error)
   3845				goto error0;
   3846		} else if (level > 0) {
   3847			error = xfs_btree_dec_cursor(cur, level, stat);
   3848			if (error)
   3849				goto error0;
   3850		}
   3851		*stat = 1;
   3852		return 0;
   3853	}
   3854
   3855	/*
   3856	 * If we deleted the leftmost entry in the block, update the
   3857	 * key values above us in the tree.
   3858	 */
   3859	if (xfs_btree_needs_key_update(cur, ptr)) {
   3860		error = xfs_btree_update_keys(cur, level);
   3861		if (error)
   3862			goto error0;
   3863	}
   3864
   3865	/*
   3866	 * If the number of records remaining in the block is at least
   3867	 * the minimum, we're done.
   3868	 */
   3869	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
   3870		error = xfs_btree_dec_cursor(cur, level, stat);
   3871		if (error)
   3872			goto error0;
   3873		return 0;
   3874	}
   3875
   3876	/*
   3877	 * Otherwise, we have to move some records around to keep the
   3878	 * tree balanced.  Look at the left and right sibling blocks to
   3879	 * see if we can re-balance by moving only one record.
   3880	 */
   3881	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
   3882	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
   3883
   3884	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
   3885		/*
   3886		 * One child of root, need to get a chance to copy its contents
   3887		 * into the root and delete it. Can't go up to next level,
   3888		 * there's nothing to delete there.
   3889		 */
   3890		if (xfs_btree_ptr_is_null(cur, &rptr) &&
   3891		    xfs_btree_ptr_is_null(cur, &lptr) &&
   3892		    level == cur->bc_nlevels - 2) {
   3893			error = xfs_btree_kill_iroot(cur);
   3894			if (!error)
   3895				error = xfs_btree_dec_cursor(cur, level, stat);
   3896			if (error)
   3897				goto error0;
   3898			return 0;
   3899		}
   3900	}
   3901
   3902	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
   3903	       !xfs_btree_ptr_is_null(cur, &lptr));
   3904
   3905	/*
   3906	 * Duplicate the cursor so our btree manipulations here won't
   3907	 * disrupt the next level up.
   3908	 */
   3909	error = xfs_btree_dup_cursor(cur, &tcur);
   3910	if (error)
   3911		goto error0;
   3912
   3913	/*
   3914	 * If there's a right sibling, see if it's ok to shift an entry
   3915	 * out of it.
   3916	 */
   3917	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
   3918		/*
   3919		 * Move the temp cursor to the last entry in the next block.
   3920		 * Actually any entry but the first would suffice.
   3921		 */
   3922		i = xfs_btree_lastrec(tcur, level);
   3923		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
   3924			error = -EFSCORRUPTED;
   3925			goto error0;
   3926		}
   3927
   3928		error = xfs_btree_increment(tcur, level, &i);
   3929		if (error)
   3930			goto error0;
   3931		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
   3932			error = -EFSCORRUPTED;
   3933			goto error0;
   3934		}
   3935
   3936		i = xfs_btree_lastrec(tcur, level);
   3937		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
   3938			error = -EFSCORRUPTED;
   3939			goto error0;
   3940		}
   3941
   3942		/* Grab a pointer to the block. */
   3943		right = xfs_btree_get_block(tcur, level, &rbp);
   3944#ifdef DEBUG
   3945		error = xfs_btree_check_block(tcur, right, level, rbp);
   3946		if (error)
   3947			goto error0;
   3948#endif
   3949		/* Grab the current block number, for future use. */
   3950		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
   3951
   3952		/*
   3953		 * If right block is full enough so that removing one entry
   3954		 * won't make it too empty, and left-shifting an entry out
   3955		 * of right to us works, we're done.
   3956		 */
   3957		if (xfs_btree_get_numrecs(right) - 1 >=
   3958		    cur->bc_ops->get_minrecs(tcur, level)) {
   3959			error = xfs_btree_lshift(tcur, level, &i);
   3960			if (error)
   3961				goto error0;
   3962			if (i) {
   3963				ASSERT(xfs_btree_get_numrecs(block) >=
   3964				       cur->bc_ops->get_minrecs(tcur, level));
   3965
   3966				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
   3967				tcur = NULL;
   3968
   3969				error = xfs_btree_dec_cursor(cur, level, stat);
   3970				if (error)
   3971					goto error0;
   3972				return 0;
   3973			}
   3974		}
   3975
   3976		/*
   3977		 * Otherwise, grab the number of records in right for
   3978		 * future reference, and fix up the temp cursor to point
   3979		 * to our block again (last record).
   3980		 */
   3981		rrecs = xfs_btree_get_numrecs(right);
   3982		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
   3983			i = xfs_btree_firstrec(tcur, level);
   3984			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
   3985				error = -EFSCORRUPTED;
   3986				goto error0;
   3987			}
   3988
   3989			error = xfs_btree_decrement(tcur, level, &i);
   3990			if (error)
   3991				goto error0;
   3992			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
   3993				error = -EFSCORRUPTED;
   3994				goto error0;
   3995			}
   3996		}
   3997	}
   3998
   3999	/*
   4000	 * If there's a left sibling, see if it's ok to shift an entry
   4001	 * out of it.
   4002	 */
   4003	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
   4004		/*
   4005		 * Move the temp cursor to the first entry in the
   4006		 * previous block.
   4007		 */
   4008		i = xfs_btree_firstrec(tcur, level);
   4009		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
   4010			error = -EFSCORRUPTED;
   4011			goto error0;
   4012		}
   4013
   4014		error = xfs_btree_decrement(tcur, level, &i);
   4015		if (error)
   4016			goto error0;
   4017		i = xfs_btree_firstrec(tcur, level);
   4018		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
   4019			error = -EFSCORRUPTED;
   4020			goto error0;
   4021		}
   4022
   4023		/* Grab a pointer to the block. */
   4024		left = xfs_btree_get_block(tcur, level, &lbp);
   4025#ifdef DEBUG
   4026		error = xfs_btree_check_block(cur, left, level, lbp);
   4027		if (error)
   4028			goto error0;
   4029#endif
   4030		/* Grab the current block number, for future use. */
   4031		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
   4032
   4033		/*
   4034		 * If left block is full enough so that removing one entry
   4035		 * won't make it too empty, and right-shifting an entry out
   4036		 * of left to us works, we're done.
   4037		 */
   4038		if (xfs_btree_get_numrecs(left) - 1 >=
   4039		    cur->bc_ops->get_minrecs(tcur, level)) {
   4040			error = xfs_btree_rshift(tcur, level, &i);
   4041			if (error)
   4042				goto error0;
   4043			if (i) {
   4044				ASSERT(xfs_btree_get_numrecs(block) >=
   4045				       cur->bc_ops->get_minrecs(tcur, level));
   4046				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
   4047				tcur = NULL;
   4048				if (level == 0)
   4049					cur->bc_levels[0].ptr++;
   4050
   4051				*stat = 1;
   4052				return 0;
   4053			}
   4054		}
   4055
   4056		/*
   4057		 * Otherwise, grab the number of records in right for
   4058		 * future reference.
   4059		 */
   4060		lrecs = xfs_btree_get_numrecs(left);
   4061	}
   4062
   4063	/* Delete the temp cursor, we're done with it. */
   4064	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
   4065	tcur = NULL;
   4066
   4067	/* If here, we need to do a join to keep the tree balanced. */
   4068	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
   4069
   4070	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
   4071	    lrecs + xfs_btree_get_numrecs(block) <=
   4072			cur->bc_ops->get_maxrecs(cur, level)) {
   4073		/*
   4074		 * Set "right" to be the starting block,
   4075		 * "left" to be the left neighbor.
   4076		 */
   4077		rptr = cptr;
   4078		right = block;
   4079		rbp = bp;
   4080		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
   4081		if (error)
   4082			goto error0;
   4083
   4084	/*
   4085	 * If that won't work, see if we can join with the right neighbor block.
   4086	 */
   4087	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
   4088		   rrecs + xfs_btree_get_numrecs(block) <=
   4089			cur->bc_ops->get_maxrecs(cur, level)) {
   4090		/*
   4091		 * Set "left" to be the starting block,
   4092		 * "right" to be the right neighbor.
   4093		 */
   4094		lptr = cptr;
   4095		left = block;
   4096		lbp = bp;
   4097		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
   4098		if (error)
   4099			goto error0;
   4100
   4101	/*
   4102	 * Otherwise, we can't fix the imbalance.
   4103	 * Just return.  This is probably a logic error, but it's not fatal.
   4104	 */
   4105	} else {
   4106		error = xfs_btree_dec_cursor(cur, level, stat);
   4107		if (error)
   4108			goto error0;
   4109		return 0;
   4110	}
   4111
   4112	rrecs = xfs_btree_get_numrecs(right);
   4113	lrecs = xfs_btree_get_numrecs(left);
   4114
   4115	/*
   4116	 * We're now going to join "left" and "right" by moving all the stuff
   4117	 * in "right" to "left" and deleting "right".
   4118	 */
   4119	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
   4120	if (level > 0) {
   4121		/* It's a non-leaf.  Move keys and pointers. */
   4122		union xfs_btree_key	*lkp;	/* left btree key */
   4123		union xfs_btree_ptr	*lpp;	/* left address pointer */
   4124		union xfs_btree_key	*rkp;	/* right btree key */
   4125		union xfs_btree_ptr	*rpp;	/* right address pointer */
   4126
   4127		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
   4128		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
   4129		rkp = xfs_btree_key_addr(cur, 1, right);
   4130		rpp = xfs_btree_ptr_addr(cur, 1, right);
   4131
   4132		for (i = 1; i < rrecs; i++) {
   4133			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
   4134			if (error)
   4135				goto error0;
   4136		}
   4137
   4138		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
   4139		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
   4140
   4141		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
   4142		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
   4143	} else {
   4144		/* It's a leaf.  Move records.  */
   4145		union xfs_btree_rec	*lrp;	/* left record pointer */
   4146		union xfs_btree_rec	*rrp;	/* right record pointer */
   4147
   4148		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
   4149		rrp = xfs_btree_rec_addr(cur, 1, right);
   4150
   4151		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
   4152		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
   4153	}
   4154
   4155	XFS_BTREE_STATS_INC(cur, join);
   4156
   4157	/*
   4158	 * Fix up the number of records and right block pointer in the
   4159	 * surviving block, and log it.
   4160	 */
   4161	xfs_btree_set_numrecs(left, lrecs + rrecs);
   4162	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
   4163	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
   4164	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
   4165
   4166	/* If there is a right sibling, point it to the remaining block. */
   4167	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
   4168	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
   4169		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
   4170		if (error)
   4171			goto error0;
   4172		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
   4173		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
   4174	}
   4175
   4176	/* Free the deleted block. */
   4177	error = xfs_btree_free_block(cur, rbp);
   4178	if (error)
   4179		goto error0;
   4180
   4181	/*
   4182	 * If we joined with the left neighbor, set the buffer in the
   4183	 * cursor to the left block, and fix up the index.
   4184	 */
   4185	if (bp != lbp) {
   4186		cur->bc_levels[level].bp = lbp;
   4187		cur->bc_levels[level].ptr += lrecs;
   4188		cur->bc_levels[level].ra = 0;
   4189	}
   4190	/*
   4191	 * If we joined with the right neighbor and there's a level above
   4192	 * us, increment the cursor at that level.
   4193	 */
   4194	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
   4195		   (level + 1 < cur->bc_nlevels)) {
   4196		error = xfs_btree_increment(cur, level + 1, &i);
   4197		if (error)
   4198			goto error0;
   4199	}
   4200
   4201	/*
   4202	 * Readjust the ptr at this level if it's not a leaf, since it's
   4203	 * still pointing at the deletion point, which makes the cursor
   4204	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
   4205	 * We can't use decrement because it would change the next level up.
   4206	 */
   4207	if (level > 0)
   4208		cur->bc_levels[level].ptr--;
   4209
   4210	/*
   4211	 * We combined blocks, so we have to update the parent keys if the
   4212	 * btree supports overlapped intervals.  However,
   4213	 * bc_levels[level + 1].ptr points to the old block so that the caller
   4214	 * knows which record to delete.  Therefore, the caller must be savvy
   4215	 * enough to call updkeys for us if we return stat == 2.  The other
   4216	 * exit points from this function don't require deletions further up
   4217	 * the tree, so they can call updkeys directly.
   4218	 */
   4219
   4220	/* Return value means the next level up has something to do. */
   4221	*stat = 2;
   4222	return 0;
   4223
   4224error0:
   4225	if (tcur)
   4226		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
   4227	return error;
   4228}
   4229
   4230/*
   4231 * Delete the record pointed to by cur.
   4232 * The cursor refers to the place where the record was (could be inserted)
   4233 * when the operation returns.
   4234 */
   4235int					/* error */
   4236xfs_btree_delete(
   4237	struct xfs_btree_cur	*cur,
   4238	int			*stat)	/* success/failure */
   4239{
   4240	int			error;	/* error return value */
   4241	int			level;
   4242	int			i;
   4243	bool			joined = false;
   4244
   4245	/*
   4246	 * Go up the tree, starting at leaf level.
   4247	 *
   4248	 * If 2 is returned then a join was done; go to the next level.
   4249	 * Otherwise we are done.
   4250	 */
   4251	for (level = 0, i = 2; i == 2; level++) {
   4252		error = xfs_btree_delrec(cur, level, &i);
   4253		if (error)
   4254			goto error0;
   4255		if (i == 2)
   4256			joined = true;
   4257	}
   4258
   4259	/*
   4260	 * If we combined blocks as part of deleting the record, delrec won't
   4261	 * have updated the parent high keys so we have to do that here.
   4262	 */
   4263	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
   4264		error = xfs_btree_updkeys_force(cur, 0);
   4265		if (error)
   4266			goto error0;
   4267	}
   4268
   4269	if (i == 0) {
   4270		for (level = 1; level < cur->bc_nlevels; level++) {
   4271			if (cur->bc_levels[level].ptr == 0) {
   4272				error = xfs_btree_decrement(cur, level, &i);
   4273				if (error)
   4274					goto error0;
   4275				break;
   4276			}
   4277		}
   4278	}
   4279
   4280	*stat = i;
   4281	return 0;
   4282error0:
   4283	return error;
   4284}
   4285
   4286/*
   4287 * Get the data from the pointed-to record.
   4288 */
   4289int					/* error */
   4290xfs_btree_get_rec(
   4291	struct xfs_btree_cur	*cur,	/* btree cursor */
   4292	union xfs_btree_rec	**recp,	/* output: btree record */
   4293	int			*stat)	/* output: success/failure */
   4294{
   4295	struct xfs_btree_block	*block;	/* btree block */
   4296	struct xfs_buf		*bp;	/* buffer pointer */
   4297	int			ptr;	/* record number */
   4298#ifdef DEBUG
   4299	int			error;	/* error return value */
   4300#endif
   4301
   4302	ptr = cur->bc_levels[0].ptr;
   4303	block = xfs_btree_get_block(cur, 0, &bp);
   4304
   4305#ifdef DEBUG
   4306	error = xfs_btree_check_block(cur, block, 0, bp);
   4307	if (error)
   4308		return error;
   4309#endif
   4310
   4311	/*
   4312	 * Off the right end or left end, return failure.
   4313	 */
   4314	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
   4315		*stat = 0;
   4316		return 0;
   4317	}
   4318
   4319	/*
   4320	 * Point to the record and extract its data.
   4321	 */
   4322	*recp = xfs_btree_rec_addr(cur, ptr, block);
   4323	*stat = 1;
   4324	return 0;
   4325}
   4326
   4327/* Visit a block in a btree. */
   4328STATIC int
   4329xfs_btree_visit_block(
   4330	struct xfs_btree_cur		*cur,
   4331	int				level,
   4332	xfs_btree_visit_blocks_fn	fn,
   4333	void				*data)
   4334{
   4335	struct xfs_btree_block		*block;
   4336	struct xfs_buf			*bp;
   4337	union xfs_btree_ptr		rptr;
   4338	int				error;
   4339
   4340	/* do right sibling readahead */
   4341	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
   4342	block = xfs_btree_get_block(cur, level, &bp);
   4343
   4344	/* process the block */
   4345	error = fn(cur, level, data);
   4346	if (error)
   4347		return error;
   4348
   4349	/* now read rh sibling block for next iteration */
   4350	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
   4351	if (xfs_btree_ptr_is_null(cur, &rptr))
   4352		return -ENOENT;
   4353
   4354	/*
   4355	 * We only visit blocks once in this walk, so we have to avoid the
   4356	 * internal xfs_btree_lookup_get_block() optimisation where it will
   4357	 * return the same block without checking if the right sibling points
   4358	 * back to us and creates a cyclic reference in the btree.
   4359	 */
   4360	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
   4361		if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
   4362							xfs_buf_daddr(bp)))
   4363			return -EFSCORRUPTED;
   4364	} else {
   4365		if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
   4366							xfs_buf_daddr(bp)))
   4367			return -EFSCORRUPTED;
   4368	}
   4369	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
   4370}
   4371
   4372
   4373/* Visit every block in a btree. */
   4374int
   4375xfs_btree_visit_blocks(
   4376	struct xfs_btree_cur		*cur,
   4377	xfs_btree_visit_blocks_fn	fn,
   4378	unsigned int			flags,
   4379	void				*data)
   4380{
   4381	union xfs_btree_ptr		lptr;
   4382	int				level;
   4383	struct xfs_btree_block		*block = NULL;
   4384	int				error = 0;
   4385
   4386	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
   4387
   4388	/* for each level */
   4389	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
   4390		/* grab the left hand block */
   4391		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
   4392		if (error)
   4393			return error;
   4394
   4395		/* readahead the left most block for the next level down */
   4396		if (level > 0) {
   4397			union xfs_btree_ptr     *ptr;
   4398
   4399			ptr = xfs_btree_ptr_addr(cur, 1, block);
   4400			xfs_btree_readahead_ptr(cur, ptr, 1);
   4401
   4402			/* save for the next iteration of the loop */
   4403			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
   4404
   4405			if (!(flags & XFS_BTREE_VISIT_LEAVES))
   4406				continue;
   4407		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
   4408			continue;
   4409		}
   4410
   4411		/* for each buffer in the level */
   4412		do {
   4413			error = xfs_btree_visit_block(cur, level, fn, data);
   4414		} while (!error);
   4415
   4416		if (error != -ENOENT)
   4417			return error;
   4418	}
   4419
   4420	return 0;
   4421}
   4422
   4423/*
   4424 * Change the owner of a btree.
   4425 *
   4426 * The mechanism we use here is ordered buffer logging. Because we don't know
   4427 * how many buffers were are going to need to modify, we don't really want to
   4428 * have to make transaction reservations for the worst case of every buffer in a
   4429 * full size btree as that may be more space that we can fit in the log....
   4430 *
   4431 * We do the btree walk in the most optimal manner possible - we have sibling
   4432 * pointers so we can just walk all the blocks on each level from left to right
   4433 * in a single pass, and then move to the next level and do the same. We can
   4434 * also do readahead on the sibling pointers to get IO moving more quickly,
   4435 * though for slow disks this is unlikely to make much difference to performance
   4436 * as the amount of CPU work we have to do before moving to the next block is
   4437 * relatively small.
   4438 *
   4439 * For each btree block that we load, modify the owner appropriately, set the
   4440 * buffer as an ordered buffer and log it appropriately. We need to ensure that
   4441 * we mark the region we change dirty so that if the buffer is relogged in
   4442 * a subsequent transaction the changes we make here as an ordered buffer are
   4443 * correctly relogged in that transaction.  If we are in recovery context, then
   4444 * just queue the modified buffer as delayed write buffer so the transaction
   4445 * recovery completion writes the changes to disk.
   4446 */
   4447struct xfs_btree_block_change_owner_info {
   4448	uint64_t		new_owner;
   4449	struct list_head	*buffer_list;
   4450};
   4451
   4452static int
   4453xfs_btree_block_change_owner(
   4454	struct xfs_btree_cur	*cur,
   4455	int			level,
   4456	void			*data)
   4457{
   4458	struct xfs_btree_block_change_owner_info	*bbcoi = data;
   4459	struct xfs_btree_block	*block;
   4460	struct xfs_buf		*bp;
   4461
   4462	/* modify the owner */
   4463	block = xfs_btree_get_block(cur, level, &bp);
   4464	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
   4465		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
   4466			return 0;
   4467		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
   4468	} else {
   4469		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
   4470			return 0;
   4471		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
   4472	}
   4473
   4474	/*
   4475	 * If the block is a root block hosted in an inode, we might not have a
   4476	 * buffer pointer here and we shouldn't attempt to log the change as the
   4477	 * information is already held in the inode and discarded when the root
   4478	 * block is formatted into the on-disk inode fork. We still change it,
   4479	 * though, so everything is consistent in memory.
   4480	 */
   4481	if (!bp) {
   4482		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
   4483		ASSERT(level == cur->bc_nlevels - 1);
   4484		return 0;
   4485	}
   4486
   4487	if (cur->bc_tp) {
   4488		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
   4489			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
   4490			return -EAGAIN;
   4491		}
   4492	} else {
   4493		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
   4494	}
   4495
   4496	return 0;
   4497}
   4498
   4499int
   4500xfs_btree_change_owner(
   4501	struct xfs_btree_cur	*cur,
   4502	uint64_t		new_owner,
   4503	struct list_head	*buffer_list)
   4504{
   4505	struct xfs_btree_block_change_owner_info	bbcoi;
   4506
   4507	bbcoi.new_owner = new_owner;
   4508	bbcoi.buffer_list = buffer_list;
   4509
   4510	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
   4511			XFS_BTREE_VISIT_ALL, &bbcoi);
   4512}
   4513
   4514/* Verify the v5 fields of a long-format btree block. */
   4515xfs_failaddr_t
   4516xfs_btree_lblock_v5hdr_verify(
   4517	struct xfs_buf		*bp,
   4518	uint64_t		owner)
   4519{
   4520	struct xfs_mount	*mp = bp->b_mount;
   4521	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
   4522
   4523	if (!xfs_has_crc(mp))
   4524		return __this_address;
   4525	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
   4526		return __this_address;
   4527	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
   4528		return __this_address;
   4529	if (owner != XFS_RMAP_OWN_UNKNOWN &&
   4530	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
   4531		return __this_address;
   4532	return NULL;
   4533}
   4534
   4535/* Verify a long-format btree block. */
   4536xfs_failaddr_t
   4537xfs_btree_lblock_verify(
   4538	struct xfs_buf		*bp,
   4539	unsigned int		max_recs)
   4540{
   4541	struct xfs_mount	*mp = bp->b_mount;
   4542	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
   4543	xfs_fsblock_t		fsb;
   4544	xfs_failaddr_t		fa;
   4545
   4546	/* numrecs verification */
   4547	if (be16_to_cpu(block->bb_numrecs) > max_recs)
   4548		return __this_address;
   4549
   4550	/* sibling pointer verification */
   4551	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
   4552	fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
   4553			block->bb_u.l.bb_leftsib);
   4554	if (!fa)
   4555		fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
   4556				block->bb_u.l.bb_rightsib);
   4557	return fa;
   4558}
   4559
   4560/**
   4561 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
   4562 *				      btree block
   4563 *
   4564 * @bp: buffer containing the btree block
   4565 */
   4566xfs_failaddr_t
   4567xfs_btree_sblock_v5hdr_verify(
   4568	struct xfs_buf		*bp)
   4569{
   4570	struct xfs_mount	*mp = bp->b_mount;
   4571	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
   4572	struct xfs_perag	*pag = bp->b_pag;
   4573
   4574	if (!xfs_has_crc(mp))
   4575		return __this_address;
   4576	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
   4577		return __this_address;
   4578	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
   4579		return __this_address;
   4580	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
   4581		return __this_address;
   4582	return NULL;
   4583}
   4584
   4585/**
   4586 * xfs_btree_sblock_verify() -- verify a short-format btree block
   4587 *
   4588 * @bp: buffer containing the btree block
   4589 * @max_recs: maximum records allowed in this btree node
   4590 */
   4591xfs_failaddr_t
   4592xfs_btree_sblock_verify(
   4593	struct xfs_buf		*bp,
   4594	unsigned int		max_recs)
   4595{
   4596	struct xfs_mount	*mp = bp->b_mount;
   4597	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
   4598	xfs_agnumber_t		agno;
   4599	xfs_agblock_t		agbno;
   4600	xfs_failaddr_t		fa;
   4601
   4602	/* numrecs verification */
   4603	if (be16_to_cpu(block->bb_numrecs) > max_recs)
   4604		return __this_address;
   4605
   4606	/* sibling pointer verification */
   4607	agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
   4608	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
   4609	fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno,
   4610			block->bb_u.s.bb_leftsib);
   4611	if (!fa)
   4612		fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno,
   4613				block->bb_u.s.bb_rightsib);
   4614	return fa;
   4615}
   4616
   4617/*
   4618 * For the given limits on leaf and keyptr records per block, calculate the
   4619 * height of the tree needed to index the number of leaf records.
   4620 */
   4621unsigned int
   4622xfs_btree_compute_maxlevels(
   4623	const unsigned int	*limits,
   4624	unsigned long long	records)
   4625{
   4626	unsigned long long	level_blocks = howmany_64(records, limits[0]);
   4627	unsigned int		height = 1;
   4628
   4629	while (level_blocks > 1) {
   4630		level_blocks = howmany_64(level_blocks, limits[1]);
   4631		height++;
   4632	}
   4633
   4634	return height;
   4635}
   4636
   4637/*
   4638 * For the given limits on leaf and keyptr records per block, calculate the
   4639 * number of blocks needed to index the given number of leaf records.
   4640 */
   4641unsigned long long
   4642xfs_btree_calc_size(
   4643	const unsigned int	*limits,
   4644	unsigned long long	records)
   4645{
   4646	unsigned long long	level_blocks = howmany_64(records, limits[0]);
   4647	unsigned long long	blocks = level_blocks;
   4648
   4649	while (level_blocks > 1) {
   4650		level_blocks = howmany_64(level_blocks, limits[1]);
   4651		blocks += level_blocks;
   4652	}
   4653
   4654	return blocks;
   4655}
   4656
   4657/*
   4658 * Given a number of available blocks for the btree to consume with records and
   4659 * pointers, calculate the height of the tree needed to index all the records
   4660 * that space can hold based on the number of pointers each interior node
   4661 * holds.
   4662 *
   4663 * We start by assuming a single level tree consumes a single block, then track
   4664 * the number of blocks each node level consumes until we no longer have space
   4665 * to store the next node level. At this point, we are indexing all the leaf
   4666 * blocks in the space, and there's no more free space to split the tree any
   4667 * further. That's our maximum btree height.
   4668 */
   4669unsigned int
   4670xfs_btree_space_to_height(
   4671	const unsigned int	*limits,
   4672	unsigned long long	leaf_blocks)
   4673{
   4674	unsigned long long	node_blocks = limits[1];
   4675	unsigned long long	blocks_left = leaf_blocks - 1;
   4676	unsigned int		height = 1;
   4677
   4678	if (leaf_blocks < 1)
   4679		return 0;
   4680
   4681	while (node_blocks < blocks_left) {
   4682		blocks_left -= node_blocks;
   4683		node_blocks *= limits[1];
   4684		height++;
   4685	}
   4686
   4687	return height;
   4688}
   4689
   4690/*
   4691 * Query a regular btree for all records overlapping a given interval.
   4692 * Start with a LE lookup of the key of low_rec and return all records
   4693 * until we find a record with a key greater than the key of high_rec.
   4694 */
   4695STATIC int
   4696xfs_btree_simple_query_range(
   4697	struct xfs_btree_cur		*cur,
   4698	const union xfs_btree_key	*low_key,
   4699	const union xfs_btree_key	*high_key,
   4700	xfs_btree_query_range_fn	fn,
   4701	void				*priv)
   4702{
   4703	union xfs_btree_rec		*recp;
   4704	union xfs_btree_key		rec_key;
   4705	int64_t				diff;
   4706	int				stat;
   4707	bool				firstrec = true;
   4708	int				error;
   4709
   4710	ASSERT(cur->bc_ops->init_high_key_from_rec);
   4711	ASSERT(cur->bc_ops->diff_two_keys);
   4712
   4713	/*
   4714	 * Find the leftmost record.  The btree cursor must be set
   4715	 * to the low record used to generate low_key.
   4716	 */
   4717	stat = 0;
   4718	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
   4719	if (error)
   4720		goto out;
   4721
   4722	/* Nothing?  See if there's anything to the right. */
   4723	if (!stat) {
   4724		error = xfs_btree_increment(cur, 0, &stat);
   4725		if (error)
   4726			goto out;
   4727	}
   4728
   4729	while (stat) {
   4730		/* Find the record. */
   4731		error = xfs_btree_get_rec(cur, &recp, &stat);
   4732		if (error || !stat)
   4733			break;
   4734
   4735		/* Skip if high_key(rec) < low_key. */
   4736		if (firstrec) {
   4737			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
   4738			firstrec = false;
   4739			diff = cur->bc_ops->diff_two_keys(cur, low_key,
   4740					&rec_key);
   4741			if (diff > 0)
   4742				goto advloop;
   4743		}
   4744
   4745		/* Stop if high_key < low_key(rec). */
   4746		cur->bc_ops->init_key_from_rec(&rec_key, recp);
   4747		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
   4748		if (diff > 0)
   4749			break;
   4750
   4751		/* Callback */
   4752		error = fn(cur, recp, priv);
   4753		if (error)
   4754			break;
   4755
   4756advloop:
   4757		/* Move on to the next record. */
   4758		error = xfs_btree_increment(cur, 0, &stat);
   4759		if (error)
   4760			break;
   4761	}
   4762
   4763out:
   4764	return error;
   4765}
   4766
   4767/*
   4768 * Query an overlapped interval btree for all records overlapping a given
   4769 * interval.  This function roughly follows the algorithm given in
   4770 * "Interval Trees" of _Introduction to Algorithms_, which is section
   4771 * 14.3 in the 2nd and 3rd editions.
   4772 *
   4773 * First, generate keys for the low and high records passed in.
   4774 *
   4775 * For any leaf node, generate the high and low keys for the record.
   4776 * If the record keys overlap with the query low/high keys, pass the
   4777 * record to the function iterator.
   4778 *
   4779 * For any internal node, compare the low and high keys of each
   4780 * pointer against the query low/high keys.  If there's an overlap,
   4781 * follow the pointer.
   4782 *
   4783 * As an optimization, we stop scanning a block when we find a low key
   4784 * that is greater than the query's high key.
   4785 */
   4786STATIC int
   4787xfs_btree_overlapped_query_range(
   4788	struct xfs_btree_cur		*cur,
   4789	const union xfs_btree_key	*low_key,
   4790	const union xfs_btree_key	*high_key,
   4791	xfs_btree_query_range_fn	fn,
   4792	void				*priv)
   4793{
   4794	union xfs_btree_ptr		ptr;
   4795	union xfs_btree_ptr		*pp;
   4796	union xfs_btree_key		rec_key;
   4797	union xfs_btree_key		rec_hkey;
   4798	union xfs_btree_key		*lkp;
   4799	union xfs_btree_key		*hkp;
   4800	union xfs_btree_rec		*recp;
   4801	struct xfs_btree_block		*block;
   4802	int64_t				ldiff;
   4803	int64_t				hdiff;
   4804	int				level;
   4805	struct xfs_buf			*bp;
   4806	int				i;
   4807	int				error;
   4808
   4809	/* Load the root of the btree. */
   4810	level = cur->bc_nlevels - 1;
   4811	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
   4812	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
   4813	if (error)
   4814		return error;
   4815	xfs_btree_get_block(cur, level, &bp);
   4816	trace_xfs_btree_overlapped_query_range(cur, level, bp);
   4817#ifdef DEBUG
   4818	error = xfs_btree_check_block(cur, block, level, bp);
   4819	if (error)
   4820		goto out;
   4821#endif
   4822	cur->bc_levels[level].ptr = 1;
   4823
   4824	while (level < cur->bc_nlevels) {
   4825		block = xfs_btree_get_block(cur, level, &bp);
   4826
   4827		/* End of node, pop back towards the root. */
   4828		if (cur->bc_levels[level].ptr >
   4829					be16_to_cpu(block->bb_numrecs)) {
   4830pop_up:
   4831			if (level < cur->bc_nlevels - 1)
   4832				cur->bc_levels[level + 1].ptr++;
   4833			level++;
   4834			continue;
   4835		}
   4836
   4837		if (level == 0) {
   4838			/* Handle a leaf node. */
   4839			recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
   4840					block);
   4841
   4842			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
   4843			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
   4844					low_key);
   4845
   4846			cur->bc_ops->init_key_from_rec(&rec_key, recp);
   4847			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
   4848					&rec_key);
   4849
   4850			/*
   4851			 * If (record's high key >= query's low key) and
   4852			 *    (query's high key >= record's low key), then
   4853			 * this record overlaps the query range; callback.
   4854			 */
   4855			if (ldiff >= 0 && hdiff >= 0) {
   4856				error = fn(cur, recp, priv);
   4857				if (error)
   4858					break;
   4859			} else if (hdiff < 0) {
   4860				/* Record is larger than high key; pop. */
   4861				goto pop_up;
   4862			}
   4863			cur->bc_levels[level].ptr++;
   4864			continue;
   4865		}
   4866
   4867		/* Handle an internal node. */
   4868		lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
   4869		hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
   4870				block);
   4871		pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
   4872
   4873		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
   4874		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
   4875
   4876		/*
   4877		 * If (pointer's high key >= query's low key) and
   4878		 *    (query's high key >= pointer's low key), then
   4879		 * this record overlaps the query range; follow pointer.
   4880		 */
   4881		if (ldiff >= 0 && hdiff >= 0) {
   4882			level--;
   4883			error = xfs_btree_lookup_get_block(cur, level, pp,
   4884					&block);
   4885			if (error)
   4886				goto out;
   4887			xfs_btree_get_block(cur, level, &bp);
   4888			trace_xfs_btree_overlapped_query_range(cur, level, bp);
   4889#ifdef DEBUG
   4890			error = xfs_btree_check_block(cur, block, level, bp);
   4891			if (error)
   4892				goto out;
   4893#endif
   4894			cur->bc_levels[level].ptr = 1;
   4895			continue;
   4896		} else if (hdiff < 0) {
   4897			/* The low key is larger than the upper range; pop. */
   4898			goto pop_up;
   4899		}
   4900		cur->bc_levels[level].ptr++;
   4901	}
   4902
   4903out:
   4904	/*
   4905	 * If we don't end this function with the cursor pointing at a record
   4906	 * block, a subsequent non-error cursor deletion will not release
   4907	 * node-level buffers, causing a buffer leak.  This is quite possible
   4908	 * with a zero-results range query, so release the buffers if we
   4909	 * failed to return any results.
   4910	 */
   4911	if (cur->bc_levels[0].bp == NULL) {
   4912		for (i = 0; i < cur->bc_nlevels; i++) {
   4913			if (cur->bc_levels[i].bp) {
   4914				xfs_trans_brelse(cur->bc_tp,
   4915						cur->bc_levels[i].bp);
   4916				cur->bc_levels[i].bp = NULL;
   4917				cur->bc_levels[i].ptr = 0;
   4918				cur->bc_levels[i].ra = 0;
   4919			}
   4920		}
   4921	}
   4922
   4923	return error;
   4924}
   4925
   4926/*
   4927 * Query a btree for all records overlapping a given interval of keys.  The
   4928 * supplied function will be called with each record found; return one of the
   4929 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
   4930 * code.  This function returns -ECANCELED, zero, or a negative error code.
   4931 */
   4932int
   4933xfs_btree_query_range(
   4934	struct xfs_btree_cur		*cur,
   4935	const union xfs_btree_irec	*low_rec,
   4936	const union xfs_btree_irec	*high_rec,
   4937	xfs_btree_query_range_fn	fn,
   4938	void				*priv)
   4939{
   4940	union xfs_btree_rec		rec;
   4941	union xfs_btree_key		low_key;
   4942	union xfs_btree_key		high_key;
   4943
   4944	/* Find the keys of both ends of the interval. */
   4945	cur->bc_rec = *high_rec;
   4946	cur->bc_ops->init_rec_from_cur(cur, &rec);
   4947	cur->bc_ops->init_key_from_rec(&high_key, &rec);
   4948
   4949	cur->bc_rec = *low_rec;
   4950	cur->bc_ops->init_rec_from_cur(cur, &rec);
   4951	cur->bc_ops->init_key_from_rec(&low_key, &rec);
   4952
   4953	/* Enforce low key < high key. */
   4954	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
   4955		return -EINVAL;
   4956
   4957	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
   4958		return xfs_btree_simple_query_range(cur, &low_key,
   4959				&high_key, fn, priv);
   4960	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
   4961			fn, priv);
   4962}
   4963
   4964/* Query a btree for all records. */
   4965int
   4966xfs_btree_query_all(
   4967	struct xfs_btree_cur		*cur,
   4968	xfs_btree_query_range_fn	fn,
   4969	void				*priv)
   4970{
   4971	union xfs_btree_key		low_key;
   4972	union xfs_btree_key		high_key;
   4973
   4974	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
   4975	memset(&low_key, 0, sizeof(low_key));
   4976	memset(&high_key, 0xFF, sizeof(high_key));
   4977
   4978	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
   4979}
   4980
   4981static int
   4982xfs_btree_count_blocks_helper(
   4983	struct xfs_btree_cur	*cur,
   4984	int			level,
   4985	void			*data)
   4986{
   4987	xfs_extlen_t		*blocks = data;
   4988	(*blocks)++;
   4989
   4990	return 0;
   4991}
   4992
   4993/* Count the blocks in a btree and return the result in *blocks. */
   4994int
   4995xfs_btree_count_blocks(
   4996	struct xfs_btree_cur	*cur,
   4997	xfs_extlen_t		*blocks)
   4998{
   4999	*blocks = 0;
   5000	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
   5001			XFS_BTREE_VISIT_ALL, blocks);
   5002}
   5003
   5004/* Compare two btree pointers. */
   5005int64_t
   5006xfs_btree_diff_two_ptrs(
   5007	struct xfs_btree_cur		*cur,
   5008	const union xfs_btree_ptr	*a,
   5009	const union xfs_btree_ptr	*b)
   5010{
   5011	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
   5012		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
   5013	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
   5014}
   5015
   5016/* If there's an extent, we're done. */
   5017STATIC int
   5018xfs_btree_has_record_helper(
   5019	struct xfs_btree_cur		*cur,
   5020	const union xfs_btree_rec	*rec,
   5021	void				*priv)
   5022{
   5023	return -ECANCELED;
   5024}
   5025
   5026/* Is there a record covering a given range of keys? */
   5027int
   5028xfs_btree_has_record(
   5029	struct xfs_btree_cur		*cur,
   5030	const union xfs_btree_irec	*low,
   5031	const union xfs_btree_irec	*high,
   5032	bool				*exists)
   5033{
   5034	int				error;
   5035
   5036	error = xfs_btree_query_range(cur, low, high,
   5037			&xfs_btree_has_record_helper, NULL);
   5038	if (error == -ECANCELED) {
   5039		*exists = true;
   5040		return 0;
   5041	}
   5042	*exists = false;
   5043	return error;
   5044}
   5045
   5046/* Are there more records in this btree? */
   5047bool
   5048xfs_btree_has_more_records(
   5049	struct xfs_btree_cur	*cur)
   5050{
   5051	struct xfs_btree_block	*block;
   5052	struct xfs_buf		*bp;
   5053
   5054	block = xfs_btree_get_block(cur, 0, &bp);
   5055
   5056	/* There are still records in this block. */
   5057	if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
   5058		return true;
   5059
   5060	/* There are more record blocks. */
   5061	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
   5062		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
   5063	else
   5064		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
   5065}
   5066
   5067/* Set up all the btree cursor caches. */
   5068int __init
   5069xfs_btree_init_cur_caches(void)
   5070{
   5071	int		error;
   5072
   5073	error = xfs_allocbt_init_cur_cache();
   5074	if (error)
   5075		return error;
   5076	error = xfs_inobt_init_cur_cache();
   5077	if (error)
   5078		goto err;
   5079	error = xfs_bmbt_init_cur_cache();
   5080	if (error)
   5081		goto err;
   5082	error = xfs_rmapbt_init_cur_cache();
   5083	if (error)
   5084		goto err;
   5085	error = xfs_refcountbt_init_cur_cache();
   5086	if (error)
   5087		goto err;
   5088
   5089	return 0;
   5090err:
   5091	xfs_btree_destroy_cur_caches();
   5092	return error;
   5093}
   5094
   5095/* Destroy all the btree cursor caches, if they've been allocated. */
   5096void
   5097xfs_btree_destroy_cur_caches(void)
   5098{
   5099	xfs_allocbt_destroy_cur_cache();
   5100	xfs_inobt_destroy_cur_cache();
   5101	xfs_bmbt_destroy_cur_cache();
   5102	xfs_rmapbt_destroy_cur_cache();
   5103	xfs_refcountbt_destroy_cur_cache();
   5104}