cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xfs_ialloc.c (81497B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
      4 * All Rights Reserved.
      5 */
      6#include "xfs.h"
      7#include "xfs_fs.h"
      8#include "xfs_shared.h"
      9#include "xfs_format.h"
     10#include "xfs_log_format.h"
     11#include "xfs_trans_resv.h"
     12#include "xfs_bit.h"
     13#include "xfs_mount.h"
     14#include "xfs_inode.h"
     15#include "xfs_btree.h"
     16#include "xfs_ialloc.h"
     17#include "xfs_ialloc_btree.h"
     18#include "xfs_alloc.h"
     19#include "xfs_errortag.h"
     20#include "xfs_error.h"
     21#include "xfs_bmap.h"
     22#include "xfs_trans.h"
     23#include "xfs_buf_item.h"
     24#include "xfs_icreate_item.h"
     25#include "xfs_icache.h"
     26#include "xfs_trace.h"
     27#include "xfs_log.h"
     28#include "xfs_rmap.h"
     29#include "xfs_ag.h"
     30
     31/*
     32 * Lookup a record by ino in the btree given by cur.
     33 */
     34int					/* error */
     35xfs_inobt_lookup(
     36	struct xfs_btree_cur	*cur,	/* btree cursor */
     37	xfs_agino_t		ino,	/* starting inode of chunk */
     38	xfs_lookup_t		dir,	/* <=, >=, == */
     39	int			*stat)	/* success/failure */
     40{
     41	cur->bc_rec.i.ir_startino = ino;
     42	cur->bc_rec.i.ir_holemask = 0;
     43	cur->bc_rec.i.ir_count = 0;
     44	cur->bc_rec.i.ir_freecount = 0;
     45	cur->bc_rec.i.ir_free = 0;
     46	return xfs_btree_lookup(cur, dir, stat);
     47}
     48
     49/*
     50 * Update the record referred to by cur to the value given.
     51 * This either works (return 0) or gets an EFSCORRUPTED error.
     52 */
     53STATIC int				/* error */
     54xfs_inobt_update(
     55	struct xfs_btree_cur	*cur,	/* btree cursor */
     56	xfs_inobt_rec_incore_t	*irec)	/* btree record */
     57{
     58	union xfs_btree_rec	rec;
     59
     60	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
     61	if (xfs_has_sparseinodes(cur->bc_mp)) {
     62		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
     63		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
     64		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
     65	} else {
     66		/* ir_holemask/ir_count not supported on-disk */
     67		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
     68	}
     69	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
     70	return xfs_btree_update(cur, &rec);
     71}
     72
     73/* Convert on-disk btree record to incore inobt record. */
     74void
     75xfs_inobt_btrec_to_irec(
     76	struct xfs_mount		*mp,
     77	const union xfs_btree_rec	*rec,
     78	struct xfs_inobt_rec_incore	*irec)
     79{
     80	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
     81	if (xfs_has_sparseinodes(mp)) {
     82		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
     83		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
     84		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
     85	} else {
     86		/*
     87		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
     88		 * values for full inode chunks.
     89		 */
     90		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
     91		irec->ir_count = XFS_INODES_PER_CHUNK;
     92		irec->ir_freecount =
     93				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
     94	}
     95	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
     96}
     97
     98/*
     99 * Get the data from the pointed-to record.
    100 */
    101int
    102xfs_inobt_get_rec(
    103	struct xfs_btree_cur		*cur,
    104	struct xfs_inobt_rec_incore	*irec,
    105	int				*stat)
    106{
    107	struct xfs_mount		*mp = cur->bc_mp;
    108	xfs_agnumber_t			agno = cur->bc_ag.pag->pag_agno;
    109	union xfs_btree_rec		*rec;
    110	int				error;
    111	uint64_t			realfree;
    112
    113	error = xfs_btree_get_rec(cur, &rec, stat);
    114	if (error || *stat == 0)
    115		return error;
    116
    117	xfs_inobt_btrec_to_irec(mp, rec, irec);
    118
    119	if (!xfs_verify_agino(mp, agno, irec->ir_startino))
    120		goto out_bad_rec;
    121	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
    122	    irec->ir_count > XFS_INODES_PER_CHUNK)
    123		goto out_bad_rec;
    124	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
    125		goto out_bad_rec;
    126
    127	/* if there are no holes, return the first available offset */
    128	if (!xfs_inobt_issparse(irec->ir_holemask))
    129		realfree = irec->ir_free;
    130	else
    131		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
    132	if (hweight64(realfree) != irec->ir_freecount)
    133		goto out_bad_rec;
    134
    135	return 0;
    136
    137out_bad_rec:
    138	xfs_warn(mp,
    139		"%s Inode BTree record corruption in AG %d detected!",
    140		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
    141	xfs_warn(mp,
    142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
    143		irec->ir_startino, irec->ir_count, irec->ir_freecount,
    144		irec->ir_free, irec->ir_holemask);
    145	return -EFSCORRUPTED;
    146}
    147
    148/*
    149 * Insert a single inobt record. Cursor must already point to desired location.
    150 */
    151int
    152xfs_inobt_insert_rec(
    153	struct xfs_btree_cur	*cur,
    154	uint16_t		holemask,
    155	uint8_t			count,
    156	int32_t			freecount,
    157	xfs_inofree_t		free,
    158	int			*stat)
    159{
    160	cur->bc_rec.i.ir_holemask = holemask;
    161	cur->bc_rec.i.ir_count = count;
    162	cur->bc_rec.i.ir_freecount = freecount;
    163	cur->bc_rec.i.ir_free = free;
    164	return xfs_btree_insert(cur, stat);
    165}
    166
    167/*
    168 * Insert records describing a newly allocated inode chunk into the inobt.
    169 */
    170STATIC int
    171xfs_inobt_insert(
    172	struct xfs_mount	*mp,
    173	struct xfs_trans	*tp,
    174	struct xfs_buf		*agbp,
    175	struct xfs_perag	*pag,
    176	xfs_agino_t		newino,
    177	xfs_agino_t		newlen,
    178	xfs_btnum_t		btnum)
    179{
    180	struct xfs_btree_cur	*cur;
    181	xfs_agino_t		thisino;
    182	int			i;
    183	int			error;
    184
    185	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
    186
    187	for (thisino = newino;
    188	     thisino < newino + newlen;
    189	     thisino += XFS_INODES_PER_CHUNK) {
    190		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
    191		if (error) {
    192			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
    193			return error;
    194		}
    195		ASSERT(i == 0);
    196
    197		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
    198					     XFS_INODES_PER_CHUNK,
    199					     XFS_INODES_PER_CHUNK,
    200					     XFS_INOBT_ALL_FREE, &i);
    201		if (error) {
    202			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
    203			return error;
    204		}
    205		ASSERT(i == 1);
    206	}
    207
    208	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
    209
    210	return 0;
    211}
    212
    213/*
    214 * Verify that the number of free inodes in the AGI is correct.
    215 */
    216#ifdef DEBUG
    217static int
    218xfs_check_agi_freecount(
    219	struct xfs_btree_cur	*cur)
    220{
    221	if (cur->bc_nlevels == 1) {
    222		xfs_inobt_rec_incore_t rec;
    223		int		freecount = 0;
    224		int		error;
    225		int		i;
    226
    227		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
    228		if (error)
    229			return error;
    230
    231		do {
    232			error = xfs_inobt_get_rec(cur, &rec, &i);
    233			if (error)
    234				return error;
    235
    236			if (i) {
    237				freecount += rec.ir_freecount;
    238				error = xfs_btree_increment(cur, 0, &i);
    239				if (error)
    240					return error;
    241			}
    242		} while (i == 1);
    243
    244		if (!xfs_is_shutdown(cur->bc_mp))
    245			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
    246	}
    247	return 0;
    248}
    249#else
    250#define xfs_check_agi_freecount(cur)	0
    251#endif
    252
    253/*
    254 * Initialise a new set of inodes. When called without a transaction context
    255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
    256 * than logging them (which in a transaction context puts them into the AIL
    257 * for writeback rather than the xfsbufd queue).
    258 */
    259int
    260xfs_ialloc_inode_init(
    261	struct xfs_mount	*mp,
    262	struct xfs_trans	*tp,
    263	struct list_head	*buffer_list,
    264	int			icount,
    265	xfs_agnumber_t		agno,
    266	xfs_agblock_t		agbno,
    267	xfs_agblock_t		length,
    268	unsigned int		gen)
    269{
    270	struct xfs_buf		*fbuf;
    271	struct xfs_dinode	*free;
    272	int			nbufs;
    273	int			version;
    274	int			i, j;
    275	xfs_daddr_t		d;
    276	xfs_ino_t		ino = 0;
    277	int			error;
    278
    279	/*
    280	 * Loop over the new block(s), filling in the inodes.  For small block
    281	 * sizes, manipulate the inodes in buffers  which are multiples of the
    282	 * blocks size.
    283	 */
    284	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
    285
    286	/*
    287	 * Figure out what version number to use in the inodes we create.  If
    288	 * the superblock version has caught up to the one that supports the new
    289	 * inode format, then use the new inode version.  Otherwise use the old
    290	 * version so that old kernels will continue to be able to use the file
    291	 * system.
    292	 *
    293	 * For v3 inodes, we also need to write the inode number into the inode,
    294	 * so calculate the first inode number of the chunk here as
    295	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
    296	 * across multiple filesystem blocks (such as a cluster) and so cannot
    297	 * be used in the cluster buffer loop below.
    298	 *
    299	 * Further, because we are writing the inode directly into the buffer
    300	 * and calculating a CRC on the entire inode, we have ot log the entire
    301	 * inode so that the entire range the CRC covers is present in the log.
    302	 * That means for v3 inode we log the entire buffer rather than just the
    303	 * inode cores.
    304	 */
    305	if (xfs_has_v3inodes(mp)) {
    306		version = 3;
    307		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
    308
    309		/*
    310		 * log the initialisation that is about to take place as an
    311		 * logical operation. This means the transaction does not
    312		 * need to log the physical changes to the inode buffers as log
    313		 * recovery will know what initialisation is actually needed.
    314		 * Hence we only need to log the buffers as "ordered" buffers so
    315		 * they track in the AIL as if they were physically logged.
    316		 */
    317		if (tp)
    318			xfs_icreate_log(tp, agno, agbno, icount,
    319					mp->m_sb.sb_inodesize, length, gen);
    320	} else
    321		version = 2;
    322
    323	for (j = 0; j < nbufs; j++) {
    324		/*
    325		 * Get the block.
    326		 */
    327		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
    328				(j * M_IGEO(mp)->blocks_per_cluster));
    329		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
    330				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
    331				XBF_UNMAPPED, &fbuf);
    332		if (error)
    333			return error;
    334
    335		/* Initialize the inode buffers and log them appropriately. */
    336		fbuf->b_ops = &xfs_inode_buf_ops;
    337		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
    338		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
    339			int	ioffset = i << mp->m_sb.sb_inodelog;
    340
    341			free = xfs_make_iptr(mp, fbuf, i);
    342			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
    343			free->di_version = version;
    344			free->di_gen = cpu_to_be32(gen);
    345			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
    346
    347			if (version == 3) {
    348				free->di_ino = cpu_to_be64(ino);
    349				ino++;
    350				uuid_copy(&free->di_uuid,
    351					  &mp->m_sb.sb_meta_uuid);
    352				xfs_dinode_calc_crc(mp, free);
    353			} else if (tp) {
    354				/* just log the inode core */
    355				xfs_trans_log_buf(tp, fbuf, ioffset,
    356					  ioffset + XFS_DINODE_SIZE(mp) - 1);
    357			}
    358		}
    359
    360		if (tp) {
    361			/*
    362			 * Mark the buffer as an inode allocation buffer so it
    363			 * sticks in AIL at the point of this allocation
    364			 * transaction. This ensures the they are on disk before
    365			 * the tail of the log can be moved past this
    366			 * transaction (i.e. by preventing relogging from moving
    367			 * it forward in the log).
    368			 */
    369			xfs_trans_inode_alloc_buf(tp, fbuf);
    370			if (version == 3) {
    371				/*
    372				 * Mark the buffer as ordered so that they are
    373				 * not physically logged in the transaction but
    374				 * still tracked in the AIL as part of the
    375				 * transaction and pin the log appropriately.
    376				 */
    377				xfs_trans_ordered_buf(tp, fbuf);
    378			}
    379		} else {
    380			fbuf->b_flags |= XBF_DONE;
    381			xfs_buf_delwri_queue(fbuf, buffer_list);
    382			xfs_buf_relse(fbuf);
    383		}
    384	}
    385	return 0;
    386}
    387
    388/*
    389 * Align startino and allocmask for a recently allocated sparse chunk such that
    390 * they are fit for insertion (or merge) into the on-disk inode btrees.
    391 *
    392 * Background:
    393 *
    394 * When enabled, sparse inode support increases the inode alignment from cluster
    395 * size to inode chunk size. This means that the minimum range between two
    396 * non-adjacent inode records in the inobt is large enough for a full inode
    397 * record. This allows for cluster sized, cluster aligned block allocation
    398 * without need to worry about whether the resulting inode record overlaps with
    399 * another record in the tree. Without this basic rule, we would have to deal
    400 * with the consequences of overlap by potentially undoing recent allocations in
    401 * the inode allocation codepath.
    402 *
    403 * Because of this alignment rule (which is enforced on mount), there are two
    404 * inobt possibilities for newly allocated sparse chunks. One is that the
    405 * aligned inode record for the chunk covers a range of inodes not already
    406 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
    407 * other is that a record already exists at the aligned startino that considers
    408 * the newly allocated range as sparse. In the latter case, record content is
    409 * merged in hope that sparse inode chunks fill to full chunks over time.
    410 */
    411STATIC void
    412xfs_align_sparse_ino(
    413	struct xfs_mount		*mp,
    414	xfs_agino_t			*startino,
    415	uint16_t			*allocmask)
    416{
    417	xfs_agblock_t			agbno;
    418	xfs_agblock_t			mod;
    419	int				offset;
    420
    421	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
    422	mod = agbno % mp->m_sb.sb_inoalignmt;
    423	if (!mod)
    424		return;
    425
    426	/* calculate the inode offset and align startino */
    427	offset = XFS_AGB_TO_AGINO(mp, mod);
    428	*startino -= offset;
    429
    430	/*
    431	 * Since startino has been aligned down, left shift allocmask such that
    432	 * it continues to represent the same physical inodes relative to the
    433	 * new startino.
    434	 */
    435	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
    436}
    437
    438/*
    439 * Determine whether the source inode record can merge into the target. Both
    440 * records must be sparse, the inode ranges must match and there must be no
    441 * allocation overlap between the records.
    442 */
    443STATIC bool
    444__xfs_inobt_can_merge(
    445	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
    446	struct xfs_inobt_rec_incore	*srec)	/* src record */
    447{
    448	uint64_t			talloc;
    449	uint64_t			salloc;
    450
    451	/* records must cover the same inode range */
    452	if (trec->ir_startino != srec->ir_startino)
    453		return false;
    454
    455	/* both records must be sparse */
    456	if (!xfs_inobt_issparse(trec->ir_holemask) ||
    457	    !xfs_inobt_issparse(srec->ir_holemask))
    458		return false;
    459
    460	/* both records must track some inodes */
    461	if (!trec->ir_count || !srec->ir_count)
    462		return false;
    463
    464	/* can't exceed capacity of a full record */
    465	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
    466		return false;
    467
    468	/* verify there is no allocation overlap */
    469	talloc = xfs_inobt_irec_to_allocmask(trec);
    470	salloc = xfs_inobt_irec_to_allocmask(srec);
    471	if (talloc & salloc)
    472		return false;
    473
    474	return true;
    475}
    476
    477/*
    478 * Merge the source inode record into the target. The caller must call
    479 * __xfs_inobt_can_merge() to ensure the merge is valid.
    480 */
    481STATIC void
    482__xfs_inobt_rec_merge(
    483	struct xfs_inobt_rec_incore	*trec,	/* target */
    484	struct xfs_inobt_rec_incore	*srec)	/* src */
    485{
    486	ASSERT(trec->ir_startino == srec->ir_startino);
    487
    488	/* combine the counts */
    489	trec->ir_count += srec->ir_count;
    490	trec->ir_freecount += srec->ir_freecount;
    491
    492	/*
    493	 * Merge the holemask and free mask. For both fields, 0 bits refer to
    494	 * allocated inodes. We combine the allocated ranges with bitwise AND.
    495	 */
    496	trec->ir_holemask &= srec->ir_holemask;
    497	trec->ir_free &= srec->ir_free;
    498}
    499
    500/*
    501 * Insert a new sparse inode chunk into the associated inode btree. The inode
    502 * record for the sparse chunk is pre-aligned to a startino that should match
    503 * any pre-existing sparse inode record in the tree. This allows sparse chunks
    504 * to fill over time.
    505 *
    506 * This function supports two modes of handling preexisting records depending on
    507 * the merge flag. If merge is true, the provided record is merged with the
    508 * existing record and updated in place. The merged record is returned in nrec.
    509 * If merge is false, an existing record is replaced with the provided record.
    510 * If no preexisting record exists, the provided record is always inserted.
    511 *
    512 * It is considered corruption if a merge is requested and not possible. Given
    513 * the sparse inode alignment constraints, this should never happen.
    514 */
    515STATIC int
    516xfs_inobt_insert_sprec(
    517	struct xfs_mount		*mp,
    518	struct xfs_trans		*tp,
    519	struct xfs_buf			*agbp,
    520	struct xfs_perag		*pag,
    521	int				btnum,
    522	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
    523	bool				merge)	/* merge or replace */
    524{
    525	struct xfs_btree_cur		*cur;
    526	int				error;
    527	int				i;
    528	struct xfs_inobt_rec_incore	rec;
    529
    530	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
    531
    532	/* the new record is pre-aligned so we know where to look */
    533	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
    534	if (error)
    535		goto error;
    536	/* if nothing there, insert a new record and return */
    537	if (i == 0) {
    538		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
    539					     nrec->ir_count, nrec->ir_freecount,
    540					     nrec->ir_free, &i);
    541		if (error)
    542			goto error;
    543		if (XFS_IS_CORRUPT(mp, i != 1)) {
    544			error = -EFSCORRUPTED;
    545			goto error;
    546		}
    547
    548		goto out;
    549	}
    550
    551	/*
    552	 * A record exists at this startino. Merge or replace the record
    553	 * depending on what we've been asked to do.
    554	 */
    555	if (merge) {
    556		error = xfs_inobt_get_rec(cur, &rec, &i);
    557		if (error)
    558			goto error;
    559		if (XFS_IS_CORRUPT(mp, i != 1)) {
    560			error = -EFSCORRUPTED;
    561			goto error;
    562		}
    563		if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
    564			error = -EFSCORRUPTED;
    565			goto error;
    566		}
    567
    568		/*
    569		 * This should never fail. If we have coexisting records that
    570		 * cannot merge, something is seriously wrong.
    571		 */
    572		if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
    573			error = -EFSCORRUPTED;
    574			goto error;
    575		}
    576
    577		trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
    578					 rec.ir_holemask, nrec->ir_startino,
    579					 nrec->ir_holemask);
    580
    581		/* merge to nrec to output the updated record */
    582		__xfs_inobt_rec_merge(nrec, &rec);
    583
    584		trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
    585					  nrec->ir_holemask);
    586
    587		error = xfs_inobt_rec_check_count(mp, nrec);
    588		if (error)
    589			goto error;
    590	}
    591
    592	error = xfs_inobt_update(cur, nrec);
    593	if (error)
    594		goto error;
    595
    596out:
    597	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
    598	return 0;
    599error:
    600	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
    601	return error;
    602}
    603
    604/*
    605 * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
    606 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
    607 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
    608 * inode count threshold, or the usual negative error code for other errors.
    609 */
    610STATIC int
    611xfs_ialloc_ag_alloc(
    612	struct xfs_trans	*tp,
    613	struct xfs_buf		*agbp,
    614	struct xfs_perag	*pag)
    615{
    616	struct xfs_agi		*agi;
    617	struct xfs_alloc_arg	args;
    618	int			error;
    619	xfs_agino_t		newino;		/* new first inode's number */
    620	xfs_agino_t		newlen;		/* new number of inodes */
    621	int			isaligned = 0;	/* inode allocation at stripe */
    622						/* unit boundary */
    623	/* init. to full chunk */
    624	struct xfs_inobt_rec_incore rec;
    625	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
    626	uint16_t		allocmask = (uint16_t) -1;
    627	int			do_sparse = 0;
    628
    629	memset(&args, 0, sizeof(args));
    630	args.tp = tp;
    631	args.mp = tp->t_mountp;
    632	args.fsbno = NULLFSBLOCK;
    633	args.oinfo = XFS_RMAP_OINFO_INODES;
    634
    635#ifdef DEBUG
    636	/* randomly do sparse inode allocations */
    637	if (xfs_has_sparseinodes(tp->t_mountp) &&
    638	    igeo->ialloc_min_blks < igeo->ialloc_blks)
    639		do_sparse = prandom_u32() & 1;
    640#endif
    641
    642	/*
    643	 * Locking will ensure that we don't have two callers in here
    644	 * at one time.
    645	 */
    646	newlen = igeo->ialloc_inos;
    647	if (igeo->maxicount &&
    648	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
    649							igeo->maxicount)
    650		return -ENOSPC;
    651	args.minlen = args.maxlen = igeo->ialloc_blks;
    652	/*
    653	 * First try to allocate inodes contiguous with the last-allocated
    654	 * chunk of inodes.  If the filesystem is striped, this will fill
    655	 * an entire stripe unit with inodes.
    656	 */
    657	agi = agbp->b_addr;
    658	newino = be32_to_cpu(agi->agi_newino);
    659	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
    660		     igeo->ialloc_blks;
    661	if (do_sparse)
    662		goto sparse_alloc;
    663	if (likely(newino != NULLAGINO &&
    664		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
    665		args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
    666		args.type = XFS_ALLOCTYPE_THIS_BNO;
    667		args.prod = 1;
    668
    669		/*
    670		 * We need to take into account alignment here to ensure that
    671		 * we don't modify the free list if we fail to have an exact
    672		 * block. If we don't have an exact match, and every oher
    673		 * attempt allocation attempt fails, we'll end up cancelling
    674		 * a dirty transaction and shutting down.
    675		 *
    676		 * For an exact allocation, alignment must be 1,
    677		 * however we need to take cluster alignment into account when
    678		 * fixing up the freelist. Use the minalignslop field to
    679		 * indicate that extra blocks might be required for alignment,
    680		 * but not to use them in the actual exact allocation.
    681		 */
    682		args.alignment = 1;
    683		args.minalignslop = igeo->cluster_align - 1;
    684
    685		/* Allow space for the inode btree to split. */
    686		args.minleft = igeo->inobt_maxlevels;
    687		if ((error = xfs_alloc_vextent(&args)))
    688			return error;
    689
    690		/*
    691		 * This request might have dirtied the transaction if the AG can
    692		 * satisfy the request, but the exact block was not available.
    693		 * If the allocation did fail, subsequent requests will relax
    694		 * the exact agbno requirement and increase the alignment
    695		 * instead. It is critical that the total size of the request
    696		 * (len + alignment + slop) does not increase from this point
    697		 * on, so reset minalignslop to ensure it is not included in
    698		 * subsequent requests.
    699		 */
    700		args.minalignslop = 0;
    701	}
    702
    703	if (unlikely(args.fsbno == NULLFSBLOCK)) {
    704		/*
    705		 * Set the alignment for the allocation.
    706		 * If stripe alignment is turned on then align at stripe unit
    707		 * boundary.
    708		 * If the cluster size is smaller than a filesystem block
    709		 * then we're doing I/O for inodes in filesystem block size
    710		 * pieces, so don't need alignment anyway.
    711		 */
    712		isaligned = 0;
    713		if (igeo->ialloc_align) {
    714			ASSERT(!xfs_has_noalign(args.mp));
    715			args.alignment = args.mp->m_dalign;
    716			isaligned = 1;
    717		} else
    718			args.alignment = igeo->cluster_align;
    719		/*
    720		 * Need to figure out where to allocate the inode blocks.
    721		 * Ideally they should be spaced out through the a.g.
    722		 * For now, just allocate blocks up front.
    723		 */
    724		args.agbno = be32_to_cpu(agi->agi_root);
    725		args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
    726		/*
    727		 * Allocate a fixed-size extent of inodes.
    728		 */
    729		args.type = XFS_ALLOCTYPE_NEAR_BNO;
    730		args.prod = 1;
    731		/*
    732		 * Allow space for the inode btree to split.
    733		 */
    734		args.minleft = igeo->inobt_maxlevels;
    735		if ((error = xfs_alloc_vextent(&args)))
    736			return error;
    737	}
    738
    739	/*
    740	 * If stripe alignment is turned on, then try again with cluster
    741	 * alignment.
    742	 */
    743	if (isaligned && args.fsbno == NULLFSBLOCK) {
    744		args.type = XFS_ALLOCTYPE_NEAR_BNO;
    745		args.agbno = be32_to_cpu(agi->agi_root);
    746		args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
    747		args.alignment = igeo->cluster_align;
    748		if ((error = xfs_alloc_vextent(&args)))
    749			return error;
    750	}
    751
    752	/*
    753	 * Finally, try a sparse allocation if the filesystem supports it and
    754	 * the sparse allocation length is smaller than a full chunk.
    755	 */
    756	if (xfs_has_sparseinodes(args.mp) &&
    757	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
    758	    args.fsbno == NULLFSBLOCK) {
    759sparse_alloc:
    760		args.type = XFS_ALLOCTYPE_NEAR_BNO;
    761		args.agbno = be32_to_cpu(agi->agi_root);
    762		args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
    763		args.alignment = args.mp->m_sb.sb_spino_align;
    764		args.prod = 1;
    765
    766		args.minlen = igeo->ialloc_min_blks;
    767		args.maxlen = args.minlen;
    768
    769		/*
    770		 * The inode record will be aligned to full chunk size. We must
    771		 * prevent sparse allocation from AG boundaries that result in
    772		 * invalid inode records, such as records that start at agbno 0
    773		 * or extend beyond the AG.
    774		 *
    775		 * Set min agbno to the first aligned, non-zero agbno and max to
    776		 * the last aligned agbno that is at least one full chunk from
    777		 * the end of the AG.
    778		 */
    779		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
    780		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
    781					    args.mp->m_sb.sb_inoalignmt) -
    782				 igeo->ialloc_blks;
    783
    784		error = xfs_alloc_vextent(&args);
    785		if (error)
    786			return error;
    787
    788		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
    789		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
    790		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
    791	}
    792
    793	if (args.fsbno == NULLFSBLOCK)
    794		return -EAGAIN;
    795
    796	ASSERT(args.len == args.minlen);
    797
    798	/*
    799	 * Stamp and write the inode buffers.
    800	 *
    801	 * Seed the new inode cluster with a random generation number. This
    802	 * prevents short-term reuse of generation numbers if a chunk is
    803	 * freed and then immediately reallocated. We use random numbers
    804	 * rather than a linear progression to prevent the next generation
    805	 * number from being easily guessable.
    806	 */
    807	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
    808			args.agbno, args.len, prandom_u32());
    809
    810	if (error)
    811		return error;
    812	/*
    813	 * Convert the results.
    814	 */
    815	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
    816
    817	if (xfs_inobt_issparse(~allocmask)) {
    818		/*
    819		 * We've allocated a sparse chunk. Align the startino and mask.
    820		 */
    821		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
    822
    823		rec.ir_startino = newino;
    824		rec.ir_holemask = ~allocmask;
    825		rec.ir_count = newlen;
    826		rec.ir_freecount = newlen;
    827		rec.ir_free = XFS_INOBT_ALL_FREE;
    828
    829		/*
    830		 * Insert the sparse record into the inobt and allow for a merge
    831		 * if necessary. If a merge does occur, rec is updated to the
    832		 * merged record.
    833		 */
    834		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
    835				XFS_BTNUM_INO, &rec, true);
    836		if (error == -EFSCORRUPTED) {
    837			xfs_alert(args.mp,
    838	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
    839				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
    840						   rec.ir_startino),
    841				  rec.ir_holemask, rec.ir_count);
    842			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
    843		}
    844		if (error)
    845			return error;
    846
    847		/*
    848		 * We can't merge the part we've just allocated as for the inobt
    849		 * due to finobt semantics. The original record may or may not
    850		 * exist independent of whether physical inodes exist in this
    851		 * sparse chunk.
    852		 *
    853		 * We must update the finobt record based on the inobt record.
    854		 * rec contains the fully merged and up to date inobt record
    855		 * from the previous call. Set merge false to replace any
    856		 * existing record with this one.
    857		 */
    858		if (xfs_has_finobt(args.mp)) {
    859			error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
    860				       XFS_BTNUM_FINO, &rec, false);
    861			if (error)
    862				return error;
    863		}
    864	} else {
    865		/* full chunk - insert new records to both btrees */
    866		error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
    867					 XFS_BTNUM_INO);
    868		if (error)
    869			return error;
    870
    871		if (xfs_has_finobt(args.mp)) {
    872			error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
    873						 newlen, XFS_BTNUM_FINO);
    874			if (error)
    875				return error;
    876		}
    877	}
    878
    879	/*
    880	 * Update AGI counts and newino.
    881	 */
    882	be32_add_cpu(&agi->agi_count, newlen);
    883	be32_add_cpu(&agi->agi_freecount, newlen);
    884	pag->pagi_freecount += newlen;
    885	pag->pagi_count += newlen;
    886	agi->agi_newino = cpu_to_be32(newino);
    887
    888	/*
    889	 * Log allocation group header fields
    890	 */
    891	xfs_ialloc_log_agi(tp, agbp,
    892		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
    893	/*
    894	 * Modify/log superblock values for inode count and inode free count.
    895	 */
    896	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
    897	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
    898	return 0;
    899}
    900
    901/*
    902 * Try to retrieve the next record to the left/right from the current one.
    903 */
    904STATIC int
    905xfs_ialloc_next_rec(
    906	struct xfs_btree_cur	*cur,
    907	xfs_inobt_rec_incore_t	*rec,
    908	int			*done,
    909	int			left)
    910{
    911	int                     error;
    912	int			i;
    913
    914	if (left)
    915		error = xfs_btree_decrement(cur, 0, &i);
    916	else
    917		error = xfs_btree_increment(cur, 0, &i);
    918
    919	if (error)
    920		return error;
    921	*done = !i;
    922	if (i) {
    923		error = xfs_inobt_get_rec(cur, rec, &i);
    924		if (error)
    925			return error;
    926		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
    927			return -EFSCORRUPTED;
    928	}
    929
    930	return 0;
    931}
    932
    933STATIC int
    934xfs_ialloc_get_rec(
    935	struct xfs_btree_cur	*cur,
    936	xfs_agino_t		agino,
    937	xfs_inobt_rec_incore_t	*rec,
    938	int			*done)
    939{
    940	int                     error;
    941	int			i;
    942
    943	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
    944	if (error)
    945		return error;
    946	*done = !i;
    947	if (i) {
    948		error = xfs_inobt_get_rec(cur, rec, &i);
    949		if (error)
    950			return error;
    951		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
    952			return -EFSCORRUPTED;
    953	}
    954
    955	return 0;
    956}
    957
    958/*
    959 * Return the offset of the first free inode in the record. If the inode chunk
    960 * is sparsely allocated, we convert the record holemask to inode granularity
    961 * and mask off the unallocated regions from the inode free mask.
    962 */
    963STATIC int
    964xfs_inobt_first_free_inode(
    965	struct xfs_inobt_rec_incore	*rec)
    966{
    967	xfs_inofree_t			realfree;
    968
    969	/* if there are no holes, return the first available offset */
    970	if (!xfs_inobt_issparse(rec->ir_holemask))
    971		return xfs_lowbit64(rec->ir_free);
    972
    973	realfree = xfs_inobt_irec_to_allocmask(rec);
    974	realfree &= rec->ir_free;
    975
    976	return xfs_lowbit64(realfree);
    977}
    978
    979/*
    980 * Allocate an inode using the inobt-only algorithm.
    981 */
    982STATIC int
    983xfs_dialloc_ag_inobt(
    984	struct xfs_trans	*tp,
    985	struct xfs_buf		*agbp,
    986	struct xfs_perag	*pag,
    987	xfs_ino_t		parent,
    988	xfs_ino_t		*inop)
    989{
    990	struct xfs_mount	*mp = tp->t_mountp;
    991	struct xfs_agi		*agi = agbp->b_addr;
    992	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
    993	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
    994	struct xfs_btree_cur	*cur, *tcur;
    995	struct xfs_inobt_rec_incore rec, trec;
    996	xfs_ino_t		ino;
    997	int			error;
    998	int			offset;
    999	int			i, j;
   1000	int			searchdistance = 10;
   1001
   1002	ASSERT(pag->pagi_init);
   1003	ASSERT(pag->pagi_inodeok);
   1004	ASSERT(pag->pagi_freecount > 0);
   1005
   1006 restart_pagno:
   1007	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
   1008	/*
   1009	 * If pagino is 0 (this is the root inode allocation) use newino.
   1010	 * This must work because we've just allocated some.
   1011	 */
   1012	if (!pagino)
   1013		pagino = be32_to_cpu(agi->agi_newino);
   1014
   1015	error = xfs_check_agi_freecount(cur);
   1016	if (error)
   1017		goto error0;
   1018
   1019	/*
   1020	 * If in the same AG as the parent, try to get near the parent.
   1021	 */
   1022	if (pagno == pag->pag_agno) {
   1023		int		doneleft;	/* done, to the left */
   1024		int		doneright;	/* done, to the right */
   1025
   1026		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
   1027		if (error)
   1028			goto error0;
   1029		if (XFS_IS_CORRUPT(mp, i != 1)) {
   1030			error = -EFSCORRUPTED;
   1031			goto error0;
   1032		}
   1033
   1034		error = xfs_inobt_get_rec(cur, &rec, &j);
   1035		if (error)
   1036			goto error0;
   1037		if (XFS_IS_CORRUPT(mp, j != 1)) {
   1038			error = -EFSCORRUPTED;
   1039			goto error0;
   1040		}
   1041
   1042		if (rec.ir_freecount > 0) {
   1043			/*
   1044			 * Found a free inode in the same chunk
   1045			 * as the parent, done.
   1046			 */
   1047			goto alloc_inode;
   1048		}
   1049
   1050
   1051		/*
   1052		 * In the same AG as parent, but parent's chunk is full.
   1053		 */
   1054
   1055		/* duplicate the cursor, search left & right simultaneously */
   1056		error = xfs_btree_dup_cursor(cur, &tcur);
   1057		if (error)
   1058			goto error0;
   1059
   1060		/*
   1061		 * Skip to last blocks looked up if same parent inode.
   1062		 */
   1063		if (pagino != NULLAGINO &&
   1064		    pag->pagl_pagino == pagino &&
   1065		    pag->pagl_leftrec != NULLAGINO &&
   1066		    pag->pagl_rightrec != NULLAGINO) {
   1067			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
   1068						   &trec, &doneleft);
   1069			if (error)
   1070				goto error1;
   1071
   1072			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
   1073						   &rec, &doneright);
   1074			if (error)
   1075				goto error1;
   1076		} else {
   1077			/* search left with tcur, back up 1 record */
   1078			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
   1079			if (error)
   1080				goto error1;
   1081
   1082			/* search right with cur, go forward 1 record. */
   1083			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
   1084			if (error)
   1085				goto error1;
   1086		}
   1087
   1088		/*
   1089		 * Loop until we find an inode chunk with a free inode.
   1090		 */
   1091		while (--searchdistance > 0 && (!doneleft || !doneright)) {
   1092			int	useleft;  /* using left inode chunk this time */
   1093
   1094			/* figure out the closer block if both are valid. */
   1095			if (!doneleft && !doneright) {
   1096				useleft = pagino -
   1097				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
   1098				  rec.ir_startino - pagino;
   1099			} else {
   1100				useleft = !doneleft;
   1101			}
   1102
   1103			/* free inodes to the left? */
   1104			if (useleft && trec.ir_freecount) {
   1105				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
   1106				cur = tcur;
   1107
   1108				pag->pagl_leftrec = trec.ir_startino;
   1109				pag->pagl_rightrec = rec.ir_startino;
   1110				pag->pagl_pagino = pagino;
   1111				rec = trec;
   1112				goto alloc_inode;
   1113			}
   1114
   1115			/* free inodes to the right? */
   1116			if (!useleft && rec.ir_freecount) {
   1117				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
   1118
   1119				pag->pagl_leftrec = trec.ir_startino;
   1120				pag->pagl_rightrec = rec.ir_startino;
   1121				pag->pagl_pagino = pagino;
   1122				goto alloc_inode;
   1123			}
   1124
   1125			/* get next record to check */
   1126			if (useleft) {
   1127				error = xfs_ialloc_next_rec(tcur, &trec,
   1128								 &doneleft, 1);
   1129			} else {
   1130				error = xfs_ialloc_next_rec(cur, &rec,
   1131								 &doneright, 0);
   1132			}
   1133			if (error)
   1134				goto error1;
   1135		}
   1136
   1137		if (searchdistance <= 0) {
   1138			/*
   1139			 * Not in range - save last search
   1140			 * location and allocate a new inode
   1141			 */
   1142			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
   1143			pag->pagl_leftrec = trec.ir_startino;
   1144			pag->pagl_rightrec = rec.ir_startino;
   1145			pag->pagl_pagino = pagino;
   1146
   1147		} else {
   1148			/*
   1149			 * We've reached the end of the btree. because
   1150			 * we are only searching a small chunk of the
   1151			 * btree each search, there is obviously free
   1152			 * inodes closer to the parent inode than we
   1153			 * are now. restart the search again.
   1154			 */
   1155			pag->pagl_pagino = NULLAGINO;
   1156			pag->pagl_leftrec = NULLAGINO;
   1157			pag->pagl_rightrec = NULLAGINO;
   1158			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
   1159			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
   1160			goto restart_pagno;
   1161		}
   1162	}
   1163
   1164	/*
   1165	 * In a different AG from the parent.
   1166	 * See if the most recently allocated block has any free.
   1167	 */
   1168	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
   1169		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
   1170					 XFS_LOOKUP_EQ, &i);
   1171		if (error)
   1172			goto error0;
   1173
   1174		if (i == 1) {
   1175			error = xfs_inobt_get_rec(cur, &rec, &j);
   1176			if (error)
   1177				goto error0;
   1178
   1179			if (j == 1 && rec.ir_freecount > 0) {
   1180				/*
   1181				 * The last chunk allocated in the group
   1182				 * still has a free inode.
   1183				 */
   1184				goto alloc_inode;
   1185			}
   1186		}
   1187	}
   1188
   1189	/*
   1190	 * None left in the last group, search the whole AG
   1191	 */
   1192	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
   1193	if (error)
   1194		goto error0;
   1195	if (XFS_IS_CORRUPT(mp, i != 1)) {
   1196		error = -EFSCORRUPTED;
   1197		goto error0;
   1198	}
   1199
   1200	for (;;) {
   1201		error = xfs_inobt_get_rec(cur, &rec, &i);
   1202		if (error)
   1203			goto error0;
   1204		if (XFS_IS_CORRUPT(mp, i != 1)) {
   1205			error = -EFSCORRUPTED;
   1206			goto error0;
   1207		}
   1208		if (rec.ir_freecount > 0)
   1209			break;
   1210		error = xfs_btree_increment(cur, 0, &i);
   1211		if (error)
   1212			goto error0;
   1213		if (XFS_IS_CORRUPT(mp, i != 1)) {
   1214			error = -EFSCORRUPTED;
   1215			goto error0;
   1216		}
   1217	}
   1218
   1219alloc_inode:
   1220	offset = xfs_inobt_first_free_inode(&rec);
   1221	ASSERT(offset >= 0);
   1222	ASSERT(offset < XFS_INODES_PER_CHUNK);
   1223	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
   1224				   XFS_INODES_PER_CHUNK) == 0);
   1225	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
   1226	rec.ir_free &= ~XFS_INOBT_MASK(offset);
   1227	rec.ir_freecount--;
   1228	error = xfs_inobt_update(cur, &rec);
   1229	if (error)
   1230		goto error0;
   1231	be32_add_cpu(&agi->agi_freecount, -1);
   1232	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
   1233	pag->pagi_freecount--;
   1234
   1235	error = xfs_check_agi_freecount(cur);
   1236	if (error)
   1237		goto error0;
   1238
   1239	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
   1240	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
   1241	*inop = ino;
   1242	return 0;
   1243error1:
   1244	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
   1245error0:
   1246	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
   1247	return error;
   1248}
   1249
   1250/*
   1251 * Use the free inode btree to allocate an inode based on distance from the
   1252 * parent. Note that the provided cursor may be deleted and replaced.
   1253 */
   1254STATIC int
   1255xfs_dialloc_ag_finobt_near(
   1256	xfs_agino_t			pagino,
   1257	struct xfs_btree_cur		**ocur,
   1258	struct xfs_inobt_rec_incore	*rec)
   1259{
   1260	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
   1261	struct xfs_btree_cur		*rcur;	/* right search cursor */
   1262	struct xfs_inobt_rec_incore	rrec;
   1263	int				error;
   1264	int				i, j;
   1265
   1266	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
   1267	if (error)
   1268		return error;
   1269
   1270	if (i == 1) {
   1271		error = xfs_inobt_get_rec(lcur, rec, &i);
   1272		if (error)
   1273			return error;
   1274		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
   1275			return -EFSCORRUPTED;
   1276
   1277		/*
   1278		 * See if we've landed in the parent inode record. The finobt
   1279		 * only tracks chunks with at least one free inode, so record
   1280		 * existence is enough.
   1281		 */
   1282		if (pagino >= rec->ir_startino &&
   1283		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
   1284			return 0;
   1285	}
   1286
   1287	error = xfs_btree_dup_cursor(lcur, &rcur);
   1288	if (error)
   1289		return error;
   1290
   1291	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
   1292	if (error)
   1293		goto error_rcur;
   1294	if (j == 1) {
   1295		error = xfs_inobt_get_rec(rcur, &rrec, &j);
   1296		if (error)
   1297			goto error_rcur;
   1298		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
   1299			error = -EFSCORRUPTED;
   1300			goto error_rcur;
   1301		}
   1302	}
   1303
   1304	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
   1305		error = -EFSCORRUPTED;
   1306		goto error_rcur;
   1307	}
   1308	if (i == 1 && j == 1) {
   1309		/*
   1310		 * Both the left and right records are valid. Choose the closer
   1311		 * inode chunk to the target.
   1312		 */
   1313		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
   1314		    (rrec.ir_startino - pagino)) {
   1315			*rec = rrec;
   1316			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
   1317			*ocur = rcur;
   1318		} else {
   1319			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
   1320		}
   1321	} else if (j == 1) {
   1322		/* only the right record is valid */
   1323		*rec = rrec;
   1324		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
   1325		*ocur = rcur;
   1326	} else if (i == 1) {
   1327		/* only the left record is valid */
   1328		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
   1329	}
   1330
   1331	return 0;
   1332
   1333error_rcur:
   1334	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
   1335	return error;
   1336}
   1337
   1338/*
   1339 * Use the free inode btree to find a free inode based on a newino hint. If
   1340 * the hint is NULL, find the first free inode in the AG.
   1341 */
   1342STATIC int
   1343xfs_dialloc_ag_finobt_newino(
   1344	struct xfs_agi			*agi,
   1345	struct xfs_btree_cur		*cur,
   1346	struct xfs_inobt_rec_incore	*rec)
   1347{
   1348	int error;
   1349	int i;
   1350
   1351	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
   1352		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
   1353					 XFS_LOOKUP_EQ, &i);
   1354		if (error)
   1355			return error;
   1356		if (i == 1) {
   1357			error = xfs_inobt_get_rec(cur, rec, &i);
   1358			if (error)
   1359				return error;
   1360			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
   1361				return -EFSCORRUPTED;
   1362			return 0;
   1363		}
   1364	}
   1365
   1366	/*
   1367	 * Find the first inode available in the AG.
   1368	 */
   1369	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
   1370	if (error)
   1371		return error;
   1372	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
   1373		return -EFSCORRUPTED;
   1374
   1375	error = xfs_inobt_get_rec(cur, rec, &i);
   1376	if (error)
   1377		return error;
   1378	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
   1379		return -EFSCORRUPTED;
   1380
   1381	return 0;
   1382}
   1383
   1384/*
   1385 * Update the inobt based on a modification made to the finobt. Also ensure that
   1386 * the records from both trees are equivalent post-modification.
   1387 */
   1388STATIC int
   1389xfs_dialloc_ag_update_inobt(
   1390	struct xfs_btree_cur		*cur,	/* inobt cursor */
   1391	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
   1392	int				offset) /* inode offset */
   1393{
   1394	struct xfs_inobt_rec_incore	rec;
   1395	int				error;
   1396	int				i;
   1397
   1398	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
   1399	if (error)
   1400		return error;
   1401	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
   1402		return -EFSCORRUPTED;
   1403
   1404	error = xfs_inobt_get_rec(cur, &rec, &i);
   1405	if (error)
   1406		return error;
   1407	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
   1408		return -EFSCORRUPTED;
   1409	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
   1410				   XFS_INODES_PER_CHUNK) == 0);
   1411
   1412	rec.ir_free &= ~XFS_INOBT_MASK(offset);
   1413	rec.ir_freecount--;
   1414
   1415	if (XFS_IS_CORRUPT(cur->bc_mp,
   1416			   rec.ir_free != frec->ir_free ||
   1417			   rec.ir_freecount != frec->ir_freecount))
   1418		return -EFSCORRUPTED;
   1419
   1420	return xfs_inobt_update(cur, &rec);
   1421}
   1422
   1423/*
   1424 * Allocate an inode using the free inode btree, if available. Otherwise, fall
   1425 * back to the inobt search algorithm.
   1426 *
   1427 * The caller selected an AG for us, and made sure that free inodes are
   1428 * available.
   1429 */
   1430static int
   1431xfs_dialloc_ag(
   1432	struct xfs_trans	*tp,
   1433	struct xfs_buf		*agbp,
   1434	struct xfs_perag	*pag,
   1435	xfs_ino_t		parent,
   1436	xfs_ino_t		*inop)
   1437{
   1438	struct xfs_mount		*mp = tp->t_mountp;
   1439	struct xfs_agi			*agi = agbp->b_addr;
   1440	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
   1441	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
   1442	struct xfs_btree_cur		*cur;	/* finobt cursor */
   1443	struct xfs_btree_cur		*icur;	/* inobt cursor */
   1444	struct xfs_inobt_rec_incore	rec;
   1445	xfs_ino_t			ino;
   1446	int				error;
   1447	int				offset;
   1448	int				i;
   1449
   1450	if (!xfs_has_finobt(mp))
   1451		return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
   1452
   1453	/*
   1454	 * If pagino is 0 (this is the root inode allocation) use newino.
   1455	 * This must work because we've just allocated some.
   1456	 */
   1457	if (!pagino)
   1458		pagino = be32_to_cpu(agi->agi_newino);
   1459
   1460	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
   1461
   1462	error = xfs_check_agi_freecount(cur);
   1463	if (error)
   1464		goto error_cur;
   1465
   1466	/*
   1467	 * The search algorithm depends on whether we're in the same AG as the
   1468	 * parent. If so, find the closest available inode to the parent. If
   1469	 * not, consider the agi hint or find the first free inode in the AG.
   1470	 */
   1471	if (pag->pag_agno == pagno)
   1472		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
   1473	else
   1474		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
   1475	if (error)
   1476		goto error_cur;
   1477
   1478	offset = xfs_inobt_first_free_inode(&rec);
   1479	ASSERT(offset >= 0);
   1480	ASSERT(offset < XFS_INODES_PER_CHUNK);
   1481	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
   1482				   XFS_INODES_PER_CHUNK) == 0);
   1483	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
   1484
   1485	/*
   1486	 * Modify or remove the finobt record.
   1487	 */
   1488	rec.ir_free &= ~XFS_INOBT_MASK(offset);
   1489	rec.ir_freecount--;
   1490	if (rec.ir_freecount)
   1491		error = xfs_inobt_update(cur, &rec);
   1492	else
   1493		error = xfs_btree_delete(cur, &i);
   1494	if (error)
   1495		goto error_cur;
   1496
   1497	/*
   1498	 * The finobt has now been updated appropriately. We haven't updated the
   1499	 * agi and superblock yet, so we can create an inobt cursor and validate
   1500	 * the original freecount. If all is well, make the equivalent update to
   1501	 * the inobt using the finobt record and offset information.
   1502	 */
   1503	icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
   1504
   1505	error = xfs_check_agi_freecount(icur);
   1506	if (error)
   1507		goto error_icur;
   1508
   1509	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
   1510	if (error)
   1511		goto error_icur;
   1512
   1513	/*
   1514	 * Both trees have now been updated. We must update the perag and
   1515	 * superblock before we can check the freecount for each btree.
   1516	 */
   1517	be32_add_cpu(&agi->agi_freecount, -1);
   1518	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
   1519	pag->pagi_freecount--;
   1520
   1521	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
   1522
   1523	error = xfs_check_agi_freecount(icur);
   1524	if (error)
   1525		goto error_icur;
   1526	error = xfs_check_agi_freecount(cur);
   1527	if (error)
   1528		goto error_icur;
   1529
   1530	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
   1531	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
   1532	*inop = ino;
   1533	return 0;
   1534
   1535error_icur:
   1536	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
   1537error_cur:
   1538	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
   1539	return error;
   1540}
   1541
   1542static int
   1543xfs_dialloc_roll(
   1544	struct xfs_trans	**tpp,
   1545	struct xfs_buf		*agibp)
   1546{
   1547	struct xfs_trans	*tp = *tpp;
   1548	struct xfs_dquot_acct	*dqinfo;
   1549	int			error;
   1550
   1551	/*
   1552	 * Hold to on to the agibp across the commit so no other allocation can
   1553	 * come in and take the free inodes we just allocated for our caller.
   1554	 */
   1555	xfs_trans_bhold(tp, agibp);
   1556
   1557	/*
   1558	 * We want the quota changes to be associated with the next transaction,
   1559	 * NOT this one. So, detach the dqinfo from this and attach it to the
   1560	 * next transaction.
   1561	 */
   1562	dqinfo = tp->t_dqinfo;
   1563	tp->t_dqinfo = NULL;
   1564
   1565	error = xfs_trans_roll(&tp);
   1566
   1567	/* Re-attach the quota info that we detached from prev trx. */
   1568	tp->t_dqinfo = dqinfo;
   1569
   1570	/*
   1571	 * Join the buffer even on commit error so that the buffer is released
   1572	 * when the caller cancels the transaction and doesn't have to handle
   1573	 * this error case specially.
   1574	 */
   1575	xfs_trans_bjoin(tp, agibp);
   1576	*tpp = tp;
   1577	return error;
   1578}
   1579
   1580static xfs_agnumber_t
   1581xfs_ialloc_next_ag(
   1582	xfs_mount_t	*mp)
   1583{
   1584	xfs_agnumber_t	agno;
   1585
   1586	spin_lock(&mp->m_agirotor_lock);
   1587	agno = mp->m_agirotor;
   1588	if (++mp->m_agirotor >= mp->m_maxagi)
   1589		mp->m_agirotor = 0;
   1590	spin_unlock(&mp->m_agirotor_lock);
   1591
   1592	return agno;
   1593}
   1594
   1595static bool
   1596xfs_dialloc_good_ag(
   1597	struct xfs_trans	*tp,
   1598	struct xfs_perag	*pag,
   1599	umode_t			mode,
   1600	int			flags,
   1601	bool			ok_alloc)
   1602{
   1603	struct xfs_mount	*mp = tp->t_mountp;
   1604	xfs_extlen_t		ineed;
   1605	xfs_extlen_t		longest = 0;
   1606	int			needspace;
   1607	int			error;
   1608
   1609	if (!pag->pagi_inodeok)
   1610		return false;
   1611
   1612	if (!pag->pagi_init) {
   1613		error = xfs_ialloc_pagi_init(mp, tp, pag->pag_agno);
   1614		if (error)
   1615			return false;
   1616	}
   1617
   1618	if (pag->pagi_freecount)
   1619		return true;
   1620	if (!ok_alloc)
   1621		return false;
   1622
   1623	if (!pag->pagf_init) {
   1624		error = xfs_alloc_pagf_init(mp, tp, pag->pag_agno, flags);
   1625		if (error)
   1626			return false;
   1627	}
   1628
   1629	/*
   1630	 * Check that there is enough free space for the file plus a chunk of
   1631	 * inodes if we need to allocate some. If this is the first pass across
   1632	 * the AGs, take into account the potential space needed for alignment
   1633	 * of inode chunks when checking the longest contiguous free space in
   1634	 * the AG - this prevents us from getting ENOSPC because we have free
   1635	 * space larger than ialloc_blks but alignment constraints prevent us
   1636	 * from using it.
   1637	 *
   1638	 * If we can't find an AG with space for full alignment slack to be
   1639	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
   1640	 * don't include alignment for the second pass and so if we fail
   1641	 * allocation due to alignment issues then it is most likely a real
   1642	 * ENOSPC condition.
   1643	 *
   1644	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
   1645	 * reservations that xfs_alloc_fix_freelist() now does via
   1646	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
   1647	 * be more than large enough for the check below to succeed, but
   1648	 * xfs_alloc_space_available() will fail because of the non-zero
   1649	 * metadata reservation and hence we won't actually be able to allocate
   1650	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
   1651	 * because of this.
   1652	 */
   1653	ineed = M_IGEO(mp)->ialloc_min_blks;
   1654	if (flags && ineed > 1)
   1655		ineed += M_IGEO(mp)->cluster_align;
   1656	longest = pag->pagf_longest;
   1657	if (!longest)
   1658		longest = pag->pagf_flcount > 0;
   1659	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
   1660
   1661	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
   1662		return false;
   1663	return true;
   1664}
   1665
   1666static int
   1667xfs_dialloc_try_ag(
   1668	struct xfs_trans	**tpp,
   1669	struct xfs_perag	*pag,
   1670	xfs_ino_t		parent,
   1671	xfs_ino_t		*new_ino,
   1672	bool			ok_alloc)
   1673{
   1674	struct xfs_buf		*agbp;
   1675	xfs_ino_t		ino;
   1676	int			error;
   1677
   1678	/*
   1679	 * Then read in the AGI buffer and recheck with the AGI buffer
   1680	 * lock held.
   1681	 */
   1682	error = xfs_ialloc_read_agi(pag->pag_mount, *tpp, pag->pag_agno, &agbp);
   1683	if (error)
   1684		return error;
   1685
   1686	if (!pag->pagi_freecount) {
   1687		if (!ok_alloc) {
   1688			error = -EAGAIN;
   1689			goto out_release;
   1690		}
   1691
   1692		error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
   1693		if (error < 0)
   1694			goto out_release;
   1695
   1696		/*
   1697		 * We successfully allocated space for an inode cluster in this
   1698		 * AG.  Roll the transaction so that we can allocate one of the
   1699		 * new inodes.
   1700		 */
   1701		ASSERT(pag->pagi_freecount > 0);
   1702		error = xfs_dialloc_roll(tpp, agbp);
   1703		if (error)
   1704			goto out_release;
   1705	}
   1706
   1707	/* Allocate an inode in the found AG */
   1708	error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
   1709	if (!error)
   1710		*new_ino = ino;
   1711	return error;
   1712
   1713out_release:
   1714	xfs_trans_brelse(*tpp, agbp);
   1715	return error;
   1716}
   1717
   1718/*
   1719 * Allocate an on-disk inode.
   1720 *
   1721 * Mode is used to tell whether the new inode is a directory and hence where to
   1722 * locate it. The on-disk inode that is allocated will be returned in @new_ino
   1723 * on success, otherwise an error will be set to indicate the failure (e.g.
   1724 * -ENOSPC).
   1725 */
   1726int
   1727xfs_dialloc(
   1728	struct xfs_trans	**tpp,
   1729	xfs_ino_t		parent,
   1730	umode_t			mode,
   1731	xfs_ino_t		*new_ino)
   1732{
   1733	struct xfs_mount	*mp = (*tpp)->t_mountp;
   1734	xfs_agnumber_t		agno;
   1735	int			error = 0;
   1736	xfs_agnumber_t		start_agno;
   1737	struct xfs_perag	*pag;
   1738	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
   1739	bool			ok_alloc = true;
   1740	int			flags;
   1741	xfs_ino_t		ino;
   1742
   1743	/*
   1744	 * Directories, symlinks, and regular files frequently allocate at least
   1745	 * one block, so factor that potential expansion when we examine whether
   1746	 * an AG has enough space for file creation.
   1747	 */
   1748	if (S_ISDIR(mode))
   1749		start_agno = xfs_ialloc_next_ag(mp);
   1750	else {
   1751		start_agno = XFS_INO_TO_AGNO(mp, parent);
   1752		if (start_agno >= mp->m_maxagi)
   1753			start_agno = 0;
   1754	}
   1755
   1756	/*
   1757	 * If we have already hit the ceiling of inode blocks then clear
   1758	 * ok_alloc so we scan all available agi structures for a free
   1759	 * inode.
   1760	 *
   1761	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
   1762	 * which will sacrifice the preciseness but improve the performance.
   1763	 */
   1764	if (igeo->maxicount &&
   1765	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
   1766							> igeo->maxicount) {
   1767		ok_alloc = false;
   1768	}
   1769
   1770	/*
   1771	 * Loop until we find an allocation group that either has free inodes
   1772	 * or in which we can allocate some inodes.  Iterate through the
   1773	 * allocation groups upward, wrapping at the end.
   1774	 */
   1775	agno = start_agno;
   1776	flags = XFS_ALLOC_FLAG_TRYLOCK;
   1777	for (;;) {
   1778		pag = xfs_perag_get(mp, agno);
   1779		if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
   1780			error = xfs_dialloc_try_ag(tpp, pag, parent,
   1781					&ino, ok_alloc);
   1782			if (error != -EAGAIN)
   1783				break;
   1784		}
   1785
   1786		if (xfs_is_shutdown(mp)) {
   1787			error = -EFSCORRUPTED;
   1788			break;
   1789		}
   1790		if (++agno == mp->m_maxagi)
   1791			agno = 0;
   1792		if (agno == start_agno) {
   1793			if (!flags) {
   1794				error = -ENOSPC;
   1795				break;
   1796			}
   1797			flags = 0;
   1798		}
   1799		xfs_perag_put(pag);
   1800	}
   1801
   1802	if (!error)
   1803		*new_ino = ino;
   1804	xfs_perag_put(pag);
   1805	return error;
   1806}
   1807
   1808/*
   1809 * Free the blocks of an inode chunk. We must consider that the inode chunk
   1810 * might be sparse and only free the regions that are allocated as part of the
   1811 * chunk.
   1812 */
   1813STATIC void
   1814xfs_difree_inode_chunk(
   1815	struct xfs_trans		*tp,
   1816	xfs_agnumber_t			agno,
   1817	struct xfs_inobt_rec_incore	*rec)
   1818{
   1819	struct xfs_mount		*mp = tp->t_mountp;
   1820	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
   1821							rec->ir_startino);
   1822	int				startidx, endidx;
   1823	int				nextbit;
   1824	xfs_agblock_t			agbno;
   1825	int				contigblk;
   1826	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
   1827
   1828	if (!xfs_inobt_issparse(rec->ir_holemask)) {
   1829		/* not sparse, calculate extent info directly */
   1830		xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
   1831				  M_IGEO(mp)->ialloc_blks,
   1832				  &XFS_RMAP_OINFO_INODES);
   1833		return;
   1834	}
   1835
   1836	/* holemask is only 16-bits (fits in an unsigned long) */
   1837	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
   1838	holemask[0] = rec->ir_holemask;
   1839
   1840	/*
   1841	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
   1842	 * holemask and convert the start/end index of each range to an extent.
   1843	 * We start with the start and end index both pointing at the first 0 in
   1844	 * the mask.
   1845	 */
   1846	startidx = endidx = find_first_zero_bit(holemask,
   1847						XFS_INOBT_HOLEMASK_BITS);
   1848	nextbit = startidx + 1;
   1849	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
   1850		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
   1851					     nextbit);
   1852		/*
   1853		 * If the next zero bit is contiguous, update the end index of
   1854		 * the current range and continue.
   1855		 */
   1856		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
   1857		    nextbit == endidx + 1) {
   1858			endidx = nextbit;
   1859			goto next;
   1860		}
   1861
   1862		/*
   1863		 * nextbit is not contiguous with the current end index. Convert
   1864		 * the current start/end to an extent and add it to the free
   1865		 * list.
   1866		 */
   1867		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
   1868				  mp->m_sb.sb_inopblock;
   1869		contigblk = ((endidx - startidx + 1) *
   1870			     XFS_INODES_PER_HOLEMASK_BIT) /
   1871			    mp->m_sb.sb_inopblock;
   1872
   1873		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
   1874		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
   1875		xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
   1876				  contigblk, &XFS_RMAP_OINFO_INODES);
   1877
   1878		/* reset range to current bit and carry on... */
   1879		startidx = endidx = nextbit;
   1880
   1881next:
   1882		nextbit++;
   1883	}
   1884}
   1885
   1886STATIC int
   1887xfs_difree_inobt(
   1888	struct xfs_mount		*mp,
   1889	struct xfs_trans		*tp,
   1890	struct xfs_buf			*agbp,
   1891	struct xfs_perag		*pag,
   1892	xfs_agino_t			agino,
   1893	struct xfs_icluster		*xic,
   1894	struct xfs_inobt_rec_incore	*orec)
   1895{
   1896	struct xfs_agi			*agi = agbp->b_addr;
   1897	struct xfs_btree_cur		*cur;
   1898	struct xfs_inobt_rec_incore	rec;
   1899	int				ilen;
   1900	int				error;
   1901	int				i;
   1902	int				off;
   1903
   1904	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
   1905	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
   1906
   1907	/*
   1908	 * Initialize the cursor.
   1909	 */
   1910	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
   1911
   1912	error = xfs_check_agi_freecount(cur);
   1913	if (error)
   1914		goto error0;
   1915
   1916	/*
   1917	 * Look for the entry describing this inode.
   1918	 */
   1919	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
   1920		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
   1921			__func__, error);
   1922		goto error0;
   1923	}
   1924	if (XFS_IS_CORRUPT(mp, i != 1)) {
   1925		error = -EFSCORRUPTED;
   1926		goto error0;
   1927	}
   1928	error = xfs_inobt_get_rec(cur, &rec, &i);
   1929	if (error) {
   1930		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
   1931			__func__, error);
   1932		goto error0;
   1933	}
   1934	if (XFS_IS_CORRUPT(mp, i != 1)) {
   1935		error = -EFSCORRUPTED;
   1936		goto error0;
   1937	}
   1938	/*
   1939	 * Get the offset in the inode chunk.
   1940	 */
   1941	off = agino - rec.ir_startino;
   1942	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
   1943	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
   1944	/*
   1945	 * Mark the inode free & increment the count.
   1946	 */
   1947	rec.ir_free |= XFS_INOBT_MASK(off);
   1948	rec.ir_freecount++;
   1949
   1950	/*
   1951	 * When an inode chunk is free, it becomes eligible for removal. Don't
   1952	 * remove the chunk if the block size is large enough for multiple inode
   1953	 * chunks (that might not be free).
   1954	 */
   1955	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
   1956	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
   1957		struct xfs_perag	*pag = agbp->b_pag;
   1958
   1959		xic->deleted = true;
   1960		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
   1961				rec.ir_startino);
   1962		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
   1963
   1964		/*
   1965		 * Remove the inode cluster from the AGI B+Tree, adjust the
   1966		 * AGI and Superblock inode counts, and mark the disk space
   1967		 * to be freed when the transaction is committed.
   1968		 */
   1969		ilen = rec.ir_freecount;
   1970		be32_add_cpu(&agi->agi_count, -ilen);
   1971		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
   1972		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
   1973		pag->pagi_freecount -= ilen - 1;
   1974		pag->pagi_count -= ilen;
   1975		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
   1976		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
   1977
   1978		if ((error = xfs_btree_delete(cur, &i))) {
   1979			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
   1980				__func__, error);
   1981			goto error0;
   1982		}
   1983
   1984		xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
   1985	} else {
   1986		xic->deleted = false;
   1987
   1988		error = xfs_inobt_update(cur, &rec);
   1989		if (error) {
   1990			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
   1991				__func__, error);
   1992			goto error0;
   1993		}
   1994
   1995		/*
   1996		 * Change the inode free counts and log the ag/sb changes.
   1997		 */
   1998		be32_add_cpu(&agi->agi_freecount, 1);
   1999		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
   2000		pag->pagi_freecount++;
   2001		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
   2002	}
   2003
   2004	error = xfs_check_agi_freecount(cur);
   2005	if (error)
   2006		goto error0;
   2007
   2008	*orec = rec;
   2009	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
   2010	return 0;
   2011
   2012error0:
   2013	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
   2014	return error;
   2015}
   2016
   2017/*
   2018 * Free an inode in the free inode btree.
   2019 */
   2020STATIC int
   2021xfs_difree_finobt(
   2022	struct xfs_mount		*mp,
   2023	struct xfs_trans		*tp,
   2024	struct xfs_buf			*agbp,
   2025	struct xfs_perag		*pag,
   2026	xfs_agino_t			agino,
   2027	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
   2028{
   2029	struct xfs_btree_cur		*cur;
   2030	struct xfs_inobt_rec_incore	rec;
   2031	int				offset = agino - ibtrec->ir_startino;
   2032	int				error;
   2033	int				i;
   2034
   2035	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
   2036
   2037	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
   2038	if (error)
   2039		goto error;
   2040	if (i == 0) {
   2041		/*
   2042		 * If the record does not exist in the finobt, we must have just
   2043		 * freed an inode in a previously fully allocated chunk. If not,
   2044		 * something is out of sync.
   2045		 */
   2046		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
   2047			error = -EFSCORRUPTED;
   2048			goto error;
   2049		}
   2050
   2051		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
   2052					     ibtrec->ir_count,
   2053					     ibtrec->ir_freecount,
   2054					     ibtrec->ir_free, &i);
   2055		if (error)
   2056			goto error;
   2057		ASSERT(i == 1);
   2058
   2059		goto out;
   2060	}
   2061
   2062	/*
   2063	 * Read and update the existing record. We could just copy the ibtrec
   2064	 * across here, but that would defeat the purpose of having redundant
   2065	 * metadata. By making the modifications independently, we can catch
   2066	 * corruptions that we wouldn't see if we just copied from one record
   2067	 * to another.
   2068	 */
   2069	error = xfs_inobt_get_rec(cur, &rec, &i);
   2070	if (error)
   2071		goto error;
   2072	if (XFS_IS_CORRUPT(mp, i != 1)) {
   2073		error = -EFSCORRUPTED;
   2074		goto error;
   2075	}
   2076
   2077	rec.ir_free |= XFS_INOBT_MASK(offset);
   2078	rec.ir_freecount++;
   2079
   2080	if (XFS_IS_CORRUPT(mp,
   2081			   rec.ir_free != ibtrec->ir_free ||
   2082			   rec.ir_freecount != ibtrec->ir_freecount)) {
   2083		error = -EFSCORRUPTED;
   2084		goto error;
   2085	}
   2086
   2087	/*
   2088	 * The content of inobt records should always match between the inobt
   2089	 * and finobt. The lifecycle of records in the finobt is different from
   2090	 * the inobt in that the finobt only tracks records with at least one
   2091	 * free inode. Hence, if all of the inodes are free and we aren't
   2092	 * keeping inode chunks permanently on disk, remove the record.
   2093	 * Otherwise, update the record with the new information.
   2094	 *
   2095	 * Note that we currently can't free chunks when the block size is large
   2096	 * enough for multiple chunks. Leave the finobt record to remain in sync
   2097	 * with the inobt.
   2098	 */
   2099	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
   2100	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
   2101		error = xfs_btree_delete(cur, &i);
   2102		if (error)
   2103			goto error;
   2104		ASSERT(i == 1);
   2105	} else {
   2106		error = xfs_inobt_update(cur, &rec);
   2107		if (error)
   2108			goto error;
   2109	}
   2110
   2111out:
   2112	error = xfs_check_agi_freecount(cur);
   2113	if (error)
   2114		goto error;
   2115
   2116	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
   2117	return 0;
   2118
   2119error:
   2120	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
   2121	return error;
   2122}
   2123
   2124/*
   2125 * Free disk inode.  Carefully avoids touching the incore inode, all
   2126 * manipulations incore are the caller's responsibility.
   2127 * The on-disk inode is not changed by this operation, only the
   2128 * btree (free inode mask) is changed.
   2129 */
   2130int
   2131xfs_difree(
   2132	struct xfs_trans	*tp,
   2133	struct xfs_perag	*pag,
   2134	xfs_ino_t		inode,
   2135	struct xfs_icluster	*xic)
   2136{
   2137	/* REFERENCED */
   2138	xfs_agblock_t		agbno;	/* block number containing inode */
   2139	struct xfs_buf		*agbp;	/* buffer for allocation group header */
   2140	xfs_agino_t		agino;	/* allocation group inode number */
   2141	int			error;	/* error return value */
   2142	struct xfs_mount	*mp = tp->t_mountp;
   2143	struct xfs_inobt_rec_incore rec;/* btree record */
   2144
   2145	/*
   2146	 * Break up inode number into its components.
   2147	 */
   2148	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
   2149		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
   2150			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
   2151		ASSERT(0);
   2152		return -EINVAL;
   2153	}
   2154	agino = XFS_INO_TO_AGINO(mp, inode);
   2155	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
   2156		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
   2157			__func__, (unsigned long long)inode,
   2158			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
   2159		ASSERT(0);
   2160		return -EINVAL;
   2161	}
   2162	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
   2163	if (agbno >= mp->m_sb.sb_agblocks)  {
   2164		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
   2165			__func__, agbno, mp->m_sb.sb_agblocks);
   2166		ASSERT(0);
   2167		return -EINVAL;
   2168	}
   2169	/*
   2170	 * Get the allocation group header.
   2171	 */
   2172	error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
   2173	if (error) {
   2174		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
   2175			__func__, error);
   2176		return error;
   2177	}
   2178
   2179	/*
   2180	 * Fix up the inode allocation btree.
   2181	 */
   2182	error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
   2183	if (error)
   2184		goto error0;
   2185
   2186	/*
   2187	 * Fix up the free inode btree.
   2188	 */
   2189	if (xfs_has_finobt(mp)) {
   2190		error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
   2191		if (error)
   2192			goto error0;
   2193	}
   2194
   2195	return 0;
   2196
   2197error0:
   2198	return error;
   2199}
   2200
   2201STATIC int
   2202xfs_imap_lookup(
   2203	struct xfs_mount	*mp,
   2204	struct xfs_trans	*tp,
   2205	struct xfs_perag	*pag,
   2206	xfs_agino_t		agino,
   2207	xfs_agblock_t		agbno,
   2208	xfs_agblock_t		*chunk_agbno,
   2209	xfs_agblock_t		*offset_agbno,
   2210	int			flags)
   2211{
   2212	struct xfs_inobt_rec_incore rec;
   2213	struct xfs_btree_cur	*cur;
   2214	struct xfs_buf		*agbp;
   2215	int			error;
   2216	int			i;
   2217
   2218	error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
   2219	if (error) {
   2220		xfs_alert(mp,
   2221			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
   2222			__func__, error, pag->pag_agno);
   2223		return error;
   2224	}
   2225
   2226	/*
   2227	 * Lookup the inode record for the given agino. If the record cannot be
   2228	 * found, then it's an invalid inode number and we should abort. Once
   2229	 * we have a record, we need to ensure it contains the inode number
   2230	 * we are looking up.
   2231	 */
   2232	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
   2233	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
   2234	if (!error) {
   2235		if (i)
   2236			error = xfs_inobt_get_rec(cur, &rec, &i);
   2237		if (!error && i == 0)
   2238			error = -EINVAL;
   2239	}
   2240
   2241	xfs_trans_brelse(tp, agbp);
   2242	xfs_btree_del_cursor(cur, error);
   2243	if (error)
   2244		return error;
   2245
   2246	/* check that the returned record contains the required inode */
   2247	if (rec.ir_startino > agino ||
   2248	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
   2249		return -EINVAL;
   2250
   2251	/* for untrusted inodes check it is allocated first */
   2252	if ((flags & XFS_IGET_UNTRUSTED) &&
   2253	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
   2254		return -EINVAL;
   2255
   2256	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
   2257	*offset_agbno = agbno - *chunk_agbno;
   2258	return 0;
   2259}
   2260
   2261/*
   2262 * Return the location of the inode in imap, for mapping it into a buffer.
   2263 */
   2264int
   2265xfs_imap(
   2266	struct xfs_mount	 *mp,	/* file system mount structure */
   2267	struct xfs_trans	 *tp,	/* transaction pointer */
   2268	xfs_ino_t		ino,	/* inode to locate */
   2269	struct xfs_imap		*imap,	/* location map structure */
   2270	uint			flags)	/* flags for inode btree lookup */
   2271{
   2272	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
   2273	xfs_agino_t		agino;	/* inode number within alloc group */
   2274	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
   2275	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
   2276	int			error;	/* error code */
   2277	int			offset;	/* index of inode in its buffer */
   2278	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
   2279	struct xfs_perag	*pag;
   2280
   2281	ASSERT(ino != NULLFSINO);
   2282
   2283	/*
   2284	 * Split up the inode number into its parts.
   2285	 */
   2286	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
   2287	agino = XFS_INO_TO_AGINO(mp, ino);
   2288	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
   2289	if (!pag || agbno >= mp->m_sb.sb_agblocks ||
   2290	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
   2291		error = -EINVAL;
   2292#ifdef DEBUG
   2293		/*
   2294		 * Don't output diagnostic information for untrusted inodes
   2295		 * as they can be invalid without implying corruption.
   2296		 */
   2297		if (flags & XFS_IGET_UNTRUSTED)
   2298			goto out_drop;
   2299		if (!pag) {
   2300			xfs_alert(mp,
   2301				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
   2302				__func__, XFS_INO_TO_AGNO(mp, ino),
   2303				mp->m_sb.sb_agcount);
   2304		}
   2305		if (agbno >= mp->m_sb.sb_agblocks) {
   2306			xfs_alert(mp,
   2307		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
   2308				__func__, (unsigned long long)agbno,
   2309				(unsigned long)mp->m_sb.sb_agblocks);
   2310		}
   2311		if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
   2312			xfs_alert(mp,
   2313		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
   2314				__func__, ino,
   2315				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
   2316		}
   2317		xfs_stack_trace();
   2318#endif /* DEBUG */
   2319		goto out_drop;
   2320	}
   2321
   2322	/*
   2323	 * For bulkstat and handle lookups, we have an untrusted inode number
   2324	 * that we have to verify is valid. We cannot do this just by reading
   2325	 * the inode buffer as it may have been unlinked and removed leaving
   2326	 * inodes in stale state on disk. Hence we have to do a btree lookup
   2327	 * in all cases where an untrusted inode number is passed.
   2328	 */
   2329	if (flags & XFS_IGET_UNTRUSTED) {
   2330		error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
   2331					&chunk_agbno, &offset_agbno, flags);
   2332		if (error)
   2333			goto out_drop;
   2334		goto out_map;
   2335	}
   2336
   2337	/*
   2338	 * If the inode cluster size is the same as the blocksize or
   2339	 * smaller we get to the buffer by simple arithmetics.
   2340	 */
   2341	if (M_IGEO(mp)->blocks_per_cluster == 1) {
   2342		offset = XFS_INO_TO_OFFSET(mp, ino);
   2343		ASSERT(offset < mp->m_sb.sb_inopblock);
   2344
   2345		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
   2346		imap->im_len = XFS_FSB_TO_BB(mp, 1);
   2347		imap->im_boffset = (unsigned short)(offset <<
   2348							mp->m_sb.sb_inodelog);
   2349		error = 0;
   2350		goto out_drop;
   2351	}
   2352
   2353	/*
   2354	 * If the inode chunks are aligned then use simple maths to
   2355	 * find the location. Otherwise we have to do a btree
   2356	 * lookup to find the location.
   2357	 */
   2358	if (M_IGEO(mp)->inoalign_mask) {
   2359		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
   2360		chunk_agbno = agbno - offset_agbno;
   2361	} else {
   2362		error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
   2363					&chunk_agbno, &offset_agbno, flags);
   2364		if (error)
   2365			goto out_drop;
   2366	}
   2367
   2368out_map:
   2369	ASSERT(agbno >= chunk_agbno);
   2370	cluster_agbno = chunk_agbno +
   2371		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
   2372		 M_IGEO(mp)->blocks_per_cluster);
   2373	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
   2374		XFS_INO_TO_OFFSET(mp, ino);
   2375
   2376	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
   2377	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
   2378	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
   2379
   2380	/*
   2381	 * If the inode number maps to a block outside the bounds
   2382	 * of the file system then return NULL rather than calling
   2383	 * read_buf and panicing when we get an error from the
   2384	 * driver.
   2385	 */
   2386	if ((imap->im_blkno + imap->im_len) >
   2387	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
   2388		xfs_alert(mp,
   2389	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
   2390			__func__, (unsigned long long) imap->im_blkno,
   2391			(unsigned long long) imap->im_len,
   2392			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
   2393		error = -EINVAL;
   2394		goto out_drop;
   2395	}
   2396	error = 0;
   2397out_drop:
   2398	if (pag)
   2399		xfs_perag_put(pag);
   2400	return error;
   2401}
   2402
   2403/*
   2404 * Log specified fields for the ag hdr (inode section). The growth of the agi
   2405 * structure over time requires that we interpret the buffer as two logical
   2406 * regions delineated by the end of the unlinked list. This is due to the size
   2407 * of the hash table and its location in the middle of the agi.
   2408 *
   2409 * For example, a request to log a field before agi_unlinked and a field after
   2410 * agi_unlinked could cause us to log the entire hash table and use an excessive
   2411 * amount of log space. To avoid this behavior, log the region up through
   2412 * agi_unlinked in one call and the region after agi_unlinked through the end of
   2413 * the structure in another.
   2414 */
   2415void
   2416xfs_ialloc_log_agi(
   2417	struct xfs_trans	*tp,
   2418	struct xfs_buf		*bp,
   2419	uint32_t		fields)
   2420{
   2421	int			first;		/* first byte number */
   2422	int			last;		/* last byte number */
   2423	static const short	offsets[] = {	/* field starting offsets */
   2424					/* keep in sync with bit definitions */
   2425		offsetof(xfs_agi_t, agi_magicnum),
   2426		offsetof(xfs_agi_t, agi_versionnum),
   2427		offsetof(xfs_agi_t, agi_seqno),
   2428		offsetof(xfs_agi_t, agi_length),
   2429		offsetof(xfs_agi_t, agi_count),
   2430		offsetof(xfs_agi_t, agi_root),
   2431		offsetof(xfs_agi_t, agi_level),
   2432		offsetof(xfs_agi_t, agi_freecount),
   2433		offsetof(xfs_agi_t, agi_newino),
   2434		offsetof(xfs_agi_t, agi_dirino),
   2435		offsetof(xfs_agi_t, agi_unlinked),
   2436		offsetof(xfs_agi_t, agi_free_root),
   2437		offsetof(xfs_agi_t, agi_free_level),
   2438		offsetof(xfs_agi_t, agi_iblocks),
   2439		sizeof(xfs_agi_t)
   2440	};
   2441#ifdef DEBUG
   2442	struct xfs_agi		*agi = bp->b_addr;
   2443
   2444	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
   2445#endif
   2446
   2447	/*
   2448	 * Compute byte offsets for the first and last fields in the first
   2449	 * region and log the agi buffer. This only logs up through
   2450	 * agi_unlinked.
   2451	 */
   2452	if (fields & XFS_AGI_ALL_BITS_R1) {
   2453		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
   2454				  &first, &last);
   2455		xfs_trans_log_buf(tp, bp, first, last);
   2456	}
   2457
   2458	/*
   2459	 * Mask off the bits in the first region and calculate the first and
   2460	 * last field offsets for any bits in the second region.
   2461	 */
   2462	fields &= ~XFS_AGI_ALL_BITS_R1;
   2463	if (fields) {
   2464		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
   2465				  &first, &last);
   2466		xfs_trans_log_buf(tp, bp, first, last);
   2467	}
   2468}
   2469
   2470static xfs_failaddr_t
   2471xfs_agi_verify(
   2472	struct xfs_buf	*bp)
   2473{
   2474	struct xfs_mount *mp = bp->b_mount;
   2475	struct xfs_agi	*agi = bp->b_addr;
   2476	int		i;
   2477
   2478	if (xfs_has_crc(mp)) {
   2479		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
   2480			return __this_address;
   2481		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
   2482			return __this_address;
   2483	}
   2484
   2485	/*
   2486	 * Validate the magic number of the agi block.
   2487	 */
   2488	if (!xfs_verify_magic(bp, agi->agi_magicnum))
   2489		return __this_address;
   2490	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
   2491		return __this_address;
   2492
   2493	if (be32_to_cpu(agi->agi_level) < 1 ||
   2494	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
   2495		return __this_address;
   2496
   2497	if (xfs_has_finobt(mp) &&
   2498	    (be32_to_cpu(agi->agi_free_level) < 1 ||
   2499	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
   2500		return __this_address;
   2501
   2502	/*
   2503	 * during growfs operations, the perag is not fully initialised,
   2504	 * so we can't use it for any useful checking. growfs ensures we can't
   2505	 * use it by using uncached buffers that don't have the perag attached
   2506	 * so we can detect and avoid this problem.
   2507	 */
   2508	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
   2509		return __this_address;
   2510
   2511	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
   2512		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
   2513			continue;
   2514		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
   2515			return __this_address;
   2516	}
   2517
   2518	return NULL;
   2519}
   2520
   2521static void
   2522xfs_agi_read_verify(
   2523	struct xfs_buf	*bp)
   2524{
   2525	struct xfs_mount *mp = bp->b_mount;
   2526	xfs_failaddr_t	fa;
   2527
   2528	if (xfs_has_crc(mp) &&
   2529	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
   2530		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
   2531	else {
   2532		fa = xfs_agi_verify(bp);
   2533		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
   2534			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
   2535	}
   2536}
   2537
   2538static void
   2539xfs_agi_write_verify(
   2540	struct xfs_buf	*bp)
   2541{
   2542	struct xfs_mount	*mp = bp->b_mount;
   2543	struct xfs_buf_log_item	*bip = bp->b_log_item;
   2544	struct xfs_agi		*agi = bp->b_addr;
   2545	xfs_failaddr_t		fa;
   2546
   2547	fa = xfs_agi_verify(bp);
   2548	if (fa) {
   2549		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
   2550		return;
   2551	}
   2552
   2553	if (!xfs_has_crc(mp))
   2554		return;
   2555
   2556	if (bip)
   2557		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
   2558	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
   2559}
   2560
   2561const struct xfs_buf_ops xfs_agi_buf_ops = {
   2562	.name = "xfs_agi",
   2563	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
   2564	.verify_read = xfs_agi_read_verify,
   2565	.verify_write = xfs_agi_write_verify,
   2566	.verify_struct = xfs_agi_verify,
   2567};
   2568
   2569/*
   2570 * Read in the allocation group header (inode allocation section)
   2571 */
   2572int
   2573xfs_read_agi(
   2574	struct xfs_mount	*mp,	/* file system mount structure */
   2575	struct xfs_trans	*tp,	/* transaction pointer */
   2576	xfs_agnumber_t		agno,	/* allocation group number */
   2577	struct xfs_buf		**bpp)	/* allocation group hdr buf */
   2578{
   2579	int			error;
   2580
   2581	trace_xfs_read_agi(mp, agno);
   2582
   2583	ASSERT(agno != NULLAGNUMBER);
   2584	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
   2585			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
   2586			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
   2587	if (error)
   2588		return error;
   2589	if (tp)
   2590		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
   2591
   2592	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
   2593	return 0;
   2594}
   2595
   2596int
   2597xfs_ialloc_read_agi(
   2598	struct xfs_mount	*mp,	/* file system mount structure */
   2599	struct xfs_trans	*tp,	/* transaction pointer */
   2600	xfs_agnumber_t		agno,	/* allocation group number */
   2601	struct xfs_buf		**bpp)	/* allocation group hdr buf */
   2602{
   2603	struct xfs_agi		*agi;	/* allocation group header */
   2604	struct xfs_perag	*pag;	/* per allocation group data */
   2605	int			error;
   2606
   2607	trace_xfs_ialloc_read_agi(mp, agno);
   2608
   2609	error = xfs_read_agi(mp, tp, agno, bpp);
   2610	if (error)
   2611		return error;
   2612
   2613	agi = (*bpp)->b_addr;
   2614	pag = (*bpp)->b_pag;
   2615	if (!pag->pagi_init) {
   2616		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
   2617		pag->pagi_count = be32_to_cpu(agi->agi_count);
   2618		pag->pagi_init = 1;
   2619	}
   2620
   2621	/*
   2622	 * It's possible for these to be out of sync if
   2623	 * we are in the middle of a forced shutdown.
   2624	 */
   2625	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
   2626		xfs_is_shutdown(mp));
   2627	return 0;
   2628}
   2629
   2630/*
   2631 * Read in the agi to initialise the per-ag data in the mount structure
   2632 */
   2633int
   2634xfs_ialloc_pagi_init(
   2635	xfs_mount_t	*mp,		/* file system mount structure */
   2636	xfs_trans_t	*tp,		/* transaction pointer */
   2637	xfs_agnumber_t	agno)		/* allocation group number */
   2638{
   2639	struct xfs_buf	*bp = NULL;
   2640	int		error;
   2641
   2642	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
   2643	if (error)
   2644		return error;
   2645	if (bp)
   2646		xfs_trans_brelse(tp, bp);
   2647	return 0;
   2648}
   2649
   2650/* Is there an inode record covering a given range of inode numbers? */
   2651int
   2652xfs_ialloc_has_inode_record(
   2653	struct xfs_btree_cur	*cur,
   2654	xfs_agino_t		low,
   2655	xfs_agino_t		high,
   2656	bool			*exists)
   2657{
   2658	struct xfs_inobt_rec_incore	irec;
   2659	xfs_agino_t		agino;
   2660	uint16_t		holemask;
   2661	int			has_record;
   2662	int			i;
   2663	int			error;
   2664
   2665	*exists = false;
   2666	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
   2667	while (error == 0 && has_record) {
   2668		error = xfs_inobt_get_rec(cur, &irec, &has_record);
   2669		if (error || irec.ir_startino > high)
   2670			break;
   2671
   2672		agino = irec.ir_startino;
   2673		holemask = irec.ir_holemask;
   2674		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
   2675				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
   2676			if (holemask & 1)
   2677				continue;
   2678			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
   2679					agino <= high) {
   2680				*exists = true;
   2681				return 0;
   2682			}
   2683		}
   2684
   2685		error = xfs_btree_increment(cur, 0, &has_record);
   2686	}
   2687	return error;
   2688}
   2689
   2690/* Is there an inode record covering a given extent? */
   2691int
   2692xfs_ialloc_has_inodes_at_extent(
   2693	struct xfs_btree_cur	*cur,
   2694	xfs_agblock_t		bno,
   2695	xfs_extlen_t		len,
   2696	bool			*exists)
   2697{
   2698	xfs_agino_t		low;
   2699	xfs_agino_t		high;
   2700
   2701	low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
   2702	high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
   2703
   2704	return xfs_ialloc_has_inode_record(cur, low, high, exists);
   2705}
   2706
   2707struct xfs_ialloc_count_inodes {
   2708	xfs_agino_t			count;
   2709	xfs_agino_t			freecount;
   2710};
   2711
   2712/* Record inode counts across all inobt records. */
   2713STATIC int
   2714xfs_ialloc_count_inodes_rec(
   2715	struct xfs_btree_cur		*cur,
   2716	const union xfs_btree_rec	*rec,
   2717	void				*priv)
   2718{
   2719	struct xfs_inobt_rec_incore	irec;
   2720	struct xfs_ialloc_count_inodes	*ci = priv;
   2721
   2722	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
   2723	ci->count += irec.ir_count;
   2724	ci->freecount += irec.ir_freecount;
   2725
   2726	return 0;
   2727}
   2728
   2729/* Count allocated and free inodes under an inobt. */
   2730int
   2731xfs_ialloc_count_inodes(
   2732	struct xfs_btree_cur		*cur,
   2733	xfs_agino_t			*count,
   2734	xfs_agino_t			*freecount)
   2735{
   2736	struct xfs_ialloc_count_inodes	ci = {0};
   2737	int				error;
   2738
   2739	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
   2740	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
   2741	if (error)
   2742		return error;
   2743
   2744	*count = ci.count;
   2745	*freecount = ci.freecount;
   2746	return 0;
   2747}
   2748
   2749/*
   2750 * Initialize inode-related geometry information.
   2751 *
   2752 * Compute the inode btree min and max levels and set maxicount.
   2753 *
   2754 * Set the inode cluster size.  This may still be overridden by the file
   2755 * system block size if it is larger than the chosen cluster size.
   2756 *
   2757 * For v5 filesystems, scale the cluster size with the inode size to keep a
   2758 * constant ratio of inode per cluster buffer, but only if mkfs has set the
   2759 * inode alignment value appropriately for larger cluster sizes.
   2760 *
   2761 * Then compute the inode cluster alignment information.
   2762 */
   2763void
   2764xfs_ialloc_setup_geometry(
   2765	struct xfs_mount	*mp)
   2766{
   2767	struct xfs_sb		*sbp = &mp->m_sb;
   2768	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
   2769	uint64_t		icount;
   2770	uint			inodes;
   2771
   2772	igeo->new_diflags2 = 0;
   2773	if (xfs_has_bigtime(mp))
   2774		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
   2775	if (xfs_has_large_extent_counts(mp))
   2776		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
   2777
   2778	/* Compute inode btree geometry. */
   2779	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
   2780	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
   2781	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
   2782	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
   2783	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
   2784
   2785	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
   2786			sbp->sb_inopblock);
   2787	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
   2788
   2789	if (sbp->sb_spino_align)
   2790		igeo->ialloc_min_blks = sbp->sb_spino_align;
   2791	else
   2792		igeo->ialloc_min_blks = igeo->ialloc_blks;
   2793
   2794	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
   2795	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
   2796	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
   2797			inodes);
   2798	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
   2799
   2800	/*
   2801	 * Set the maximum inode count for this filesystem, being careful not
   2802	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
   2803	 * users should never get here due to failing sb verification, but
   2804	 * certain users (xfs_db) need to be usable even with corrupt metadata.
   2805	 */
   2806	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
   2807		/*
   2808		 * Make sure the maximum inode count is a multiple
   2809		 * of the units we allocate inodes in.
   2810		 */
   2811		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
   2812		do_div(icount, 100);
   2813		do_div(icount, igeo->ialloc_blks);
   2814		igeo->maxicount = XFS_FSB_TO_INO(mp,
   2815				icount * igeo->ialloc_blks);
   2816	} else {
   2817		igeo->maxicount = 0;
   2818	}
   2819
   2820	/*
   2821	 * Compute the desired size of an inode cluster buffer size, which
   2822	 * starts at 8K and (on v5 filesystems) scales up with larger inode
   2823	 * sizes.
   2824	 *
   2825	 * Preserve the desired inode cluster size because the sparse inodes
   2826	 * feature uses that desired size (not the actual size) to compute the
   2827	 * sparse inode alignment.  The mount code validates this value, so we
   2828	 * cannot change the behavior.
   2829	 */
   2830	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
   2831	if (xfs_has_v3inodes(mp)) {
   2832		int	new_size = igeo->inode_cluster_size_raw;
   2833
   2834		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
   2835		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
   2836			igeo->inode_cluster_size_raw = new_size;
   2837	}
   2838
   2839	/* Calculate inode cluster ratios. */
   2840	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
   2841		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
   2842				igeo->inode_cluster_size_raw);
   2843	else
   2844		igeo->blocks_per_cluster = 1;
   2845	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
   2846	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
   2847
   2848	/* Calculate inode cluster alignment. */
   2849	if (xfs_has_align(mp) &&
   2850	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
   2851		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
   2852	else
   2853		igeo->cluster_align = 1;
   2854	igeo->inoalign_mask = igeo->cluster_align - 1;
   2855	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
   2856
   2857	/*
   2858	 * If we are using stripe alignment, check whether
   2859	 * the stripe unit is a multiple of the inode alignment
   2860	 */
   2861	if (mp->m_dalign && igeo->inoalign_mask &&
   2862	    !(mp->m_dalign & igeo->inoalign_mask))
   2863		igeo->ialloc_align = mp->m_dalign;
   2864	else
   2865		igeo->ialloc_align = 0;
   2866}
   2867
   2868/* Compute the location of the root directory inode that is laid out by mkfs. */
   2869xfs_ino_t
   2870xfs_ialloc_calc_rootino(
   2871	struct xfs_mount	*mp,
   2872	int			sunit)
   2873{
   2874	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
   2875	xfs_agblock_t		first_bno;
   2876
   2877	/*
   2878	 * Pre-calculate the geometry of AG 0.  We know what it looks like
   2879	 * because libxfs knows how to create allocation groups now.
   2880	 *
   2881	 * first_bno is the first block in which mkfs could possibly have
   2882	 * allocated the root directory inode, once we factor in the metadata
   2883	 * that mkfs formats before it.  Namely, the four AG headers...
   2884	 */
   2885	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
   2886
   2887	/* ...the two free space btree roots... */
   2888	first_bno += 2;
   2889
   2890	/* ...the inode btree root... */
   2891	first_bno += 1;
   2892
   2893	/* ...the initial AGFL... */
   2894	first_bno += xfs_alloc_min_freelist(mp, NULL);
   2895
   2896	/* ...the free inode btree root... */
   2897	if (xfs_has_finobt(mp))
   2898		first_bno++;
   2899
   2900	/* ...the reverse mapping btree root... */
   2901	if (xfs_has_rmapbt(mp))
   2902		first_bno++;
   2903
   2904	/* ...the reference count btree... */
   2905	if (xfs_has_reflink(mp))
   2906		first_bno++;
   2907
   2908	/*
   2909	 * ...and the log, if it is allocated in the first allocation group.
   2910	 *
   2911	 * This can happen with filesystems that only have a single
   2912	 * allocation group, or very odd geometries created by old mkfs
   2913	 * versions on very small filesystems.
   2914	 */
   2915	if (mp->m_sb.sb_logstart &&
   2916	    XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
   2917		 first_bno += mp->m_sb.sb_logblocks;
   2918
   2919	/*
   2920	 * Now round first_bno up to whatever allocation alignment is given
   2921	 * by the filesystem or was passed in.
   2922	 */
   2923	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
   2924		first_bno = roundup(first_bno, sunit);
   2925	else if (xfs_has_align(mp) &&
   2926			mp->m_sb.sb_inoalignmt > 1)
   2927		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
   2928
   2929	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
   2930}
   2931
   2932/*
   2933 * Ensure there are not sparse inode clusters that cross the new EOAG.
   2934 *
   2935 * This is a no-op for non-spinode filesystems since clusters are always fully
   2936 * allocated and checking the bnobt suffices.  However, a spinode filesystem
   2937 * could have a record where the upper inodes are free blocks.  If those blocks
   2938 * were removed from the filesystem, the inode record would extend beyond EOAG,
   2939 * which will be flagged as corruption.
   2940 */
   2941int
   2942xfs_ialloc_check_shrink(
   2943	struct xfs_trans	*tp,
   2944	xfs_agnumber_t		agno,
   2945	struct xfs_buf		*agibp,
   2946	xfs_agblock_t		new_length)
   2947{
   2948	struct xfs_inobt_rec_incore rec;
   2949	struct xfs_btree_cur	*cur;
   2950	struct xfs_mount	*mp = tp->t_mountp;
   2951	struct xfs_perag	*pag;
   2952	xfs_agino_t		agino = XFS_AGB_TO_AGINO(mp, new_length);
   2953	int			has;
   2954	int			error;
   2955
   2956	if (!xfs_has_sparseinodes(mp))
   2957		return 0;
   2958
   2959	pag = xfs_perag_get(mp, agno);
   2960	cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
   2961
   2962	/* Look up the inobt record that would correspond to the new EOFS. */
   2963	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
   2964	if (error || !has)
   2965		goto out;
   2966
   2967	error = xfs_inobt_get_rec(cur, &rec, &has);
   2968	if (error)
   2969		goto out;
   2970
   2971	if (!has) {
   2972		error = -EFSCORRUPTED;
   2973		goto out;
   2974	}
   2975
   2976	/* If the record covers inodes that would be beyond EOFS, bail out. */
   2977	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
   2978		error = -ENOSPC;
   2979		goto out;
   2980	}
   2981out:
   2982	xfs_btree_del_cursor(cur, error);
   2983	xfs_perag_put(pag);
   2984	return error;
   2985}