xfs_ialloc_btree.c (20727B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6#include "xfs.h" 7#include "xfs_fs.h" 8#include "xfs_shared.h" 9#include "xfs_format.h" 10#include "xfs_log_format.h" 11#include "xfs_trans_resv.h" 12#include "xfs_bit.h" 13#include "xfs_mount.h" 14#include "xfs_btree.h" 15#include "xfs_btree_staging.h" 16#include "xfs_ialloc.h" 17#include "xfs_ialloc_btree.h" 18#include "xfs_alloc.h" 19#include "xfs_error.h" 20#include "xfs_trace.h" 21#include "xfs_trans.h" 22#include "xfs_rmap.h" 23#include "xfs_ag.h" 24 25static struct kmem_cache *xfs_inobt_cur_cache; 26 27STATIC int 28xfs_inobt_get_minrecs( 29 struct xfs_btree_cur *cur, 30 int level) 31{ 32 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0]; 33} 34 35STATIC struct xfs_btree_cur * 36xfs_inobt_dup_cursor( 37 struct xfs_btree_cur *cur) 38{ 39 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp, 40 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum); 41} 42 43STATIC void 44xfs_inobt_set_root( 45 struct xfs_btree_cur *cur, 46 const union xfs_btree_ptr *nptr, 47 int inc) /* level change */ 48{ 49 struct xfs_buf *agbp = cur->bc_ag.agbp; 50 struct xfs_agi *agi = agbp->b_addr; 51 52 agi->agi_root = nptr->s; 53 be32_add_cpu(&agi->agi_level, inc); 54 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL); 55} 56 57STATIC void 58xfs_finobt_set_root( 59 struct xfs_btree_cur *cur, 60 const union xfs_btree_ptr *nptr, 61 int inc) /* level change */ 62{ 63 struct xfs_buf *agbp = cur->bc_ag.agbp; 64 struct xfs_agi *agi = agbp->b_addr; 65 66 agi->agi_free_root = nptr->s; 67 be32_add_cpu(&agi->agi_free_level, inc); 68 xfs_ialloc_log_agi(cur->bc_tp, agbp, 69 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL); 70} 71 72/* Update the inode btree block counter for this btree. */ 73static inline void 74xfs_inobt_mod_blockcount( 75 struct xfs_btree_cur *cur, 76 int howmuch) 77{ 78 struct xfs_buf *agbp = cur->bc_ag.agbp; 79 struct xfs_agi *agi = agbp->b_addr; 80 81 if (!xfs_has_inobtcounts(cur->bc_mp)) 82 return; 83 84 if (cur->bc_btnum == XFS_BTNUM_FINO) 85 be32_add_cpu(&agi->agi_fblocks, howmuch); 86 else if (cur->bc_btnum == XFS_BTNUM_INO) 87 be32_add_cpu(&agi->agi_iblocks, howmuch); 88 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS); 89} 90 91STATIC int 92__xfs_inobt_alloc_block( 93 struct xfs_btree_cur *cur, 94 const union xfs_btree_ptr *start, 95 union xfs_btree_ptr *new, 96 int *stat, 97 enum xfs_ag_resv_type resv) 98{ 99 xfs_alloc_arg_t args; /* block allocation args */ 100 int error; /* error return value */ 101 xfs_agblock_t sbno = be32_to_cpu(start->s); 102 103 memset(&args, 0, sizeof(args)); 104 args.tp = cur->bc_tp; 105 args.mp = cur->bc_mp; 106 args.oinfo = XFS_RMAP_OINFO_INOBT; 107 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_ag.pag->pag_agno, sbno); 108 args.minlen = 1; 109 args.maxlen = 1; 110 args.prod = 1; 111 args.type = XFS_ALLOCTYPE_NEAR_BNO; 112 args.resv = resv; 113 114 error = xfs_alloc_vextent(&args); 115 if (error) 116 return error; 117 118 if (args.fsbno == NULLFSBLOCK) { 119 *stat = 0; 120 return 0; 121 } 122 ASSERT(args.len == 1); 123 124 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno)); 125 *stat = 1; 126 xfs_inobt_mod_blockcount(cur, 1); 127 return 0; 128} 129 130STATIC int 131xfs_inobt_alloc_block( 132 struct xfs_btree_cur *cur, 133 const union xfs_btree_ptr *start, 134 union xfs_btree_ptr *new, 135 int *stat) 136{ 137 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE); 138} 139 140STATIC int 141xfs_finobt_alloc_block( 142 struct xfs_btree_cur *cur, 143 const union xfs_btree_ptr *start, 144 union xfs_btree_ptr *new, 145 int *stat) 146{ 147 if (cur->bc_mp->m_finobt_nores) 148 return xfs_inobt_alloc_block(cur, start, new, stat); 149 return __xfs_inobt_alloc_block(cur, start, new, stat, 150 XFS_AG_RESV_METADATA); 151} 152 153STATIC int 154__xfs_inobt_free_block( 155 struct xfs_btree_cur *cur, 156 struct xfs_buf *bp, 157 enum xfs_ag_resv_type resv) 158{ 159 xfs_inobt_mod_blockcount(cur, -1); 160 return xfs_free_extent(cur->bc_tp, 161 XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)), 1, 162 &XFS_RMAP_OINFO_INOBT, resv); 163} 164 165STATIC int 166xfs_inobt_free_block( 167 struct xfs_btree_cur *cur, 168 struct xfs_buf *bp) 169{ 170 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE); 171} 172 173STATIC int 174xfs_finobt_free_block( 175 struct xfs_btree_cur *cur, 176 struct xfs_buf *bp) 177{ 178 if (cur->bc_mp->m_finobt_nores) 179 return xfs_inobt_free_block(cur, bp); 180 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA); 181} 182 183STATIC int 184xfs_inobt_get_maxrecs( 185 struct xfs_btree_cur *cur, 186 int level) 187{ 188 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0]; 189} 190 191STATIC void 192xfs_inobt_init_key_from_rec( 193 union xfs_btree_key *key, 194 const union xfs_btree_rec *rec) 195{ 196 key->inobt.ir_startino = rec->inobt.ir_startino; 197} 198 199STATIC void 200xfs_inobt_init_high_key_from_rec( 201 union xfs_btree_key *key, 202 const union xfs_btree_rec *rec) 203{ 204 __u32 x; 205 206 x = be32_to_cpu(rec->inobt.ir_startino); 207 x += XFS_INODES_PER_CHUNK - 1; 208 key->inobt.ir_startino = cpu_to_be32(x); 209} 210 211STATIC void 212xfs_inobt_init_rec_from_cur( 213 struct xfs_btree_cur *cur, 214 union xfs_btree_rec *rec) 215{ 216 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino); 217 if (xfs_has_sparseinodes(cur->bc_mp)) { 218 rec->inobt.ir_u.sp.ir_holemask = 219 cpu_to_be16(cur->bc_rec.i.ir_holemask); 220 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count; 221 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount; 222 } else { 223 /* ir_holemask/ir_count not supported on-disk */ 224 rec->inobt.ir_u.f.ir_freecount = 225 cpu_to_be32(cur->bc_rec.i.ir_freecount); 226 } 227 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free); 228} 229 230/* 231 * initial value of ptr for lookup 232 */ 233STATIC void 234xfs_inobt_init_ptr_from_cur( 235 struct xfs_btree_cur *cur, 236 union xfs_btree_ptr *ptr) 237{ 238 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr; 239 240 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno)); 241 242 ptr->s = agi->agi_root; 243} 244 245STATIC void 246xfs_finobt_init_ptr_from_cur( 247 struct xfs_btree_cur *cur, 248 union xfs_btree_ptr *ptr) 249{ 250 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr; 251 252 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno)); 253 ptr->s = agi->agi_free_root; 254} 255 256STATIC int64_t 257xfs_inobt_key_diff( 258 struct xfs_btree_cur *cur, 259 const union xfs_btree_key *key) 260{ 261 return (int64_t)be32_to_cpu(key->inobt.ir_startino) - 262 cur->bc_rec.i.ir_startino; 263} 264 265STATIC int64_t 266xfs_inobt_diff_two_keys( 267 struct xfs_btree_cur *cur, 268 const union xfs_btree_key *k1, 269 const union xfs_btree_key *k2) 270{ 271 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) - 272 be32_to_cpu(k2->inobt.ir_startino); 273} 274 275static xfs_failaddr_t 276xfs_inobt_verify( 277 struct xfs_buf *bp) 278{ 279 struct xfs_mount *mp = bp->b_mount; 280 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 281 xfs_failaddr_t fa; 282 unsigned int level; 283 284 if (!xfs_verify_magic(bp, block->bb_magic)) 285 return __this_address; 286 287 /* 288 * During growfs operations, we can't verify the exact owner as the 289 * perag is not fully initialised and hence not attached to the buffer. 290 * 291 * Similarly, during log recovery we will have a perag structure 292 * attached, but the agi information will not yet have been initialised 293 * from the on disk AGI. We don't currently use any of this information, 294 * but beware of the landmine (i.e. need to check pag->pagi_init) if we 295 * ever do. 296 */ 297 if (xfs_has_crc(mp)) { 298 fa = xfs_btree_sblock_v5hdr_verify(bp); 299 if (fa) 300 return fa; 301 } 302 303 /* level verification */ 304 level = be16_to_cpu(block->bb_level); 305 if (level >= M_IGEO(mp)->inobt_maxlevels) 306 return __this_address; 307 308 return xfs_btree_sblock_verify(bp, 309 M_IGEO(mp)->inobt_mxr[level != 0]); 310} 311 312static void 313xfs_inobt_read_verify( 314 struct xfs_buf *bp) 315{ 316 xfs_failaddr_t fa; 317 318 if (!xfs_btree_sblock_verify_crc(bp)) 319 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 320 else { 321 fa = xfs_inobt_verify(bp); 322 if (fa) 323 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 324 } 325 326 if (bp->b_error) 327 trace_xfs_btree_corrupt(bp, _RET_IP_); 328} 329 330static void 331xfs_inobt_write_verify( 332 struct xfs_buf *bp) 333{ 334 xfs_failaddr_t fa; 335 336 fa = xfs_inobt_verify(bp); 337 if (fa) { 338 trace_xfs_btree_corrupt(bp, _RET_IP_); 339 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 340 return; 341 } 342 xfs_btree_sblock_calc_crc(bp); 343 344} 345 346const struct xfs_buf_ops xfs_inobt_buf_ops = { 347 .name = "xfs_inobt", 348 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) }, 349 .verify_read = xfs_inobt_read_verify, 350 .verify_write = xfs_inobt_write_verify, 351 .verify_struct = xfs_inobt_verify, 352}; 353 354const struct xfs_buf_ops xfs_finobt_buf_ops = { 355 .name = "xfs_finobt", 356 .magic = { cpu_to_be32(XFS_FIBT_MAGIC), 357 cpu_to_be32(XFS_FIBT_CRC_MAGIC) }, 358 .verify_read = xfs_inobt_read_verify, 359 .verify_write = xfs_inobt_write_verify, 360 .verify_struct = xfs_inobt_verify, 361}; 362 363STATIC int 364xfs_inobt_keys_inorder( 365 struct xfs_btree_cur *cur, 366 const union xfs_btree_key *k1, 367 const union xfs_btree_key *k2) 368{ 369 return be32_to_cpu(k1->inobt.ir_startino) < 370 be32_to_cpu(k2->inobt.ir_startino); 371} 372 373STATIC int 374xfs_inobt_recs_inorder( 375 struct xfs_btree_cur *cur, 376 const union xfs_btree_rec *r1, 377 const union xfs_btree_rec *r2) 378{ 379 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <= 380 be32_to_cpu(r2->inobt.ir_startino); 381} 382 383static const struct xfs_btree_ops xfs_inobt_ops = { 384 .rec_len = sizeof(xfs_inobt_rec_t), 385 .key_len = sizeof(xfs_inobt_key_t), 386 387 .dup_cursor = xfs_inobt_dup_cursor, 388 .set_root = xfs_inobt_set_root, 389 .alloc_block = xfs_inobt_alloc_block, 390 .free_block = xfs_inobt_free_block, 391 .get_minrecs = xfs_inobt_get_minrecs, 392 .get_maxrecs = xfs_inobt_get_maxrecs, 393 .init_key_from_rec = xfs_inobt_init_key_from_rec, 394 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec, 395 .init_rec_from_cur = xfs_inobt_init_rec_from_cur, 396 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur, 397 .key_diff = xfs_inobt_key_diff, 398 .buf_ops = &xfs_inobt_buf_ops, 399 .diff_two_keys = xfs_inobt_diff_two_keys, 400 .keys_inorder = xfs_inobt_keys_inorder, 401 .recs_inorder = xfs_inobt_recs_inorder, 402}; 403 404static const struct xfs_btree_ops xfs_finobt_ops = { 405 .rec_len = sizeof(xfs_inobt_rec_t), 406 .key_len = sizeof(xfs_inobt_key_t), 407 408 .dup_cursor = xfs_inobt_dup_cursor, 409 .set_root = xfs_finobt_set_root, 410 .alloc_block = xfs_finobt_alloc_block, 411 .free_block = xfs_finobt_free_block, 412 .get_minrecs = xfs_inobt_get_minrecs, 413 .get_maxrecs = xfs_inobt_get_maxrecs, 414 .init_key_from_rec = xfs_inobt_init_key_from_rec, 415 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec, 416 .init_rec_from_cur = xfs_inobt_init_rec_from_cur, 417 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur, 418 .key_diff = xfs_inobt_key_diff, 419 .buf_ops = &xfs_finobt_buf_ops, 420 .diff_two_keys = xfs_inobt_diff_two_keys, 421 .keys_inorder = xfs_inobt_keys_inorder, 422 .recs_inorder = xfs_inobt_recs_inorder, 423}; 424 425/* 426 * Initialize a new inode btree cursor. 427 */ 428static struct xfs_btree_cur * 429xfs_inobt_init_common( 430 struct xfs_mount *mp, /* file system mount point */ 431 struct xfs_trans *tp, /* transaction pointer */ 432 struct xfs_perag *pag, 433 xfs_btnum_t btnum) /* ialloc or free ino btree */ 434{ 435 struct xfs_btree_cur *cur; 436 437 cur = xfs_btree_alloc_cursor(mp, tp, btnum, 438 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache); 439 if (btnum == XFS_BTNUM_INO) { 440 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2); 441 cur->bc_ops = &xfs_inobt_ops; 442 } else { 443 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2); 444 cur->bc_ops = &xfs_finobt_ops; 445 } 446 447 if (xfs_has_crc(mp)) 448 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 449 450 /* take a reference for the cursor */ 451 atomic_inc(&pag->pag_ref); 452 cur->bc_ag.pag = pag; 453 return cur; 454} 455 456/* Create an inode btree cursor. */ 457struct xfs_btree_cur * 458xfs_inobt_init_cursor( 459 struct xfs_mount *mp, 460 struct xfs_trans *tp, 461 struct xfs_buf *agbp, 462 struct xfs_perag *pag, 463 xfs_btnum_t btnum) 464{ 465 struct xfs_btree_cur *cur; 466 struct xfs_agi *agi = agbp->b_addr; 467 468 cur = xfs_inobt_init_common(mp, tp, pag, btnum); 469 if (btnum == XFS_BTNUM_INO) 470 cur->bc_nlevels = be32_to_cpu(agi->agi_level); 471 else 472 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level); 473 cur->bc_ag.agbp = agbp; 474 return cur; 475} 476 477/* Create an inode btree cursor with a fake root for staging. */ 478struct xfs_btree_cur * 479xfs_inobt_stage_cursor( 480 struct xfs_mount *mp, 481 struct xbtree_afakeroot *afake, 482 struct xfs_perag *pag, 483 xfs_btnum_t btnum) 484{ 485 struct xfs_btree_cur *cur; 486 487 cur = xfs_inobt_init_common(mp, NULL, pag, btnum); 488 xfs_btree_stage_afakeroot(cur, afake); 489 return cur; 490} 491 492/* 493 * Install a new inobt btree root. Caller is responsible for invalidating 494 * and freeing the old btree blocks. 495 */ 496void 497xfs_inobt_commit_staged_btree( 498 struct xfs_btree_cur *cur, 499 struct xfs_trans *tp, 500 struct xfs_buf *agbp) 501{ 502 struct xfs_agi *agi = agbp->b_addr; 503 struct xbtree_afakeroot *afake = cur->bc_ag.afake; 504 int fields; 505 506 ASSERT(cur->bc_flags & XFS_BTREE_STAGING); 507 508 if (cur->bc_btnum == XFS_BTNUM_INO) { 509 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL; 510 agi->agi_root = cpu_to_be32(afake->af_root); 511 agi->agi_level = cpu_to_be32(afake->af_levels); 512 if (xfs_has_inobtcounts(cur->bc_mp)) { 513 agi->agi_iblocks = cpu_to_be32(afake->af_blocks); 514 fields |= XFS_AGI_IBLOCKS; 515 } 516 xfs_ialloc_log_agi(tp, agbp, fields); 517 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops); 518 } else { 519 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL; 520 agi->agi_free_root = cpu_to_be32(afake->af_root); 521 agi->agi_free_level = cpu_to_be32(afake->af_levels); 522 if (xfs_has_inobtcounts(cur->bc_mp)) { 523 agi->agi_fblocks = cpu_to_be32(afake->af_blocks); 524 fields |= XFS_AGI_IBLOCKS; 525 } 526 xfs_ialloc_log_agi(tp, agbp, fields); 527 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops); 528 } 529} 530 531/* Calculate number of records in an inode btree block. */ 532static inline unsigned int 533xfs_inobt_block_maxrecs( 534 unsigned int blocklen, 535 bool leaf) 536{ 537 if (leaf) 538 return blocklen / sizeof(xfs_inobt_rec_t); 539 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t)); 540} 541 542/* 543 * Calculate number of records in an inobt btree block. 544 */ 545int 546xfs_inobt_maxrecs( 547 struct xfs_mount *mp, 548 int blocklen, 549 int leaf) 550{ 551 blocklen -= XFS_INOBT_BLOCK_LEN(mp); 552 return xfs_inobt_block_maxrecs(blocklen, leaf); 553} 554 555/* 556 * Maximum number of inode btree records per AG. Pretend that we can fill an 557 * entire AG completely full of inodes except for the AG headers. 558 */ 559#define XFS_MAX_INODE_RECORDS \ 560 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \ 561 XFS_INODES_PER_CHUNK 562 563/* Compute the max possible height for the inode btree. */ 564static inline unsigned int 565xfs_inobt_maxlevels_ondisk(void) 566{ 567 unsigned int minrecs[2]; 568 unsigned int blocklen; 569 570 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN, 571 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN); 572 573 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2; 574 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2; 575 576 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS); 577} 578 579/* Compute the max possible height for the free inode btree. */ 580static inline unsigned int 581xfs_finobt_maxlevels_ondisk(void) 582{ 583 unsigned int minrecs[2]; 584 unsigned int blocklen; 585 586 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN; 587 588 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2; 589 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2; 590 591 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS); 592} 593 594/* Compute the max possible height for either inode btree. */ 595unsigned int 596xfs_iallocbt_maxlevels_ondisk(void) 597{ 598 return max(xfs_inobt_maxlevels_ondisk(), 599 xfs_finobt_maxlevels_ondisk()); 600} 601 602/* 603 * Convert the inode record holemask to an inode allocation bitmap. The inode 604 * allocation bitmap is inode granularity and specifies whether an inode is 605 * physically allocated on disk (not whether the inode is considered allocated 606 * or free by the fs). 607 * 608 * A bit value of 1 means the inode is allocated, a value of 0 means it is free. 609 */ 610uint64_t 611xfs_inobt_irec_to_allocmask( 612 struct xfs_inobt_rec_incore *rec) 613{ 614 uint64_t bitmap = 0; 615 uint64_t inodespbit; 616 int nextbit; 617 uint allocbitmap; 618 619 /* 620 * The holemask has 16-bits for a 64 inode record. Therefore each 621 * holemask bit represents multiple inodes. Create a mask of bits to set 622 * in the allocmask for each holemask bit. 623 */ 624 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1; 625 626 /* 627 * Allocated inodes are represented by 0 bits in holemask. Invert the 0 628 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask 629 * anything beyond the 16 holemask bits since this casts to a larger 630 * type. 631 */ 632 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1); 633 634 /* 635 * allocbitmap is the inverted holemask so every set bit represents 636 * allocated inodes. To expand from 16-bit holemask granularity to 637 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target 638 * bitmap for every holemask bit. 639 */ 640 nextbit = xfs_next_bit(&allocbitmap, 1, 0); 641 while (nextbit != -1) { 642 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY)); 643 644 bitmap |= (inodespbit << 645 (nextbit * XFS_INODES_PER_HOLEMASK_BIT)); 646 647 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1); 648 } 649 650 return bitmap; 651} 652 653#if defined(DEBUG) || defined(XFS_WARN) 654/* 655 * Verify that an in-core inode record has a valid inode count. 656 */ 657int 658xfs_inobt_rec_check_count( 659 struct xfs_mount *mp, 660 struct xfs_inobt_rec_incore *rec) 661{ 662 int inocount = 0; 663 int nextbit = 0; 664 uint64_t allocbmap; 665 int wordsz; 666 667 wordsz = sizeof(allocbmap) / sizeof(unsigned int); 668 allocbmap = xfs_inobt_irec_to_allocmask(rec); 669 670 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit); 671 while (nextbit != -1) { 672 inocount++; 673 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, 674 nextbit + 1); 675 } 676 677 if (inocount != rec->ir_count) 678 return -EFSCORRUPTED; 679 680 return 0; 681} 682#endif /* DEBUG */ 683 684static xfs_extlen_t 685xfs_inobt_max_size( 686 struct xfs_mount *mp, 687 xfs_agnumber_t agno) 688{ 689 xfs_agblock_t agblocks = xfs_ag_block_count(mp, agno); 690 691 /* Bail out if we're uninitialized, which can happen in mkfs. */ 692 if (M_IGEO(mp)->inobt_mxr[0] == 0) 693 return 0; 694 695 /* 696 * The log is permanently allocated, so the space it occupies will 697 * never be available for the kinds of things that would require btree 698 * expansion. We therefore can pretend the space isn't there. 699 */ 700 if (mp->m_sb.sb_logstart && 701 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno) 702 agblocks -= mp->m_sb.sb_logblocks; 703 704 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, 705 (uint64_t)agblocks * mp->m_sb.sb_inopblock / 706 XFS_INODES_PER_CHUNK); 707} 708 709/* Read AGI and create inobt cursor. */ 710int 711xfs_inobt_cur( 712 struct xfs_mount *mp, 713 struct xfs_trans *tp, 714 struct xfs_perag *pag, 715 xfs_btnum_t which, 716 struct xfs_btree_cur **curpp, 717 struct xfs_buf **agi_bpp) 718{ 719 struct xfs_btree_cur *cur; 720 int error; 721 722 ASSERT(*agi_bpp == NULL); 723 ASSERT(*curpp == NULL); 724 725 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, agi_bpp); 726 if (error) 727 return error; 728 729 cur = xfs_inobt_init_cursor(mp, tp, *agi_bpp, pag, which); 730 *curpp = cur; 731 return 0; 732} 733 734static int 735xfs_inobt_count_blocks( 736 struct xfs_mount *mp, 737 struct xfs_trans *tp, 738 struct xfs_perag *pag, 739 xfs_btnum_t btnum, 740 xfs_extlen_t *tree_blocks) 741{ 742 struct xfs_buf *agbp = NULL; 743 struct xfs_btree_cur *cur = NULL; 744 int error; 745 746 error = xfs_inobt_cur(mp, tp, pag, btnum, &cur, &agbp); 747 if (error) 748 return error; 749 750 error = xfs_btree_count_blocks(cur, tree_blocks); 751 xfs_btree_del_cursor(cur, error); 752 xfs_trans_brelse(tp, agbp); 753 754 return error; 755} 756 757/* Read finobt block count from AGI header. */ 758static int 759xfs_finobt_read_blocks( 760 struct xfs_mount *mp, 761 struct xfs_trans *tp, 762 struct xfs_perag *pag, 763 xfs_extlen_t *tree_blocks) 764{ 765 struct xfs_buf *agbp; 766 struct xfs_agi *agi; 767 int error; 768 769 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp); 770 if (error) 771 return error; 772 773 agi = agbp->b_addr; 774 *tree_blocks = be32_to_cpu(agi->agi_fblocks); 775 xfs_trans_brelse(tp, agbp); 776 return 0; 777} 778 779/* 780 * Figure out how many blocks to reserve and how many are used by this btree. 781 */ 782int 783xfs_finobt_calc_reserves( 784 struct xfs_mount *mp, 785 struct xfs_trans *tp, 786 struct xfs_perag *pag, 787 xfs_extlen_t *ask, 788 xfs_extlen_t *used) 789{ 790 xfs_extlen_t tree_len = 0; 791 int error; 792 793 if (!xfs_has_finobt(mp)) 794 return 0; 795 796 if (xfs_has_inobtcounts(mp)) 797 error = xfs_finobt_read_blocks(mp, tp, pag, &tree_len); 798 else 799 error = xfs_inobt_count_blocks(mp, tp, pag, XFS_BTNUM_FINO, 800 &tree_len); 801 if (error) 802 return error; 803 804 *ask += xfs_inobt_max_size(mp, pag->pag_agno); 805 *used += tree_len; 806 return 0; 807} 808 809/* Calculate the inobt btree size for some records. */ 810xfs_extlen_t 811xfs_iallocbt_calc_size( 812 struct xfs_mount *mp, 813 unsigned long long len) 814{ 815 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len); 816} 817 818int __init 819xfs_inobt_init_cur_cache(void) 820{ 821 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur", 822 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()), 823 0, 0, NULL); 824 825 if (!xfs_inobt_cur_cache) 826 return -ENOMEM; 827 return 0; 828} 829 830void 831xfs_inobt_destroy_cur_cache(void) 832{ 833 kmem_cache_destroy(xfs_inobt_cur_cache); 834 xfs_inobt_cur_cache = NULL; 835}