xfs_inode_fork.c (19837B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7#include "xfs.h" 8#include "xfs_fs.h" 9#include "xfs_shared.h" 10#include "xfs_format.h" 11#include "xfs_log_format.h" 12#include "xfs_trans_resv.h" 13#include "xfs_mount.h" 14#include "xfs_inode.h" 15#include "xfs_trans.h" 16#include "xfs_inode_item.h" 17#include "xfs_btree.h" 18#include "xfs_bmap_btree.h" 19#include "xfs_bmap.h" 20#include "xfs_error.h" 21#include "xfs_trace.h" 22#include "xfs_da_format.h" 23#include "xfs_da_btree.h" 24#include "xfs_dir2_priv.h" 25#include "xfs_attr_leaf.h" 26#include "xfs_types.h" 27#include "xfs_errortag.h" 28 29struct kmem_cache *xfs_ifork_cache; 30 31void 32xfs_init_local_fork( 33 struct xfs_inode *ip, 34 int whichfork, 35 const void *data, 36 int64_t size) 37{ 38 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 39 int mem_size = size; 40 bool zero_terminate; 41 42 /* 43 * If we are using the local fork to store a symlink body we need to 44 * zero-terminate it so that we can pass it back to the VFS directly. 45 * Overallocate the in-memory fork by one for that and add a zero 46 * to terminate it below. 47 */ 48 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); 49 if (zero_terminate) 50 mem_size++; 51 52 if (size) { 53 ifp->if_u1.if_data = kmem_alloc(mem_size, KM_NOFS); 54 memcpy(ifp->if_u1.if_data, data, size); 55 if (zero_terminate) 56 ifp->if_u1.if_data[size] = '\0'; 57 } else { 58 ifp->if_u1.if_data = NULL; 59 } 60 61 ifp->if_bytes = size; 62} 63 64/* 65 * The file is in-lined in the on-disk inode. 66 */ 67STATIC int 68xfs_iformat_local( 69 struct xfs_inode *ip, 70 struct xfs_dinode *dip, 71 int whichfork, 72 int size) 73{ 74 /* 75 * If the size is unreasonable, then something 76 * is wrong and we just bail out rather than crash in 77 * kmem_alloc() or memcpy() below. 78 */ 79 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 80 xfs_warn(ip->i_mount, 81 "corrupt inode %Lu (bad size %d for local fork, size = %zd).", 82 (unsigned long long) ip->i_ino, size, 83 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 84 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 85 "xfs_iformat_local", dip, sizeof(*dip), 86 __this_address); 87 return -EFSCORRUPTED; 88 } 89 90 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); 91 return 0; 92} 93 94/* 95 * The file consists of a set of extents all of which fit into the on-disk 96 * inode. 97 */ 98STATIC int 99xfs_iformat_extents( 100 struct xfs_inode *ip, 101 struct xfs_dinode *dip, 102 int whichfork) 103{ 104 struct xfs_mount *mp = ip->i_mount; 105 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 106 int state = xfs_bmap_fork_to_state(whichfork); 107 xfs_extnum_t nex = xfs_dfork_nextents(dip, whichfork); 108 int size = nex * sizeof(xfs_bmbt_rec_t); 109 struct xfs_iext_cursor icur; 110 struct xfs_bmbt_rec *dp; 111 struct xfs_bmbt_irec new; 112 int i; 113 114 /* 115 * If the number of extents is unreasonable, then something is wrong and 116 * we just bail out rather than crash in kmem_alloc() or memcpy() below. 117 */ 118 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { 119 xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).", 120 ip->i_ino, nex); 121 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 122 "xfs_iformat_extents(1)", dip, sizeof(*dip), 123 __this_address); 124 return -EFSCORRUPTED; 125 } 126 127 ifp->if_bytes = 0; 128 ifp->if_u1.if_root = NULL; 129 ifp->if_height = 0; 130 if (size) { 131 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 132 133 xfs_iext_first(ifp, &icur); 134 for (i = 0; i < nex; i++, dp++) { 135 xfs_failaddr_t fa; 136 137 xfs_bmbt_disk_get_all(dp, &new); 138 fa = xfs_bmap_validate_extent(ip, whichfork, &new); 139 if (fa) { 140 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 141 "xfs_iformat_extents(2)", 142 dp, sizeof(*dp), fa); 143 return -EFSCORRUPTED; 144 } 145 146 xfs_iext_insert(ip, &icur, &new, state); 147 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); 148 xfs_iext_next(ifp, &icur); 149 } 150 } 151 return 0; 152} 153 154/* 155 * The file has too many extents to fit into 156 * the inode, so they are in B-tree format. 157 * Allocate a buffer for the root of the B-tree 158 * and copy the root into it. The i_extents 159 * field will remain NULL until all of the 160 * extents are read in (when they are needed). 161 */ 162STATIC int 163xfs_iformat_btree( 164 struct xfs_inode *ip, 165 struct xfs_dinode *dip, 166 int whichfork) 167{ 168 struct xfs_mount *mp = ip->i_mount; 169 xfs_bmdr_block_t *dfp; 170 struct xfs_ifork *ifp; 171 /* REFERENCED */ 172 int nrecs; 173 int size; 174 int level; 175 176 ifp = XFS_IFORK_PTR(ip, whichfork); 177 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 178 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 179 nrecs = be16_to_cpu(dfp->bb_numrecs); 180 level = be16_to_cpu(dfp->bb_level); 181 182 /* 183 * blow out if -- fork has less extents than can fit in 184 * fork (fork shouldn't be a btree format), root btree 185 * block has more records than can fit into the fork, 186 * or the number of extents is greater than the number of 187 * blocks. 188 */ 189 if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) || 190 nrecs == 0 || 191 XFS_BMDR_SPACE_CALC(nrecs) > 192 XFS_DFORK_SIZE(dip, mp, whichfork) || 193 ifp->if_nextents > ip->i_nblocks) || 194 level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) { 195 xfs_warn(mp, "corrupt inode %Lu (btree).", 196 (unsigned long long) ip->i_ino); 197 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 198 "xfs_iformat_btree", dfp, size, 199 __this_address); 200 return -EFSCORRUPTED; 201 } 202 203 ifp->if_broot_bytes = size; 204 ifp->if_broot = kmem_alloc(size, KM_NOFS); 205 ASSERT(ifp->if_broot != NULL); 206 /* 207 * Copy and convert from the on-disk structure 208 * to the in-memory structure. 209 */ 210 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 211 ifp->if_broot, size); 212 213 ifp->if_bytes = 0; 214 ifp->if_u1.if_root = NULL; 215 ifp->if_height = 0; 216 return 0; 217} 218 219int 220xfs_iformat_data_fork( 221 struct xfs_inode *ip, 222 struct xfs_dinode *dip) 223{ 224 struct inode *inode = VFS_I(ip); 225 int error; 226 227 /* 228 * Initialize the extent count early, as the per-format routines may 229 * depend on it. 230 */ 231 ip->i_df.if_format = dip->di_format; 232 ip->i_df.if_nextents = xfs_dfork_data_extents(dip); 233 234 switch (inode->i_mode & S_IFMT) { 235 case S_IFIFO: 236 case S_IFCHR: 237 case S_IFBLK: 238 case S_IFSOCK: 239 ip->i_disk_size = 0; 240 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); 241 return 0; 242 case S_IFREG: 243 case S_IFLNK: 244 case S_IFDIR: 245 switch (ip->i_df.if_format) { 246 case XFS_DINODE_FMT_LOCAL: 247 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, 248 be64_to_cpu(dip->di_size)); 249 if (!error) 250 error = xfs_ifork_verify_local_data(ip); 251 return error; 252 case XFS_DINODE_FMT_EXTENTS: 253 return xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 254 case XFS_DINODE_FMT_BTREE: 255 return xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 256 default: 257 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 258 dip, sizeof(*dip), __this_address); 259 return -EFSCORRUPTED; 260 } 261 break; 262 default: 263 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 264 sizeof(*dip), __this_address); 265 return -EFSCORRUPTED; 266 } 267} 268 269static uint16_t 270xfs_dfork_attr_shortform_size( 271 struct xfs_dinode *dip) 272{ 273 struct xfs_attr_shortform *atp = 274 (struct xfs_attr_shortform *)XFS_DFORK_APTR(dip); 275 276 return be16_to_cpu(atp->hdr.totsize); 277} 278 279struct xfs_ifork * 280xfs_ifork_alloc( 281 enum xfs_dinode_fmt format, 282 xfs_extnum_t nextents) 283{ 284 struct xfs_ifork *ifp; 285 286 ifp = kmem_cache_zalloc(xfs_ifork_cache, GFP_NOFS | __GFP_NOFAIL); 287 ifp->if_format = format; 288 ifp->if_nextents = nextents; 289 return ifp; 290} 291 292int 293xfs_iformat_attr_fork( 294 struct xfs_inode *ip, 295 struct xfs_dinode *dip) 296{ 297 xfs_extnum_t naextents = xfs_dfork_attr_extents(dip); 298 int error = 0; 299 300 /* 301 * Initialize the extent count early, as the per-format routines may 302 * depend on it. 303 */ 304 ip->i_afp = xfs_ifork_alloc(dip->di_aformat, naextents); 305 306 switch (ip->i_afp->if_format) { 307 case XFS_DINODE_FMT_LOCAL: 308 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, 309 xfs_dfork_attr_shortform_size(dip)); 310 if (!error) 311 error = xfs_ifork_verify_local_attr(ip); 312 break; 313 case XFS_DINODE_FMT_EXTENTS: 314 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 315 break; 316 case XFS_DINODE_FMT_BTREE: 317 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 318 break; 319 default: 320 xfs_inode_verifier_error(ip, error, __func__, dip, 321 sizeof(*dip), __this_address); 322 error = -EFSCORRUPTED; 323 break; 324 } 325 326 if (error) { 327 kmem_cache_free(xfs_ifork_cache, ip->i_afp); 328 ip->i_afp = NULL; 329 } 330 return error; 331} 332 333/* 334 * Reallocate the space for if_broot based on the number of records 335 * being added or deleted as indicated in rec_diff. Move the records 336 * and pointers in if_broot to fit the new size. When shrinking this 337 * will eliminate holes between the records and pointers created by 338 * the caller. When growing this will create holes to be filled in 339 * by the caller. 340 * 341 * The caller must not request to add more records than would fit in 342 * the on-disk inode root. If the if_broot is currently NULL, then 343 * if we are adding records, one will be allocated. The caller must also 344 * not request that the number of records go below zero, although 345 * it can go to zero. 346 * 347 * ip -- the inode whose if_broot area is changing 348 * ext_diff -- the change in the number of records, positive or negative, 349 * requested for the if_broot array. 350 */ 351void 352xfs_iroot_realloc( 353 xfs_inode_t *ip, 354 int rec_diff, 355 int whichfork) 356{ 357 struct xfs_mount *mp = ip->i_mount; 358 int cur_max; 359 struct xfs_ifork *ifp; 360 struct xfs_btree_block *new_broot; 361 int new_max; 362 size_t new_size; 363 char *np; 364 char *op; 365 366 /* 367 * Handle the degenerate case quietly. 368 */ 369 if (rec_diff == 0) { 370 return; 371 } 372 373 ifp = XFS_IFORK_PTR(ip, whichfork); 374 if (rec_diff > 0) { 375 /* 376 * If there wasn't any memory allocated before, just 377 * allocate it now and get out. 378 */ 379 if (ifp->if_broot_bytes == 0) { 380 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 381 ifp->if_broot = kmem_alloc(new_size, KM_NOFS); 382 ifp->if_broot_bytes = (int)new_size; 383 return; 384 } 385 386 /* 387 * If there is already an existing if_broot, then we need 388 * to realloc() it and shift the pointers to their new 389 * location. The records don't change location because 390 * they are kept butted up against the btree block header. 391 */ 392 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 393 new_max = cur_max + rec_diff; 394 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 395 ifp->if_broot = krealloc(ifp->if_broot, new_size, 396 GFP_NOFS | __GFP_NOFAIL); 397 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 398 ifp->if_broot_bytes); 399 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 400 (int)new_size); 401 ifp->if_broot_bytes = (int)new_size; 402 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 403 XFS_IFORK_SIZE(ip, whichfork)); 404 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); 405 return; 406 } 407 408 /* 409 * rec_diff is less than 0. In this case, we are shrinking the 410 * if_broot buffer. It must already exist. If we go to zero 411 * records, just get rid of the root and clear the status bit. 412 */ 413 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 414 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 415 new_max = cur_max + rec_diff; 416 ASSERT(new_max >= 0); 417 if (new_max > 0) 418 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 419 else 420 new_size = 0; 421 if (new_size > 0) { 422 new_broot = kmem_alloc(new_size, KM_NOFS); 423 /* 424 * First copy over the btree block header. 425 */ 426 memcpy(new_broot, ifp->if_broot, 427 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 428 } else { 429 new_broot = NULL; 430 } 431 432 /* 433 * Only copy the records and pointers if there are any. 434 */ 435 if (new_max > 0) { 436 /* 437 * First copy the records. 438 */ 439 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 440 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 441 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 442 443 /* 444 * Then copy the pointers. 445 */ 446 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 447 ifp->if_broot_bytes); 448 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 449 (int)new_size); 450 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); 451 } 452 kmem_free(ifp->if_broot); 453 ifp->if_broot = new_broot; 454 ifp->if_broot_bytes = (int)new_size; 455 if (ifp->if_broot) 456 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 457 XFS_IFORK_SIZE(ip, whichfork)); 458 return; 459} 460 461 462/* 463 * This is called when the amount of space needed for if_data 464 * is increased or decreased. The change in size is indicated by 465 * the number of bytes that need to be added or deleted in the 466 * byte_diff parameter. 467 * 468 * If the amount of space needed has decreased below the size of the 469 * inline buffer, then switch to using the inline buffer. Otherwise, 470 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 471 * to what is needed. 472 * 473 * ip -- the inode whose if_data area is changing 474 * byte_diff -- the change in the number of bytes, positive or negative, 475 * requested for the if_data array. 476 */ 477void 478xfs_idata_realloc( 479 struct xfs_inode *ip, 480 int64_t byte_diff, 481 int whichfork) 482{ 483 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 484 int64_t new_size = ifp->if_bytes + byte_diff; 485 486 ASSERT(new_size >= 0); 487 ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork)); 488 489 if (byte_diff == 0) 490 return; 491 492 if (new_size == 0) { 493 kmem_free(ifp->if_u1.if_data); 494 ifp->if_u1.if_data = NULL; 495 ifp->if_bytes = 0; 496 return; 497 } 498 499 ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, new_size, 500 GFP_NOFS | __GFP_NOFAIL); 501 ifp->if_bytes = new_size; 502} 503 504void 505xfs_idestroy_fork( 506 struct xfs_ifork *ifp) 507{ 508 if (ifp->if_broot != NULL) { 509 kmem_free(ifp->if_broot); 510 ifp->if_broot = NULL; 511 } 512 513 switch (ifp->if_format) { 514 case XFS_DINODE_FMT_LOCAL: 515 kmem_free(ifp->if_u1.if_data); 516 ifp->if_u1.if_data = NULL; 517 break; 518 case XFS_DINODE_FMT_EXTENTS: 519 case XFS_DINODE_FMT_BTREE: 520 if (ifp->if_height) 521 xfs_iext_destroy(ifp); 522 break; 523 } 524} 525 526/* 527 * Convert in-core extents to on-disk form 528 * 529 * In the case of the data fork, the in-core and on-disk fork sizes can be 530 * different due to delayed allocation extents. We only copy on-disk extents 531 * here, so callers must always use the physical fork size to determine the 532 * size of the buffer passed to this routine. We will return the size actually 533 * used. 534 */ 535int 536xfs_iextents_copy( 537 struct xfs_inode *ip, 538 struct xfs_bmbt_rec *dp, 539 int whichfork) 540{ 541 int state = xfs_bmap_fork_to_state(whichfork); 542 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 543 struct xfs_iext_cursor icur; 544 struct xfs_bmbt_irec rec; 545 int64_t copied = 0; 546 547 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)); 548 ASSERT(ifp->if_bytes > 0); 549 550 for_each_xfs_iext(ifp, &icur, &rec) { 551 if (isnullstartblock(rec.br_startblock)) 552 continue; 553 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); 554 xfs_bmbt_disk_set_all(dp, &rec); 555 trace_xfs_write_extent(ip, &icur, state, _RET_IP_); 556 copied += sizeof(struct xfs_bmbt_rec); 557 dp++; 558 } 559 560 ASSERT(copied > 0); 561 ASSERT(copied <= ifp->if_bytes); 562 return copied; 563} 564 565/* 566 * Each of the following cases stores data into the same region 567 * of the on-disk inode, so only one of them can be valid at 568 * any given time. While it is possible to have conflicting formats 569 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 570 * in EXTENTS format, this can only happen when the fork has 571 * changed formats after being modified but before being flushed. 572 * In these cases, the format always takes precedence, because the 573 * format indicates the current state of the fork. 574 */ 575void 576xfs_iflush_fork( 577 struct xfs_inode *ip, 578 struct xfs_dinode *dip, 579 struct xfs_inode_log_item *iip, 580 int whichfork) 581{ 582 char *cp; 583 struct xfs_ifork *ifp; 584 xfs_mount_t *mp; 585 static const short brootflag[2] = 586 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 587 static const short dataflag[2] = 588 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 589 static const short extflag[2] = 590 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 591 592 if (!iip) 593 return; 594 ifp = XFS_IFORK_PTR(ip, whichfork); 595 /* 596 * This can happen if we gave up in iformat in an error path, 597 * for the attribute fork. 598 */ 599 if (!ifp) { 600 ASSERT(whichfork == XFS_ATTR_FORK); 601 return; 602 } 603 cp = XFS_DFORK_PTR(dip, whichfork); 604 mp = ip->i_mount; 605 switch (ifp->if_format) { 606 case XFS_DINODE_FMT_LOCAL: 607 if ((iip->ili_fields & dataflag[whichfork]) && 608 (ifp->if_bytes > 0)) { 609 ASSERT(ifp->if_u1.if_data != NULL); 610 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 611 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 612 } 613 break; 614 615 case XFS_DINODE_FMT_EXTENTS: 616 if ((iip->ili_fields & extflag[whichfork]) && 617 (ifp->if_bytes > 0)) { 618 ASSERT(ifp->if_nextents > 0); 619 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 620 whichfork); 621 } 622 break; 623 624 case XFS_DINODE_FMT_BTREE: 625 if ((iip->ili_fields & brootflag[whichfork]) && 626 (ifp->if_broot_bytes > 0)) { 627 ASSERT(ifp->if_broot != NULL); 628 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 629 XFS_IFORK_SIZE(ip, whichfork)); 630 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 631 (xfs_bmdr_block_t *)cp, 632 XFS_DFORK_SIZE(dip, mp, whichfork)); 633 } 634 break; 635 636 case XFS_DINODE_FMT_DEV: 637 if (iip->ili_fields & XFS_ILOG_DEV) { 638 ASSERT(whichfork == XFS_DATA_FORK); 639 xfs_dinode_put_rdev(dip, 640 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); 641 } 642 break; 643 644 default: 645 ASSERT(0); 646 break; 647 } 648} 649 650/* Convert bmap state flags to an inode fork. */ 651struct xfs_ifork * 652xfs_iext_state_to_fork( 653 struct xfs_inode *ip, 654 int state) 655{ 656 if (state & BMAP_COWFORK) 657 return ip->i_cowfp; 658 else if (state & BMAP_ATTRFORK) 659 return ip->i_afp; 660 return &ip->i_df; 661} 662 663/* 664 * Initialize an inode's copy-on-write fork. 665 */ 666void 667xfs_ifork_init_cow( 668 struct xfs_inode *ip) 669{ 670 if (ip->i_cowfp) 671 return; 672 673 ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache, 674 GFP_NOFS | __GFP_NOFAIL); 675 ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS; 676} 677 678/* Verify the inline contents of the data fork of an inode. */ 679int 680xfs_ifork_verify_local_data( 681 struct xfs_inode *ip) 682{ 683 xfs_failaddr_t fa = NULL; 684 685 switch (VFS_I(ip)->i_mode & S_IFMT) { 686 case S_IFDIR: 687 fa = xfs_dir2_sf_verify(ip); 688 break; 689 case S_IFLNK: 690 fa = xfs_symlink_shortform_verify(ip); 691 break; 692 default: 693 break; 694 } 695 696 if (fa) { 697 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 698 ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa); 699 return -EFSCORRUPTED; 700 } 701 702 return 0; 703} 704 705/* Verify the inline contents of the attr fork of an inode. */ 706int 707xfs_ifork_verify_local_attr( 708 struct xfs_inode *ip) 709{ 710 struct xfs_ifork *ifp = ip->i_afp; 711 xfs_failaddr_t fa; 712 713 if (!ifp) 714 fa = __this_address; 715 else 716 fa = xfs_attr_shortform_verify(ip); 717 718 if (fa) { 719 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 720 ifp ? ifp->if_u1.if_data : NULL, 721 ifp ? ifp->if_bytes : 0, fa); 722 return -EFSCORRUPTED; 723 } 724 725 return 0; 726} 727 728int 729xfs_iext_count_may_overflow( 730 struct xfs_inode *ip, 731 int whichfork, 732 int nr_to_add) 733{ 734 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 735 uint64_t max_exts; 736 uint64_t nr_exts; 737 738 if (whichfork == XFS_COW_FORK) 739 return 0; 740 741 max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip), 742 whichfork); 743 744 if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS)) 745 max_exts = 10; 746 747 nr_exts = ifp->if_nextents + nr_to_add; 748 if (nr_exts < ifp->if_nextents || nr_exts > max_exts) 749 return -EFBIG; 750 751 return 0; 752} 753 754/* 755 * Upgrade this inode's extent counter fields to be able to handle a potential 756 * increase in the extent count by nr_to_add. Normally this is the same 757 * quantity that caused xfs_iext_count_may_overflow() to return -EFBIG. 758 */ 759int 760xfs_iext_count_upgrade( 761 struct xfs_trans *tp, 762 struct xfs_inode *ip, 763 uint nr_to_add) 764{ 765 ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR); 766 767 if (!xfs_has_large_extent_counts(ip->i_mount) || 768 xfs_inode_has_large_extent_counts(ip) || 769 XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS)) 770 return -EFBIG; 771 772 ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; 773 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 774 775 return 0; 776}