cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bitmap.c (8036B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Copyright (C) 2018 Oracle.  All Rights Reserved.
      4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
      5 */
      6#include "xfs.h"
      7#include "xfs_fs.h"
      8#include "xfs_shared.h"
      9#include "xfs_format.h"
     10#include "xfs_trans_resv.h"
     11#include "xfs_mount.h"
     12#include "xfs_btree.h"
     13#include "scrub/bitmap.h"
     14
     15/*
     16 * Set a range of this bitmap.  Caller must ensure the range is not set.
     17 *
     18 * This is the logical equivalent of bitmap |= mask(start, len).
     19 */
     20int
     21xbitmap_set(
     22	struct xbitmap		*bitmap,
     23	uint64_t		start,
     24	uint64_t		len)
     25{
     26	struct xbitmap_range	*bmr;
     27
     28	bmr = kmem_alloc(sizeof(struct xbitmap_range), KM_MAYFAIL);
     29	if (!bmr)
     30		return -ENOMEM;
     31
     32	INIT_LIST_HEAD(&bmr->list);
     33	bmr->start = start;
     34	bmr->len = len;
     35	list_add_tail(&bmr->list, &bitmap->list);
     36
     37	return 0;
     38}
     39
     40/* Free everything related to this bitmap. */
     41void
     42xbitmap_destroy(
     43	struct xbitmap		*bitmap)
     44{
     45	struct xbitmap_range	*bmr;
     46	struct xbitmap_range	*n;
     47
     48	for_each_xbitmap_extent(bmr, n, bitmap) {
     49		list_del(&bmr->list);
     50		kmem_free(bmr);
     51	}
     52}
     53
     54/* Set up a per-AG block bitmap. */
     55void
     56xbitmap_init(
     57	struct xbitmap		*bitmap)
     58{
     59	INIT_LIST_HEAD(&bitmap->list);
     60}
     61
     62/* Compare two btree extents. */
     63static int
     64xbitmap_range_cmp(
     65	void			*priv,
     66	const struct list_head	*a,
     67	const struct list_head	*b)
     68{
     69	struct xbitmap_range	*ap;
     70	struct xbitmap_range	*bp;
     71
     72	ap = container_of(a, struct xbitmap_range, list);
     73	bp = container_of(b, struct xbitmap_range, list);
     74
     75	if (ap->start > bp->start)
     76		return 1;
     77	if (ap->start < bp->start)
     78		return -1;
     79	return 0;
     80}
     81
     82/*
     83 * Remove all the blocks mentioned in @sub from the extents in @bitmap.
     84 *
     85 * The intent is that callers will iterate the rmapbt for all of its records
     86 * for a given owner to generate @bitmap; and iterate all the blocks of the
     87 * metadata structures that are not being rebuilt and have the same rmapbt
     88 * owner to generate @sub.  This routine subtracts all the extents
     89 * mentioned in sub from all the extents linked in @bitmap, which leaves
     90 * @bitmap as the list of blocks that are not accounted for, which we assume
     91 * are the dead blocks of the old metadata structure.  The blocks mentioned in
     92 * @bitmap can be reaped.
     93 *
     94 * This is the logical equivalent of bitmap &= ~sub.
     95 */
     96#define LEFT_ALIGNED	(1 << 0)
     97#define RIGHT_ALIGNED	(1 << 1)
     98int
     99xbitmap_disunion(
    100	struct xbitmap		*bitmap,
    101	struct xbitmap		*sub)
    102{
    103	struct list_head	*lp;
    104	struct xbitmap_range	*br;
    105	struct xbitmap_range	*new_br;
    106	struct xbitmap_range	*sub_br;
    107	uint64_t		sub_start;
    108	uint64_t		sub_len;
    109	int			state;
    110	int			error = 0;
    111
    112	if (list_empty(&bitmap->list) || list_empty(&sub->list))
    113		return 0;
    114	ASSERT(!list_empty(&sub->list));
    115
    116	list_sort(NULL, &bitmap->list, xbitmap_range_cmp);
    117	list_sort(NULL, &sub->list, xbitmap_range_cmp);
    118
    119	/*
    120	 * Now that we've sorted both lists, we iterate bitmap once, rolling
    121	 * forward through sub and/or bitmap as necessary until we find an
    122	 * overlap or reach the end of either list.  We do not reset lp to the
    123	 * head of bitmap nor do we reset sub_br to the head of sub.  The
    124	 * list traversal is similar to merge sort, but we're deleting
    125	 * instead.  In this manner we avoid O(n^2) operations.
    126	 */
    127	sub_br = list_first_entry(&sub->list, struct xbitmap_range,
    128			list);
    129	lp = bitmap->list.next;
    130	while (lp != &bitmap->list) {
    131		br = list_entry(lp, struct xbitmap_range, list);
    132
    133		/*
    134		 * Advance sub_br and/or br until we find a pair that
    135		 * intersect or we run out of extents.
    136		 */
    137		while (sub_br->start + sub_br->len <= br->start) {
    138			if (list_is_last(&sub_br->list, &sub->list))
    139				goto out;
    140			sub_br = list_next_entry(sub_br, list);
    141		}
    142		if (sub_br->start >= br->start + br->len) {
    143			lp = lp->next;
    144			continue;
    145		}
    146
    147		/* trim sub_br to fit the extent we have */
    148		sub_start = sub_br->start;
    149		sub_len = sub_br->len;
    150		if (sub_br->start < br->start) {
    151			sub_len -= br->start - sub_br->start;
    152			sub_start = br->start;
    153		}
    154		if (sub_len > br->len)
    155			sub_len = br->len;
    156
    157		state = 0;
    158		if (sub_start == br->start)
    159			state |= LEFT_ALIGNED;
    160		if (sub_start + sub_len == br->start + br->len)
    161			state |= RIGHT_ALIGNED;
    162		switch (state) {
    163		case LEFT_ALIGNED:
    164			/* Coincides with only the left. */
    165			br->start += sub_len;
    166			br->len -= sub_len;
    167			break;
    168		case RIGHT_ALIGNED:
    169			/* Coincides with only the right. */
    170			br->len -= sub_len;
    171			lp = lp->next;
    172			break;
    173		case LEFT_ALIGNED | RIGHT_ALIGNED:
    174			/* Total overlap, just delete ex. */
    175			lp = lp->next;
    176			list_del(&br->list);
    177			kmem_free(br);
    178			break;
    179		case 0:
    180			/*
    181			 * Deleting from the middle: add the new right extent
    182			 * and then shrink the left extent.
    183			 */
    184			new_br = kmem_alloc(sizeof(struct xbitmap_range),
    185					KM_MAYFAIL);
    186			if (!new_br) {
    187				error = -ENOMEM;
    188				goto out;
    189			}
    190			INIT_LIST_HEAD(&new_br->list);
    191			new_br->start = sub_start + sub_len;
    192			new_br->len = br->start + br->len - new_br->start;
    193			list_add(&new_br->list, &br->list);
    194			br->len = sub_start - br->start;
    195			lp = lp->next;
    196			break;
    197		default:
    198			ASSERT(0);
    199			break;
    200		}
    201	}
    202
    203out:
    204	return error;
    205}
    206#undef LEFT_ALIGNED
    207#undef RIGHT_ALIGNED
    208
    209/*
    210 * Record all btree blocks seen while iterating all records of a btree.
    211 *
    212 * We know that the btree query_all function starts at the left edge and walks
    213 * towards the right edge of the tree.  Therefore, we know that we can walk up
    214 * the btree cursor towards the root; if the pointer for a given level points
    215 * to the first record/key in that block, we haven't seen this block before;
    216 * and therefore we need to remember that we saw this block in the btree.
    217 *
    218 * So if our btree is:
    219 *
    220 *    4
    221 *  / | \
    222 * 1  2  3
    223 *
    224 * Pretend for this example that each leaf block has 100 btree records.  For
    225 * the first btree record, we'll observe that bc_levels[0].ptr == 1, so we
    226 * record that we saw block 1.  Then we observe that bc_levels[1].ptr == 1, so
    227 * we record block 4.  The list is [1, 4].
    228 *
    229 * For the second btree record, we see that bc_levels[0].ptr == 2, so we exit
    230 * the loop.  The list remains [1, 4].
    231 *
    232 * For the 101st btree record, we've moved onto leaf block 2.  Now
    233 * bc_levels[0].ptr == 1 again, so we record that we saw block 2.  We see that
    234 * bc_levels[1].ptr == 2, so we exit the loop.  The list is now [1, 4, 2].
    235 *
    236 * For the 102nd record, bc_levels[0].ptr == 2, so we continue.
    237 *
    238 * For the 201st record, we've moved on to leaf block 3.
    239 * bc_levels[0].ptr == 1, so we add 3 to the list.  Now it is [1, 4, 2, 3].
    240 *
    241 * For the 300th record we just exit, with the list being [1, 4, 2, 3].
    242 */
    243
    244/*
    245 * Record all the buffers pointed to by the btree cursor.  Callers already
    246 * engaged in a btree walk should call this function to capture the list of
    247 * blocks going from the leaf towards the root.
    248 */
    249int
    250xbitmap_set_btcur_path(
    251	struct xbitmap		*bitmap,
    252	struct xfs_btree_cur	*cur)
    253{
    254	struct xfs_buf		*bp;
    255	xfs_fsblock_t		fsb;
    256	int			i;
    257	int			error;
    258
    259	for (i = 0; i < cur->bc_nlevels && cur->bc_levels[i].ptr == 1; i++) {
    260		xfs_btree_get_block(cur, i, &bp);
    261		if (!bp)
    262			continue;
    263		fsb = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
    264		error = xbitmap_set(bitmap, fsb, 1);
    265		if (error)
    266			return error;
    267	}
    268
    269	return 0;
    270}
    271
    272/* Collect a btree's block in the bitmap. */
    273STATIC int
    274xbitmap_collect_btblock(
    275	struct xfs_btree_cur	*cur,
    276	int			level,
    277	void			*priv)
    278{
    279	struct xbitmap		*bitmap = priv;
    280	struct xfs_buf		*bp;
    281	xfs_fsblock_t		fsbno;
    282
    283	xfs_btree_get_block(cur, level, &bp);
    284	if (!bp)
    285		return 0;
    286
    287	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
    288	return xbitmap_set(bitmap, fsbno, 1);
    289}
    290
    291/* Walk the btree and mark the bitmap wherever a btree block is found. */
    292int
    293xbitmap_set_btblocks(
    294	struct xbitmap		*bitmap,
    295	struct xfs_btree_cur	*cur)
    296{
    297	return xfs_btree_visit_blocks(cur, xbitmap_collect_btblock,
    298			XFS_BTREE_VISIT_ALL, bitmap);
    299}
    300
    301/* How many bits are set in this bitmap? */
    302uint64_t
    303xbitmap_hweight(
    304	struct xbitmap		*bitmap)
    305{
    306	struct xbitmap_range	*bmr;
    307	struct xbitmap_range	*n;
    308	uint64_t		ret = 0;
    309
    310	for_each_xbitmap_extent(bmr, n, bitmap)
    311		ret += bmr->len;
    312
    313	return ret;
    314}