cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

scrub.c (17303B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Copyright (C) 2017 Oracle.  All Rights Reserved.
      4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
      5 */
      6#include "xfs.h"
      7#include "xfs_fs.h"
      8#include "xfs_shared.h"
      9#include "xfs_format.h"
     10#include "xfs_trans_resv.h"
     11#include "xfs_mount.h"
     12#include "xfs_log_format.h"
     13#include "xfs_trans.h"
     14#include "xfs_inode.h"
     15#include "xfs_quota.h"
     16#include "xfs_qm.h"
     17#include "xfs_errortag.h"
     18#include "xfs_error.h"
     19#include "xfs_scrub.h"
     20#include "scrub/scrub.h"
     21#include "scrub/common.h"
     22#include "scrub/trace.h"
     23#include "scrub/repair.h"
     24#include "scrub/health.h"
     25
     26/*
     27 * Online Scrub and Repair
     28 *
     29 * Traditionally, XFS (the kernel driver) did not know how to check or
     30 * repair on-disk data structures.  That task was left to the xfs_check
     31 * and xfs_repair tools, both of which require taking the filesystem
     32 * offline for a thorough but time consuming examination.  Online
     33 * scrub & repair, on the other hand, enables us to check the metadata
     34 * for obvious errors while carefully stepping around the filesystem's
     35 * ongoing operations, locking rules, etc.
     36 *
     37 * Given that most XFS metadata consist of records stored in a btree,
     38 * most of the checking functions iterate the btree blocks themselves
     39 * looking for irregularities.  When a record block is encountered, each
     40 * record can be checked for obviously bad values.  Record values can
     41 * also be cross-referenced against other btrees to look for potential
     42 * misunderstandings between pieces of metadata.
     43 *
     44 * It is expected that the checkers responsible for per-AG metadata
     45 * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
     46 * metadata structure, and perform any relevant cross-referencing before
     47 * unlocking the AG and returning the results to userspace.  These
     48 * scrubbers must not keep an AG locked for too long to avoid tying up
     49 * the block and inode allocators.
     50 *
     51 * Block maps and b-trees rooted in an inode present a special challenge
     52 * because they can involve extents from any AG.  The general scrubber
     53 * structure of lock -> check -> xref -> unlock still holds, but AG
     54 * locking order rules /must/ be obeyed to avoid deadlocks.  The
     55 * ordering rule, of course, is that we must lock in increasing AG
     56 * order.  Helper functions are provided to track which AG headers we've
     57 * already locked.  If we detect an imminent locking order violation, we
     58 * can signal a potential deadlock, in which case the scrubber can jump
     59 * out to the top level, lock all the AGs in order, and retry the scrub.
     60 *
     61 * For file data (directories, extended attributes, symlinks) scrub, we
     62 * can simply lock the inode and walk the data.  For btree data
     63 * (directories and attributes) we follow the same btree-scrubbing
     64 * strategy outlined previously to check the records.
     65 *
     66 * We use a bit of trickery with transactions to avoid buffer deadlocks
     67 * if there is a cycle in the metadata.  The basic problem is that
     68 * travelling down a btree involves locking the current buffer at each
     69 * tree level.  If a pointer should somehow point back to a buffer that
     70 * we've already examined, we will deadlock due to the second buffer
     71 * locking attempt.  Note however that grabbing a buffer in transaction
     72 * context links the locked buffer to the transaction.  If we try to
     73 * re-grab the buffer in the context of the same transaction, we avoid
     74 * the second lock attempt and continue.  Between the verifier and the
     75 * scrubber, something will notice that something is amiss and report
     76 * the corruption.  Therefore, each scrubber will allocate an empty
     77 * transaction, attach buffers to it, and cancel the transaction at the
     78 * end of the scrub run.  Cancelling a non-dirty transaction simply
     79 * unlocks the buffers.
     80 *
     81 * There are four pieces of data that scrub can communicate to
     82 * userspace.  The first is the error code (errno), which can be used to
     83 * communicate operational errors in performing the scrub.  There are
     84 * also three flags that can be set in the scrub context.  If the data
     85 * structure itself is corrupt, the CORRUPT flag will be set.  If
     86 * the metadata is correct but otherwise suboptimal, the PREEN flag
     87 * will be set.
     88 *
     89 * We perform secondary validation of filesystem metadata by
     90 * cross-referencing every record with all other available metadata.
     91 * For example, for block mapping extents, we verify that there are no
     92 * records in the free space and inode btrees corresponding to that
     93 * space extent and that there is a corresponding entry in the reverse
     94 * mapping btree.  Inconsistent metadata is noted by setting the
     95 * XCORRUPT flag; btree query function errors are noted by setting the
     96 * XFAIL flag and deleting the cursor to prevent further attempts to
     97 * cross-reference with a defective btree.
     98 *
     99 * If a piece of metadata proves corrupt or suboptimal, the userspace
    100 * program can ask the kernel to apply some tender loving care (TLC) to
    101 * the metadata object by setting the REPAIR flag and re-calling the
    102 * scrub ioctl.  "Corruption" is defined by metadata violating the
    103 * on-disk specification; operations cannot continue if the violation is
    104 * left untreated.  It is possible for XFS to continue if an object is
    105 * "suboptimal", however performance may be degraded.  Repairs are
    106 * usually performed by rebuilding the metadata entirely out of
    107 * redundant metadata.  Optimizing, on the other hand, can sometimes be
    108 * done without rebuilding entire structures.
    109 *
    110 * Generally speaking, the repair code has the following code structure:
    111 * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
    112 * The first check helps us figure out if we need to rebuild or simply
    113 * optimize the structure so that the rebuild knows what to do.  The
    114 * second check evaluates the completeness of the repair; that is what
    115 * is reported to userspace.
    116 *
    117 * A quick note on symbol prefixes:
    118 * - "xfs_" are general XFS symbols.
    119 * - "xchk_" are symbols related to metadata checking.
    120 * - "xrep_" are symbols related to metadata repair.
    121 * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
    122 */
    123
    124/*
    125 * Scrub probe -- userspace uses this to probe if we're willing to scrub
    126 * or repair a given mountpoint.  This will be used by xfs_scrub to
    127 * probe the kernel's abilities to scrub (and repair) the metadata.  We
    128 * do this by validating the ioctl inputs from userspace, preparing the
    129 * filesystem for a scrub (or a repair) operation, and immediately
    130 * returning to userspace.  Userspace can use the returned errno and
    131 * structure state to decide (in broad terms) if scrub/repair are
    132 * supported by the running kernel.
    133 */
    134static int
    135xchk_probe(
    136	struct xfs_scrub	*sc)
    137{
    138	int			error = 0;
    139
    140	if (xchk_should_terminate(sc, &error))
    141		return error;
    142
    143	return 0;
    144}
    145
    146/* Scrub setup and teardown */
    147
    148/* Free all the resources and finish the transactions. */
    149STATIC int
    150xchk_teardown(
    151	struct xfs_scrub	*sc,
    152	int			error)
    153{
    154	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
    155
    156	xchk_ag_free(sc, &sc->sa);
    157	if (sc->tp) {
    158		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
    159			error = xfs_trans_commit(sc->tp);
    160		else
    161			xfs_trans_cancel(sc->tp);
    162		sc->tp = NULL;
    163	}
    164	if (sc->ip) {
    165		if (sc->ilock_flags)
    166			xfs_iunlock(sc->ip, sc->ilock_flags);
    167		if (sc->ip != ip_in &&
    168		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
    169			xfs_irele(sc->ip);
    170		sc->ip = NULL;
    171	}
    172	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
    173		mnt_drop_write_file(sc->file);
    174	if (sc->flags & XCHK_REAPING_DISABLED)
    175		xchk_start_reaping(sc);
    176	if (sc->buf) {
    177		kmem_free(sc->buf);
    178		sc->buf = NULL;
    179	}
    180	return error;
    181}
    182
    183/* Scrubbing dispatch. */
    184
    185static const struct xchk_meta_ops meta_scrub_ops[] = {
    186	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
    187		.type	= ST_NONE,
    188		.setup	= xchk_setup_fs,
    189		.scrub	= xchk_probe,
    190		.repair = xrep_probe,
    191	},
    192	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
    193		.type	= ST_PERAG,
    194		.setup	= xchk_setup_fs,
    195		.scrub	= xchk_superblock,
    196		.repair	= xrep_superblock,
    197	},
    198	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
    199		.type	= ST_PERAG,
    200		.setup	= xchk_setup_fs,
    201		.scrub	= xchk_agf,
    202		.repair	= xrep_agf,
    203	},
    204	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
    205		.type	= ST_PERAG,
    206		.setup	= xchk_setup_fs,
    207		.scrub	= xchk_agfl,
    208		.repair	= xrep_agfl,
    209	},
    210	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
    211		.type	= ST_PERAG,
    212		.setup	= xchk_setup_fs,
    213		.scrub	= xchk_agi,
    214		.repair	= xrep_agi,
    215	},
    216	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
    217		.type	= ST_PERAG,
    218		.setup	= xchk_setup_ag_allocbt,
    219		.scrub	= xchk_bnobt,
    220		.repair	= xrep_notsupported,
    221	},
    222	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
    223		.type	= ST_PERAG,
    224		.setup	= xchk_setup_ag_allocbt,
    225		.scrub	= xchk_cntbt,
    226		.repair	= xrep_notsupported,
    227	},
    228	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
    229		.type	= ST_PERAG,
    230		.setup	= xchk_setup_ag_iallocbt,
    231		.scrub	= xchk_inobt,
    232		.repair	= xrep_notsupported,
    233	},
    234	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
    235		.type	= ST_PERAG,
    236		.setup	= xchk_setup_ag_iallocbt,
    237		.scrub	= xchk_finobt,
    238		.has	= xfs_has_finobt,
    239		.repair	= xrep_notsupported,
    240	},
    241	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
    242		.type	= ST_PERAG,
    243		.setup	= xchk_setup_ag_rmapbt,
    244		.scrub	= xchk_rmapbt,
    245		.has	= xfs_has_rmapbt,
    246		.repair	= xrep_notsupported,
    247	},
    248	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
    249		.type	= ST_PERAG,
    250		.setup	= xchk_setup_ag_refcountbt,
    251		.scrub	= xchk_refcountbt,
    252		.has	= xfs_has_reflink,
    253		.repair	= xrep_notsupported,
    254	},
    255	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
    256		.type	= ST_INODE,
    257		.setup	= xchk_setup_inode,
    258		.scrub	= xchk_inode,
    259		.repair	= xrep_notsupported,
    260	},
    261	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
    262		.type	= ST_INODE,
    263		.setup	= xchk_setup_inode_bmap,
    264		.scrub	= xchk_bmap_data,
    265		.repair	= xrep_notsupported,
    266	},
    267	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
    268		.type	= ST_INODE,
    269		.setup	= xchk_setup_inode_bmap,
    270		.scrub	= xchk_bmap_attr,
    271		.repair	= xrep_notsupported,
    272	},
    273	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
    274		.type	= ST_INODE,
    275		.setup	= xchk_setup_inode_bmap,
    276		.scrub	= xchk_bmap_cow,
    277		.repair	= xrep_notsupported,
    278	},
    279	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
    280		.type	= ST_INODE,
    281		.setup	= xchk_setup_directory,
    282		.scrub	= xchk_directory,
    283		.repair	= xrep_notsupported,
    284	},
    285	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
    286		.type	= ST_INODE,
    287		.setup	= xchk_setup_xattr,
    288		.scrub	= xchk_xattr,
    289		.repair	= xrep_notsupported,
    290	},
    291	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
    292		.type	= ST_INODE,
    293		.setup	= xchk_setup_symlink,
    294		.scrub	= xchk_symlink,
    295		.repair	= xrep_notsupported,
    296	},
    297	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
    298		.type	= ST_INODE,
    299		.setup	= xchk_setup_parent,
    300		.scrub	= xchk_parent,
    301		.repair	= xrep_notsupported,
    302	},
    303	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
    304		.type	= ST_FS,
    305		.setup	= xchk_setup_rt,
    306		.scrub	= xchk_rtbitmap,
    307		.has	= xfs_has_realtime,
    308		.repair	= xrep_notsupported,
    309	},
    310	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
    311		.type	= ST_FS,
    312		.setup	= xchk_setup_rt,
    313		.scrub	= xchk_rtsummary,
    314		.has	= xfs_has_realtime,
    315		.repair	= xrep_notsupported,
    316	},
    317	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
    318		.type	= ST_FS,
    319		.setup	= xchk_setup_quota,
    320		.scrub	= xchk_quota,
    321		.repair	= xrep_notsupported,
    322	},
    323	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
    324		.type	= ST_FS,
    325		.setup	= xchk_setup_quota,
    326		.scrub	= xchk_quota,
    327		.repair	= xrep_notsupported,
    328	},
    329	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
    330		.type	= ST_FS,
    331		.setup	= xchk_setup_quota,
    332		.scrub	= xchk_quota,
    333		.repair	= xrep_notsupported,
    334	},
    335	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
    336		.type	= ST_FS,
    337		.setup	= xchk_setup_fscounters,
    338		.scrub	= xchk_fscounters,
    339		.repair	= xrep_notsupported,
    340	},
    341};
    342
    343static int
    344xchk_validate_inputs(
    345	struct xfs_mount		*mp,
    346	struct xfs_scrub_metadata	*sm)
    347{
    348	int				error;
    349	const struct xchk_meta_ops	*ops;
    350
    351	error = -EINVAL;
    352	/* Check our inputs. */
    353	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
    354	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
    355		goto out;
    356	/* sm_reserved[] must be zero */
    357	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
    358		goto out;
    359
    360	error = -ENOENT;
    361	/* Do we know about this type of metadata? */
    362	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
    363		goto out;
    364	ops = &meta_scrub_ops[sm->sm_type];
    365	if (ops->setup == NULL || ops->scrub == NULL)
    366		goto out;
    367	/* Does this fs even support this type of metadata? */
    368	if (ops->has && !ops->has(mp))
    369		goto out;
    370
    371	error = -EINVAL;
    372	/* restricting fields must be appropriate for type */
    373	switch (ops->type) {
    374	case ST_NONE:
    375	case ST_FS:
    376		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
    377			goto out;
    378		break;
    379	case ST_PERAG:
    380		if (sm->sm_ino || sm->sm_gen ||
    381		    sm->sm_agno >= mp->m_sb.sb_agcount)
    382			goto out;
    383		break;
    384	case ST_INODE:
    385		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
    386			goto out;
    387		break;
    388	default:
    389		goto out;
    390	}
    391
    392	/*
    393	 * We only want to repair read-write v5+ filesystems.  Defer the check
    394	 * for ops->repair until after our scrub confirms that we need to
    395	 * perform repairs so that we avoid failing due to not supporting
    396	 * repairing an object that doesn't need repairs.
    397	 */
    398	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
    399		error = -EOPNOTSUPP;
    400		if (!xfs_has_crc(mp))
    401			goto out;
    402
    403		error = -EROFS;
    404		if (xfs_is_readonly(mp))
    405			goto out;
    406	}
    407
    408	error = 0;
    409out:
    410	return error;
    411}
    412
    413#ifdef CONFIG_XFS_ONLINE_REPAIR
    414static inline void xchk_postmortem(struct xfs_scrub *sc)
    415{
    416	/*
    417	 * Userspace asked us to repair something, we repaired it, rescanned
    418	 * it, and the rescan says it's still broken.  Scream about this in
    419	 * the system logs.
    420	 */
    421	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
    422	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
    423				 XFS_SCRUB_OFLAG_XCORRUPT)))
    424		xrep_failure(sc->mp);
    425}
    426#else
    427static inline void xchk_postmortem(struct xfs_scrub *sc)
    428{
    429	/*
    430	 * Userspace asked us to scrub something, it's broken, and we have no
    431	 * way of fixing it.  Scream in the logs.
    432	 */
    433	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
    434				XFS_SCRUB_OFLAG_XCORRUPT))
    435		xfs_alert_ratelimited(sc->mp,
    436				"Corruption detected during scrub.");
    437}
    438#endif /* CONFIG_XFS_ONLINE_REPAIR */
    439
    440/* Dispatch metadata scrubbing. */
    441int
    442xfs_scrub_metadata(
    443	struct file			*file,
    444	struct xfs_scrub_metadata	*sm)
    445{
    446	struct xfs_scrub		*sc;
    447	struct xfs_mount		*mp = XFS_I(file_inode(file))->i_mount;
    448	int				error = 0;
    449
    450	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
    451		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
    452
    453	trace_xchk_start(XFS_I(file_inode(file)), sm, error);
    454
    455	/* Forbidden if we are shut down or mounted norecovery. */
    456	error = -ESHUTDOWN;
    457	if (xfs_is_shutdown(mp))
    458		goto out;
    459	error = -ENOTRECOVERABLE;
    460	if (xfs_has_norecovery(mp))
    461		goto out;
    462
    463	error = xchk_validate_inputs(mp, sm);
    464	if (error)
    465		goto out;
    466
    467	xfs_warn_mount(mp, XFS_OPSTATE_WARNED_SCRUB,
    468 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
    469
    470	sc = kmem_zalloc(sizeof(struct xfs_scrub), KM_NOFS | KM_MAYFAIL);
    471	if (!sc) {
    472		error = -ENOMEM;
    473		goto out;
    474	}
    475
    476	sc->mp = mp;
    477	sc->file = file;
    478	sc->sm = sm;
    479	sc->ops = &meta_scrub_ops[sm->sm_type];
    480	sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
    481retry_op:
    482	/*
    483	 * When repairs are allowed, prevent freezing or readonly remount while
    484	 * scrub is running with a real transaction.
    485	 */
    486	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
    487		error = mnt_want_write_file(sc->file);
    488		if (error)
    489			goto out_sc;
    490	}
    491
    492	/* Set up for the operation. */
    493	error = sc->ops->setup(sc);
    494	if (error)
    495		goto out_teardown;
    496
    497	/* Scrub for errors. */
    498	error = sc->ops->scrub(sc);
    499	if (!(sc->flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
    500		/*
    501		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
    502		 * Tear down everything we hold, then set up again with
    503		 * preparation for worst-case scenarios.
    504		 */
    505		error = xchk_teardown(sc, 0);
    506		if (error)
    507			goto out_sc;
    508		sc->flags |= XCHK_TRY_HARDER;
    509		goto retry_op;
    510	} else if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
    511		goto out_teardown;
    512
    513	xchk_update_health(sc);
    514
    515	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
    516	    !(sc->flags & XREP_ALREADY_FIXED)) {
    517		bool needs_fix;
    518
    519		/* Let debug users force us into the repair routines. */
    520		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
    521			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
    522
    523		needs_fix = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
    524						 XFS_SCRUB_OFLAG_XCORRUPT |
    525						 XFS_SCRUB_OFLAG_PREEN));
    526		/*
    527		 * If userspace asked for a repair but it wasn't necessary,
    528		 * report that back to userspace.
    529		 */
    530		if (!needs_fix) {
    531			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
    532			goto out_nofix;
    533		}
    534
    535		/*
    536		 * If it's broken, userspace wants us to fix it, and we haven't
    537		 * already tried to fix it, then attempt a repair.
    538		 */
    539		error = xrep_attempt(sc);
    540		if (error == -EAGAIN) {
    541			/*
    542			 * Either the repair function succeeded or it couldn't
    543			 * get all the resources it needs; either way, we go
    544			 * back to the beginning and call the scrub function.
    545			 */
    546			error = xchk_teardown(sc, 0);
    547			if (error) {
    548				xrep_failure(mp);
    549				goto out_sc;
    550			}
    551			goto retry_op;
    552		}
    553	}
    554
    555out_nofix:
    556	xchk_postmortem(sc);
    557out_teardown:
    558	error = xchk_teardown(sc, error);
    559out_sc:
    560	kmem_free(sc);
    561out:
    562	trace_xchk_done(XFS_I(file_inode(file)), sm, error);
    563	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
    564		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
    565		error = 0;
    566	}
    567	return error;
    568}