cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xfs_buf_item.c (29273B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
      4 * All Rights Reserved.
      5 */
      6#include "xfs.h"
      7#include "xfs_fs.h"
      8#include "xfs_shared.h"
      9#include "xfs_format.h"
     10#include "xfs_log_format.h"
     11#include "xfs_trans_resv.h"
     12#include "xfs_bit.h"
     13#include "xfs_mount.h"
     14#include "xfs_trans.h"
     15#include "xfs_trans_priv.h"
     16#include "xfs_buf_item.h"
     17#include "xfs_inode.h"
     18#include "xfs_inode_item.h"
     19#include "xfs_quota.h"
     20#include "xfs_dquot_item.h"
     21#include "xfs_dquot.h"
     22#include "xfs_trace.h"
     23#include "xfs_log.h"
     24#include "xfs_log_priv.h"
     25
     26
     27struct kmem_cache	*xfs_buf_item_cache;
     28
     29static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
     30{
     31	return container_of(lip, struct xfs_buf_log_item, bli_item);
     32}
     33
     34/* Is this log iovec plausibly large enough to contain the buffer log format? */
     35bool
     36xfs_buf_log_check_iovec(
     37	struct xfs_log_iovec		*iovec)
     38{
     39	struct xfs_buf_log_format	*blfp = iovec->i_addr;
     40	char				*bmp_end;
     41	char				*item_end;
     42
     43	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
     44		return false;
     45
     46	item_end = (char *)iovec->i_addr + iovec->i_len;
     47	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
     48	return bmp_end <= item_end;
     49}
     50
     51static inline int
     52xfs_buf_log_format_size(
     53	struct xfs_buf_log_format *blfp)
     54{
     55	return offsetof(struct xfs_buf_log_format, blf_data_map) +
     56			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
     57}
     58
     59static inline bool
     60xfs_buf_item_straddle(
     61	struct xfs_buf		*bp,
     62	uint			offset,
     63	int			first_bit,
     64	int			nbits)
     65{
     66	void			*first, *last;
     67
     68	first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT));
     69	last = xfs_buf_offset(bp,
     70			offset + ((first_bit + nbits) << XFS_BLF_SHIFT));
     71
     72	if (last - first != nbits * XFS_BLF_CHUNK)
     73		return true;
     74	return false;
     75}
     76
     77/*
     78 * Return the number of log iovecs and space needed to log the given buf log
     79 * item segment.
     80 *
     81 * It calculates this as 1 iovec for the buf log format structure and 1 for each
     82 * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
     83 * in a single iovec.
     84 */
     85STATIC void
     86xfs_buf_item_size_segment(
     87	struct xfs_buf_log_item		*bip,
     88	struct xfs_buf_log_format	*blfp,
     89	uint				offset,
     90	int				*nvecs,
     91	int				*nbytes)
     92{
     93	struct xfs_buf			*bp = bip->bli_buf;
     94	int				first_bit;
     95	int				nbits;
     96	int				next_bit;
     97	int				last_bit;
     98
     99	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
    100	if (first_bit == -1)
    101		return;
    102
    103	(*nvecs)++;
    104	*nbytes += xfs_buf_log_format_size(blfp);
    105
    106	do {
    107		nbits = xfs_contig_bits(blfp->blf_data_map,
    108					blfp->blf_map_size, first_bit);
    109		ASSERT(nbits > 0);
    110
    111		/*
    112		 * Straddling a page is rare because we don't log contiguous
    113		 * chunks of unmapped buffers anywhere.
    114		 */
    115		if (nbits > 1 &&
    116		    xfs_buf_item_straddle(bp, offset, first_bit, nbits))
    117			goto slow_scan;
    118
    119		(*nvecs)++;
    120		*nbytes += nbits * XFS_BLF_CHUNK;
    121
    122		/*
    123		 * This takes the bit number to start looking from and
    124		 * returns the next set bit from there.  It returns -1
    125		 * if there are no more bits set or the start bit is
    126		 * beyond the end of the bitmap.
    127		 */
    128		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
    129					(uint)first_bit + nbits + 1);
    130	} while (first_bit != -1);
    131
    132	return;
    133
    134slow_scan:
    135	/* Count the first bit we jumped out of the above loop from */
    136	(*nvecs)++;
    137	*nbytes += XFS_BLF_CHUNK;
    138	last_bit = first_bit;
    139	while (last_bit != -1) {
    140		/*
    141		 * This takes the bit number to start looking from and
    142		 * returns the next set bit from there.  It returns -1
    143		 * if there are no more bits set or the start bit is
    144		 * beyond the end of the bitmap.
    145		 */
    146		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
    147					last_bit + 1);
    148		/*
    149		 * If we run out of bits, leave the loop,
    150		 * else if we find a new set of bits bump the number of vecs,
    151		 * else keep scanning the current set of bits.
    152		 */
    153		if (next_bit == -1) {
    154			break;
    155		} else if (next_bit != last_bit + 1 ||
    156		           xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
    157			last_bit = next_bit;
    158			first_bit = next_bit;
    159			(*nvecs)++;
    160			nbits = 1;
    161		} else {
    162			last_bit++;
    163			nbits++;
    164		}
    165		*nbytes += XFS_BLF_CHUNK;
    166	}
    167}
    168
    169/*
    170 * Return the number of log iovecs and space needed to log the given buf log
    171 * item.
    172 *
    173 * Discontiguous buffers need a format structure per region that is being
    174 * logged. This makes the changes in the buffer appear to log recovery as though
    175 * they came from separate buffers, just like would occur if multiple buffers
    176 * were used instead of a single discontiguous buffer. This enables
    177 * discontiguous buffers to be in-memory constructs, completely transparent to
    178 * what ends up on disk.
    179 *
    180 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
    181 * format structures. If the item has previously been logged and has dirty
    182 * regions, we do not relog them in stale buffers. This has the effect of
    183 * reducing the size of the relogged item by the amount of dirty data tracked
    184 * by the log item. This can result in the committing transaction reducing the
    185 * amount of space being consumed by the CIL.
    186 */
    187STATIC void
    188xfs_buf_item_size(
    189	struct xfs_log_item	*lip,
    190	int			*nvecs,
    191	int			*nbytes)
    192{
    193	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
    194	struct xfs_buf		*bp = bip->bli_buf;
    195	int			i;
    196	int			bytes;
    197	uint			offset = 0;
    198
    199	ASSERT(atomic_read(&bip->bli_refcount) > 0);
    200	if (bip->bli_flags & XFS_BLI_STALE) {
    201		/*
    202		 * The buffer is stale, so all we need to log is the buf log
    203		 * format structure with the cancel flag in it as we are never
    204		 * going to replay the changes tracked in the log item.
    205		 */
    206		trace_xfs_buf_item_size_stale(bip);
    207		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
    208		*nvecs += bip->bli_format_count;
    209		for (i = 0; i < bip->bli_format_count; i++) {
    210			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
    211		}
    212		return;
    213	}
    214
    215	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
    216
    217	if (bip->bli_flags & XFS_BLI_ORDERED) {
    218		/*
    219		 * The buffer has been logged just to order it. It is not being
    220		 * included in the transaction commit, so no vectors are used at
    221		 * all.
    222		 */
    223		trace_xfs_buf_item_size_ordered(bip);
    224		*nvecs = XFS_LOG_VEC_ORDERED;
    225		return;
    226	}
    227
    228	/*
    229	 * The vector count is based on the number of buffer vectors we have
    230	 * dirty bits in. This will only be greater than one when we have a
    231	 * compound buffer with more than one segment dirty. Hence for compound
    232	 * buffers we need to track which segment the dirty bits correspond to,
    233	 * and when we move from one segment to the next increment the vector
    234	 * count for the extra buf log format structure that will need to be
    235	 * written.
    236	 */
    237	bytes = 0;
    238	for (i = 0; i < bip->bli_format_count; i++) {
    239		xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
    240					  nvecs, &bytes);
    241		offset += BBTOB(bp->b_maps[i].bm_len);
    242	}
    243
    244	/*
    245	 * Round up the buffer size required to minimise the number of memory
    246	 * allocations that need to be done as this item grows when relogged by
    247	 * repeated modifications.
    248	 */
    249	*nbytes = round_up(bytes, 512);
    250	trace_xfs_buf_item_size(bip);
    251}
    252
    253static inline void
    254xfs_buf_item_copy_iovec(
    255	struct xfs_log_vec	*lv,
    256	struct xfs_log_iovec	**vecp,
    257	struct xfs_buf		*bp,
    258	uint			offset,
    259	int			first_bit,
    260	uint			nbits)
    261{
    262	offset += first_bit * XFS_BLF_CHUNK;
    263	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
    264			xfs_buf_offset(bp, offset),
    265			nbits * XFS_BLF_CHUNK);
    266}
    267
    268static void
    269xfs_buf_item_format_segment(
    270	struct xfs_buf_log_item	*bip,
    271	struct xfs_log_vec	*lv,
    272	struct xfs_log_iovec	**vecp,
    273	uint			offset,
    274	struct xfs_buf_log_format *blfp)
    275{
    276	struct xfs_buf		*bp = bip->bli_buf;
    277	uint			base_size;
    278	int			first_bit;
    279	int			last_bit;
    280	int			next_bit;
    281	uint			nbits;
    282
    283	/* copy the flags across from the base format item */
    284	blfp->blf_flags = bip->__bli_format.blf_flags;
    285
    286	/*
    287	 * Base size is the actual size of the ondisk structure - it reflects
    288	 * the actual size of the dirty bitmap rather than the size of the in
    289	 * memory structure.
    290	 */
    291	base_size = xfs_buf_log_format_size(blfp);
    292
    293	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
    294	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
    295		/*
    296		 * If the map is not be dirty in the transaction, mark
    297		 * the size as zero and do not advance the vector pointer.
    298		 */
    299		return;
    300	}
    301
    302	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
    303	blfp->blf_size = 1;
    304
    305	if (bip->bli_flags & XFS_BLI_STALE) {
    306		/*
    307		 * The buffer is stale, so all we need to log
    308		 * is the buf log format structure with the
    309		 * cancel flag in it.
    310		 */
    311		trace_xfs_buf_item_format_stale(bip);
    312		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
    313		return;
    314	}
    315
    316
    317	/*
    318	 * Fill in an iovec for each set of contiguous chunks.
    319	 */
    320	do {
    321		ASSERT(first_bit >= 0);
    322		nbits = xfs_contig_bits(blfp->blf_data_map,
    323					blfp->blf_map_size, first_bit);
    324		ASSERT(nbits > 0);
    325
    326		/*
    327		 * Straddling a page is rare because we don't log contiguous
    328		 * chunks of unmapped buffers anywhere.
    329		 */
    330		if (nbits > 1 &&
    331		    xfs_buf_item_straddle(bp, offset, first_bit, nbits))
    332			goto slow_scan;
    333
    334		xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
    335					first_bit, nbits);
    336		blfp->blf_size++;
    337
    338		/*
    339		 * This takes the bit number to start looking from and
    340		 * returns the next set bit from there.  It returns -1
    341		 * if there are no more bits set or the start bit is
    342		 * beyond the end of the bitmap.
    343		 */
    344		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
    345					(uint)first_bit + nbits + 1);
    346	} while (first_bit != -1);
    347
    348	return;
    349
    350slow_scan:
    351	ASSERT(bp->b_addr == NULL);
    352	last_bit = first_bit;
    353	nbits = 1;
    354	for (;;) {
    355		/*
    356		 * This takes the bit number to start looking from and
    357		 * returns the next set bit from there.  It returns -1
    358		 * if there are no more bits set or the start bit is
    359		 * beyond the end of the bitmap.
    360		 */
    361		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
    362					(uint)last_bit + 1);
    363		/*
    364		 * If we run out of bits fill in the last iovec and get out of
    365		 * the loop.  Else if we start a new set of bits then fill in
    366		 * the iovec for the series we were looking at and start
    367		 * counting the bits in the new one.  Else we're still in the
    368		 * same set of bits so just keep counting and scanning.
    369		 */
    370		if (next_bit == -1) {
    371			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
    372						first_bit, nbits);
    373			blfp->blf_size++;
    374			break;
    375		} else if (next_bit != last_bit + 1 ||
    376		           xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
    377			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
    378						first_bit, nbits);
    379			blfp->blf_size++;
    380			first_bit = next_bit;
    381			last_bit = next_bit;
    382			nbits = 1;
    383		} else {
    384			last_bit++;
    385			nbits++;
    386		}
    387	}
    388}
    389
    390/*
    391 * This is called to fill in the vector of log iovecs for the
    392 * given log buf item.  It fills the first entry with a buf log
    393 * format structure, and the rest point to contiguous chunks
    394 * within the buffer.
    395 */
    396STATIC void
    397xfs_buf_item_format(
    398	struct xfs_log_item	*lip,
    399	struct xfs_log_vec	*lv)
    400{
    401	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
    402	struct xfs_buf		*bp = bip->bli_buf;
    403	struct xfs_log_iovec	*vecp = NULL;
    404	uint			offset = 0;
    405	int			i;
    406
    407	ASSERT(atomic_read(&bip->bli_refcount) > 0);
    408	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
    409	       (bip->bli_flags & XFS_BLI_STALE));
    410	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
    411	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
    412	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
    413	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
    414	       (bip->bli_flags & XFS_BLI_STALE));
    415
    416
    417	/*
    418	 * If it is an inode buffer, transfer the in-memory state to the
    419	 * format flags and clear the in-memory state.
    420	 *
    421	 * For buffer based inode allocation, we do not transfer
    422	 * this state if the inode buffer allocation has not yet been committed
    423	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
    424	 * correct replay of the inode allocation.
    425	 *
    426	 * For icreate item based inode allocation, the buffers aren't written
    427	 * to the journal during allocation, and hence we should always tag the
    428	 * buffer as an inode buffer so that the correct unlinked list replay
    429	 * occurs during recovery.
    430	 */
    431	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
    432		if (xfs_has_v3inodes(lip->li_log->l_mp) ||
    433		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
    434		      xfs_log_item_in_current_chkpt(lip)))
    435			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
    436		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
    437	}
    438
    439	for (i = 0; i < bip->bli_format_count; i++) {
    440		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
    441					    &bip->bli_formats[i]);
    442		offset += BBTOB(bp->b_maps[i].bm_len);
    443	}
    444
    445	/*
    446	 * Check to make sure everything is consistent.
    447	 */
    448	trace_xfs_buf_item_format(bip);
    449}
    450
    451/*
    452 * This is called to pin the buffer associated with the buf log item in memory
    453 * so it cannot be written out.
    454 *
    455 * We also always take a reference to the buffer log item here so that the bli
    456 * is held while the item is pinned in memory. This means that we can
    457 * unconditionally drop the reference count a transaction holds when the
    458 * transaction is completed.
    459 */
    460STATIC void
    461xfs_buf_item_pin(
    462	struct xfs_log_item	*lip)
    463{
    464	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
    465
    466	ASSERT(atomic_read(&bip->bli_refcount) > 0);
    467	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
    468	       (bip->bli_flags & XFS_BLI_ORDERED) ||
    469	       (bip->bli_flags & XFS_BLI_STALE));
    470
    471	trace_xfs_buf_item_pin(bip);
    472
    473	atomic_inc(&bip->bli_refcount);
    474	atomic_inc(&bip->bli_buf->b_pin_count);
    475}
    476
    477/*
    478 * This is called to unpin the buffer associated with the buf log item which
    479 * was previously pinned with a call to xfs_buf_item_pin().
    480 */
    481STATIC void
    482xfs_buf_item_unpin(
    483	struct xfs_log_item	*lip,
    484	int			remove)
    485{
    486	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
    487	struct xfs_buf		*bp = bip->bli_buf;
    488	int			stale = bip->bli_flags & XFS_BLI_STALE;
    489	int			freed;
    490
    491	ASSERT(bp->b_log_item == bip);
    492	ASSERT(atomic_read(&bip->bli_refcount) > 0);
    493
    494	trace_xfs_buf_item_unpin(bip);
    495
    496	/*
    497	 * Drop the bli ref associated with the pin and grab the hold required
    498	 * for the I/O simulation failure in the abort case. We have to do this
    499	 * before the pin count drops because the AIL doesn't acquire a bli
    500	 * reference. Therefore if the refcount drops to zero, the bli could
    501	 * still be AIL resident and the buffer submitted for I/O (and freed on
    502	 * completion) at any point before we return. This can be removed once
    503	 * the AIL properly holds a reference on the bli.
    504	 */
    505	freed = atomic_dec_and_test(&bip->bli_refcount);
    506	if (freed && !stale && remove)
    507		xfs_buf_hold(bp);
    508	if (atomic_dec_and_test(&bp->b_pin_count))
    509		wake_up_all(&bp->b_waiters);
    510
    511	 /* nothing to do but drop the pin count if the bli is active */
    512	if (!freed)
    513		return;
    514
    515	if (stale) {
    516		ASSERT(bip->bli_flags & XFS_BLI_STALE);
    517		ASSERT(xfs_buf_islocked(bp));
    518		ASSERT(bp->b_flags & XBF_STALE);
    519		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
    520		ASSERT(list_empty(&lip->li_trans));
    521		ASSERT(!bp->b_transp);
    522
    523		trace_xfs_buf_item_unpin_stale(bip);
    524
    525		/*
    526		 * If we get called here because of an IO error, we may or may
    527		 * not have the item on the AIL. xfs_trans_ail_delete() will
    528		 * take care of that situation. xfs_trans_ail_delete() drops
    529		 * the AIL lock.
    530		 */
    531		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
    532			xfs_buf_item_done(bp);
    533			xfs_buf_inode_iodone(bp);
    534			ASSERT(list_empty(&bp->b_li_list));
    535		} else {
    536			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
    537			xfs_buf_item_relse(bp);
    538			ASSERT(bp->b_log_item == NULL);
    539		}
    540		xfs_buf_relse(bp);
    541	} else if (remove) {
    542		/*
    543		 * The buffer must be locked and held by the caller to simulate
    544		 * an async I/O failure. We acquired the hold for this case
    545		 * before the buffer was unpinned.
    546		 */
    547		xfs_buf_lock(bp);
    548		bp->b_flags |= XBF_ASYNC;
    549		xfs_buf_ioend_fail(bp);
    550	}
    551}
    552
    553STATIC uint
    554xfs_buf_item_push(
    555	struct xfs_log_item	*lip,
    556	struct list_head	*buffer_list)
    557{
    558	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
    559	struct xfs_buf		*bp = bip->bli_buf;
    560	uint			rval = XFS_ITEM_SUCCESS;
    561
    562	if (xfs_buf_ispinned(bp))
    563		return XFS_ITEM_PINNED;
    564	if (!xfs_buf_trylock(bp)) {
    565		/*
    566		 * If we have just raced with a buffer being pinned and it has
    567		 * been marked stale, we could end up stalling until someone else
    568		 * issues a log force to unpin the stale buffer. Check for the
    569		 * race condition here so xfsaild recognizes the buffer is pinned
    570		 * and queues a log force to move it along.
    571		 */
    572		if (xfs_buf_ispinned(bp))
    573			return XFS_ITEM_PINNED;
    574		return XFS_ITEM_LOCKED;
    575	}
    576
    577	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
    578
    579	trace_xfs_buf_item_push(bip);
    580
    581	/* has a previous flush failed due to IO errors? */
    582	if (bp->b_flags & XBF_WRITE_FAIL) {
    583		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
    584	    "Failing async write on buffer block 0x%llx. Retrying async write.",
    585					  (long long)xfs_buf_daddr(bp));
    586	}
    587
    588	if (!xfs_buf_delwri_queue(bp, buffer_list))
    589		rval = XFS_ITEM_FLUSHING;
    590	xfs_buf_unlock(bp);
    591	return rval;
    592}
    593
    594/*
    595 * Drop the buffer log item refcount and take appropriate action. This helper
    596 * determines whether the bli must be freed or not, since a decrement to zero
    597 * does not necessarily mean the bli is unused.
    598 *
    599 * Return true if the bli is freed, false otherwise.
    600 */
    601bool
    602xfs_buf_item_put(
    603	struct xfs_buf_log_item	*bip)
    604{
    605	struct xfs_log_item	*lip = &bip->bli_item;
    606	bool			aborted;
    607	bool			dirty;
    608
    609	/* drop the bli ref and return if it wasn't the last one */
    610	if (!atomic_dec_and_test(&bip->bli_refcount))
    611		return false;
    612
    613	/*
    614	 * We dropped the last ref and must free the item if clean or aborted.
    615	 * If the bli is dirty and non-aborted, the buffer was clean in the
    616	 * transaction but still awaiting writeback from previous changes. In
    617	 * that case, the bli is freed on buffer writeback completion.
    618	 */
    619	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
    620			xlog_is_shutdown(lip->li_log);
    621	dirty = bip->bli_flags & XFS_BLI_DIRTY;
    622	if (dirty && !aborted)
    623		return false;
    624
    625	/*
    626	 * The bli is aborted or clean. An aborted item may be in the AIL
    627	 * regardless of dirty state.  For example, consider an aborted
    628	 * transaction that invalidated a dirty bli and cleared the dirty
    629	 * state.
    630	 */
    631	if (aborted)
    632		xfs_trans_ail_delete(lip, 0);
    633	xfs_buf_item_relse(bip->bli_buf);
    634	return true;
    635}
    636
    637/*
    638 * Release the buffer associated with the buf log item.  If there is no dirty
    639 * logged data associated with the buffer recorded in the buf log item, then
    640 * free the buf log item and remove the reference to it in the buffer.
    641 *
    642 * This call ignores the recursion count.  It is only called when the buffer
    643 * should REALLY be unlocked, regardless of the recursion count.
    644 *
    645 * We unconditionally drop the transaction's reference to the log item. If the
    646 * item was logged, then another reference was taken when it was pinned, so we
    647 * can safely drop the transaction reference now.  This also allows us to avoid
    648 * potential races with the unpin code freeing the bli by not referencing the
    649 * bli after we've dropped the reference count.
    650 *
    651 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
    652 * if necessary but do not unlock the buffer.  This is for support of
    653 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
    654 * free the item.
    655 */
    656STATIC void
    657xfs_buf_item_release(
    658	struct xfs_log_item	*lip)
    659{
    660	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
    661	struct xfs_buf		*bp = bip->bli_buf;
    662	bool			released;
    663	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
    664	bool			stale = bip->bli_flags & XFS_BLI_STALE;
    665#if defined(DEBUG) || defined(XFS_WARN)
    666	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
    667	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
    668	bool			aborted = test_bit(XFS_LI_ABORTED,
    669						   &lip->li_flags);
    670#endif
    671
    672	trace_xfs_buf_item_release(bip);
    673
    674	/*
    675	 * The bli dirty state should match whether the blf has logged segments
    676	 * except for ordered buffers, where only the bli should be dirty.
    677	 */
    678	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
    679	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
    680	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
    681
    682	/*
    683	 * Clear the buffer's association with this transaction and
    684	 * per-transaction state from the bli, which has been copied above.
    685	 */
    686	bp->b_transp = NULL;
    687	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
    688
    689	/*
    690	 * Unref the item and unlock the buffer unless held or stale. Stale
    691	 * buffers remain locked until final unpin unless the bli is freed by
    692	 * the unref call. The latter implies shutdown because buffer
    693	 * invalidation dirties the bli and transaction.
    694	 */
    695	released = xfs_buf_item_put(bip);
    696	if (hold || (stale && !released))
    697		return;
    698	ASSERT(!stale || aborted);
    699	xfs_buf_relse(bp);
    700}
    701
    702STATIC void
    703xfs_buf_item_committing(
    704	struct xfs_log_item	*lip,
    705	xfs_csn_t		seq)
    706{
    707	return xfs_buf_item_release(lip);
    708}
    709
    710/*
    711 * This is called to find out where the oldest active copy of the
    712 * buf log item in the on disk log resides now that the last log
    713 * write of it completed at the given lsn.
    714 * We always re-log all the dirty data in a buffer, so usually the
    715 * latest copy in the on disk log is the only one that matters.  For
    716 * those cases we simply return the given lsn.
    717 *
    718 * The one exception to this is for buffers full of newly allocated
    719 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
    720 * flag set, indicating that only the di_next_unlinked fields from the
    721 * inodes in the buffers will be replayed during recovery.  If the
    722 * original newly allocated inode images have not yet been flushed
    723 * when the buffer is so relogged, then we need to make sure that we
    724 * keep the old images in the 'active' portion of the log.  We do this
    725 * by returning the original lsn of that transaction here rather than
    726 * the current one.
    727 */
    728STATIC xfs_lsn_t
    729xfs_buf_item_committed(
    730	struct xfs_log_item	*lip,
    731	xfs_lsn_t		lsn)
    732{
    733	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
    734
    735	trace_xfs_buf_item_committed(bip);
    736
    737	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
    738		return lip->li_lsn;
    739	return lsn;
    740}
    741
    742static const struct xfs_item_ops xfs_buf_item_ops = {
    743	.iop_size	= xfs_buf_item_size,
    744	.iop_format	= xfs_buf_item_format,
    745	.iop_pin	= xfs_buf_item_pin,
    746	.iop_unpin	= xfs_buf_item_unpin,
    747	.iop_release	= xfs_buf_item_release,
    748	.iop_committing	= xfs_buf_item_committing,
    749	.iop_committed	= xfs_buf_item_committed,
    750	.iop_push	= xfs_buf_item_push,
    751};
    752
    753STATIC void
    754xfs_buf_item_get_format(
    755	struct xfs_buf_log_item	*bip,
    756	int			count)
    757{
    758	ASSERT(bip->bli_formats == NULL);
    759	bip->bli_format_count = count;
    760
    761	if (count == 1) {
    762		bip->bli_formats = &bip->__bli_format;
    763		return;
    764	}
    765
    766	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
    767				0);
    768}
    769
    770STATIC void
    771xfs_buf_item_free_format(
    772	struct xfs_buf_log_item	*bip)
    773{
    774	if (bip->bli_formats != &bip->__bli_format) {
    775		kmem_free(bip->bli_formats);
    776		bip->bli_formats = NULL;
    777	}
    778}
    779
    780/*
    781 * Allocate a new buf log item to go with the given buffer.
    782 * Set the buffer's b_log_item field to point to the new
    783 * buf log item.
    784 */
    785int
    786xfs_buf_item_init(
    787	struct xfs_buf	*bp,
    788	struct xfs_mount *mp)
    789{
    790	struct xfs_buf_log_item	*bip = bp->b_log_item;
    791	int			chunks;
    792	int			map_size;
    793	int			i;
    794
    795	/*
    796	 * Check to see if there is already a buf log item for
    797	 * this buffer. If we do already have one, there is
    798	 * nothing to do here so return.
    799	 */
    800	ASSERT(bp->b_mount == mp);
    801	if (bip) {
    802		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
    803		ASSERT(!bp->b_transp);
    804		ASSERT(bip->bli_buf == bp);
    805		return 0;
    806	}
    807
    808	bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL);
    809	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
    810	bip->bli_buf = bp;
    811
    812	/*
    813	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
    814	 * can be divided into. Make sure not to truncate any pieces.
    815	 * map_size is the size of the bitmap needed to describe the
    816	 * chunks of the buffer.
    817	 *
    818	 * Discontiguous buffer support follows the layout of the underlying
    819	 * buffer. This makes the implementation as simple as possible.
    820	 */
    821	xfs_buf_item_get_format(bip, bp->b_map_count);
    822
    823	for (i = 0; i < bip->bli_format_count; i++) {
    824		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
    825				      XFS_BLF_CHUNK);
    826		map_size = DIV_ROUND_UP(chunks, NBWORD);
    827
    828		if (map_size > XFS_BLF_DATAMAP_SIZE) {
    829			kmem_cache_free(xfs_buf_item_cache, bip);
    830			xfs_err(mp,
    831	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
    832					map_size,
    833					BBTOB(bp->b_maps[i].bm_len));
    834			return -EFSCORRUPTED;
    835		}
    836
    837		bip->bli_formats[i].blf_type = XFS_LI_BUF;
    838		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
    839		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
    840		bip->bli_formats[i].blf_map_size = map_size;
    841	}
    842
    843	bp->b_log_item = bip;
    844	xfs_buf_hold(bp);
    845	return 0;
    846}
    847
    848
    849/*
    850 * Mark bytes first through last inclusive as dirty in the buf
    851 * item's bitmap.
    852 */
    853static void
    854xfs_buf_item_log_segment(
    855	uint			first,
    856	uint			last,
    857	uint			*map)
    858{
    859	uint		first_bit;
    860	uint		last_bit;
    861	uint		bits_to_set;
    862	uint		bits_set;
    863	uint		word_num;
    864	uint		*wordp;
    865	uint		bit;
    866	uint		end_bit;
    867	uint		mask;
    868
    869	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
    870	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
    871
    872	/*
    873	 * Convert byte offsets to bit numbers.
    874	 */
    875	first_bit = first >> XFS_BLF_SHIFT;
    876	last_bit = last >> XFS_BLF_SHIFT;
    877
    878	/*
    879	 * Calculate the total number of bits to be set.
    880	 */
    881	bits_to_set = last_bit - first_bit + 1;
    882
    883	/*
    884	 * Get a pointer to the first word in the bitmap
    885	 * to set a bit in.
    886	 */
    887	word_num = first_bit >> BIT_TO_WORD_SHIFT;
    888	wordp = &map[word_num];
    889
    890	/*
    891	 * Calculate the starting bit in the first word.
    892	 */
    893	bit = first_bit & (uint)(NBWORD - 1);
    894
    895	/*
    896	 * First set any bits in the first word of our range.
    897	 * If it starts at bit 0 of the word, it will be
    898	 * set below rather than here.  That is what the variable
    899	 * bit tells us. The variable bits_set tracks the number
    900	 * of bits that have been set so far.  End_bit is the number
    901	 * of the last bit to be set in this word plus one.
    902	 */
    903	if (bit) {
    904		end_bit = min(bit + bits_to_set, (uint)NBWORD);
    905		mask = ((1U << (end_bit - bit)) - 1) << bit;
    906		*wordp |= mask;
    907		wordp++;
    908		bits_set = end_bit - bit;
    909	} else {
    910		bits_set = 0;
    911	}
    912
    913	/*
    914	 * Now set bits a whole word at a time that are between
    915	 * first_bit and last_bit.
    916	 */
    917	while ((bits_to_set - bits_set) >= NBWORD) {
    918		*wordp = 0xffffffff;
    919		bits_set += NBWORD;
    920		wordp++;
    921	}
    922
    923	/*
    924	 * Finally, set any bits left to be set in one last partial word.
    925	 */
    926	end_bit = bits_to_set - bits_set;
    927	if (end_bit) {
    928		mask = (1U << end_bit) - 1;
    929		*wordp |= mask;
    930	}
    931}
    932
    933/*
    934 * Mark bytes first through last inclusive as dirty in the buf
    935 * item's bitmap.
    936 */
    937void
    938xfs_buf_item_log(
    939	struct xfs_buf_log_item	*bip,
    940	uint			first,
    941	uint			last)
    942{
    943	int			i;
    944	uint			start;
    945	uint			end;
    946	struct xfs_buf		*bp = bip->bli_buf;
    947
    948	/*
    949	 * walk each buffer segment and mark them dirty appropriately.
    950	 */
    951	start = 0;
    952	for (i = 0; i < bip->bli_format_count; i++) {
    953		if (start > last)
    954			break;
    955		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
    956
    957		/* skip to the map that includes the first byte to log */
    958		if (first > end) {
    959			start += BBTOB(bp->b_maps[i].bm_len);
    960			continue;
    961		}
    962
    963		/*
    964		 * Trim the range to this segment and mark it in the bitmap.
    965		 * Note that we must convert buffer offsets to segment relative
    966		 * offsets (e.g., the first byte of each segment is byte 0 of
    967		 * that segment).
    968		 */
    969		if (first < start)
    970			first = start;
    971		if (end > last)
    972			end = last;
    973		xfs_buf_item_log_segment(first - start, end - start,
    974					 &bip->bli_formats[i].blf_data_map[0]);
    975
    976		start += BBTOB(bp->b_maps[i].bm_len);
    977	}
    978}
    979
    980
    981/*
    982 * Return true if the buffer has any ranges logged/dirtied by a transaction,
    983 * false otherwise.
    984 */
    985bool
    986xfs_buf_item_dirty_format(
    987	struct xfs_buf_log_item	*bip)
    988{
    989	int			i;
    990
    991	for (i = 0; i < bip->bli_format_count; i++) {
    992		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
    993			     bip->bli_formats[i].blf_map_size))
    994			return true;
    995	}
    996
    997	return false;
    998}
    999
   1000STATIC void
   1001xfs_buf_item_free(
   1002	struct xfs_buf_log_item	*bip)
   1003{
   1004	xfs_buf_item_free_format(bip);
   1005	kmem_free(bip->bli_item.li_lv_shadow);
   1006	kmem_cache_free(xfs_buf_item_cache, bip);
   1007}
   1008
   1009/*
   1010 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
   1011 */
   1012void
   1013xfs_buf_item_relse(
   1014	struct xfs_buf	*bp)
   1015{
   1016	struct xfs_buf_log_item	*bip = bp->b_log_item;
   1017
   1018	trace_xfs_buf_item_relse(bp, _RET_IP_);
   1019	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
   1020
   1021	bp->b_log_item = NULL;
   1022	xfs_buf_rele(bp);
   1023	xfs_buf_item_free(bip);
   1024}
   1025
   1026void
   1027xfs_buf_item_done(
   1028	struct xfs_buf		*bp)
   1029{
   1030	/*
   1031	 * If we are forcibly shutting down, this may well be off the AIL
   1032	 * already. That's because we simulate the log-committed callbacks to
   1033	 * unpin these buffers. Or we may never have put this item on AIL
   1034	 * because of the transaction was aborted forcibly.
   1035	 * xfs_trans_ail_delete() takes care of these.
   1036	 *
   1037	 * Either way, AIL is useless if we're forcing a shutdown.
   1038	 *
   1039	 * Note that log recovery writes might have buffer items that are not on
   1040	 * the AIL even when the file system is not shut down.
   1041	 */
   1042	xfs_trans_ail_delete(&bp->b_log_item->bli_item,
   1043			     (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
   1044			     SHUTDOWN_CORRUPT_INCORE);
   1045	xfs_buf_item_relse(bp);
   1046}