cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xfs_icache.c (56432B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
      4 * All Rights Reserved.
      5 */
      6#include "xfs.h"
      7#include "xfs_fs.h"
      8#include "xfs_shared.h"
      9#include "xfs_format.h"
     10#include "xfs_log_format.h"
     11#include "xfs_trans_resv.h"
     12#include "xfs_mount.h"
     13#include "xfs_inode.h"
     14#include "xfs_trans.h"
     15#include "xfs_trans_priv.h"
     16#include "xfs_inode_item.h"
     17#include "xfs_quota.h"
     18#include "xfs_trace.h"
     19#include "xfs_icache.h"
     20#include "xfs_bmap_util.h"
     21#include "xfs_dquot_item.h"
     22#include "xfs_dquot.h"
     23#include "xfs_reflink.h"
     24#include "xfs_ialloc.h"
     25#include "xfs_ag.h"
     26#include "xfs_log_priv.h"
     27
     28#include <linux/iversion.h>
     29
     30/* Radix tree tags for incore inode tree. */
     31
     32/* inode is to be reclaimed */
     33#define XFS_ICI_RECLAIM_TAG	0
     34/* Inode has speculative preallocations (posteof or cow) to clean. */
     35#define XFS_ICI_BLOCKGC_TAG	1
     36
     37/*
     38 * The goal for walking incore inodes.  These can correspond with incore inode
     39 * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
     40 */
     41enum xfs_icwalk_goal {
     42	/* Goals directly associated with tagged inodes. */
     43	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
     44	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
     45};
     46
     47static int xfs_icwalk(struct xfs_mount *mp,
     48		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
     49static int xfs_icwalk_ag(struct xfs_perag *pag,
     50		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
     51
     52/*
     53 * Private inode cache walk flags for struct xfs_icwalk.  Must not
     54 * coincide with XFS_ICWALK_FLAGS_VALID.
     55 */
     56
     57/* Stop scanning after icw_scan_limit inodes. */
     58#define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
     59
     60#define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
     61#define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
     62
     63#define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
     64					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
     65					 XFS_ICWALK_FLAG_UNION)
     66
     67/*
     68 * Allocate and initialise an xfs_inode.
     69 */
     70struct xfs_inode *
     71xfs_inode_alloc(
     72	struct xfs_mount	*mp,
     73	xfs_ino_t		ino)
     74{
     75	struct xfs_inode	*ip;
     76
     77	/*
     78	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
     79	 * and return NULL here on ENOMEM.
     80	 */
     81	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
     82
     83	if (inode_init_always(mp->m_super, VFS_I(ip))) {
     84		kmem_cache_free(xfs_inode_cache, ip);
     85		return NULL;
     86	}
     87
     88	/* VFS doesn't initialise i_mode or i_state! */
     89	VFS_I(ip)->i_mode = 0;
     90	VFS_I(ip)->i_state = 0;
     91	mapping_set_large_folios(VFS_I(ip)->i_mapping);
     92
     93	XFS_STATS_INC(mp, vn_active);
     94	ASSERT(atomic_read(&ip->i_pincount) == 0);
     95	ASSERT(ip->i_ino == 0);
     96
     97	/* initialise the xfs inode */
     98	ip->i_ino = ino;
     99	ip->i_mount = mp;
    100	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
    101	ip->i_afp = NULL;
    102	ip->i_cowfp = NULL;
    103	memset(&ip->i_df, 0, sizeof(ip->i_df));
    104	ip->i_flags = 0;
    105	ip->i_delayed_blks = 0;
    106	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
    107	ip->i_nblocks = 0;
    108	ip->i_forkoff = 0;
    109	ip->i_sick = 0;
    110	ip->i_checked = 0;
    111	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
    112	INIT_LIST_HEAD(&ip->i_ioend_list);
    113	spin_lock_init(&ip->i_ioend_lock);
    114
    115	return ip;
    116}
    117
    118STATIC void
    119xfs_inode_free_callback(
    120	struct rcu_head		*head)
    121{
    122	struct inode		*inode = container_of(head, struct inode, i_rcu);
    123	struct xfs_inode	*ip = XFS_I(inode);
    124
    125	switch (VFS_I(ip)->i_mode & S_IFMT) {
    126	case S_IFREG:
    127	case S_IFDIR:
    128	case S_IFLNK:
    129		xfs_idestroy_fork(&ip->i_df);
    130		break;
    131	}
    132
    133	if (ip->i_afp) {
    134		xfs_idestroy_fork(ip->i_afp);
    135		kmem_cache_free(xfs_ifork_cache, ip->i_afp);
    136	}
    137	if (ip->i_cowfp) {
    138		xfs_idestroy_fork(ip->i_cowfp);
    139		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
    140	}
    141	if (ip->i_itemp) {
    142		ASSERT(!test_bit(XFS_LI_IN_AIL,
    143				 &ip->i_itemp->ili_item.li_flags));
    144		xfs_inode_item_destroy(ip);
    145		ip->i_itemp = NULL;
    146	}
    147
    148	kmem_cache_free(xfs_inode_cache, ip);
    149}
    150
    151static void
    152__xfs_inode_free(
    153	struct xfs_inode	*ip)
    154{
    155	/* asserts to verify all state is correct here */
    156	ASSERT(atomic_read(&ip->i_pincount) == 0);
    157	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
    158	XFS_STATS_DEC(ip->i_mount, vn_active);
    159
    160	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
    161}
    162
    163void
    164xfs_inode_free(
    165	struct xfs_inode	*ip)
    166{
    167	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
    168
    169	/*
    170	 * Because we use RCU freeing we need to ensure the inode always
    171	 * appears to be reclaimed with an invalid inode number when in the
    172	 * free state. The ip->i_flags_lock provides the barrier against lookup
    173	 * races.
    174	 */
    175	spin_lock(&ip->i_flags_lock);
    176	ip->i_flags = XFS_IRECLAIM;
    177	ip->i_ino = 0;
    178	spin_unlock(&ip->i_flags_lock);
    179
    180	__xfs_inode_free(ip);
    181}
    182
    183/*
    184 * Queue background inode reclaim work if there are reclaimable inodes and there
    185 * isn't reclaim work already scheduled or in progress.
    186 */
    187static void
    188xfs_reclaim_work_queue(
    189	struct xfs_mount        *mp)
    190{
    191
    192	rcu_read_lock();
    193	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
    194		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
    195			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
    196	}
    197	rcu_read_unlock();
    198}
    199
    200/*
    201 * Background scanning to trim preallocated space. This is queued based on the
    202 * 'speculative_prealloc_lifetime' tunable (5m by default).
    203 */
    204static inline void
    205xfs_blockgc_queue(
    206	struct xfs_perag	*pag)
    207{
    208	struct xfs_mount	*mp = pag->pag_mount;
    209
    210	if (!xfs_is_blockgc_enabled(mp))
    211		return;
    212
    213	rcu_read_lock();
    214	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
    215		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
    216				   &pag->pag_blockgc_work,
    217				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
    218	rcu_read_unlock();
    219}
    220
    221/* Set a tag on both the AG incore inode tree and the AG radix tree. */
    222static void
    223xfs_perag_set_inode_tag(
    224	struct xfs_perag	*pag,
    225	xfs_agino_t		agino,
    226	unsigned int		tag)
    227{
    228	struct xfs_mount	*mp = pag->pag_mount;
    229	bool			was_tagged;
    230
    231	lockdep_assert_held(&pag->pag_ici_lock);
    232
    233	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
    234	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
    235
    236	if (tag == XFS_ICI_RECLAIM_TAG)
    237		pag->pag_ici_reclaimable++;
    238
    239	if (was_tagged)
    240		return;
    241
    242	/* propagate the tag up into the perag radix tree */
    243	spin_lock(&mp->m_perag_lock);
    244	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
    245	spin_unlock(&mp->m_perag_lock);
    246
    247	/* start background work */
    248	switch (tag) {
    249	case XFS_ICI_RECLAIM_TAG:
    250		xfs_reclaim_work_queue(mp);
    251		break;
    252	case XFS_ICI_BLOCKGC_TAG:
    253		xfs_blockgc_queue(pag);
    254		break;
    255	}
    256
    257	trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
    258}
    259
    260/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
    261static void
    262xfs_perag_clear_inode_tag(
    263	struct xfs_perag	*pag,
    264	xfs_agino_t		agino,
    265	unsigned int		tag)
    266{
    267	struct xfs_mount	*mp = pag->pag_mount;
    268
    269	lockdep_assert_held(&pag->pag_ici_lock);
    270
    271	/*
    272	 * Reclaim can signal (with a null agino) that it cleared its own tag
    273	 * by removing the inode from the radix tree.
    274	 */
    275	if (agino != NULLAGINO)
    276		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
    277	else
    278		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
    279
    280	if (tag == XFS_ICI_RECLAIM_TAG)
    281		pag->pag_ici_reclaimable--;
    282
    283	if (radix_tree_tagged(&pag->pag_ici_root, tag))
    284		return;
    285
    286	/* clear the tag from the perag radix tree */
    287	spin_lock(&mp->m_perag_lock);
    288	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
    289	spin_unlock(&mp->m_perag_lock);
    290
    291	trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
    292}
    293
    294/*
    295 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
    296 * part of the structure. This is made more complex by the fact we store
    297 * information about the on-disk values in the VFS inode and so we can't just
    298 * overwrite the values unconditionally. Hence we save the parameters we
    299 * need to retain across reinitialisation, and rewrite them into the VFS inode
    300 * after reinitialisation even if it fails.
    301 */
    302static int
    303xfs_reinit_inode(
    304	struct xfs_mount	*mp,
    305	struct inode		*inode)
    306{
    307	int			error;
    308	uint32_t		nlink = inode->i_nlink;
    309	uint32_t		generation = inode->i_generation;
    310	uint64_t		version = inode_peek_iversion(inode);
    311	umode_t			mode = inode->i_mode;
    312	dev_t			dev = inode->i_rdev;
    313	kuid_t			uid = inode->i_uid;
    314	kgid_t			gid = inode->i_gid;
    315
    316	error = inode_init_always(mp->m_super, inode);
    317
    318	set_nlink(inode, nlink);
    319	inode->i_generation = generation;
    320	inode_set_iversion_queried(inode, version);
    321	inode->i_mode = mode;
    322	inode->i_rdev = dev;
    323	inode->i_uid = uid;
    324	inode->i_gid = gid;
    325	mapping_set_large_folios(inode->i_mapping);
    326	return error;
    327}
    328
    329/*
    330 * Carefully nudge an inode whose VFS state has been torn down back into a
    331 * usable state.  Drops the i_flags_lock and the rcu read lock.
    332 */
    333static int
    334xfs_iget_recycle(
    335	struct xfs_perag	*pag,
    336	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
    337{
    338	struct xfs_mount	*mp = ip->i_mount;
    339	struct inode		*inode = VFS_I(ip);
    340	int			error;
    341
    342	trace_xfs_iget_recycle(ip);
    343
    344	/*
    345	 * We need to make it look like the inode is being reclaimed to prevent
    346	 * the actual reclaim workers from stomping over us while we recycle
    347	 * the inode.  We can't clear the radix tree tag yet as it requires
    348	 * pag_ici_lock to be held exclusive.
    349	 */
    350	ip->i_flags |= XFS_IRECLAIM;
    351
    352	spin_unlock(&ip->i_flags_lock);
    353	rcu_read_unlock();
    354
    355	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
    356	error = xfs_reinit_inode(mp, inode);
    357	if (error) {
    358		/*
    359		 * Re-initializing the inode failed, and we are in deep
    360		 * trouble.  Try to re-add it to the reclaim list.
    361		 */
    362		rcu_read_lock();
    363		spin_lock(&ip->i_flags_lock);
    364		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
    365		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
    366		spin_unlock(&ip->i_flags_lock);
    367		rcu_read_unlock();
    368
    369		trace_xfs_iget_recycle_fail(ip);
    370		return error;
    371	}
    372
    373	spin_lock(&pag->pag_ici_lock);
    374	spin_lock(&ip->i_flags_lock);
    375
    376	/*
    377	 * Clear the per-lifetime state in the inode as we are now effectively
    378	 * a new inode and need to return to the initial state before reuse
    379	 * occurs.
    380	 */
    381	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
    382	ip->i_flags |= XFS_INEW;
    383	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
    384			XFS_ICI_RECLAIM_TAG);
    385	inode->i_state = I_NEW;
    386	spin_unlock(&ip->i_flags_lock);
    387	spin_unlock(&pag->pag_ici_lock);
    388
    389	return 0;
    390}
    391
    392/*
    393 * If we are allocating a new inode, then check what was returned is
    394 * actually a free, empty inode. If we are not allocating an inode,
    395 * then check we didn't find a free inode.
    396 *
    397 * Returns:
    398 *	0		if the inode free state matches the lookup context
    399 *	-ENOENT		if the inode is free and we are not allocating
    400 *	-EFSCORRUPTED	if there is any state mismatch at all
    401 */
    402static int
    403xfs_iget_check_free_state(
    404	struct xfs_inode	*ip,
    405	int			flags)
    406{
    407	if (flags & XFS_IGET_CREATE) {
    408		/* should be a free inode */
    409		if (VFS_I(ip)->i_mode != 0) {
    410			xfs_warn(ip->i_mount,
    411"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
    412				ip->i_ino, VFS_I(ip)->i_mode);
    413			return -EFSCORRUPTED;
    414		}
    415
    416		if (ip->i_nblocks != 0) {
    417			xfs_warn(ip->i_mount,
    418"Corruption detected! Free inode 0x%llx has blocks allocated!",
    419				ip->i_ino);
    420			return -EFSCORRUPTED;
    421		}
    422		return 0;
    423	}
    424
    425	/* should be an allocated inode */
    426	if (VFS_I(ip)->i_mode == 0)
    427		return -ENOENT;
    428
    429	return 0;
    430}
    431
    432/* Make all pending inactivation work start immediately. */
    433static void
    434xfs_inodegc_queue_all(
    435	struct xfs_mount	*mp)
    436{
    437	struct xfs_inodegc	*gc;
    438	int			cpu;
    439
    440	for_each_online_cpu(cpu) {
    441		gc = per_cpu_ptr(mp->m_inodegc, cpu);
    442		if (!llist_empty(&gc->list))
    443			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
    444	}
    445}
    446
    447/*
    448 * Check the validity of the inode we just found it the cache
    449 */
    450static int
    451xfs_iget_cache_hit(
    452	struct xfs_perag	*pag,
    453	struct xfs_inode	*ip,
    454	xfs_ino_t		ino,
    455	int			flags,
    456	int			lock_flags) __releases(RCU)
    457{
    458	struct inode		*inode = VFS_I(ip);
    459	struct xfs_mount	*mp = ip->i_mount;
    460	int			error;
    461
    462	/*
    463	 * check for re-use of an inode within an RCU grace period due to the
    464	 * radix tree nodes not being updated yet. We monitor for this by
    465	 * setting the inode number to zero before freeing the inode structure.
    466	 * If the inode has been reallocated and set up, then the inode number
    467	 * will not match, so check for that, too.
    468	 */
    469	spin_lock(&ip->i_flags_lock);
    470	if (ip->i_ino != ino)
    471		goto out_skip;
    472
    473	/*
    474	 * If we are racing with another cache hit that is currently
    475	 * instantiating this inode or currently recycling it out of
    476	 * reclaimable state, wait for the initialisation to complete
    477	 * before continuing.
    478	 *
    479	 * If we're racing with the inactivation worker we also want to wait.
    480	 * If we're creating a new file, it's possible that the worker
    481	 * previously marked the inode as free on disk but hasn't finished
    482	 * updating the incore state yet.  The AGI buffer will be dirty and
    483	 * locked to the icreate transaction, so a synchronous push of the
    484	 * inodegc workers would result in deadlock.  For a regular iget, the
    485	 * worker is running already, so we might as well wait.
    486	 *
    487	 * XXX(hch): eventually we should do something equivalent to
    488	 *	     wait_on_inode to wait for these flags to be cleared
    489	 *	     instead of polling for it.
    490	 */
    491	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
    492		goto out_skip;
    493
    494	if (ip->i_flags & XFS_NEED_INACTIVE) {
    495		/* Unlinked inodes cannot be re-grabbed. */
    496		if (VFS_I(ip)->i_nlink == 0) {
    497			error = -ENOENT;
    498			goto out_error;
    499		}
    500		goto out_inodegc_flush;
    501	}
    502
    503	/*
    504	 * Check the inode free state is valid. This also detects lookup
    505	 * racing with unlinks.
    506	 */
    507	error = xfs_iget_check_free_state(ip, flags);
    508	if (error)
    509		goto out_error;
    510
    511	/* Skip inodes that have no vfs state. */
    512	if ((flags & XFS_IGET_INCORE) &&
    513	    (ip->i_flags & XFS_IRECLAIMABLE))
    514		goto out_skip;
    515
    516	/* The inode fits the selection criteria; process it. */
    517	if (ip->i_flags & XFS_IRECLAIMABLE) {
    518		/* Drops i_flags_lock and RCU read lock. */
    519		error = xfs_iget_recycle(pag, ip);
    520		if (error)
    521			return error;
    522	} else {
    523		/* If the VFS inode is being torn down, pause and try again. */
    524		if (!igrab(inode))
    525			goto out_skip;
    526
    527		/* We've got a live one. */
    528		spin_unlock(&ip->i_flags_lock);
    529		rcu_read_unlock();
    530		trace_xfs_iget_hit(ip);
    531	}
    532
    533	if (lock_flags != 0)
    534		xfs_ilock(ip, lock_flags);
    535
    536	if (!(flags & XFS_IGET_INCORE))
    537		xfs_iflags_clear(ip, XFS_ISTALE);
    538	XFS_STATS_INC(mp, xs_ig_found);
    539
    540	return 0;
    541
    542out_skip:
    543	trace_xfs_iget_skip(ip);
    544	XFS_STATS_INC(mp, xs_ig_frecycle);
    545	error = -EAGAIN;
    546out_error:
    547	spin_unlock(&ip->i_flags_lock);
    548	rcu_read_unlock();
    549	return error;
    550
    551out_inodegc_flush:
    552	spin_unlock(&ip->i_flags_lock);
    553	rcu_read_unlock();
    554	/*
    555	 * Do not wait for the workers, because the caller could hold an AGI
    556	 * buffer lock.  We're just going to sleep in a loop anyway.
    557	 */
    558	if (xfs_is_inodegc_enabled(mp))
    559		xfs_inodegc_queue_all(mp);
    560	return -EAGAIN;
    561}
    562
    563static int
    564xfs_iget_cache_miss(
    565	struct xfs_mount	*mp,
    566	struct xfs_perag	*pag,
    567	xfs_trans_t		*tp,
    568	xfs_ino_t		ino,
    569	struct xfs_inode	**ipp,
    570	int			flags,
    571	int			lock_flags)
    572{
    573	struct xfs_inode	*ip;
    574	int			error;
    575	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
    576	int			iflags;
    577
    578	ip = xfs_inode_alloc(mp, ino);
    579	if (!ip)
    580		return -ENOMEM;
    581
    582	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
    583	if (error)
    584		goto out_destroy;
    585
    586	/*
    587	 * For version 5 superblocks, if we are initialising a new inode and we
    588	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
    589	 * simply build the new inode core with a random generation number.
    590	 *
    591	 * For version 4 (and older) superblocks, log recovery is dependent on
    592	 * the i_flushiter field being initialised from the current on-disk
    593	 * value and hence we must also read the inode off disk even when
    594	 * initializing new inodes.
    595	 */
    596	if (xfs_has_v3inodes(mp) &&
    597	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
    598		VFS_I(ip)->i_generation = prandom_u32();
    599	} else {
    600		struct xfs_buf		*bp;
    601
    602		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
    603		if (error)
    604			goto out_destroy;
    605
    606		error = xfs_inode_from_disk(ip,
    607				xfs_buf_offset(bp, ip->i_imap.im_boffset));
    608		if (!error)
    609			xfs_buf_set_ref(bp, XFS_INO_REF);
    610		xfs_trans_brelse(tp, bp);
    611
    612		if (error)
    613			goto out_destroy;
    614	}
    615
    616	trace_xfs_iget_miss(ip);
    617
    618	/*
    619	 * Check the inode free state is valid. This also detects lookup
    620	 * racing with unlinks.
    621	 */
    622	error = xfs_iget_check_free_state(ip, flags);
    623	if (error)
    624		goto out_destroy;
    625
    626	/*
    627	 * Preload the radix tree so we can insert safely under the
    628	 * write spinlock. Note that we cannot sleep inside the preload
    629	 * region. Since we can be called from transaction context, don't
    630	 * recurse into the file system.
    631	 */
    632	if (radix_tree_preload(GFP_NOFS)) {
    633		error = -EAGAIN;
    634		goto out_destroy;
    635	}
    636
    637	/*
    638	 * Because the inode hasn't been added to the radix-tree yet it can't
    639	 * be found by another thread, so we can do the non-sleeping lock here.
    640	 */
    641	if (lock_flags) {
    642		if (!xfs_ilock_nowait(ip, lock_flags))
    643			BUG();
    644	}
    645
    646	/*
    647	 * These values must be set before inserting the inode into the radix
    648	 * tree as the moment it is inserted a concurrent lookup (allowed by the
    649	 * RCU locking mechanism) can find it and that lookup must see that this
    650	 * is an inode currently under construction (i.e. that XFS_INEW is set).
    651	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
    652	 * memory barrier that ensures this detection works correctly at lookup
    653	 * time.
    654	 */
    655	iflags = XFS_INEW;
    656	if (flags & XFS_IGET_DONTCACHE)
    657		d_mark_dontcache(VFS_I(ip));
    658	ip->i_udquot = NULL;
    659	ip->i_gdquot = NULL;
    660	ip->i_pdquot = NULL;
    661	xfs_iflags_set(ip, iflags);
    662
    663	/* insert the new inode */
    664	spin_lock(&pag->pag_ici_lock);
    665	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
    666	if (unlikely(error)) {
    667		WARN_ON(error != -EEXIST);
    668		XFS_STATS_INC(mp, xs_ig_dup);
    669		error = -EAGAIN;
    670		goto out_preload_end;
    671	}
    672	spin_unlock(&pag->pag_ici_lock);
    673	radix_tree_preload_end();
    674
    675	*ipp = ip;
    676	return 0;
    677
    678out_preload_end:
    679	spin_unlock(&pag->pag_ici_lock);
    680	radix_tree_preload_end();
    681	if (lock_flags)
    682		xfs_iunlock(ip, lock_flags);
    683out_destroy:
    684	__destroy_inode(VFS_I(ip));
    685	xfs_inode_free(ip);
    686	return error;
    687}
    688
    689/*
    690 * Look up an inode by number in the given file system.  The inode is looked up
    691 * in the cache held in each AG.  If the inode is found in the cache, initialise
    692 * the vfs inode if necessary.
    693 *
    694 * If it is not in core, read it in from the file system's device, add it to the
    695 * cache and initialise the vfs inode.
    696 *
    697 * The inode is locked according to the value of the lock_flags parameter.
    698 * Inode lookup is only done during metadata operations and not as part of the
    699 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
    700 */
    701int
    702xfs_iget(
    703	struct xfs_mount	*mp,
    704	struct xfs_trans	*tp,
    705	xfs_ino_t		ino,
    706	uint			flags,
    707	uint			lock_flags,
    708	struct xfs_inode	**ipp)
    709{
    710	struct xfs_inode	*ip;
    711	struct xfs_perag	*pag;
    712	xfs_agino_t		agino;
    713	int			error;
    714
    715	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
    716
    717	/* reject inode numbers outside existing AGs */
    718	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
    719		return -EINVAL;
    720
    721	XFS_STATS_INC(mp, xs_ig_attempts);
    722
    723	/* get the perag structure and ensure that it's inode capable */
    724	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
    725	agino = XFS_INO_TO_AGINO(mp, ino);
    726
    727again:
    728	error = 0;
    729	rcu_read_lock();
    730	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
    731
    732	if (ip) {
    733		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
    734		if (error)
    735			goto out_error_or_again;
    736	} else {
    737		rcu_read_unlock();
    738		if (flags & XFS_IGET_INCORE) {
    739			error = -ENODATA;
    740			goto out_error_or_again;
    741		}
    742		XFS_STATS_INC(mp, xs_ig_missed);
    743
    744		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
    745							flags, lock_flags);
    746		if (error)
    747			goto out_error_or_again;
    748	}
    749	xfs_perag_put(pag);
    750
    751	*ipp = ip;
    752
    753	/*
    754	 * If we have a real type for an on-disk inode, we can setup the inode
    755	 * now.	 If it's a new inode being created, xfs_init_new_inode will
    756	 * handle it.
    757	 */
    758	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
    759		xfs_setup_existing_inode(ip);
    760	return 0;
    761
    762out_error_or_again:
    763	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
    764		delay(1);
    765		goto again;
    766	}
    767	xfs_perag_put(pag);
    768	return error;
    769}
    770
    771/*
    772 * "Is this a cached inode that's also allocated?"
    773 *
    774 * Look up an inode by number in the given file system.  If the inode is
    775 * in cache and isn't in purgatory, return 1 if the inode is allocated
    776 * and 0 if it is not.  For all other cases (not in cache, being torn
    777 * down, etc.), return a negative error code.
    778 *
    779 * The caller has to prevent inode allocation and freeing activity,
    780 * presumably by locking the AGI buffer.   This is to ensure that an
    781 * inode cannot transition from allocated to freed until the caller is
    782 * ready to allow that.  If the inode is in an intermediate state (new,
    783 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
    784 * inode is not in the cache, -ENOENT will be returned.  The caller must
    785 * deal with these scenarios appropriately.
    786 *
    787 * This is a specialized use case for the online scrubber; if you're
    788 * reading this, you probably want xfs_iget.
    789 */
    790int
    791xfs_icache_inode_is_allocated(
    792	struct xfs_mount	*mp,
    793	struct xfs_trans	*tp,
    794	xfs_ino_t		ino,
    795	bool			*inuse)
    796{
    797	struct xfs_inode	*ip;
    798	int			error;
    799
    800	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
    801	if (error)
    802		return error;
    803
    804	*inuse = !!(VFS_I(ip)->i_mode);
    805	xfs_irele(ip);
    806	return 0;
    807}
    808
    809/*
    810 * Grab the inode for reclaim exclusively.
    811 *
    812 * We have found this inode via a lookup under RCU, so the inode may have
    813 * already been freed, or it may be in the process of being recycled by
    814 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
    815 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
    816 * will not be set. Hence we need to check for both these flag conditions to
    817 * avoid inodes that are no longer reclaim candidates.
    818 *
    819 * Note: checking for other state flags here, under the i_flags_lock or not, is
    820 * racy and should be avoided. Those races should be resolved only after we have
    821 * ensured that we are able to reclaim this inode and the world can see that we
    822 * are going to reclaim it.
    823 *
    824 * Return true if we grabbed it, false otherwise.
    825 */
    826static bool
    827xfs_reclaim_igrab(
    828	struct xfs_inode	*ip,
    829	struct xfs_icwalk	*icw)
    830{
    831	ASSERT(rcu_read_lock_held());
    832
    833	spin_lock(&ip->i_flags_lock);
    834	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
    835	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
    836		/* not a reclaim candidate. */
    837		spin_unlock(&ip->i_flags_lock);
    838		return false;
    839	}
    840
    841	/* Don't reclaim a sick inode unless the caller asked for it. */
    842	if (ip->i_sick &&
    843	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
    844		spin_unlock(&ip->i_flags_lock);
    845		return false;
    846	}
    847
    848	__xfs_iflags_set(ip, XFS_IRECLAIM);
    849	spin_unlock(&ip->i_flags_lock);
    850	return true;
    851}
    852
    853/*
    854 * Inode reclaim is non-blocking, so the default action if progress cannot be
    855 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
    856 * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
    857 * blocking anymore and hence we can wait for the inode to be able to reclaim
    858 * it.
    859 *
    860 * We do no IO here - if callers require inodes to be cleaned they must push the
    861 * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
    862 * done in the background in a non-blocking manner, and enables memory reclaim
    863 * to make progress without blocking.
    864 */
    865static void
    866xfs_reclaim_inode(
    867	struct xfs_inode	*ip,
    868	struct xfs_perag	*pag)
    869{
    870	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
    871
    872	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
    873		goto out;
    874	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
    875		goto out_iunlock;
    876
    877	/*
    878	 * Check for log shutdown because aborting the inode can move the log
    879	 * tail and corrupt in memory state. This is fine if the log is shut
    880	 * down, but if the log is still active and only the mount is shut down
    881	 * then the in-memory log tail movement caused by the abort can be
    882	 * incorrectly propagated to disk.
    883	 */
    884	if (xlog_is_shutdown(ip->i_mount->m_log)) {
    885		xfs_iunpin_wait(ip);
    886		xfs_iflush_shutdown_abort(ip);
    887		goto reclaim;
    888	}
    889	if (xfs_ipincount(ip))
    890		goto out_clear_flush;
    891	if (!xfs_inode_clean(ip))
    892		goto out_clear_flush;
    893
    894	xfs_iflags_clear(ip, XFS_IFLUSHING);
    895reclaim:
    896	trace_xfs_inode_reclaiming(ip);
    897
    898	/*
    899	 * Because we use RCU freeing we need to ensure the inode always appears
    900	 * to be reclaimed with an invalid inode number when in the free state.
    901	 * We do this as early as possible under the ILOCK so that
    902	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
    903	 * detect races with us here. By doing this, we guarantee that once
    904	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
    905	 * it will see either a valid inode that will serialise correctly, or it
    906	 * will see an invalid inode that it can skip.
    907	 */
    908	spin_lock(&ip->i_flags_lock);
    909	ip->i_flags = XFS_IRECLAIM;
    910	ip->i_ino = 0;
    911	ip->i_sick = 0;
    912	ip->i_checked = 0;
    913	spin_unlock(&ip->i_flags_lock);
    914
    915	xfs_iunlock(ip, XFS_ILOCK_EXCL);
    916
    917	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
    918	/*
    919	 * Remove the inode from the per-AG radix tree.
    920	 *
    921	 * Because radix_tree_delete won't complain even if the item was never
    922	 * added to the tree assert that it's been there before to catch
    923	 * problems with the inode life time early on.
    924	 */
    925	spin_lock(&pag->pag_ici_lock);
    926	if (!radix_tree_delete(&pag->pag_ici_root,
    927				XFS_INO_TO_AGINO(ip->i_mount, ino)))
    928		ASSERT(0);
    929	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
    930	spin_unlock(&pag->pag_ici_lock);
    931
    932	/*
    933	 * Here we do an (almost) spurious inode lock in order to coordinate
    934	 * with inode cache radix tree lookups.  This is because the lookup
    935	 * can reference the inodes in the cache without taking references.
    936	 *
    937	 * We make that OK here by ensuring that we wait until the inode is
    938	 * unlocked after the lookup before we go ahead and free it.
    939	 */
    940	xfs_ilock(ip, XFS_ILOCK_EXCL);
    941	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
    942	xfs_iunlock(ip, XFS_ILOCK_EXCL);
    943	ASSERT(xfs_inode_clean(ip));
    944
    945	__xfs_inode_free(ip);
    946	return;
    947
    948out_clear_flush:
    949	xfs_iflags_clear(ip, XFS_IFLUSHING);
    950out_iunlock:
    951	xfs_iunlock(ip, XFS_ILOCK_EXCL);
    952out:
    953	xfs_iflags_clear(ip, XFS_IRECLAIM);
    954}
    955
    956/* Reclaim sick inodes if we're unmounting or the fs went down. */
    957static inline bool
    958xfs_want_reclaim_sick(
    959	struct xfs_mount	*mp)
    960{
    961	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
    962	       xfs_is_shutdown(mp);
    963}
    964
    965void
    966xfs_reclaim_inodes(
    967	struct xfs_mount	*mp)
    968{
    969	struct xfs_icwalk	icw = {
    970		.icw_flags	= 0,
    971	};
    972
    973	if (xfs_want_reclaim_sick(mp))
    974		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
    975
    976	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
    977		xfs_ail_push_all_sync(mp->m_ail);
    978		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
    979	}
    980}
    981
    982/*
    983 * The shrinker infrastructure determines how many inodes we should scan for
    984 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
    985 * push the AIL here. We also want to proactively free up memory if we can to
    986 * minimise the amount of work memory reclaim has to do so we kick the
    987 * background reclaim if it isn't already scheduled.
    988 */
    989long
    990xfs_reclaim_inodes_nr(
    991	struct xfs_mount	*mp,
    992	unsigned long		nr_to_scan)
    993{
    994	struct xfs_icwalk	icw = {
    995		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
    996		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
    997	};
    998
    999	if (xfs_want_reclaim_sick(mp))
   1000		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
   1001
   1002	/* kick background reclaimer and push the AIL */
   1003	xfs_reclaim_work_queue(mp);
   1004	xfs_ail_push_all(mp->m_ail);
   1005
   1006	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
   1007	return 0;
   1008}
   1009
   1010/*
   1011 * Return the number of reclaimable inodes in the filesystem for
   1012 * the shrinker to determine how much to reclaim.
   1013 */
   1014long
   1015xfs_reclaim_inodes_count(
   1016	struct xfs_mount	*mp)
   1017{
   1018	struct xfs_perag	*pag;
   1019	xfs_agnumber_t		ag = 0;
   1020	long			reclaimable = 0;
   1021
   1022	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
   1023		ag = pag->pag_agno + 1;
   1024		reclaimable += pag->pag_ici_reclaimable;
   1025		xfs_perag_put(pag);
   1026	}
   1027	return reclaimable;
   1028}
   1029
   1030STATIC bool
   1031xfs_icwalk_match_id(
   1032	struct xfs_inode	*ip,
   1033	struct xfs_icwalk	*icw)
   1034{
   1035	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
   1036	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
   1037		return false;
   1038
   1039	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
   1040	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
   1041		return false;
   1042
   1043	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
   1044	    ip->i_projid != icw->icw_prid)
   1045		return false;
   1046
   1047	return true;
   1048}
   1049
   1050/*
   1051 * A union-based inode filtering algorithm. Process the inode if any of the
   1052 * criteria match. This is for global/internal scans only.
   1053 */
   1054STATIC bool
   1055xfs_icwalk_match_id_union(
   1056	struct xfs_inode	*ip,
   1057	struct xfs_icwalk	*icw)
   1058{
   1059	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
   1060	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
   1061		return true;
   1062
   1063	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
   1064	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
   1065		return true;
   1066
   1067	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
   1068	    ip->i_projid == icw->icw_prid)
   1069		return true;
   1070
   1071	return false;
   1072}
   1073
   1074/*
   1075 * Is this inode @ip eligible for eof/cow block reclamation, given some
   1076 * filtering parameters @icw?  The inode is eligible if @icw is null or
   1077 * if the predicate functions match.
   1078 */
   1079static bool
   1080xfs_icwalk_match(
   1081	struct xfs_inode	*ip,
   1082	struct xfs_icwalk	*icw)
   1083{
   1084	bool			match;
   1085
   1086	if (!icw)
   1087		return true;
   1088
   1089	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
   1090		match = xfs_icwalk_match_id_union(ip, icw);
   1091	else
   1092		match = xfs_icwalk_match_id(ip, icw);
   1093	if (!match)
   1094		return false;
   1095
   1096	/* skip the inode if the file size is too small */
   1097	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
   1098	    XFS_ISIZE(ip) < icw->icw_min_file_size)
   1099		return false;
   1100
   1101	return true;
   1102}
   1103
   1104/*
   1105 * This is a fast pass over the inode cache to try to get reclaim moving on as
   1106 * many inodes as possible in a short period of time. It kicks itself every few
   1107 * seconds, as well as being kicked by the inode cache shrinker when memory
   1108 * goes low.
   1109 */
   1110void
   1111xfs_reclaim_worker(
   1112	struct work_struct *work)
   1113{
   1114	struct xfs_mount *mp = container_of(to_delayed_work(work),
   1115					struct xfs_mount, m_reclaim_work);
   1116
   1117	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
   1118	xfs_reclaim_work_queue(mp);
   1119}
   1120
   1121STATIC int
   1122xfs_inode_free_eofblocks(
   1123	struct xfs_inode	*ip,
   1124	struct xfs_icwalk	*icw,
   1125	unsigned int		*lockflags)
   1126{
   1127	bool			wait;
   1128
   1129	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
   1130
   1131	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
   1132		return 0;
   1133
   1134	/*
   1135	 * If the mapping is dirty the operation can block and wait for some
   1136	 * time. Unless we are waiting, skip it.
   1137	 */
   1138	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
   1139		return 0;
   1140
   1141	if (!xfs_icwalk_match(ip, icw))
   1142		return 0;
   1143
   1144	/*
   1145	 * If the caller is waiting, return -EAGAIN to keep the background
   1146	 * scanner moving and revisit the inode in a subsequent pass.
   1147	 */
   1148	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
   1149		if (wait)
   1150			return -EAGAIN;
   1151		return 0;
   1152	}
   1153	*lockflags |= XFS_IOLOCK_EXCL;
   1154
   1155	if (xfs_can_free_eofblocks(ip, false))
   1156		return xfs_free_eofblocks(ip);
   1157
   1158	/* inode could be preallocated or append-only */
   1159	trace_xfs_inode_free_eofblocks_invalid(ip);
   1160	xfs_inode_clear_eofblocks_tag(ip);
   1161	return 0;
   1162}
   1163
   1164static void
   1165xfs_blockgc_set_iflag(
   1166	struct xfs_inode	*ip,
   1167	unsigned long		iflag)
   1168{
   1169	struct xfs_mount	*mp = ip->i_mount;
   1170	struct xfs_perag	*pag;
   1171
   1172	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
   1173
   1174	/*
   1175	 * Don't bother locking the AG and looking up in the radix trees
   1176	 * if we already know that we have the tag set.
   1177	 */
   1178	if (ip->i_flags & iflag)
   1179		return;
   1180	spin_lock(&ip->i_flags_lock);
   1181	ip->i_flags |= iflag;
   1182	spin_unlock(&ip->i_flags_lock);
   1183
   1184	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
   1185	spin_lock(&pag->pag_ici_lock);
   1186
   1187	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
   1188			XFS_ICI_BLOCKGC_TAG);
   1189
   1190	spin_unlock(&pag->pag_ici_lock);
   1191	xfs_perag_put(pag);
   1192}
   1193
   1194void
   1195xfs_inode_set_eofblocks_tag(
   1196	xfs_inode_t	*ip)
   1197{
   1198	trace_xfs_inode_set_eofblocks_tag(ip);
   1199	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
   1200}
   1201
   1202static void
   1203xfs_blockgc_clear_iflag(
   1204	struct xfs_inode	*ip,
   1205	unsigned long		iflag)
   1206{
   1207	struct xfs_mount	*mp = ip->i_mount;
   1208	struct xfs_perag	*pag;
   1209	bool			clear_tag;
   1210
   1211	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
   1212
   1213	spin_lock(&ip->i_flags_lock);
   1214	ip->i_flags &= ~iflag;
   1215	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
   1216	spin_unlock(&ip->i_flags_lock);
   1217
   1218	if (!clear_tag)
   1219		return;
   1220
   1221	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
   1222	spin_lock(&pag->pag_ici_lock);
   1223
   1224	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
   1225			XFS_ICI_BLOCKGC_TAG);
   1226
   1227	spin_unlock(&pag->pag_ici_lock);
   1228	xfs_perag_put(pag);
   1229}
   1230
   1231void
   1232xfs_inode_clear_eofblocks_tag(
   1233	xfs_inode_t	*ip)
   1234{
   1235	trace_xfs_inode_clear_eofblocks_tag(ip);
   1236	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
   1237}
   1238
   1239/*
   1240 * Set ourselves up to free CoW blocks from this file.  If it's already clean
   1241 * then we can bail out quickly, but otherwise we must back off if the file
   1242 * is undergoing some kind of write.
   1243 */
   1244static bool
   1245xfs_prep_free_cowblocks(
   1246	struct xfs_inode	*ip)
   1247{
   1248	/*
   1249	 * Just clear the tag if we have an empty cow fork or none at all. It's
   1250	 * possible the inode was fully unshared since it was originally tagged.
   1251	 */
   1252	if (!xfs_inode_has_cow_data(ip)) {
   1253		trace_xfs_inode_free_cowblocks_invalid(ip);
   1254		xfs_inode_clear_cowblocks_tag(ip);
   1255		return false;
   1256	}
   1257
   1258	/*
   1259	 * If the mapping is dirty or under writeback we cannot touch the
   1260	 * CoW fork.  Leave it alone if we're in the midst of a directio.
   1261	 */
   1262	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
   1263	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
   1264	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
   1265	    atomic_read(&VFS_I(ip)->i_dio_count))
   1266		return false;
   1267
   1268	return true;
   1269}
   1270
   1271/*
   1272 * Automatic CoW Reservation Freeing
   1273 *
   1274 * These functions automatically garbage collect leftover CoW reservations
   1275 * that were made on behalf of a cowextsize hint when we start to run out
   1276 * of quota or when the reservations sit around for too long.  If the file
   1277 * has dirty pages or is undergoing writeback, its CoW reservations will
   1278 * be retained.
   1279 *
   1280 * The actual garbage collection piggybacks off the same code that runs
   1281 * the speculative EOF preallocation garbage collector.
   1282 */
   1283STATIC int
   1284xfs_inode_free_cowblocks(
   1285	struct xfs_inode	*ip,
   1286	struct xfs_icwalk	*icw,
   1287	unsigned int		*lockflags)
   1288{
   1289	bool			wait;
   1290	int			ret = 0;
   1291
   1292	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
   1293
   1294	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
   1295		return 0;
   1296
   1297	if (!xfs_prep_free_cowblocks(ip))
   1298		return 0;
   1299
   1300	if (!xfs_icwalk_match(ip, icw))
   1301		return 0;
   1302
   1303	/*
   1304	 * If the caller is waiting, return -EAGAIN to keep the background
   1305	 * scanner moving and revisit the inode in a subsequent pass.
   1306	 */
   1307	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
   1308	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
   1309		if (wait)
   1310			return -EAGAIN;
   1311		return 0;
   1312	}
   1313	*lockflags |= XFS_IOLOCK_EXCL;
   1314
   1315	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
   1316		if (wait)
   1317			return -EAGAIN;
   1318		return 0;
   1319	}
   1320	*lockflags |= XFS_MMAPLOCK_EXCL;
   1321
   1322	/*
   1323	 * Check again, nobody else should be able to dirty blocks or change
   1324	 * the reflink iflag now that we have the first two locks held.
   1325	 */
   1326	if (xfs_prep_free_cowblocks(ip))
   1327		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
   1328	return ret;
   1329}
   1330
   1331void
   1332xfs_inode_set_cowblocks_tag(
   1333	xfs_inode_t	*ip)
   1334{
   1335	trace_xfs_inode_set_cowblocks_tag(ip);
   1336	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
   1337}
   1338
   1339void
   1340xfs_inode_clear_cowblocks_tag(
   1341	xfs_inode_t	*ip)
   1342{
   1343	trace_xfs_inode_clear_cowblocks_tag(ip);
   1344	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
   1345}
   1346
   1347/* Disable post-EOF and CoW block auto-reclamation. */
   1348void
   1349xfs_blockgc_stop(
   1350	struct xfs_mount	*mp)
   1351{
   1352	struct xfs_perag	*pag;
   1353	xfs_agnumber_t		agno;
   1354
   1355	if (!xfs_clear_blockgc_enabled(mp))
   1356		return;
   1357
   1358	for_each_perag(mp, agno, pag)
   1359		cancel_delayed_work_sync(&pag->pag_blockgc_work);
   1360	trace_xfs_blockgc_stop(mp, __return_address);
   1361}
   1362
   1363/* Enable post-EOF and CoW block auto-reclamation. */
   1364void
   1365xfs_blockgc_start(
   1366	struct xfs_mount	*mp)
   1367{
   1368	struct xfs_perag	*pag;
   1369	xfs_agnumber_t		agno;
   1370
   1371	if (xfs_set_blockgc_enabled(mp))
   1372		return;
   1373
   1374	trace_xfs_blockgc_start(mp, __return_address);
   1375	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
   1376		xfs_blockgc_queue(pag);
   1377}
   1378
   1379/* Don't try to run block gc on an inode that's in any of these states. */
   1380#define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
   1381					 XFS_NEED_INACTIVE | \
   1382					 XFS_INACTIVATING | \
   1383					 XFS_IRECLAIMABLE | \
   1384					 XFS_IRECLAIM)
   1385/*
   1386 * Decide if the given @ip is eligible for garbage collection of speculative
   1387 * preallocations, and grab it if so.  Returns true if it's ready to go or
   1388 * false if we should just ignore it.
   1389 */
   1390static bool
   1391xfs_blockgc_igrab(
   1392	struct xfs_inode	*ip)
   1393{
   1394	struct inode		*inode = VFS_I(ip);
   1395
   1396	ASSERT(rcu_read_lock_held());
   1397
   1398	/* Check for stale RCU freed inode */
   1399	spin_lock(&ip->i_flags_lock);
   1400	if (!ip->i_ino)
   1401		goto out_unlock_noent;
   1402
   1403	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
   1404		goto out_unlock_noent;
   1405	spin_unlock(&ip->i_flags_lock);
   1406
   1407	/* nothing to sync during shutdown */
   1408	if (xfs_is_shutdown(ip->i_mount))
   1409		return false;
   1410
   1411	/* If we can't grab the inode, it must on it's way to reclaim. */
   1412	if (!igrab(inode))
   1413		return false;
   1414
   1415	/* inode is valid */
   1416	return true;
   1417
   1418out_unlock_noent:
   1419	spin_unlock(&ip->i_flags_lock);
   1420	return false;
   1421}
   1422
   1423/* Scan one incore inode for block preallocations that we can remove. */
   1424static int
   1425xfs_blockgc_scan_inode(
   1426	struct xfs_inode	*ip,
   1427	struct xfs_icwalk	*icw)
   1428{
   1429	unsigned int		lockflags = 0;
   1430	int			error;
   1431
   1432	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
   1433	if (error)
   1434		goto unlock;
   1435
   1436	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
   1437unlock:
   1438	if (lockflags)
   1439		xfs_iunlock(ip, lockflags);
   1440	xfs_irele(ip);
   1441	return error;
   1442}
   1443
   1444/* Background worker that trims preallocated space. */
   1445void
   1446xfs_blockgc_worker(
   1447	struct work_struct	*work)
   1448{
   1449	struct xfs_perag	*pag = container_of(to_delayed_work(work),
   1450					struct xfs_perag, pag_blockgc_work);
   1451	struct xfs_mount	*mp = pag->pag_mount;
   1452	int			error;
   1453
   1454	trace_xfs_blockgc_worker(mp, __return_address);
   1455
   1456	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
   1457	if (error)
   1458		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
   1459				pag->pag_agno, error);
   1460	xfs_blockgc_queue(pag);
   1461}
   1462
   1463/*
   1464 * Try to free space in the filesystem by purging inactive inodes, eofblocks
   1465 * and cowblocks.
   1466 */
   1467int
   1468xfs_blockgc_free_space(
   1469	struct xfs_mount	*mp,
   1470	struct xfs_icwalk	*icw)
   1471{
   1472	int			error;
   1473
   1474	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
   1475
   1476	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
   1477	if (error)
   1478		return error;
   1479
   1480	xfs_inodegc_flush(mp);
   1481	return 0;
   1482}
   1483
   1484/*
   1485 * Reclaim all the free space that we can by scheduling the background blockgc
   1486 * and inodegc workers immediately and waiting for them all to clear.
   1487 */
   1488void
   1489xfs_blockgc_flush_all(
   1490	struct xfs_mount	*mp)
   1491{
   1492	struct xfs_perag	*pag;
   1493	xfs_agnumber_t		agno;
   1494
   1495	trace_xfs_blockgc_flush_all(mp, __return_address);
   1496
   1497	/*
   1498	 * For each blockgc worker, move its queue time up to now.  If it
   1499	 * wasn't queued, it will not be requeued.  Then flush whatever's
   1500	 * left.
   1501	 */
   1502	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
   1503		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
   1504				&pag->pag_blockgc_work, 0);
   1505
   1506	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
   1507		flush_delayed_work(&pag->pag_blockgc_work);
   1508
   1509	xfs_inodegc_flush(mp);
   1510}
   1511
   1512/*
   1513 * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
   1514 * quota caused an allocation failure, so we make a best effort by including
   1515 * each quota under low free space conditions (less than 1% free space) in the
   1516 * scan.
   1517 *
   1518 * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
   1519 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
   1520 * MMAPLOCK.
   1521 */
   1522int
   1523xfs_blockgc_free_dquots(
   1524	struct xfs_mount	*mp,
   1525	struct xfs_dquot	*udqp,
   1526	struct xfs_dquot	*gdqp,
   1527	struct xfs_dquot	*pdqp,
   1528	unsigned int		iwalk_flags)
   1529{
   1530	struct xfs_icwalk	icw = {0};
   1531	bool			do_work = false;
   1532
   1533	if (!udqp && !gdqp && !pdqp)
   1534		return 0;
   1535
   1536	/*
   1537	 * Run a scan to free blocks using the union filter to cover all
   1538	 * applicable quotas in a single scan.
   1539	 */
   1540	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
   1541
   1542	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
   1543		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
   1544		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
   1545		do_work = true;
   1546	}
   1547
   1548	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
   1549		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
   1550		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
   1551		do_work = true;
   1552	}
   1553
   1554	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
   1555		icw.icw_prid = pdqp->q_id;
   1556		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
   1557		do_work = true;
   1558	}
   1559
   1560	if (!do_work)
   1561		return 0;
   1562
   1563	return xfs_blockgc_free_space(mp, &icw);
   1564}
   1565
   1566/* Run cow/eofblocks scans on the quotas attached to the inode. */
   1567int
   1568xfs_blockgc_free_quota(
   1569	struct xfs_inode	*ip,
   1570	unsigned int		iwalk_flags)
   1571{
   1572	return xfs_blockgc_free_dquots(ip->i_mount,
   1573			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
   1574			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
   1575			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
   1576}
   1577
   1578/* XFS Inode Cache Walking Code */
   1579
   1580/*
   1581 * The inode lookup is done in batches to keep the amount of lock traffic and
   1582 * radix tree lookups to a minimum. The batch size is a trade off between
   1583 * lookup reduction and stack usage. This is in the reclaim path, so we can't
   1584 * be too greedy.
   1585 */
   1586#define XFS_LOOKUP_BATCH	32
   1587
   1588
   1589/*
   1590 * Decide if we want to grab this inode in anticipation of doing work towards
   1591 * the goal.
   1592 */
   1593static inline bool
   1594xfs_icwalk_igrab(
   1595	enum xfs_icwalk_goal	goal,
   1596	struct xfs_inode	*ip,
   1597	struct xfs_icwalk	*icw)
   1598{
   1599	switch (goal) {
   1600	case XFS_ICWALK_BLOCKGC:
   1601		return xfs_blockgc_igrab(ip);
   1602	case XFS_ICWALK_RECLAIM:
   1603		return xfs_reclaim_igrab(ip, icw);
   1604	default:
   1605		return false;
   1606	}
   1607}
   1608
   1609/*
   1610 * Process an inode.  Each processing function must handle any state changes
   1611 * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
   1612 */
   1613static inline int
   1614xfs_icwalk_process_inode(
   1615	enum xfs_icwalk_goal	goal,
   1616	struct xfs_inode	*ip,
   1617	struct xfs_perag	*pag,
   1618	struct xfs_icwalk	*icw)
   1619{
   1620	int			error = 0;
   1621
   1622	switch (goal) {
   1623	case XFS_ICWALK_BLOCKGC:
   1624		error = xfs_blockgc_scan_inode(ip, icw);
   1625		break;
   1626	case XFS_ICWALK_RECLAIM:
   1627		xfs_reclaim_inode(ip, pag);
   1628		break;
   1629	}
   1630	return error;
   1631}
   1632
   1633/*
   1634 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
   1635 * process them in some manner.
   1636 */
   1637static int
   1638xfs_icwalk_ag(
   1639	struct xfs_perag	*pag,
   1640	enum xfs_icwalk_goal	goal,
   1641	struct xfs_icwalk	*icw)
   1642{
   1643	struct xfs_mount	*mp = pag->pag_mount;
   1644	uint32_t		first_index;
   1645	int			last_error = 0;
   1646	int			skipped;
   1647	bool			done;
   1648	int			nr_found;
   1649
   1650restart:
   1651	done = false;
   1652	skipped = 0;
   1653	if (goal == XFS_ICWALK_RECLAIM)
   1654		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
   1655	else
   1656		first_index = 0;
   1657	nr_found = 0;
   1658	do {
   1659		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
   1660		int		error = 0;
   1661		int		i;
   1662
   1663		rcu_read_lock();
   1664
   1665		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
   1666				(void **) batch, first_index,
   1667				XFS_LOOKUP_BATCH, goal);
   1668		if (!nr_found) {
   1669			done = true;
   1670			rcu_read_unlock();
   1671			break;
   1672		}
   1673
   1674		/*
   1675		 * Grab the inodes before we drop the lock. if we found
   1676		 * nothing, nr == 0 and the loop will be skipped.
   1677		 */
   1678		for (i = 0; i < nr_found; i++) {
   1679			struct xfs_inode *ip = batch[i];
   1680
   1681			if (done || !xfs_icwalk_igrab(goal, ip, icw))
   1682				batch[i] = NULL;
   1683
   1684			/*
   1685			 * Update the index for the next lookup. Catch
   1686			 * overflows into the next AG range which can occur if
   1687			 * we have inodes in the last block of the AG and we
   1688			 * are currently pointing to the last inode.
   1689			 *
   1690			 * Because we may see inodes that are from the wrong AG
   1691			 * due to RCU freeing and reallocation, only update the
   1692			 * index if it lies in this AG. It was a race that lead
   1693			 * us to see this inode, so another lookup from the
   1694			 * same index will not find it again.
   1695			 */
   1696			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
   1697				continue;
   1698			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
   1699			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
   1700				done = true;
   1701		}
   1702
   1703		/* unlock now we've grabbed the inodes. */
   1704		rcu_read_unlock();
   1705
   1706		for (i = 0; i < nr_found; i++) {
   1707			if (!batch[i])
   1708				continue;
   1709			error = xfs_icwalk_process_inode(goal, batch[i], pag,
   1710					icw);
   1711			if (error == -EAGAIN) {
   1712				skipped++;
   1713				continue;
   1714			}
   1715			if (error && last_error != -EFSCORRUPTED)
   1716				last_error = error;
   1717		}
   1718
   1719		/* bail out if the filesystem is corrupted.  */
   1720		if (error == -EFSCORRUPTED)
   1721			break;
   1722
   1723		cond_resched();
   1724
   1725		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
   1726			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
   1727			if (icw->icw_scan_limit <= 0)
   1728				break;
   1729		}
   1730	} while (nr_found && !done);
   1731
   1732	if (goal == XFS_ICWALK_RECLAIM) {
   1733		if (done)
   1734			first_index = 0;
   1735		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
   1736	}
   1737
   1738	if (skipped) {
   1739		delay(1);
   1740		goto restart;
   1741	}
   1742	return last_error;
   1743}
   1744
   1745/* Walk all incore inodes to achieve a given goal. */
   1746static int
   1747xfs_icwalk(
   1748	struct xfs_mount	*mp,
   1749	enum xfs_icwalk_goal	goal,
   1750	struct xfs_icwalk	*icw)
   1751{
   1752	struct xfs_perag	*pag;
   1753	int			error = 0;
   1754	int			last_error = 0;
   1755	xfs_agnumber_t		agno;
   1756
   1757	for_each_perag_tag(mp, agno, pag, goal) {
   1758		error = xfs_icwalk_ag(pag, goal, icw);
   1759		if (error) {
   1760			last_error = error;
   1761			if (error == -EFSCORRUPTED) {
   1762				xfs_perag_put(pag);
   1763				break;
   1764			}
   1765		}
   1766	}
   1767	return last_error;
   1768	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
   1769}
   1770
   1771#ifdef DEBUG
   1772static void
   1773xfs_check_delalloc(
   1774	struct xfs_inode	*ip,
   1775	int			whichfork)
   1776{
   1777	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
   1778	struct xfs_bmbt_irec	got;
   1779	struct xfs_iext_cursor	icur;
   1780
   1781	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
   1782		return;
   1783	do {
   1784		if (isnullstartblock(got.br_startblock)) {
   1785			xfs_warn(ip->i_mount,
   1786	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
   1787				ip->i_ino,
   1788				whichfork == XFS_DATA_FORK ? "data" : "cow",
   1789				got.br_startoff, got.br_blockcount);
   1790		}
   1791	} while (xfs_iext_next_extent(ifp, &icur, &got));
   1792}
   1793#else
   1794#define xfs_check_delalloc(ip, whichfork)	do { } while (0)
   1795#endif
   1796
   1797/* Schedule the inode for reclaim. */
   1798static void
   1799xfs_inodegc_set_reclaimable(
   1800	struct xfs_inode	*ip)
   1801{
   1802	struct xfs_mount	*mp = ip->i_mount;
   1803	struct xfs_perag	*pag;
   1804
   1805	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
   1806		xfs_check_delalloc(ip, XFS_DATA_FORK);
   1807		xfs_check_delalloc(ip, XFS_COW_FORK);
   1808		ASSERT(0);
   1809	}
   1810
   1811	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
   1812	spin_lock(&pag->pag_ici_lock);
   1813	spin_lock(&ip->i_flags_lock);
   1814
   1815	trace_xfs_inode_set_reclaimable(ip);
   1816	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
   1817	ip->i_flags |= XFS_IRECLAIMABLE;
   1818	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
   1819			XFS_ICI_RECLAIM_TAG);
   1820
   1821	spin_unlock(&ip->i_flags_lock);
   1822	spin_unlock(&pag->pag_ici_lock);
   1823	xfs_perag_put(pag);
   1824}
   1825
   1826/*
   1827 * Free all speculative preallocations and possibly even the inode itself.
   1828 * This is the last chance to make changes to an otherwise unreferenced file
   1829 * before incore reclamation happens.
   1830 */
   1831static void
   1832xfs_inodegc_inactivate(
   1833	struct xfs_inode	*ip)
   1834{
   1835	trace_xfs_inode_inactivating(ip);
   1836	xfs_inactive(ip);
   1837	xfs_inodegc_set_reclaimable(ip);
   1838}
   1839
   1840void
   1841xfs_inodegc_worker(
   1842	struct work_struct	*work)
   1843{
   1844	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
   1845						struct xfs_inodegc, work);
   1846	struct llist_node	*node = llist_del_all(&gc->list);
   1847	struct xfs_inode	*ip, *n;
   1848
   1849	WRITE_ONCE(gc->items, 0);
   1850
   1851	if (!node)
   1852		return;
   1853
   1854	ip = llist_entry(node, struct xfs_inode, i_gclist);
   1855	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
   1856
   1857	WRITE_ONCE(gc->shrinker_hits, 0);
   1858	llist_for_each_entry_safe(ip, n, node, i_gclist) {
   1859		xfs_iflags_set(ip, XFS_INACTIVATING);
   1860		xfs_inodegc_inactivate(ip);
   1861	}
   1862}
   1863
   1864/*
   1865 * Expedite all pending inodegc work to run immediately. This does not wait for
   1866 * completion of the work.
   1867 */
   1868void
   1869xfs_inodegc_push(
   1870	struct xfs_mount	*mp)
   1871{
   1872	if (!xfs_is_inodegc_enabled(mp))
   1873		return;
   1874	trace_xfs_inodegc_push(mp, __return_address);
   1875	xfs_inodegc_queue_all(mp);
   1876}
   1877
   1878/*
   1879 * Force all currently queued inode inactivation work to run immediately and
   1880 * wait for the work to finish.
   1881 */
   1882void
   1883xfs_inodegc_flush(
   1884	struct xfs_mount	*mp)
   1885{
   1886	xfs_inodegc_push(mp);
   1887	trace_xfs_inodegc_flush(mp, __return_address);
   1888	flush_workqueue(mp->m_inodegc_wq);
   1889}
   1890
   1891/*
   1892 * Flush all the pending work and then disable the inode inactivation background
   1893 * workers and wait for them to stop.
   1894 */
   1895void
   1896xfs_inodegc_stop(
   1897	struct xfs_mount	*mp)
   1898{
   1899	if (!xfs_clear_inodegc_enabled(mp))
   1900		return;
   1901
   1902	xfs_inodegc_queue_all(mp);
   1903	drain_workqueue(mp->m_inodegc_wq);
   1904
   1905	trace_xfs_inodegc_stop(mp, __return_address);
   1906}
   1907
   1908/*
   1909 * Enable the inode inactivation background workers and schedule deferred inode
   1910 * inactivation work if there is any.
   1911 */
   1912void
   1913xfs_inodegc_start(
   1914	struct xfs_mount	*mp)
   1915{
   1916	if (xfs_set_inodegc_enabled(mp))
   1917		return;
   1918
   1919	trace_xfs_inodegc_start(mp, __return_address);
   1920	xfs_inodegc_queue_all(mp);
   1921}
   1922
   1923#ifdef CONFIG_XFS_RT
   1924static inline bool
   1925xfs_inodegc_want_queue_rt_file(
   1926	struct xfs_inode	*ip)
   1927{
   1928	struct xfs_mount	*mp = ip->i_mount;
   1929
   1930	if (!XFS_IS_REALTIME_INODE(ip))
   1931		return false;
   1932
   1933	if (__percpu_counter_compare(&mp->m_frextents,
   1934				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
   1935				XFS_FDBLOCKS_BATCH) < 0)
   1936		return true;
   1937
   1938	return false;
   1939}
   1940#else
   1941# define xfs_inodegc_want_queue_rt_file(ip)	(false)
   1942#endif /* CONFIG_XFS_RT */
   1943
   1944/*
   1945 * Schedule the inactivation worker when:
   1946 *
   1947 *  - We've accumulated more than one inode cluster buffer's worth of inodes.
   1948 *  - There is less than 5% free space left.
   1949 *  - Any of the quotas for this inode are near an enforcement limit.
   1950 */
   1951static inline bool
   1952xfs_inodegc_want_queue_work(
   1953	struct xfs_inode	*ip,
   1954	unsigned int		items)
   1955{
   1956	struct xfs_mount	*mp = ip->i_mount;
   1957
   1958	if (items > mp->m_ino_geo.inodes_per_cluster)
   1959		return true;
   1960
   1961	if (__percpu_counter_compare(&mp->m_fdblocks,
   1962				mp->m_low_space[XFS_LOWSP_5_PCNT],
   1963				XFS_FDBLOCKS_BATCH) < 0)
   1964		return true;
   1965
   1966	if (xfs_inodegc_want_queue_rt_file(ip))
   1967		return true;
   1968
   1969	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
   1970		return true;
   1971
   1972	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
   1973		return true;
   1974
   1975	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
   1976		return true;
   1977
   1978	return false;
   1979}
   1980
   1981/*
   1982 * Upper bound on the number of inodes in each AG that can be queued for
   1983 * inactivation at any given time, to avoid monopolizing the workqueue.
   1984 */
   1985#define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
   1986
   1987/*
   1988 * Make the frontend wait for inactivations when:
   1989 *
   1990 *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
   1991 *  - The queue depth exceeds the maximum allowable percpu backlog.
   1992 *
   1993 * Note: If the current thread is running a transaction, we don't ever want to
   1994 * wait for other transactions because that could introduce a deadlock.
   1995 */
   1996static inline bool
   1997xfs_inodegc_want_flush_work(
   1998	struct xfs_inode	*ip,
   1999	unsigned int		items,
   2000	unsigned int		shrinker_hits)
   2001{
   2002	if (current->journal_info)
   2003		return false;
   2004
   2005	if (shrinker_hits > 0)
   2006		return true;
   2007
   2008	if (items > XFS_INODEGC_MAX_BACKLOG)
   2009		return true;
   2010
   2011	return false;
   2012}
   2013
   2014/*
   2015 * Queue a background inactivation worker if there are inodes that need to be
   2016 * inactivated and higher level xfs code hasn't disabled the background
   2017 * workers.
   2018 */
   2019static void
   2020xfs_inodegc_queue(
   2021	struct xfs_inode	*ip)
   2022{
   2023	struct xfs_mount	*mp = ip->i_mount;
   2024	struct xfs_inodegc	*gc;
   2025	int			items;
   2026	unsigned int		shrinker_hits;
   2027	unsigned long		queue_delay = 1;
   2028
   2029	trace_xfs_inode_set_need_inactive(ip);
   2030	spin_lock(&ip->i_flags_lock);
   2031	ip->i_flags |= XFS_NEED_INACTIVE;
   2032	spin_unlock(&ip->i_flags_lock);
   2033
   2034	gc = get_cpu_ptr(mp->m_inodegc);
   2035	llist_add(&ip->i_gclist, &gc->list);
   2036	items = READ_ONCE(gc->items);
   2037	WRITE_ONCE(gc->items, items + 1);
   2038	shrinker_hits = READ_ONCE(gc->shrinker_hits);
   2039
   2040	/*
   2041	 * We queue the work while holding the current CPU so that the work
   2042	 * is scheduled to run on this CPU.
   2043	 */
   2044	if (!xfs_is_inodegc_enabled(mp)) {
   2045		put_cpu_ptr(gc);
   2046		return;
   2047	}
   2048
   2049	if (xfs_inodegc_want_queue_work(ip, items))
   2050		queue_delay = 0;
   2051
   2052	trace_xfs_inodegc_queue(mp, __return_address);
   2053	mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay);
   2054	put_cpu_ptr(gc);
   2055
   2056	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
   2057		trace_xfs_inodegc_throttle(mp, __return_address);
   2058		flush_delayed_work(&gc->work);
   2059	}
   2060}
   2061
   2062/*
   2063 * Fold the dead CPU inodegc queue into the current CPUs queue.
   2064 */
   2065void
   2066xfs_inodegc_cpu_dead(
   2067	struct xfs_mount	*mp,
   2068	unsigned int		dead_cpu)
   2069{
   2070	struct xfs_inodegc	*dead_gc, *gc;
   2071	struct llist_node	*first, *last;
   2072	unsigned int		count = 0;
   2073
   2074	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
   2075	cancel_delayed_work_sync(&dead_gc->work);
   2076
   2077	if (llist_empty(&dead_gc->list))
   2078		return;
   2079
   2080	first = dead_gc->list.first;
   2081	last = first;
   2082	while (last->next) {
   2083		last = last->next;
   2084		count++;
   2085	}
   2086	dead_gc->list.first = NULL;
   2087	dead_gc->items = 0;
   2088
   2089	/* Add pending work to current CPU */
   2090	gc = get_cpu_ptr(mp->m_inodegc);
   2091	llist_add_batch(first, last, &gc->list);
   2092	count += READ_ONCE(gc->items);
   2093	WRITE_ONCE(gc->items, count);
   2094
   2095	if (xfs_is_inodegc_enabled(mp)) {
   2096		trace_xfs_inodegc_queue(mp, __return_address);
   2097		mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0);
   2098	}
   2099	put_cpu_ptr(gc);
   2100}
   2101
   2102/*
   2103 * We set the inode flag atomically with the radix tree tag.  Once we get tag
   2104 * lookups on the radix tree, this inode flag can go away.
   2105 *
   2106 * We always use background reclaim here because even if the inode is clean, it
   2107 * still may be under IO and hence we have wait for IO completion to occur
   2108 * before we can reclaim the inode. The background reclaim path handles this
   2109 * more efficiently than we can here, so simply let background reclaim tear down
   2110 * all inodes.
   2111 */
   2112void
   2113xfs_inode_mark_reclaimable(
   2114	struct xfs_inode	*ip)
   2115{
   2116	struct xfs_mount	*mp = ip->i_mount;
   2117	bool			need_inactive;
   2118
   2119	XFS_STATS_INC(mp, vn_reclaim);
   2120
   2121	/*
   2122	 * We should never get here with any of the reclaim flags already set.
   2123	 */
   2124	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
   2125
   2126	need_inactive = xfs_inode_needs_inactive(ip);
   2127	if (need_inactive) {
   2128		xfs_inodegc_queue(ip);
   2129		return;
   2130	}
   2131
   2132	/* Going straight to reclaim, so drop the dquots. */
   2133	xfs_qm_dqdetach(ip);
   2134	xfs_inodegc_set_reclaimable(ip);
   2135}
   2136
   2137/*
   2138 * Register a phony shrinker so that we can run background inodegc sooner when
   2139 * there's memory pressure.  Inactivation does not itself free any memory but
   2140 * it does make inodes reclaimable, which eventually frees memory.
   2141 *
   2142 * The count function, seek value, and batch value are crafted to trigger the
   2143 * scan function during the second round of scanning.  Hopefully this means
   2144 * that we reclaimed enough memory that initiating metadata transactions won't
   2145 * make things worse.
   2146 */
   2147#define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
   2148#define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
   2149
   2150static unsigned long
   2151xfs_inodegc_shrinker_count(
   2152	struct shrinker		*shrink,
   2153	struct shrink_control	*sc)
   2154{
   2155	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
   2156						   m_inodegc_shrinker);
   2157	struct xfs_inodegc	*gc;
   2158	int			cpu;
   2159
   2160	if (!xfs_is_inodegc_enabled(mp))
   2161		return 0;
   2162
   2163	for_each_online_cpu(cpu) {
   2164		gc = per_cpu_ptr(mp->m_inodegc, cpu);
   2165		if (!llist_empty(&gc->list))
   2166			return XFS_INODEGC_SHRINKER_COUNT;
   2167	}
   2168
   2169	return 0;
   2170}
   2171
   2172static unsigned long
   2173xfs_inodegc_shrinker_scan(
   2174	struct shrinker		*shrink,
   2175	struct shrink_control	*sc)
   2176{
   2177	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
   2178						   m_inodegc_shrinker);
   2179	struct xfs_inodegc	*gc;
   2180	int			cpu;
   2181	bool			no_items = true;
   2182
   2183	if (!xfs_is_inodegc_enabled(mp))
   2184		return SHRINK_STOP;
   2185
   2186	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
   2187
   2188	for_each_online_cpu(cpu) {
   2189		gc = per_cpu_ptr(mp->m_inodegc, cpu);
   2190		if (!llist_empty(&gc->list)) {
   2191			unsigned int	h = READ_ONCE(gc->shrinker_hits);
   2192
   2193			WRITE_ONCE(gc->shrinker_hits, h + 1);
   2194			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
   2195			no_items = false;
   2196		}
   2197	}
   2198
   2199	/*
   2200	 * If there are no inodes to inactivate, we don't want the shrinker
   2201	 * to think there's deferred work to call us back about.
   2202	 */
   2203	if (no_items)
   2204		return LONG_MAX;
   2205
   2206	return SHRINK_STOP;
   2207}
   2208
   2209/* Register a shrinker so we can accelerate inodegc and throttle queuing. */
   2210int
   2211xfs_inodegc_register_shrinker(
   2212	struct xfs_mount	*mp)
   2213{
   2214	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
   2215
   2216	shrink->count_objects = xfs_inodegc_shrinker_count;
   2217	shrink->scan_objects = xfs_inodegc_shrinker_scan;
   2218	shrink->seeks = 0;
   2219	shrink->flags = SHRINKER_NONSLAB;
   2220	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
   2221
   2222	return register_shrinker(shrink);
   2223}