xfs_inode.c (106005B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6#include <linux/iversion.h> 7 8#include "xfs.h" 9#include "xfs_fs.h" 10#include "xfs_shared.h" 11#include "xfs_format.h" 12#include "xfs_log_format.h" 13#include "xfs_trans_resv.h" 14#include "xfs_mount.h" 15#include "xfs_defer.h" 16#include "xfs_inode.h" 17#include "xfs_dir2.h" 18#include "xfs_attr.h" 19#include "xfs_trans_space.h" 20#include "xfs_trans.h" 21#include "xfs_buf_item.h" 22#include "xfs_inode_item.h" 23#include "xfs_ialloc.h" 24#include "xfs_bmap.h" 25#include "xfs_bmap_util.h" 26#include "xfs_errortag.h" 27#include "xfs_error.h" 28#include "xfs_quota.h" 29#include "xfs_filestream.h" 30#include "xfs_trace.h" 31#include "xfs_icache.h" 32#include "xfs_symlink.h" 33#include "xfs_trans_priv.h" 34#include "xfs_log.h" 35#include "xfs_bmap_btree.h" 36#include "xfs_reflink.h" 37#include "xfs_ag.h" 38#include "xfs_log_priv.h" 39 40struct kmem_cache *xfs_inode_cache; 41 42/* 43 * Used in xfs_itruncate_extents(). This is the maximum number of extents 44 * freed from a file in a single transaction. 45 */ 46#define XFS_ITRUNC_MAX_EXTENTS 2 47 48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 49STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 50 struct xfs_inode *); 51 52/* 53 * helper function to extract extent size hint from inode 54 */ 55xfs_extlen_t 56xfs_get_extsz_hint( 57 struct xfs_inode *ip) 58{ 59 /* 60 * No point in aligning allocations if we need to COW to actually 61 * write to them. 62 */ 63 if (xfs_is_always_cow_inode(ip)) 64 return 0; 65 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 66 return ip->i_extsize; 67 if (XFS_IS_REALTIME_INODE(ip)) 68 return ip->i_mount->m_sb.sb_rextsize; 69 return 0; 70} 71 72/* 73 * Helper function to extract CoW extent size hint from inode. 74 * Between the extent size hint and the CoW extent size hint, we 75 * return the greater of the two. If the value is zero (automatic), 76 * use the default size. 77 */ 78xfs_extlen_t 79xfs_get_cowextsz_hint( 80 struct xfs_inode *ip) 81{ 82 xfs_extlen_t a, b; 83 84 a = 0; 85 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 86 a = ip->i_cowextsize; 87 b = xfs_get_extsz_hint(ip); 88 89 a = max(a, b); 90 if (a == 0) 91 return XFS_DEFAULT_COWEXTSZ_HINT; 92 return a; 93} 94 95/* 96 * These two are wrapper routines around the xfs_ilock() routine used to 97 * centralize some grungy code. They are used in places that wish to lock the 98 * inode solely for reading the extents. The reason these places can't just 99 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 100 * bringing in of the extents from disk for a file in b-tree format. If the 101 * inode is in b-tree format, then we need to lock the inode exclusively until 102 * the extents are read in. Locking it exclusively all the time would limit 103 * our parallelism unnecessarily, though. What we do instead is check to see 104 * if the extents have been read in yet, and only lock the inode exclusively 105 * if they have not. 106 * 107 * The functions return a value which should be given to the corresponding 108 * xfs_iunlock() call. 109 */ 110uint 111xfs_ilock_data_map_shared( 112 struct xfs_inode *ip) 113{ 114 uint lock_mode = XFS_ILOCK_SHARED; 115 116 if (xfs_need_iread_extents(&ip->i_df)) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120} 121 122uint 123xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125{ 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp)) 129 lock_mode = XFS_ILOCK_EXCL; 130 xfs_ilock(ip, lock_mode); 131 return lock_mode; 132} 133 134/* 135 * You can't set both SHARED and EXCL for the same lock, 136 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 137 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 138 * to set in lock_flags. 139 */ 140static inline void 141xfs_lock_flags_assert( 142 uint lock_flags) 143{ 144 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 145 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 146 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 147 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 148 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 149 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 150 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 151 ASSERT(lock_flags != 0); 152} 153 154/* 155 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 156 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 157 * various combinations of the locks to be obtained. 158 * 159 * The 3 locks should always be ordered so that the IO lock is obtained first, 160 * the mmap lock second and the ilock last in order to prevent deadlock. 161 * 162 * Basic locking order: 163 * 164 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 165 * 166 * mmap_lock locking order: 167 * 168 * i_rwsem -> page lock -> mmap_lock 169 * mmap_lock -> invalidate_lock -> page_lock 170 * 171 * The difference in mmap_lock locking order mean that we cannot hold the 172 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 173 * can fault in pages during copy in/out (for buffered IO) or require the 174 * mmap_lock in get_user_pages() to map the user pages into the kernel address 175 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 176 * fault because page faults already hold the mmap_lock. 177 * 178 * Hence to serialise fully against both syscall and mmap based IO, we need to 179 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 180 * both taken in places where we need to invalidate the page cache in a race 181 * free manner (e.g. truncate, hole punch and other extent manipulation 182 * functions). 183 */ 184void 185xfs_ilock( 186 xfs_inode_t *ip, 187 uint lock_flags) 188{ 189 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 190 191 xfs_lock_flags_assert(lock_flags); 192 193 if (lock_flags & XFS_IOLOCK_EXCL) { 194 down_write_nested(&VFS_I(ip)->i_rwsem, 195 XFS_IOLOCK_DEP(lock_flags)); 196 } else if (lock_flags & XFS_IOLOCK_SHARED) { 197 down_read_nested(&VFS_I(ip)->i_rwsem, 198 XFS_IOLOCK_DEP(lock_flags)); 199 } 200 201 if (lock_flags & XFS_MMAPLOCK_EXCL) { 202 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 203 XFS_MMAPLOCK_DEP(lock_flags)); 204 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 205 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 206 XFS_MMAPLOCK_DEP(lock_flags)); 207 } 208 209 if (lock_flags & XFS_ILOCK_EXCL) 210 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 211 else if (lock_flags & XFS_ILOCK_SHARED) 212 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 213} 214 215/* 216 * This is just like xfs_ilock(), except that the caller 217 * is guaranteed not to sleep. It returns 1 if it gets 218 * the requested locks and 0 otherwise. If the IO lock is 219 * obtained but the inode lock cannot be, then the IO lock 220 * is dropped before returning. 221 * 222 * ip -- the inode being locked 223 * lock_flags -- this parameter indicates the inode's locks to be 224 * to be locked. See the comment for xfs_ilock() for a list 225 * of valid values. 226 */ 227int 228xfs_ilock_nowait( 229 xfs_inode_t *ip, 230 uint lock_flags) 231{ 232 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 233 234 xfs_lock_flags_assert(lock_flags); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 266out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271out: 272 return 0; 273} 274 275/* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287void 288xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291{ 292 xfs_lock_flags_assert(lock_flags); 293 294 if (lock_flags & XFS_IOLOCK_EXCL) 295 up_write(&VFS_I(ip)->i_rwsem); 296 else if (lock_flags & XFS_IOLOCK_SHARED) 297 up_read(&VFS_I(ip)->i_rwsem); 298 299 if (lock_flags & XFS_MMAPLOCK_EXCL) 300 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 301 else if (lock_flags & XFS_MMAPLOCK_SHARED) 302 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 303 304 if (lock_flags & XFS_ILOCK_EXCL) 305 mrunlock_excl(&ip->i_lock); 306 else if (lock_flags & XFS_ILOCK_SHARED) 307 mrunlock_shared(&ip->i_lock); 308 309 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 310} 311 312/* 313 * give up write locks. the i/o lock cannot be held nested 314 * if it is being demoted. 315 */ 316void 317xfs_ilock_demote( 318 xfs_inode_t *ip, 319 uint lock_flags) 320{ 321 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 322 ASSERT((lock_flags & 323 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 324 325 if (lock_flags & XFS_ILOCK_EXCL) 326 mrdemote(&ip->i_lock); 327 if (lock_flags & XFS_MMAPLOCK_EXCL) 328 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 329 if (lock_flags & XFS_IOLOCK_EXCL) 330 downgrade_write(&VFS_I(ip)->i_rwsem); 331 332 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 333} 334 335#if defined(DEBUG) || defined(XFS_WARN) 336static inline bool 337__xfs_rwsem_islocked( 338 struct rw_semaphore *rwsem, 339 bool shared) 340{ 341 if (!debug_locks) 342 return rwsem_is_locked(rwsem); 343 344 if (!shared) 345 return lockdep_is_held_type(rwsem, 0); 346 347 /* 348 * We are checking that the lock is held at least in shared 349 * mode but don't care that it might be held exclusively 350 * (i.e. shared | excl). Hence we check if the lock is held 351 * in any mode rather than an explicit shared mode. 352 */ 353 return lockdep_is_held_type(rwsem, -1); 354} 355 356bool 357xfs_isilocked( 358 struct xfs_inode *ip, 359 uint lock_flags) 360{ 361 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 362 if (!(lock_flags & XFS_ILOCK_SHARED)) 363 return !!ip->i_lock.mr_writer; 364 return rwsem_is_locked(&ip->i_lock.mr_lock); 365 } 366 367 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 368 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock, 369 (lock_flags & XFS_MMAPLOCK_SHARED)); 370 } 371 372 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 373 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 374 (lock_flags & XFS_IOLOCK_SHARED)); 375 } 376 377 ASSERT(0); 378 return false; 379} 380#endif 381 382/* 383 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 384 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 385 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 386 * errors and warnings. 387 */ 388#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 389static bool 390xfs_lockdep_subclass_ok( 391 int subclass) 392{ 393 return subclass < MAX_LOCKDEP_SUBCLASSES; 394} 395#else 396#define xfs_lockdep_subclass_ok(subclass) (true) 397#endif 398 399/* 400 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 401 * value. This can be called for any type of inode lock combination, including 402 * parent locking. Care must be taken to ensure we don't overrun the subclass 403 * storage fields in the class mask we build. 404 */ 405static inline uint 406xfs_lock_inumorder( 407 uint lock_mode, 408 uint subclass) 409{ 410 uint class = 0; 411 412 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 413 XFS_ILOCK_RTSUM))); 414 ASSERT(xfs_lockdep_subclass_ok(subclass)); 415 416 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 417 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 418 class += subclass << XFS_IOLOCK_SHIFT; 419 } 420 421 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 422 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 423 class += subclass << XFS_MMAPLOCK_SHIFT; 424 } 425 426 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 427 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 428 class += subclass << XFS_ILOCK_SHIFT; 429 } 430 431 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 432} 433 434/* 435 * The following routine will lock n inodes in exclusive mode. We assume the 436 * caller calls us with the inodes in i_ino order. 437 * 438 * We need to detect deadlock where an inode that we lock is in the AIL and we 439 * start waiting for another inode that is locked by a thread in a long running 440 * transaction (such as truncate). This can result in deadlock since the long 441 * running trans might need to wait for the inode we just locked in order to 442 * push the tail and free space in the log. 443 * 444 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 445 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 446 * lock more than one at a time, lockdep will report false positives saying we 447 * have violated locking orders. 448 */ 449static void 450xfs_lock_inodes( 451 struct xfs_inode **ips, 452 int inodes, 453 uint lock_mode) 454{ 455 int attempts = 0; 456 uint i; 457 int j; 458 bool try_lock; 459 struct xfs_log_item *lp; 460 461 /* 462 * Currently supports between 2 and 5 inodes with exclusive locking. We 463 * support an arbitrary depth of locking here, but absolute limits on 464 * inodes depend on the type of locking and the limits placed by 465 * lockdep annotations in xfs_lock_inumorder. These are all checked by 466 * the asserts. 467 */ 468 ASSERT(ips && inodes >= 2 && inodes <= 5); 469 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 470 XFS_ILOCK_EXCL)); 471 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 472 XFS_ILOCK_SHARED))); 473 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 474 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 475 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 476 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 477 478 if (lock_mode & XFS_IOLOCK_EXCL) { 479 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 480 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 481 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 482 483again: 484 try_lock = false; 485 i = 0; 486 for (; i < inodes; i++) { 487 ASSERT(ips[i]); 488 489 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 490 continue; 491 492 /* 493 * If try_lock is not set yet, make sure all locked inodes are 494 * not in the AIL. If any are, set try_lock to be used later. 495 */ 496 if (!try_lock) { 497 for (j = (i - 1); j >= 0 && !try_lock; j--) { 498 lp = &ips[j]->i_itemp->ili_item; 499 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 500 try_lock = true; 501 } 502 } 503 504 /* 505 * If any of the previous locks we have locked is in the AIL, 506 * we must TRY to get the second and subsequent locks. If 507 * we can't get any, we must release all we have 508 * and try again. 509 */ 510 if (!try_lock) { 511 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 512 continue; 513 } 514 515 /* try_lock means we have an inode locked that is in the AIL. */ 516 ASSERT(i != 0); 517 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 518 continue; 519 520 /* 521 * Unlock all previous guys and try again. xfs_iunlock will try 522 * to push the tail if the inode is in the AIL. 523 */ 524 attempts++; 525 for (j = i - 1; j >= 0; j--) { 526 /* 527 * Check to see if we've already unlocked this one. Not 528 * the first one going back, and the inode ptr is the 529 * same. 530 */ 531 if (j != (i - 1) && ips[j] == ips[j + 1]) 532 continue; 533 534 xfs_iunlock(ips[j], lock_mode); 535 } 536 537 if ((attempts % 5) == 0) { 538 delay(1); /* Don't just spin the CPU */ 539 } 540 goto again; 541 } 542} 543 544/* 545 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 546 * mmaplock must be double-locked separately since we use i_rwsem and 547 * invalidate_lock for that. We now support taking one lock EXCL and the 548 * other SHARED. 549 */ 550void 551xfs_lock_two_inodes( 552 struct xfs_inode *ip0, 553 uint ip0_mode, 554 struct xfs_inode *ip1, 555 uint ip1_mode) 556{ 557 int attempts = 0; 558 struct xfs_log_item *lp; 559 560 ASSERT(hweight32(ip0_mode) == 1); 561 ASSERT(hweight32(ip1_mode) == 1); 562 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 563 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 564 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 565 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 566 ASSERT(ip0->i_ino != ip1->i_ino); 567 568 if (ip0->i_ino > ip1->i_ino) { 569 swap(ip0, ip1); 570 swap(ip0_mode, ip1_mode); 571 } 572 573 again: 574 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 575 576 /* 577 * If the first lock we have locked is in the AIL, we must TRY to get 578 * the second lock. If we can't get it, we must release the first one 579 * and try again. 580 */ 581 lp = &ip0->i_itemp->ili_item; 582 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 584 xfs_iunlock(ip0, ip0_mode); 585 if ((++attempts % 5) == 0) 586 delay(1); /* Don't just spin the CPU */ 587 goto again; 588 } 589 } else { 590 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 591 } 592} 593 594uint 595xfs_ip2xflags( 596 struct xfs_inode *ip) 597{ 598 uint flags = 0; 599 600 if (ip->i_diflags & XFS_DIFLAG_ANY) { 601 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 602 flags |= FS_XFLAG_REALTIME; 603 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 604 flags |= FS_XFLAG_PREALLOC; 605 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 606 flags |= FS_XFLAG_IMMUTABLE; 607 if (ip->i_diflags & XFS_DIFLAG_APPEND) 608 flags |= FS_XFLAG_APPEND; 609 if (ip->i_diflags & XFS_DIFLAG_SYNC) 610 flags |= FS_XFLAG_SYNC; 611 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 612 flags |= FS_XFLAG_NOATIME; 613 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 614 flags |= FS_XFLAG_NODUMP; 615 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 616 flags |= FS_XFLAG_RTINHERIT; 617 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 618 flags |= FS_XFLAG_PROJINHERIT; 619 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 620 flags |= FS_XFLAG_NOSYMLINKS; 621 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 622 flags |= FS_XFLAG_EXTSIZE; 623 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 624 flags |= FS_XFLAG_EXTSZINHERIT; 625 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 626 flags |= FS_XFLAG_NODEFRAG; 627 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 628 flags |= FS_XFLAG_FILESTREAM; 629 } 630 631 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 632 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 633 flags |= FS_XFLAG_DAX; 634 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 635 flags |= FS_XFLAG_COWEXTSIZE; 636 } 637 638 if (XFS_IFORK_Q(ip)) 639 flags |= FS_XFLAG_HASATTR; 640 return flags; 641} 642 643/* 644 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 645 * is allowed, otherwise it has to be an exact match. If a CI match is found, 646 * ci_name->name will point to a the actual name (caller must free) or 647 * will be set to NULL if an exact match is found. 648 */ 649int 650xfs_lookup( 651 struct xfs_inode *dp, 652 const struct xfs_name *name, 653 struct xfs_inode **ipp, 654 struct xfs_name *ci_name) 655{ 656 xfs_ino_t inum; 657 int error; 658 659 trace_xfs_lookup(dp, name); 660 661 if (xfs_is_shutdown(dp->i_mount)) 662 return -EIO; 663 664 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 665 if (error) 666 goto out_unlock; 667 668 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 669 if (error) 670 goto out_free_name; 671 672 return 0; 673 674out_free_name: 675 if (ci_name) 676 kmem_free(ci_name->name); 677out_unlock: 678 *ipp = NULL; 679 return error; 680} 681 682/* Propagate di_flags from a parent inode to a child inode. */ 683static void 684xfs_inode_inherit_flags( 685 struct xfs_inode *ip, 686 const struct xfs_inode *pip) 687{ 688 unsigned int di_flags = 0; 689 xfs_failaddr_t failaddr; 690 umode_t mode = VFS_I(ip)->i_mode; 691 692 if (S_ISDIR(mode)) { 693 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 694 di_flags |= XFS_DIFLAG_RTINHERIT; 695 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 696 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 697 ip->i_extsize = pip->i_extsize; 698 } 699 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 700 di_flags |= XFS_DIFLAG_PROJINHERIT; 701 } else if (S_ISREG(mode)) { 702 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 703 xfs_has_realtime(ip->i_mount)) 704 di_flags |= XFS_DIFLAG_REALTIME; 705 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 706 di_flags |= XFS_DIFLAG_EXTSIZE; 707 ip->i_extsize = pip->i_extsize; 708 } 709 } 710 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 711 xfs_inherit_noatime) 712 di_flags |= XFS_DIFLAG_NOATIME; 713 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 714 xfs_inherit_nodump) 715 di_flags |= XFS_DIFLAG_NODUMP; 716 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 717 xfs_inherit_sync) 718 di_flags |= XFS_DIFLAG_SYNC; 719 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 720 xfs_inherit_nosymlinks) 721 di_flags |= XFS_DIFLAG_NOSYMLINKS; 722 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 723 xfs_inherit_nodefrag) 724 di_flags |= XFS_DIFLAG_NODEFRAG; 725 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 726 di_flags |= XFS_DIFLAG_FILESTREAM; 727 728 ip->i_diflags |= di_flags; 729 730 /* 731 * Inode verifiers on older kernels only check that the extent size 732 * hint is an integer multiple of the rt extent size on realtime files. 733 * They did not check the hint alignment on a directory with both 734 * rtinherit and extszinherit flags set. If the misaligned hint is 735 * propagated from a directory into a new realtime file, new file 736 * allocations will fail due to math errors in the rt allocator and/or 737 * trip the verifiers. Validate the hint settings in the new file so 738 * that we don't let broken hints propagate. 739 */ 740 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 741 VFS_I(ip)->i_mode, ip->i_diflags); 742 if (failaddr) { 743 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 744 XFS_DIFLAG_EXTSZINHERIT); 745 ip->i_extsize = 0; 746 } 747} 748 749/* Propagate di_flags2 from a parent inode to a child inode. */ 750static void 751xfs_inode_inherit_flags2( 752 struct xfs_inode *ip, 753 const struct xfs_inode *pip) 754{ 755 xfs_failaddr_t failaddr; 756 757 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 758 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 759 ip->i_cowextsize = pip->i_cowextsize; 760 } 761 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 762 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 763 764 /* Don't let invalid cowextsize hints propagate. */ 765 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 766 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 767 if (failaddr) { 768 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 769 ip->i_cowextsize = 0; 770 } 771} 772 773/* 774 * Initialise a newly allocated inode and return the in-core inode to the 775 * caller locked exclusively. 776 */ 777int 778xfs_init_new_inode( 779 struct user_namespace *mnt_userns, 780 struct xfs_trans *tp, 781 struct xfs_inode *pip, 782 xfs_ino_t ino, 783 umode_t mode, 784 xfs_nlink_t nlink, 785 dev_t rdev, 786 prid_t prid, 787 bool init_xattrs, 788 struct xfs_inode **ipp) 789{ 790 struct inode *dir = pip ? VFS_I(pip) : NULL; 791 struct xfs_mount *mp = tp->t_mountp; 792 struct xfs_inode *ip; 793 unsigned int flags; 794 int error; 795 struct timespec64 tv; 796 struct inode *inode; 797 798 /* 799 * Protect against obviously corrupt allocation btree records. Later 800 * xfs_iget checks will catch re-allocation of other active in-memory 801 * and on-disk inodes. If we don't catch reallocating the parent inode 802 * here we will deadlock in xfs_iget() so we have to do these checks 803 * first. 804 */ 805 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 806 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 807 return -EFSCORRUPTED; 808 } 809 810 /* 811 * Get the in-core inode with the lock held exclusively to prevent 812 * others from looking at until we're done. 813 */ 814 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 815 if (error) 816 return error; 817 818 ASSERT(ip != NULL); 819 inode = VFS_I(ip); 820 set_nlink(inode, nlink); 821 inode->i_rdev = rdev; 822 ip->i_projid = prid; 823 824 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 825 inode_fsuid_set(inode, mnt_userns); 826 inode->i_gid = dir->i_gid; 827 inode->i_mode = mode; 828 } else { 829 inode_init_owner(mnt_userns, inode, dir, mode); 830 } 831 832 /* 833 * If the group ID of the new file does not match the effective group 834 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 835 * (and only if the irix_sgid_inherit compatibility variable is set). 836 */ 837 if (irix_sgid_inherit && 838 (inode->i_mode & S_ISGID) && 839 !in_group_p(i_gid_into_mnt(mnt_userns, inode))) 840 inode->i_mode &= ~S_ISGID; 841 842 ip->i_disk_size = 0; 843 ip->i_df.if_nextents = 0; 844 ASSERT(ip->i_nblocks == 0); 845 846 tv = current_time(inode); 847 inode->i_mtime = tv; 848 inode->i_atime = tv; 849 inode->i_ctime = tv; 850 851 ip->i_extsize = 0; 852 ip->i_diflags = 0; 853 854 if (xfs_has_v3inodes(mp)) { 855 inode_set_iversion(inode, 1); 856 ip->i_cowextsize = 0; 857 ip->i_crtime = tv; 858 } 859 860 flags = XFS_ILOG_CORE; 861 switch (mode & S_IFMT) { 862 case S_IFIFO: 863 case S_IFCHR: 864 case S_IFBLK: 865 case S_IFSOCK: 866 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 867 flags |= XFS_ILOG_DEV; 868 break; 869 case S_IFREG: 870 case S_IFDIR: 871 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 872 xfs_inode_inherit_flags(ip, pip); 873 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 874 xfs_inode_inherit_flags2(ip, pip); 875 fallthrough; 876 case S_IFLNK: 877 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 878 ip->i_df.if_bytes = 0; 879 ip->i_df.if_u1.if_root = NULL; 880 break; 881 default: 882 ASSERT(0); 883 } 884 885 /* 886 * If we need to create attributes immediately after allocating the 887 * inode, initialise an empty attribute fork right now. We use the 888 * default fork offset for attributes here as we don't know exactly what 889 * size or how many attributes we might be adding. We can do this 890 * safely here because we know the data fork is completely empty and 891 * this saves us from needing to run a separate transaction to set the 892 * fork offset in the immediate future. 893 */ 894 if (init_xattrs && xfs_has_attr(mp)) { 895 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 896 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0); 897 } 898 899 /* 900 * Log the new values stuffed into the inode. 901 */ 902 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 903 xfs_trans_log_inode(tp, ip, flags); 904 905 /* now that we have an i_mode we can setup the inode structure */ 906 xfs_setup_inode(ip); 907 908 *ipp = ip; 909 return 0; 910} 911 912/* 913 * Decrement the link count on an inode & log the change. If this causes the 914 * link count to go to zero, move the inode to AGI unlinked list so that it can 915 * be freed when the last active reference goes away via xfs_inactive(). 916 */ 917static int /* error */ 918xfs_droplink( 919 xfs_trans_t *tp, 920 xfs_inode_t *ip) 921{ 922 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 923 924 drop_nlink(VFS_I(ip)); 925 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 926 927 if (VFS_I(ip)->i_nlink) 928 return 0; 929 930 return xfs_iunlink(tp, ip); 931} 932 933/* 934 * Increment the link count on an inode & log the change. 935 */ 936static void 937xfs_bumplink( 938 xfs_trans_t *tp, 939 xfs_inode_t *ip) 940{ 941 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 942 943 inc_nlink(VFS_I(ip)); 944 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 945} 946 947int 948xfs_create( 949 struct user_namespace *mnt_userns, 950 xfs_inode_t *dp, 951 struct xfs_name *name, 952 umode_t mode, 953 dev_t rdev, 954 bool init_xattrs, 955 xfs_inode_t **ipp) 956{ 957 int is_dir = S_ISDIR(mode); 958 struct xfs_mount *mp = dp->i_mount; 959 struct xfs_inode *ip = NULL; 960 struct xfs_trans *tp = NULL; 961 int error; 962 bool unlock_dp_on_error = false; 963 prid_t prid; 964 struct xfs_dquot *udqp = NULL; 965 struct xfs_dquot *gdqp = NULL; 966 struct xfs_dquot *pdqp = NULL; 967 struct xfs_trans_res *tres; 968 uint resblks; 969 xfs_ino_t ino; 970 971 trace_xfs_create(dp, name); 972 973 if (xfs_is_shutdown(mp)) 974 return -EIO; 975 976 prid = xfs_get_initial_prid(dp); 977 978 /* 979 * Make sure that we have allocated dquot(s) on disk. 980 */ 981 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), 982 mapped_fsgid(mnt_userns, &init_user_ns), prid, 983 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 984 &udqp, &gdqp, &pdqp); 985 if (error) 986 return error; 987 988 if (is_dir) { 989 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 990 tres = &M_RES(mp)->tr_mkdir; 991 } else { 992 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 993 tres = &M_RES(mp)->tr_create; 994 } 995 996 /* 997 * Initially assume that the file does not exist and 998 * reserve the resources for that case. If that is not 999 * the case we'll drop the one we have and get a more 1000 * appropriate transaction later. 1001 */ 1002 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1003 &tp); 1004 if (error == -ENOSPC) { 1005 /* flush outstanding delalloc blocks and retry */ 1006 xfs_flush_inodes(mp); 1007 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1008 resblks, &tp); 1009 } 1010 if (error) 1011 goto out_release_dquots; 1012 1013 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1014 unlock_dp_on_error = true; 1015 1016 /* 1017 * A newly created regular or special file just has one directory 1018 * entry pointing to them, but a directory also the "." entry 1019 * pointing to itself. 1020 */ 1021 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1022 if (!error) 1023 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1024 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1025 if (error) 1026 goto out_trans_cancel; 1027 1028 /* 1029 * Now we join the directory inode to the transaction. We do not do it 1030 * earlier because xfs_dialloc might commit the previous transaction 1031 * (and release all the locks). An error from here on will result in 1032 * the transaction cancel unlocking dp so don't do it explicitly in the 1033 * error path. 1034 */ 1035 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1036 unlock_dp_on_error = false; 1037 1038 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1039 resblks - XFS_IALLOC_SPACE_RES(mp)); 1040 if (error) { 1041 ASSERT(error != -ENOSPC); 1042 goto out_trans_cancel; 1043 } 1044 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1045 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1046 1047 if (is_dir) { 1048 error = xfs_dir_init(tp, ip, dp); 1049 if (error) 1050 goto out_trans_cancel; 1051 1052 xfs_bumplink(tp, dp); 1053 } 1054 1055 /* 1056 * If this is a synchronous mount, make sure that the 1057 * create transaction goes to disk before returning to 1058 * the user. 1059 */ 1060 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1061 xfs_trans_set_sync(tp); 1062 1063 /* 1064 * Attach the dquot(s) to the inodes and modify them incore. 1065 * These ids of the inode couldn't have changed since the new 1066 * inode has been locked ever since it was created. 1067 */ 1068 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1069 1070 error = xfs_trans_commit(tp); 1071 if (error) 1072 goto out_release_inode; 1073 1074 xfs_qm_dqrele(udqp); 1075 xfs_qm_dqrele(gdqp); 1076 xfs_qm_dqrele(pdqp); 1077 1078 *ipp = ip; 1079 return 0; 1080 1081 out_trans_cancel: 1082 xfs_trans_cancel(tp); 1083 out_release_inode: 1084 /* 1085 * Wait until after the current transaction is aborted to finish the 1086 * setup of the inode and release the inode. This prevents recursive 1087 * transactions and deadlocks from xfs_inactive. 1088 */ 1089 if (ip) { 1090 xfs_finish_inode_setup(ip); 1091 xfs_irele(ip); 1092 } 1093 out_release_dquots: 1094 xfs_qm_dqrele(udqp); 1095 xfs_qm_dqrele(gdqp); 1096 xfs_qm_dqrele(pdqp); 1097 1098 if (unlock_dp_on_error) 1099 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1100 return error; 1101} 1102 1103int 1104xfs_create_tmpfile( 1105 struct user_namespace *mnt_userns, 1106 struct xfs_inode *dp, 1107 umode_t mode, 1108 struct xfs_inode **ipp) 1109{ 1110 struct xfs_mount *mp = dp->i_mount; 1111 struct xfs_inode *ip = NULL; 1112 struct xfs_trans *tp = NULL; 1113 int error; 1114 prid_t prid; 1115 struct xfs_dquot *udqp = NULL; 1116 struct xfs_dquot *gdqp = NULL; 1117 struct xfs_dquot *pdqp = NULL; 1118 struct xfs_trans_res *tres; 1119 uint resblks; 1120 xfs_ino_t ino; 1121 1122 if (xfs_is_shutdown(mp)) 1123 return -EIO; 1124 1125 prid = xfs_get_initial_prid(dp); 1126 1127 /* 1128 * Make sure that we have allocated dquot(s) on disk. 1129 */ 1130 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), 1131 mapped_fsgid(mnt_userns, &init_user_ns), prid, 1132 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1133 &udqp, &gdqp, &pdqp); 1134 if (error) 1135 return error; 1136 1137 resblks = XFS_IALLOC_SPACE_RES(mp); 1138 tres = &M_RES(mp)->tr_create_tmpfile; 1139 1140 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1141 &tp); 1142 if (error) 1143 goto out_release_dquots; 1144 1145 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1146 if (!error) 1147 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1148 0, 0, prid, false, &ip); 1149 if (error) 1150 goto out_trans_cancel; 1151 1152 if (xfs_has_wsync(mp)) 1153 xfs_trans_set_sync(tp); 1154 1155 /* 1156 * Attach the dquot(s) to the inodes and modify them incore. 1157 * These ids of the inode couldn't have changed since the new 1158 * inode has been locked ever since it was created. 1159 */ 1160 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1161 1162 error = xfs_iunlink(tp, ip); 1163 if (error) 1164 goto out_trans_cancel; 1165 1166 error = xfs_trans_commit(tp); 1167 if (error) 1168 goto out_release_inode; 1169 1170 xfs_qm_dqrele(udqp); 1171 xfs_qm_dqrele(gdqp); 1172 xfs_qm_dqrele(pdqp); 1173 1174 *ipp = ip; 1175 return 0; 1176 1177 out_trans_cancel: 1178 xfs_trans_cancel(tp); 1179 out_release_inode: 1180 /* 1181 * Wait until after the current transaction is aborted to finish the 1182 * setup of the inode and release the inode. This prevents recursive 1183 * transactions and deadlocks from xfs_inactive. 1184 */ 1185 if (ip) { 1186 xfs_finish_inode_setup(ip); 1187 xfs_irele(ip); 1188 } 1189 out_release_dquots: 1190 xfs_qm_dqrele(udqp); 1191 xfs_qm_dqrele(gdqp); 1192 xfs_qm_dqrele(pdqp); 1193 1194 return error; 1195} 1196 1197int 1198xfs_link( 1199 xfs_inode_t *tdp, 1200 xfs_inode_t *sip, 1201 struct xfs_name *target_name) 1202{ 1203 xfs_mount_t *mp = tdp->i_mount; 1204 xfs_trans_t *tp; 1205 int error, nospace_error = 0; 1206 int resblks; 1207 1208 trace_xfs_link(tdp, target_name); 1209 1210 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1211 1212 if (xfs_is_shutdown(mp)) 1213 return -EIO; 1214 1215 error = xfs_qm_dqattach(sip); 1216 if (error) 1217 goto std_return; 1218 1219 error = xfs_qm_dqattach(tdp); 1220 if (error) 1221 goto std_return; 1222 1223 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1224 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1225 &tp, &nospace_error); 1226 if (error) 1227 goto std_return; 1228 1229 /* 1230 * If we are using project inheritance, we only allow hard link 1231 * creation in our tree when the project IDs are the same; else 1232 * the tree quota mechanism could be circumvented. 1233 */ 1234 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1235 tdp->i_projid != sip->i_projid)) { 1236 error = -EXDEV; 1237 goto error_return; 1238 } 1239 1240 if (!resblks) { 1241 error = xfs_dir_canenter(tp, tdp, target_name); 1242 if (error) 1243 goto error_return; 1244 } 1245 1246 /* 1247 * Handle initial link state of O_TMPFILE inode 1248 */ 1249 if (VFS_I(sip)->i_nlink == 0) { 1250 struct xfs_perag *pag; 1251 1252 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1253 error = xfs_iunlink_remove(tp, pag, sip); 1254 xfs_perag_put(pag); 1255 if (error) 1256 goto error_return; 1257 } 1258 1259 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1260 resblks); 1261 if (error) 1262 goto error_return; 1263 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1264 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1265 1266 xfs_bumplink(tp, sip); 1267 1268 /* 1269 * If this is a synchronous mount, make sure that the 1270 * link transaction goes to disk before returning to 1271 * the user. 1272 */ 1273 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1274 xfs_trans_set_sync(tp); 1275 1276 return xfs_trans_commit(tp); 1277 1278 error_return: 1279 xfs_trans_cancel(tp); 1280 std_return: 1281 if (error == -ENOSPC && nospace_error) 1282 error = nospace_error; 1283 return error; 1284} 1285 1286/* Clear the reflink flag and the cowblocks tag if possible. */ 1287static void 1288xfs_itruncate_clear_reflink_flags( 1289 struct xfs_inode *ip) 1290{ 1291 struct xfs_ifork *dfork; 1292 struct xfs_ifork *cfork; 1293 1294 if (!xfs_is_reflink_inode(ip)) 1295 return; 1296 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1297 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1298 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1299 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1300 if (cfork->if_bytes == 0) 1301 xfs_inode_clear_cowblocks_tag(ip); 1302} 1303 1304/* 1305 * Free up the underlying blocks past new_size. The new size must be smaller 1306 * than the current size. This routine can be used both for the attribute and 1307 * data fork, and does not modify the inode size, which is left to the caller. 1308 * 1309 * The transaction passed to this routine must have made a permanent log 1310 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1311 * given transaction and start new ones, so make sure everything involved in 1312 * the transaction is tidy before calling here. Some transaction will be 1313 * returned to the caller to be committed. The incoming transaction must 1314 * already include the inode, and both inode locks must be held exclusively. 1315 * The inode must also be "held" within the transaction. On return the inode 1316 * will be "held" within the returned transaction. This routine does NOT 1317 * require any disk space to be reserved for it within the transaction. 1318 * 1319 * If we get an error, we must return with the inode locked and linked into the 1320 * current transaction. This keeps things simple for the higher level code, 1321 * because it always knows that the inode is locked and held in the transaction 1322 * that returns to it whether errors occur or not. We don't mark the inode 1323 * dirty on error so that transactions can be easily aborted if possible. 1324 */ 1325int 1326xfs_itruncate_extents_flags( 1327 struct xfs_trans **tpp, 1328 struct xfs_inode *ip, 1329 int whichfork, 1330 xfs_fsize_t new_size, 1331 int flags) 1332{ 1333 struct xfs_mount *mp = ip->i_mount; 1334 struct xfs_trans *tp = *tpp; 1335 xfs_fileoff_t first_unmap_block; 1336 xfs_filblks_t unmap_len; 1337 int error = 0; 1338 1339 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1340 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1341 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1342 ASSERT(new_size <= XFS_ISIZE(ip)); 1343 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1344 ASSERT(ip->i_itemp != NULL); 1345 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1346 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1347 1348 trace_xfs_itruncate_extents_start(ip, new_size); 1349 1350 flags |= xfs_bmapi_aflag(whichfork); 1351 1352 /* 1353 * Since it is possible for space to become allocated beyond 1354 * the end of the file (in a crash where the space is allocated 1355 * but the inode size is not yet updated), simply remove any 1356 * blocks which show up between the new EOF and the maximum 1357 * possible file size. 1358 * 1359 * We have to free all the blocks to the bmbt maximum offset, even if 1360 * the page cache can't scale that far. 1361 */ 1362 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1363 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1364 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1365 return 0; 1366 } 1367 1368 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1369 while (unmap_len > 0) { 1370 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1371 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1372 flags, XFS_ITRUNC_MAX_EXTENTS); 1373 if (error) 1374 goto out; 1375 1376 /* free the just unmapped extents */ 1377 error = xfs_defer_finish(&tp); 1378 if (error) 1379 goto out; 1380 } 1381 1382 if (whichfork == XFS_DATA_FORK) { 1383 /* Remove all pending CoW reservations. */ 1384 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1385 first_unmap_block, XFS_MAX_FILEOFF, true); 1386 if (error) 1387 goto out; 1388 1389 xfs_itruncate_clear_reflink_flags(ip); 1390 } 1391 1392 /* 1393 * Always re-log the inode so that our permanent transaction can keep 1394 * on rolling it forward in the log. 1395 */ 1396 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1397 1398 trace_xfs_itruncate_extents_end(ip, new_size); 1399 1400out: 1401 *tpp = tp; 1402 return error; 1403} 1404 1405int 1406xfs_release( 1407 xfs_inode_t *ip) 1408{ 1409 xfs_mount_t *mp = ip->i_mount; 1410 int error = 0; 1411 1412 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1413 return 0; 1414 1415 /* If this is a read-only mount, don't do this (would generate I/O) */ 1416 if (xfs_is_readonly(mp)) 1417 return 0; 1418 1419 if (!xfs_is_shutdown(mp)) { 1420 int truncated; 1421 1422 /* 1423 * If we previously truncated this file and removed old data 1424 * in the process, we want to initiate "early" writeout on 1425 * the last close. This is an attempt to combat the notorious 1426 * NULL files problem which is particularly noticeable from a 1427 * truncate down, buffered (re-)write (delalloc), followed by 1428 * a crash. What we are effectively doing here is 1429 * significantly reducing the time window where we'd otherwise 1430 * be exposed to that problem. 1431 */ 1432 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1433 if (truncated) { 1434 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1435 if (ip->i_delayed_blks > 0) { 1436 error = filemap_flush(VFS_I(ip)->i_mapping); 1437 if (error) 1438 return error; 1439 } 1440 } 1441 } 1442 1443 if (VFS_I(ip)->i_nlink == 0) 1444 return 0; 1445 1446 /* 1447 * If we can't get the iolock just skip truncating the blocks past EOF 1448 * because we could deadlock with the mmap_lock otherwise. We'll get 1449 * another chance to drop them once the last reference to the inode is 1450 * dropped, so we'll never leak blocks permanently. 1451 */ 1452 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1453 return 0; 1454 1455 if (xfs_can_free_eofblocks(ip, false)) { 1456 /* 1457 * Check if the inode is being opened, written and closed 1458 * frequently and we have delayed allocation blocks outstanding 1459 * (e.g. streaming writes from the NFS server), truncating the 1460 * blocks past EOF will cause fragmentation to occur. 1461 * 1462 * In this case don't do the truncation, but we have to be 1463 * careful how we detect this case. Blocks beyond EOF show up as 1464 * i_delayed_blks even when the inode is clean, so we need to 1465 * truncate them away first before checking for a dirty release. 1466 * Hence on the first dirty close we will still remove the 1467 * speculative allocation, but after that we will leave it in 1468 * place. 1469 */ 1470 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1471 goto out_unlock; 1472 1473 error = xfs_free_eofblocks(ip); 1474 if (error) 1475 goto out_unlock; 1476 1477 /* delalloc blocks after truncation means it really is dirty */ 1478 if (ip->i_delayed_blks) 1479 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1480 } 1481 1482out_unlock: 1483 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1484 return error; 1485} 1486 1487/* 1488 * xfs_inactive_truncate 1489 * 1490 * Called to perform a truncate when an inode becomes unlinked. 1491 */ 1492STATIC int 1493xfs_inactive_truncate( 1494 struct xfs_inode *ip) 1495{ 1496 struct xfs_mount *mp = ip->i_mount; 1497 struct xfs_trans *tp; 1498 int error; 1499 1500 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1501 if (error) { 1502 ASSERT(xfs_is_shutdown(mp)); 1503 return error; 1504 } 1505 xfs_ilock(ip, XFS_ILOCK_EXCL); 1506 xfs_trans_ijoin(tp, ip, 0); 1507 1508 /* 1509 * Log the inode size first to prevent stale data exposure in the event 1510 * of a system crash before the truncate completes. See the related 1511 * comment in xfs_vn_setattr_size() for details. 1512 */ 1513 ip->i_disk_size = 0; 1514 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1515 1516 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1517 if (error) 1518 goto error_trans_cancel; 1519 1520 ASSERT(ip->i_df.if_nextents == 0); 1521 1522 error = xfs_trans_commit(tp); 1523 if (error) 1524 goto error_unlock; 1525 1526 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1527 return 0; 1528 1529error_trans_cancel: 1530 xfs_trans_cancel(tp); 1531error_unlock: 1532 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1533 return error; 1534} 1535 1536/* 1537 * xfs_inactive_ifree() 1538 * 1539 * Perform the inode free when an inode is unlinked. 1540 */ 1541STATIC int 1542xfs_inactive_ifree( 1543 struct xfs_inode *ip) 1544{ 1545 struct xfs_mount *mp = ip->i_mount; 1546 struct xfs_trans *tp; 1547 int error; 1548 1549 /* 1550 * We try to use a per-AG reservation for any block needed by the finobt 1551 * tree, but as the finobt feature predates the per-AG reservation 1552 * support a degraded file system might not have enough space for the 1553 * reservation at mount time. In that case try to dip into the reserved 1554 * pool and pray. 1555 * 1556 * Send a warning if the reservation does happen to fail, as the inode 1557 * now remains allocated and sits on the unlinked list until the fs is 1558 * repaired. 1559 */ 1560 if (unlikely(mp->m_finobt_nores)) { 1561 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1562 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1563 &tp); 1564 } else { 1565 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1566 } 1567 if (error) { 1568 if (error == -ENOSPC) { 1569 xfs_warn_ratelimited(mp, 1570 "Failed to remove inode(s) from unlinked list. " 1571 "Please free space, unmount and run xfs_repair."); 1572 } else { 1573 ASSERT(xfs_is_shutdown(mp)); 1574 } 1575 return error; 1576 } 1577 1578 /* 1579 * We do not hold the inode locked across the entire rolling transaction 1580 * here. We only need to hold it for the first transaction that 1581 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1582 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1583 * here breaks the relationship between cluster buffer invalidation and 1584 * stale inode invalidation on cluster buffer item journal commit 1585 * completion, and can result in leaving dirty stale inodes hanging 1586 * around in memory. 1587 * 1588 * We have no need for serialising this inode operation against other 1589 * operations - we freed the inode and hence reallocation is required 1590 * and that will serialise on reallocating the space the deferops need 1591 * to free. Hence we can unlock the inode on the first commit of 1592 * the transaction rather than roll it right through the deferops. This 1593 * avoids relogging the XFS_ISTALE inode. 1594 * 1595 * We check that xfs_ifree() hasn't grown an internal transaction roll 1596 * by asserting that the inode is still locked when it returns. 1597 */ 1598 xfs_ilock(ip, XFS_ILOCK_EXCL); 1599 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1600 1601 error = xfs_ifree(tp, ip); 1602 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1603 if (error) { 1604 /* 1605 * If we fail to free the inode, shut down. The cancel 1606 * might do that, we need to make sure. Otherwise the 1607 * inode might be lost for a long time or forever. 1608 */ 1609 if (!xfs_is_shutdown(mp)) { 1610 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1611 __func__, error); 1612 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1613 } 1614 xfs_trans_cancel(tp); 1615 return error; 1616 } 1617 1618 /* 1619 * Credit the quota account(s). The inode is gone. 1620 */ 1621 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1622 1623 /* 1624 * Just ignore errors at this point. There is nothing we can do except 1625 * to try to keep going. Make sure it's not a silent error. 1626 */ 1627 error = xfs_trans_commit(tp); 1628 if (error) 1629 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1630 __func__, error); 1631 1632 return 0; 1633} 1634 1635/* 1636 * Returns true if we need to update the on-disk metadata before we can free 1637 * the memory used by this inode. Updates include freeing post-eof 1638 * preallocations; freeing COW staging extents; and marking the inode free in 1639 * the inobt if it is on the unlinked list. 1640 */ 1641bool 1642xfs_inode_needs_inactive( 1643 struct xfs_inode *ip) 1644{ 1645 struct xfs_mount *mp = ip->i_mount; 1646 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1647 1648 /* 1649 * If the inode is already free, then there can be nothing 1650 * to clean up here. 1651 */ 1652 if (VFS_I(ip)->i_mode == 0) 1653 return false; 1654 1655 /* If this is a read-only mount, don't do this (would generate I/O) */ 1656 if (xfs_is_readonly(mp)) 1657 return false; 1658 1659 /* If the log isn't running, push inodes straight to reclaim. */ 1660 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1661 return false; 1662 1663 /* Metadata inodes require explicit resource cleanup. */ 1664 if (xfs_is_metadata_inode(ip)) 1665 return false; 1666 1667 /* Want to clean out the cow blocks if there are any. */ 1668 if (cow_ifp && cow_ifp->if_bytes > 0) 1669 return true; 1670 1671 /* Unlinked files must be freed. */ 1672 if (VFS_I(ip)->i_nlink == 0) 1673 return true; 1674 1675 /* 1676 * This file isn't being freed, so check if there are post-eof blocks 1677 * to free. @force is true because we are evicting an inode from the 1678 * cache. Post-eof blocks must be freed, lest we end up with broken 1679 * free space accounting. 1680 * 1681 * Note: don't bother with iolock here since lockdep complains about 1682 * acquiring it in reclaim context. We have the only reference to the 1683 * inode at this point anyways. 1684 */ 1685 return xfs_can_free_eofblocks(ip, true); 1686} 1687 1688/* 1689 * xfs_inactive 1690 * 1691 * This is called when the vnode reference count for the vnode 1692 * goes to zero. If the file has been unlinked, then it must 1693 * now be truncated. Also, we clear all of the read-ahead state 1694 * kept for the inode here since the file is now closed. 1695 */ 1696void 1697xfs_inactive( 1698 xfs_inode_t *ip) 1699{ 1700 struct xfs_mount *mp; 1701 int error; 1702 int truncate = 0; 1703 1704 /* 1705 * If the inode is already free, then there can be nothing 1706 * to clean up here. 1707 */ 1708 if (VFS_I(ip)->i_mode == 0) { 1709 ASSERT(ip->i_df.if_broot_bytes == 0); 1710 goto out; 1711 } 1712 1713 mp = ip->i_mount; 1714 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1715 1716 /* If this is a read-only mount, don't do this (would generate I/O) */ 1717 if (xfs_is_readonly(mp)) 1718 goto out; 1719 1720 /* Metadata inodes require explicit resource cleanup. */ 1721 if (xfs_is_metadata_inode(ip)) 1722 goto out; 1723 1724 /* Try to clean out the cow blocks if there are any. */ 1725 if (xfs_inode_has_cow_data(ip)) 1726 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1727 1728 if (VFS_I(ip)->i_nlink != 0) { 1729 /* 1730 * force is true because we are evicting an inode from the 1731 * cache. Post-eof blocks must be freed, lest we end up with 1732 * broken free space accounting. 1733 * 1734 * Note: don't bother with iolock here since lockdep complains 1735 * about acquiring it in reclaim context. We have the only 1736 * reference to the inode at this point anyways. 1737 */ 1738 if (xfs_can_free_eofblocks(ip, true)) 1739 xfs_free_eofblocks(ip); 1740 1741 goto out; 1742 } 1743 1744 if (S_ISREG(VFS_I(ip)->i_mode) && 1745 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1746 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1747 truncate = 1; 1748 1749 error = xfs_qm_dqattach(ip); 1750 if (error) 1751 goto out; 1752 1753 if (S_ISLNK(VFS_I(ip)->i_mode)) 1754 error = xfs_inactive_symlink(ip); 1755 else if (truncate) 1756 error = xfs_inactive_truncate(ip); 1757 if (error) 1758 goto out; 1759 1760 /* 1761 * If there are attributes associated with the file then blow them away 1762 * now. The code calls a routine that recursively deconstructs the 1763 * attribute fork. If also blows away the in-core attribute fork. 1764 */ 1765 if (XFS_IFORK_Q(ip)) { 1766 error = xfs_attr_inactive(ip); 1767 if (error) 1768 goto out; 1769 } 1770 1771 ASSERT(!ip->i_afp); 1772 ASSERT(ip->i_forkoff == 0); 1773 1774 /* 1775 * Free the inode. 1776 */ 1777 xfs_inactive_ifree(ip); 1778 1779out: 1780 /* 1781 * We're done making metadata updates for this inode, so we can release 1782 * the attached dquots. 1783 */ 1784 xfs_qm_dqdetach(ip); 1785} 1786 1787/* 1788 * In-Core Unlinked List Lookups 1789 * ============================= 1790 * 1791 * Every inode is supposed to be reachable from some other piece of metadata 1792 * with the exception of the root directory. Inodes with a connection to a 1793 * file descriptor but not linked from anywhere in the on-disk directory tree 1794 * are collectively known as unlinked inodes, though the filesystem itself 1795 * maintains links to these inodes so that on-disk metadata are consistent. 1796 * 1797 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1798 * header contains a number of buckets that point to an inode, and each inode 1799 * record has a pointer to the next inode in the hash chain. This 1800 * singly-linked list causes scaling problems in the iunlink remove function 1801 * because we must walk that list to find the inode that points to the inode 1802 * being removed from the unlinked hash bucket list. 1803 * 1804 * What if we modelled the unlinked list as a collection of records capturing 1805 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1806 * have a fast way to look up unlinked list predecessors, which avoids the 1807 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1808 * rhashtable. 1809 * 1810 * Because this is a backref cache, we ignore operational failures since the 1811 * iunlink code can fall back to the slow bucket walk. The only errors that 1812 * should bubble out are for obviously incorrect situations. 1813 * 1814 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1815 * access or have otherwise provided for concurrency control. 1816 */ 1817 1818/* Capture a "X.next_unlinked = Y" relationship. */ 1819struct xfs_iunlink { 1820 struct rhash_head iu_rhash_head; 1821 xfs_agino_t iu_agino; /* X */ 1822 xfs_agino_t iu_next_unlinked; /* Y */ 1823}; 1824 1825/* Unlinked list predecessor lookup hashtable construction */ 1826static int 1827xfs_iunlink_obj_cmpfn( 1828 struct rhashtable_compare_arg *arg, 1829 const void *obj) 1830{ 1831 const xfs_agino_t *key = arg->key; 1832 const struct xfs_iunlink *iu = obj; 1833 1834 if (iu->iu_next_unlinked != *key) 1835 return 1; 1836 return 0; 1837} 1838 1839static const struct rhashtable_params xfs_iunlink_hash_params = { 1840 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1841 .key_len = sizeof(xfs_agino_t), 1842 .key_offset = offsetof(struct xfs_iunlink, 1843 iu_next_unlinked), 1844 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1845 .automatic_shrinking = true, 1846 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1847}; 1848 1849/* 1850 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1851 * relation is found. 1852 */ 1853static xfs_agino_t 1854xfs_iunlink_lookup_backref( 1855 struct xfs_perag *pag, 1856 xfs_agino_t agino) 1857{ 1858 struct xfs_iunlink *iu; 1859 1860 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1861 xfs_iunlink_hash_params); 1862 return iu ? iu->iu_agino : NULLAGINO; 1863} 1864 1865/* 1866 * Take ownership of an iunlink cache entry and insert it into the hash table. 1867 * If successful, the entry will be owned by the cache; if not, it is freed. 1868 * Either way, the caller does not own @iu after this call. 1869 */ 1870static int 1871xfs_iunlink_insert_backref( 1872 struct xfs_perag *pag, 1873 struct xfs_iunlink *iu) 1874{ 1875 int error; 1876 1877 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1878 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1879 /* 1880 * Fail loudly if there already was an entry because that's a sign of 1881 * corruption of in-memory data. Also fail loudly if we see an error 1882 * code we didn't anticipate from the rhashtable code. Currently we 1883 * only anticipate ENOMEM. 1884 */ 1885 if (error) { 1886 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1887 kmem_free(iu); 1888 } 1889 /* 1890 * Absorb any runtime errors that aren't a result of corruption because 1891 * this is a cache and we can always fall back to bucket list scanning. 1892 */ 1893 if (error != 0 && error != -EEXIST) 1894 error = 0; 1895 return error; 1896} 1897 1898/* Remember that @prev_agino.next_unlinked = @this_agino. */ 1899static int 1900xfs_iunlink_add_backref( 1901 struct xfs_perag *pag, 1902 xfs_agino_t prev_agino, 1903 xfs_agino_t this_agino) 1904{ 1905 struct xfs_iunlink *iu; 1906 1907 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1908 return 0; 1909 1910 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1911 iu->iu_agino = prev_agino; 1912 iu->iu_next_unlinked = this_agino; 1913 1914 return xfs_iunlink_insert_backref(pag, iu); 1915} 1916 1917/* 1918 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1919 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1920 * wasn't any such entry then we don't bother. 1921 */ 1922static int 1923xfs_iunlink_change_backref( 1924 struct xfs_perag *pag, 1925 xfs_agino_t agino, 1926 xfs_agino_t next_unlinked) 1927{ 1928 struct xfs_iunlink *iu; 1929 int error; 1930 1931 /* Look up the old entry; if there wasn't one then exit. */ 1932 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1933 xfs_iunlink_hash_params); 1934 if (!iu) 1935 return 0; 1936 1937 /* 1938 * Remove the entry. This shouldn't ever return an error, but if we 1939 * couldn't remove the old entry we don't want to add it again to the 1940 * hash table, and if the entry disappeared on us then someone's 1941 * violated the locking rules and we need to fail loudly. Either way 1942 * we cannot remove the inode because internal state is or would have 1943 * been corrupt. 1944 */ 1945 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1946 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1947 if (error) 1948 return error; 1949 1950 /* If there is no new next entry just free our item and return. */ 1951 if (next_unlinked == NULLAGINO) { 1952 kmem_free(iu); 1953 return 0; 1954 } 1955 1956 /* Update the entry and re-add it to the hash table. */ 1957 iu->iu_next_unlinked = next_unlinked; 1958 return xfs_iunlink_insert_backref(pag, iu); 1959} 1960 1961/* Set up the in-core predecessor structures. */ 1962int 1963xfs_iunlink_init( 1964 struct xfs_perag *pag) 1965{ 1966 return rhashtable_init(&pag->pagi_unlinked_hash, 1967 &xfs_iunlink_hash_params); 1968} 1969 1970/* Free the in-core predecessor structures. */ 1971static void 1972xfs_iunlink_free_item( 1973 void *ptr, 1974 void *arg) 1975{ 1976 struct xfs_iunlink *iu = ptr; 1977 bool *freed_anything = arg; 1978 1979 *freed_anything = true; 1980 kmem_free(iu); 1981} 1982 1983void 1984xfs_iunlink_destroy( 1985 struct xfs_perag *pag) 1986{ 1987 bool freed_anything = false; 1988 1989 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 1990 xfs_iunlink_free_item, &freed_anything); 1991 1992 ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount)); 1993} 1994 1995/* 1996 * Point the AGI unlinked bucket at an inode and log the results. The caller 1997 * is responsible for validating the old value. 1998 */ 1999STATIC int 2000xfs_iunlink_update_bucket( 2001 struct xfs_trans *tp, 2002 struct xfs_perag *pag, 2003 struct xfs_buf *agibp, 2004 unsigned int bucket_index, 2005 xfs_agino_t new_agino) 2006{ 2007 struct xfs_agi *agi = agibp->b_addr; 2008 xfs_agino_t old_value; 2009 int offset; 2010 2011 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino)); 2012 2013 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2014 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 2015 old_value, new_agino); 2016 2017 /* 2018 * We should never find the head of the list already set to the value 2019 * passed in because either we're adding or removing ourselves from the 2020 * head of the list. 2021 */ 2022 if (old_value == new_agino) { 2023 xfs_buf_mark_corrupt(agibp); 2024 return -EFSCORRUPTED; 2025 } 2026 2027 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2028 offset = offsetof(struct xfs_agi, agi_unlinked) + 2029 (sizeof(xfs_agino_t) * bucket_index); 2030 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2031 return 0; 2032} 2033 2034/* Set an on-disk inode's next_unlinked pointer. */ 2035STATIC void 2036xfs_iunlink_update_dinode( 2037 struct xfs_trans *tp, 2038 struct xfs_perag *pag, 2039 xfs_agino_t agino, 2040 struct xfs_buf *ibp, 2041 struct xfs_dinode *dip, 2042 struct xfs_imap *imap, 2043 xfs_agino_t next_agino) 2044{ 2045 struct xfs_mount *mp = tp->t_mountp; 2046 int offset; 2047 2048 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2049 2050 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino, 2051 be32_to_cpu(dip->di_next_unlinked), next_agino); 2052 2053 dip->di_next_unlinked = cpu_to_be32(next_agino); 2054 offset = imap->im_boffset + 2055 offsetof(struct xfs_dinode, di_next_unlinked); 2056 2057 /* need to recalc the inode CRC if appropriate */ 2058 xfs_dinode_calc_crc(mp, dip); 2059 xfs_trans_inode_buf(tp, ibp); 2060 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2061} 2062 2063/* Set an in-core inode's unlinked pointer and return the old value. */ 2064STATIC int 2065xfs_iunlink_update_inode( 2066 struct xfs_trans *tp, 2067 struct xfs_inode *ip, 2068 struct xfs_perag *pag, 2069 xfs_agino_t next_agino, 2070 xfs_agino_t *old_next_agino) 2071{ 2072 struct xfs_mount *mp = tp->t_mountp; 2073 struct xfs_dinode *dip; 2074 struct xfs_buf *ibp; 2075 xfs_agino_t old_value; 2076 int error; 2077 2078 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2079 2080 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp); 2081 if (error) 2082 return error; 2083 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset); 2084 2085 /* Make sure the old pointer isn't garbage. */ 2086 old_value = be32_to_cpu(dip->di_next_unlinked); 2087 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) { 2088 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2089 sizeof(*dip), __this_address); 2090 error = -EFSCORRUPTED; 2091 goto out; 2092 } 2093 2094 /* 2095 * Since we're updating a linked list, we should never find that the 2096 * current pointer is the same as the new value, unless we're 2097 * terminating the list. 2098 */ 2099 *old_next_agino = old_value; 2100 if (old_value == next_agino) { 2101 if (next_agino != NULLAGINO) { 2102 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2103 dip, sizeof(*dip), __this_address); 2104 error = -EFSCORRUPTED; 2105 } 2106 goto out; 2107 } 2108 2109 /* Ok, update the new pointer. */ 2110 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 2111 ibp, dip, &ip->i_imap, next_agino); 2112 return 0; 2113out: 2114 xfs_trans_brelse(tp, ibp); 2115 return error; 2116} 2117 2118/* 2119 * This is called when the inode's link count has gone to 0 or we are creating 2120 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2121 * 2122 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2123 * list when the inode is freed. 2124 */ 2125STATIC int 2126xfs_iunlink( 2127 struct xfs_trans *tp, 2128 struct xfs_inode *ip) 2129{ 2130 struct xfs_mount *mp = tp->t_mountp; 2131 struct xfs_perag *pag; 2132 struct xfs_agi *agi; 2133 struct xfs_buf *agibp; 2134 xfs_agino_t next_agino; 2135 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2136 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2137 int error; 2138 2139 ASSERT(VFS_I(ip)->i_nlink == 0); 2140 ASSERT(VFS_I(ip)->i_mode != 0); 2141 trace_xfs_iunlink(ip); 2142 2143 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2144 2145 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2146 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2147 if (error) 2148 goto out; 2149 agi = agibp->b_addr; 2150 2151 /* 2152 * Get the index into the agi hash table for the list this inode will 2153 * go on. Make sure the pointer isn't garbage and that this inode 2154 * isn't already on the list. 2155 */ 2156 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2157 if (next_agino == agino || 2158 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) { 2159 xfs_buf_mark_corrupt(agibp); 2160 error = -EFSCORRUPTED; 2161 goto out; 2162 } 2163 2164 if (next_agino != NULLAGINO) { 2165 xfs_agino_t old_agino; 2166 2167 /* 2168 * There is already another inode in the bucket, so point this 2169 * inode to the current head of the list. 2170 */ 2171 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino, 2172 &old_agino); 2173 if (error) 2174 goto out; 2175 ASSERT(old_agino == NULLAGINO); 2176 2177 /* 2178 * agino has been unlinked, add a backref from the next inode 2179 * back to agino. 2180 */ 2181 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2182 if (error) 2183 goto out; 2184 } 2185 2186 /* Point the head of the list to point to this inode. */ 2187 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2188out: 2189 xfs_perag_put(pag); 2190 return error; 2191} 2192 2193/* Return the imap, dinode pointer, and buffer for an inode. */ 2194STATIC int 2195xfs_iunlink_map_ino( 2196 struct xfs_trans *tp, 2197 xfs_agnumber_t agno, 2198 xfs_agino_t agino, 2199 struct xfs_imap *imap, 2200 struct xfs_dinode **dipp, 2201 struct xfs_buf **bpp) 2202{ 2203 struct xfs_mount *mp = tp->t_mountp; 2204 int error; 2205 2206 imap->im_blkno = 0; 2207 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2208 if (error) { 2209 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2210 __func__, error); 2211 return error; 2212 } 2213 2214 error = xfs_imap_to_bp(mp, tp, imap, bpp); 2215 if (error) { 2216 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2217 __func__, error); 2218 return error; 2219 } 2220 2221 *dipp = xfs_buf_offset(*bpp, imap->im_boffset); 2222 return 0; 2223} 2224 2225/* 2226 * Walk the unlinked chain from @head_agino until we find the inode that 2227 * points to @target_agino. Return the inode number, map, dinode pointer, 2228 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2229 * 2230 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2231 * @agino, @imap, @dipp, and @bpp are all output parameters. 2232 * 2233 * Do not call this function if @target_agino is the head of the list. 2234 */ 2235STATIC int 2236xfs_iunlink_map_prev( 2237 struct xfs_trans *tp, 2238 struct xfs_perag *pag, 2239 xfs_agino_t head_agino, 2240 xfs_agino_t target_agino, 2241 xfs_agino_t *agino, 2242 struct xfs_imap *imap, 2243 struct xfs_dinode **dipp, 2244 struct xfs_buf **bpp) 2245{ 2246 struct xfs_mount *mp = tp->t_mountp; 2247 xfs_agino_t next_agino; 2248 int error; 2249 2250 ASSERT(head_agino != target_agino); 2251 *bpp = NULL; 2252 2253 /* See if our backref cache can find it faster. */ 2254 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2255 if (*agino != NULLAGINO) { 2256 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap, 2257 dipp, bpp); 2258 if (error) 2259 return error; 2260 2261 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2262 return 0; 2263 2264 /* 2265 * If we get here the cache contents were corrupt, so drop the 2266 * buffer and fall back to walking the bucket list. 2267 */ 2268 xfs_trans_brelse(tp, *bpp); 2269 *bpp = NULL; 2270 WARN_ON_ONCE(1); 2271 } 2272 2273 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno); 2274 2275 /* Otherwise, walk the entire bucket until we find it. */ 2276 next_agino = head_agino; 2277 while (next_agino != target_agino) { 2278 xfs_agino_t unlinked_agino; 2279 2280 if (*bpp) 2281 xfs_trans_brelse(tp, *bpp); 2282 2283 *agino = next_agino; 2284 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap, 2285 dipp, bpp); 2286 if (error) 2287 return error; 2288 2289 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2290 /* 2291 * Make sure this pointer is valid and isn't an obvious 2292 * infinite loop. 2293 */ 2294 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) || 2295 next_agino == unlinked_agino) { 2296 XFS_CORRUPTION_ERROR(__func__, 2297 XFS_ERRLEVEL_LOW, mp, 2298 *dipp, sizeof(**dipp)); 2299 error = -EFSCORRUPTED; 2300 return error; 2301 } 2302 next_agino = unlinked_agino; 2303 } 2304 2305 return 0; 2306} 2307 2308/* 2309 * Pull the on-disk inode from the AGI unlinked list. 2310 */ 2311STATIC int 2312xfs_iunlink_remove( 2313 struct xfs_trans *tp, 2314 struct xfs_perag *pag, 2315 struct xfs_inode *ip) 2316{ 2317 struct xfs_mount *mp = tp->t_mountp; 2318 struct xfs_agi *agi; 2319 struct xfs_buf *agibp; 2320 struct xfs_buf *last_ibp; 2321 struct xfs_dinode *last_dip = NULL; 2322 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2323 xfs_agino_t next_agino; 2324 xfs_agino_t head_agino; 2325 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2326 int error; 2327 2328 trace_xfs_iunlink_remove(ip); 2329 2330 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2331 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2332 if (error) 2333 return error; 2334 agi = agibp->b_addr; 2335 2336 /* 2337 * Get the index into the agi hash table for the list this inode will 2338 * go on. Make sure the head pointer isn't garbage. 2339 */ 2340 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2341 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) { 2342 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2343 agi, sizeof(*agi)); 2344 return -EFSCORRUPTED; 2345 } 2346 2347 /* 2348 * Set our inode's next_unlinked pointer to NULL and then return 2349 * the old pointer value so that we can update whatever was previous 2350 * to us in the list to point to whatever was next in the list. 2351 */ 2352 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino); 2353 if (error) 2354 return error; 2355 2356 /* 2357 * If there was a backref pointing from the next inode back to this 2358 * one, remove it because we've removed this inode from the list. 2359 * 2360 * Later, if this inode was in the middle of the list we'll update 2361 * this inode's backref to point from the next inode. 2362 */ 2363 if (next_agino != NULLAGINO) { 2364 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO); 2365 if (error) 2366 return error; 2367 } 2368 2369 if (head_agino != agino) { 2370 struct xfs_imap imap; 2371 xfs_agino_t prev_agino; 2372 2373 /* We need to search the list for the inode being freed. */ 2374 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino, 2375 &prev_agino, &imap, &last_dip, &last_ibp); 2376 if (error) 2377 return error; 2378 2379 /* Point the previous inode on the list to the next inode. */ 2380 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp, 2381 last_dip, &imap, next_agino); 2382 2383 /* 2384 * Now we deal with the backref for this inode. If this inode 2385 * pointed at a real inode, change the backref that pointed to 2386 * us to point to our old next. If this inode was the end of 2387 * the list, delete the backref that pointed to us. Note that 2388 * change_backref takes care of deleting the backref if 2389 * next_agino is NULLAGINO. 2390 */ 2391 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2392 next_agino); 2393 } 2394 2395 /* Point the head of the list to the next unlinked inode. */ 2396 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2397 next_agino); 2398} 2399 2400/* 2401 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2402 * mark it stale. We should only find clean inodes in this lookup that aren't 2403 * already stale. 2404 */ 2405static void 2406xfs_ifree_mark_inode_stale( 2407 struct xfs_perag *pag, 2408 struct xfs_inode *free_ip, 2409 xfs_ino_t inum) 2410{ 2411 struct xfs_mount *mp = pag->pag_mount; 2412 struct xfs_inode_log_item *iip; 2413 struct xfs_inode *ip; 2414 2415retry: 2416 rcu_read_lock(); 2417 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2418 2419 /* Inode not in memory, nothing to do */ 2420 if (!ip) { 2421 rcu_read_unlock(); 2422 return; 2423 } 2424 2425 /* 2426 * because this is an RCU protected lookup, we could find a recently 2427 * freed or even reallocated inode during the lookup. We need to check 2428 * under the i_flags_lock for a valid inode here. Skip it if it is not 2429 * valid, the wrong inode or stale. 2430 */ 2431 spin_lock(&ip->i_flags_lock); 2432 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2433 goto out_iflags_unlock; 2434 2435 /* 2436 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2437 * other inodes that we did not find in the list attached to the buffer 2438 * and are not already marked stale. If we can't lock it, back off and 2439 * retry. 2440 */ 2441 if (ip != free_ip) { 2442 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2443 spin_unlock(&ip->i_flags_lock); 2444 rcu_read_unlock(); 2445 delay(1); 2446 goto retry; 2447 } 2448 } 2449 ip->i_flags |= XFS_ISTALE; 2450 2451 /* 2452 * If the inode is flushing, it is already attached to the buffer. All 2453 * we needed to do here is mark the inode stale so buffer IO completion 2454 * will remove it from the AIL. 2455 */ 2456 iip = ip->i_itemp; 2457 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2458 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2459 ASSERT(iip->ili_last_fields); 2460 goto out_iunlock; 2461 } 2462 2463 /* 2464 * Inodes not attached to the buffer can be released immediately. 2465 * Everything else has to go through xfs_iflush_abort() on journal 2466 * commit as the flock synchronises removal of the inode from the 2467 * cluster buffer against inode reclaim. 2468 */ 2469 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2470 goto out_iunlock; 2471 2472 __xfs_iflags_set(ip, XFS_IFLUSHING); 2473 spin_unlock(&ip->i_flags_lock); 2474 rcu_read_unlock(); 2475 2476 /* we have a dirty inode in memory that has not yet been flushed. */ 2477 spin_lock(&iip->ili_lock); 2478 iip->ili_last_fields = iip->ili_fields; 2479 iip->ili_fields = 0; 2480 iip->ili_fsync_fields = 0; 2481 spin_unlock(&iip->ili_lock); 2482 ASSERT(iip->ili_last_fields); 2483 2484 if (ip != free_ip) 2485 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2486 return; 2487 2488out_iunlock: 2489 if (ip != free_ip) 2490 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2491out_iflags_unlock: 2492 spin_unlock(&ip->i_flags_lock); 2493 rcu_read_unlock(); 2494} 2495 2496/* 2497 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2498 * inodes that are in memory - they all must be marked stale and attached to 2499 * the cluster buffer. 2500 */ 2501static int 2502xfs_ifree_cluster( 2503 struct xfs_trans *tp, 2504 struct xfs_perag *pag, 2505 struct xfs_inode *free_ip, 2506 struct xfs_icluster *xic) 2507{ 2508 struct xfs_mount *mp = free_ip->i_mount; 2509 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2510 struct xfs_buf *bp; 2511 xfs_daddr_t blkno; 2512 xfs_ino_t inum = xic->first_ino; 2513 int nbufs; 2514 int i, j; 2515 int ioffset; 2516 int error; 2517 2518 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2519 2520 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2521 /* 2522 * The allocation bitmap tells us which inodes of the chunk were 2523 * physically allocated. Skip the cluster if an inode falls into 2524 * a sparse region. 2525 */ 2526 ioffset = inum - xic->first_ino; 2527 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2528 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2529 continue; 2530 } 2531 2532 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2533 XFS_INO_TO_AGBNO(mp, inum)); 2534 2535 /* 2536 * We obtain and lock the backing buffer first in the process 2537 * here to ensure dirty inodes attached to the buffer remain in 2538 * the flushing state while we mark them stale. 2539 * 2540 * If we scan the in-memory inodes first, then buffer IO can 2541 * complete before we get a lock on it, and hence we may fail 2542 * to mark all the active inodes on the buffer stale. 2543 */ 2544 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2545 mp->m_bsize * igeo->blocks_per_cluster, 2546 XBF_UNMAPPED, &bp); 2547 if (error) 2548 return error; 2549 2550 /* 2551 * This buffer may not have been correctly initialised as we 2552 * didn't read it from disk. That's not important because we are 2553 * only using to mark the buffer as stale in the log, and to 2554 * attach stale cached inodes on it. That means it will never be 2555 * dispatched for IO. If it is, we want to know about it, and we 2556 * want it to fail. We can acheive this by adding a write 2557 * verifier to the buffer. 2558 */ 2559 bp->b_ops = &xfs_inode_buf_ops; 2560 2561 /* 2562 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2563 * too. This requires lookups, and will skip inodes that we've 2564 * already marked XFS_ISTALE. 2565 */ 2566 for (i = 0; i < igeo->inodes_per_cluster; i++) 2567 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2568 2569 xfs_trans_stale_inode_buf(tp, bp); 2570 xfs_trans_binval(tp, bp); 2571 } 2572 return 0; 2573} 2574 2575/* 2576 * This is called to return an inode to the inode free list. The inode should 2577 * already be truncated to 0 length and have no pages associated with it. This 2578 * routine also assumes that the inode is already a part of the transaction. 2579 * 2580 * The on-disk copy of the inode will have been added to the list of unlinked 2581 * inodes in the AGI. We need to remove the inode from that list atomically with 2582 * respect to freeing it here. 2583 */ 2584int 2585xfs_ifree( 2586 struct xfs_trans *tp, 2587 struct xfs_inode *ip) 2588{ 2589 struct xfs_mount *mp = ip->i_mount; 2590 struct xfs_perag *pag; 2591 struct xfs_icluster xic = { 0 }; 2592 struct xfs_inode_log_item *iip = ip->i_itemp; 2593 int error; 2594 2595 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2596 ASSERT(VFS_I(ip)->i_nlink == 0); 2597 ASSERT(ip->i_df.if_nextents == 0); 2598 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2599 ASSERT(ip->i_nblocks == 0); 2600 2601 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2602 2603 /* 2604 * Free the inode first so that we guarantee that the AGI lock is going 2605 * to be taken before we remove the inode from the unlinked list. This 2606 * makes the AGI lock -> unlinked list modification order the same as 2607 * used in O_TMPFILE creation. 2608 */ 2609 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2610 if (error) 2611 goto out; 2612 2613 error = xfs_iunlink_remove(tp, pag, ip); 2614 if (error) 2615 goto out; 2616 2617 /* 2618 * Free any local-format data sitting around before we reset the 2619 * data fork to extents format. Note that the attr fork data has 2620 * already been freed by xfs_attr_inactive. 2621 */ 2622 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2623 kmem_free(ip->i_df.if_u1.if_data); 2624 ip->i_df.if_u1.if_data = NULL; 2625 ip->i_df.if_bytes = 0; 2626 } 2627 2628 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2629 ip->i_diflags = 0; 2630 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2631 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2632 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2633 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2634 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2635 2636 /* Don't attempt to replay owner changes for a deleted inode */ 2637 spin_lock(&iip->ili_lock); 2638 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2639 spin_unlock(&iip->ili_lock); 2640 2641 /* 2642 * Bump the generation count so no one will be confused 2643 * by reincarnations of this inode. 2644 */ 2645 VFS_I(ip)->i_generation++; 2646 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2647 2648 if (xic.deleted) 2649 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2650out: 2651 xfs_perag_put(pag); 2652 return error; 2653} 2654 2655/* 2656 * This is called to unpin an inode. The caller must have the inode locked 2657 * in at least shared mode so that the buffer cannot be subsequently pinned 2658 * once someone is waiting for it to be unpinned. 2659 */ 2660static void 2661xfs_iunpin( 2662 struct xfs_inode *ip) 2663{ 2664 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2665 2666 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2667 2668 /* Give the log a push to start the unpinning I/O */ 2669 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2670 2671} 2672 2673static void 2674__xfs_iunpin_wait( 2675 struct xfs_inode *ip) 2676{ 2677 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2678 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2679 2680 xfs_iunpin(ip); 2681 2682 do { 2683 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2684 if (xfs_ipincount(ip)) 2685 io_schedule(); 2686 } while (xfs_ipincount(ip)); 2687 finish_wait(wq, &wait.wq_entry); 2688} 2689 2690void 2691xfs_iunpin_wait( 2692 struct xfs_inode *ip) 2693{ 2694 if (xfs_ipincount(ip)) 2695 __xfs_iunpin_wait(ip); 2696} 2697 2698/* 2699 * Removing an inode from the namespace involves removing the directory entry 2700 * and dropping the link count on the inode. Removing the directory entry can 2701 * result in locking an AGF (directory blocks were freed) and removing a link 2702 * count can result in placing the inode on an unlinked list which results in 2703 * locking an AGI. 2704 * 2705 * The big problem here is that we have an ordering constraint on AGF and AGI 2706 * locking - inode allocation locks the AGI, then can allocate a new extent for 2707 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2708 * removes the inode from the unlinked list, requiring that we lock the AGI 2709 * first, and then freeing the inode can result in an inode chunk being freed 2710 * and hence freeing disk space requiring that we lock an AGF. 2711 * 2712 * Hence the ordering that is imposed by other parts of the code is AGI before 2713 * AGF. This means we cannot remove the directory entry before we drop the inode 2714 * reference count and put it on the unlinked list as this results in a lock 2715 * order of AGF then AGI, and this can deadlock against inode allocation and 2716 * freeing. Therefore we must drop the link counts before we remove the 2717 * directory entry. 2718 * 2719 * This is still safe from a transactional point of view - it is not until we 2720 * get to xfs_defer_finish() that we have the possibility of multiple 2721 * transactions in this operation. Hence as long as we remove the directory 2722 * entry and drop the link count in the first transaction of the remove 2723 * operation, there are no transactional constraints on the ordering here. 2724 */ 2725int 2726xfs_remove( 2727 xfs_inode_t *dp, 2728 struct xfs_name *name, 2729 xfs_inode_t *ip) 2730{ 2731 xfs_mount_t *mp = dp->i_mount; 2732 xfs_trans_t *tp = NULL; 2733 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2734 int dontcare; 2735 int error = 0; 2736 uint resblks; 2737 2738 trace_xfs_remove(dp, name); 2739 2740 if (xfs_is_shutdown(mp)) 2741 return -EIO; 2742 2743 error = xfs_qm_dqattach(dp); 2744 if (error) 2745 goto std_return; 2746 2747 error = xfs_qm_dqattach(ip); 2748 if (error) 2749 goto std_return; 2750 2751 /* 2752 * We try to get the real space reservation first, allowing for 2753 * directory btree deletion(s) implying possible bmap insert(s). If we 2754 * can't get the space reservation then we use 0 instead, and avoid the 2755 * bmap btree insert(s) in the directory code by, if the bmap insert 2756 * tries to happen, instead trimming the LAST block from the directory. 2757 * 2758 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2759 * the directory code can handle a reservationless update and we don't 2760 * want to prevent a user from trying to free space by deleting things. 2761 */ 2762 resblks = XFS_REMOVE_SPACE_RES(mp); 2763 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2764 &tp, &dontcare); 2765 if (error) { 2766 ASSERT(error != -ENOSPC); 2767 goto std_return; 2768 } 2769 2770 /* 2771 * If we're removing a directory perform some additional validation. 2772 */ 2773 if (is_dir) { 2774 ASSERT(VFS_I(ip)->i_nlink >= 2); 2775 if (VFS_I(ip)->i_nlink != 2) { 2776 error = -ENOTEMPTY; 2777 goto out_trans_cancel; 2778 } 2779 if (!xfs_dir_isempty(ip)) { 2780 error = -ENOTEMPTY; 2781 goto out_trans_cancel; 2782 } 2783 2784 /* Drop the link from ip's "..". */ 2785 error = xfs_droplink(tp, dp); 2786 if (error) 2787 goto out_trans_cancel; 2788 2789 /* Drop the "." link from ip to self. */ 2790 error = xfs_droplink(tp, ip); 2791 if (error) 2792 goto out_trans_cancel; 2793 2794 /* 2795 * Point the unlinked child directory's ".." entry to the root 2796 * directory to eliminate back-references to inodes that may 2797 * get freed before the child directory is closed. If the fs 2798 * gets shrunk, this can lead to dirent inode validation errors. 2799 */ 2800 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2801 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2802 tp->t_mountp->m_sb.sb_rootino, 0); 2803 if (error) 2804 return error; 2805 } 2806 } else { 2807 /* 2808 * When removing a non-directory we need to log the parent 2809 * inode here. For a directory this is done implicitly 2810 * by the xfs_droplink call for the ".." entry. 2811 */ 2812 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2813 } 2814 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2815 2816 /* Drop the link from dp to ip. */ 2817 error = xfs_droplink(tp, ip); 2818 if (error) 2819 goto out_trans_cancel; 2820 2821 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2822 if (error) { 2823 ASSERT(error != -ENOENT); 2824 goto out_trans_cancel; 2825 } 2826 2827 /* 2828 * If this is a synchronous mount, make sure that the 2829 * remove transaction goes to disk before returning to 2830 * the user. 2831 */ 2832 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2833 xfs_trans_set_sync(tp); 2834 2835 error = xfs_trans_commit(tp); 2836 if (error) 2837 goto std_return; 2838 2839 if (is_dir && xfs_inode_is_filestream(ip)) 2840 xfs_filestream_deassociate(ip); 2841 2842 return 0; 2843 2844 out_trans_cancel: 2845 xfs_trans_cancel(tp); 2846 std_return: 2847 return error; 2848} 2849 2850/* 2851 * Enter all inodes for a rename transaction into a sorted array. 2852 */ 2853#define __XFS_SORT_INODES 5 2854STATIC void 2855xfs_sort_for_rename( 2856 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2857 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2858 struct xfs_inode *ip1, /* in: inode of old entry */ 2859 struct xfs_inode *ip2, /* in: inode of new entry */ 2860 struct xfs_inode *wip, /* in: whiteout inode */ 2861 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2862 int *num_inodes) /* in/out: inodes in array */ 2863{ 2864 int i, j; 2865 2866 ASSERT(*num_inodes == __XFS_SORT_INODES); 2867 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2868 2869 /* 2870 * i_tab contains a list of pointers to inodes. We initialize 2871 * the table here & we'll sort it. We will then use it to 2872 * order the acquisition of the inode locks. 2873 * 2874 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2875 */ 2876 i = 0; 2877 i_tab[i++] = dp1; 2878 i_tab[i++] = dp2; 2879 i_tab[i++] = ip1; 2880 if (ip2) 2881 i_tab[i++] = ip2; 2882 if (wip) 2883 i_tab[i++] = wip; 2884 *num_inodes = i; 2885 2886 /* 2887 * Sort the elements via bubble sort. (Remember, there are at 2888 * most 5 elements to sort, so this is adequate.) 2889 */ 2890 for (i = 0; i < *num_inodes; i++) { 2891 for (j = 1; j < *num_inodes; j++) { 2892 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2893 struct xfs_inode *temp = i_tab[j]; 2894 i_tab[j] = i_tab[j-1]; 2895 i_tab[j-1] = temp; 2896 } 2897 } 2898 } 2899} 2900 2901static int 2902xfs_finish_rename( 2903 struct xfs_trans *tp) 2904{ 2905 /* 2906 * If this is a synchronous mount, make sure that the rename transaction 2907 * goes to disk before returning to the user. 2908 */ 2909 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2910 xfs_trans_set_sync(tp); 2911 2912 return xfs_trans_commit(tp); 2913} 2914 2915/* 2916 * xfs_cross_rename() 2917 * 2918 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2919 */ 2920STATIC int 2921xfs_cross_rename( 2922 struct xfs_trans *tp, 2923 struct xfs_inode *dp1, 2924 struct xfs_name *name1, 2925 struct xfs_inode *ip1, 2926 struct xfs_inode *dp2, 2927 struct xfs_name *name2, 2928 struct xfs_inode *ip2, 2929 int spaceres) 2930{ 2931 int error = 0; 2932 int ip1_flags = 0; 2933 int ip2_flags = 0; 2934 int dp2_flags = 0; 2935 2936 /* Swap inode number for dirent in first parent */ 2937 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2938 if (error) 2939 goto out_trans_abort; 2940 2941 /* Swap inode number for dirent in second parent */ 2942 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2943 if (error) 2944 goto out_trans_abort; 2945 2946 /* 2947 * If we're renaming one or more directories across different parents, 2948 * update the respective ".." entries (and link counts) to match the new 2949 * parents. 2950 */ 2951 if (dp1 != dp2) { 2952 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2953 2954 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2955 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2956 dp1->i_ino, spaceres); 2957 if (error) 2958 goto out_trans_abort; 2959 2960 /* transfer ip2 ".." reference to dp1 */ 2961 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2962 error = xfs_droplink(tp, dp2); 2963 if (error) 2964 goto out_trans_abort; 2965 xfs_bumplink(tp, dp1); 2966 } 2967 2968 /* 2969 * Although ip1 isn't changed here, userspace needs 2970 * to be warned about the change, so that applications 2971 * relying on it (like backup ones), will properly 2972 * notify the change 2973 */ 2974 ip1_flags |= XFS_ICHGTIME_CHG; 2975 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2976 } 2977 2978 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2979 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2980 dp2->i_ino, spaceres); 2981 if (error) 2982 goto out_trans_abort; 2983 2984 /* transfer ip1 ".." reference to dp2 */ 2985 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2986 error = xfs_droplink(tp, dp1); 2987 if (error) 2988 goto out_trans_abort; 2989 xfs_bumplink(tp, dp2); 2990 } 2991 2992 /* 2993 * Although ip2 isn't changed here, userspace needs 2994 * to be warned about the change, so that applications 2995 * relying on it (like backup ones), will properly 2996 * notify the change 2997 */ 2998 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2999 ip2_flags |= XFS_ICHGTIME_CHG; 3000 } 3001 } 3002 3003 if (ip1_flags) { 3004 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3005 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3006 } 3007 if (ip2_flags) { 3008 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3009 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3010 } 3011 if (dp2_flags) { 3012 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3013 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3014 } 3015 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3016 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3017 return xfs_finish_rename(tp); 3018 3019out_trans_abort: 3020 xfs_trans_cancel(tp); 3021 return error; 3022} 3023 3024/* 3025 * xfs_rename_alloc_whiteout() 3026 * 3027 * Return a referenced, unlinked, unlocked inode that can be used as a 3028 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3029 * crash between allocating the inode and linking it into the rename transaction 3030 * recovery will free the inode and we won't leak it. 3031 */ 3032static int 3033xfs_rename_alloc_whiteout( 3034 struct user_namespace *mnt_userns, 3035 struct xfs_inode *dp, 3036 struct xfs_inode **wip) 3037{ 3038 struct xfs_inode *tmpfile; 3039 int error; 3040 3041 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, 3042 &tmpfile); 3043 if (error) 3044 return error; 3045 3046 /* 3047 * Prepare the tmpfile inode as if it were created through the VFS. 3048 * Complete the inode setup and flag it as linkable. nlink is already 3049 * zero, so we can skip the drop_nlink. 3050 */ 3051 xfs_setup_iops(tmpfile); 3052 xfs_finish_inode_setup(tmpfile); 3053 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3054 3055 *wip = tmpfile; 3056 return 0; 3057} 3058 3059/* 3060 * xfs_rename 3061 */ 3062int 3063xfs_rename( 3064 struct user_namespace *mnt_userns, 3065 struct xfs_inode *src_dp, 3066 struct xfs_name *src_name, 3067 struct xfs_inode *src_ip, 3068 struct xfs_inode *target_dp, 3069 struct xfs_name *target_name, 3070 struct xfs_inode *target_ip, 3071 unsigned int flags) 3072{ 3073 struct xfs_mount *mp = src_dp->i_mount; 3074 struct xfs_trans *tp; 3075 struct xfs_inode *wip = NULL; /* whiteout inode */ 3076 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3077 int i; 3078 int num_inodes = __XFS_SORT_INODES; 3079 bool new_parent = (src_dp != target_dp); 3080 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3081 int spaceres; 3082 bool retried = false; 3083 int error, nospace_error = 0; 3084 3085 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3086 3087 if ((flags & RENAME_EXCHANGE) && !target_ip) 3088 return -EINVAL; 3089 3090 /* 3091 * If we are doing a whiteout operation, allocate the whiteout inode 3092 * we will be placing at the target and ensure the type is set 3093 * appropriately. 3094 */ 3095 if (flags & RENAME_WHITEOUT) { 3096 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); 3097 if (error) 3098 return error; 3099 3100 /* setup target dirent info as whiteout */ 3101 src_name->type = XFS_DIR3_FT_CHRDEV; 3102 } 3103 3104 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3105 inodes, &num_inodes); 3106 3107retry: 3108 nospace_error = 0; 3109 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3110 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3111 if (error == -ENOSPC) { 3112 nospace_error = error; 3113 spaceres = 0; 3114 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3115 &tp); 3116 } 3117 if (error) 3118 goto out_release_wip; 3119 3120 /* 3121 * Attach the dquots to the inodes 3122 */ 3123 error = xfs_qm_vop_rename_dqattach(inodes); 3124 if (error) 3125 goto out_trans_cancel; 3126 3127 /* 3128 * Lock all the participating inodes. Depending upon whether 3129 * the target_name exists in the target directory, and 3130 * whether the target directory is the same as the source 3131 * directory, we can lock from 2 to 4 inodes. 3132 */ 3133 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3134 3135 /* 3136 * Join all the inodes to the transaction. From this point on, 3137 * we can rely on either trans_commit or trans_cancel to unlock 3138 * them. 3139 */ 3140 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3141 if (new_parent) 3142 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3143 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3144 if (target_ip) 3145 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3146 if (wip) 3147 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3148 3149 /* 3150 * If we are using project inheritance, we only allow renames 3151 * into our tree when the project IDs are the same; else the 3152 * tree quota mechanism would be circumvented. 3153 */ 3154 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3155 target_dp->i_projid != src_ip->i_projid)) { 3156 error = -EXDEV; 3157 goto out_trans_cancel; 3158 } 3159 3160 /* RENAME_EXCHANGE is unique from here on. */ 3161 if (flags & RENAME_EXCHANGE) 3162 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3163 target_dp, target_name, target_ip, 3164 spaceres); 3165 3166 /* 3167 * Try to reserve quota to handle an expansion of the target directory. 3168 * We'll allow the rename to continue in reservationless mode if we hit 3169 * a space usage constraint. If we trigger reservationless mode, save 3170 * the errno if there isn't any free space in the target directory. 3171 */ 3172 if (spaceres != 0) { 3173 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 3174 0, false); 3175 if (error == -EDQUOT || error == -ENOSPC) { 3176 if (!retried) { 3177 xfs_trans_cancel(tp); 3178 xfs_blockgc_free_quota(target_dp, 0); 3179 retried = true; 3180 goto retry; 3181 } 3182 3183 nospace_error = error; 3184 spaceres = 0; 3185 error = 0; 3186 } 3187 if (error) 3188 goto out_trans_cancel; 3189 } 3190 3191 /* 3192 * Check for expected errors before we dirty the transaction 3193 * so we can return an error without a transaction abort. 3194 */ 3195 if (target_ip == NULL) { 3196 /* 3197 * If there's no space reservation, check the entry will 3198 * fit before actually inserting it. 3199 */ 3200 if (!spaceres) { 3201 error = xfs_dir_canenter(tp, target_dp, target_name); 3202 if (error) 3203 goto out_trans_cancel; 3204 } 3205 } else { 3206 /* 3207 * If target exists and it's a directory, check that whether 3208 * it can be destroyed. 3209 */ 3210 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3211 (!xfs_dir_isempty(target_ip) || 3212 (VFS_I(target_ip)->i_nlink > 2))) { 3213 error = -EEXIST; 3214 goto out_trans_cancel; 3215 } 3216 } 3217 3218 /* 3219 * Lock the AGI buffers we need to handle bumping the nlink of the 3220 * whiteout inode off the unlinked list and to handle dropping the 3221 * nlink of the target inode. Per locking order rules, do this in 3222 * increasing AG order and before directory block allocation tries to 3223 * grab AGFs because we grab AGIs before AGFs. 3224 * 3225 * The (vfs) caller must ensure that if src is a directory then 3226 * target_ip is either null or an empty directory. 3227 */ 3228 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3229 if (inodes[i] == wip || 3230 (inodes[i] == target_ip && 3231 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3232 struct xfs_buf *bp; 3233 xfs_agnumber_t agno; 3234 3235 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3236 error = xfs_read_agi(mp, tp, agno, &bp); 3237 if (error) 3238 goto out_trans_cancel; 3239 } 3240 } 3241 3242 /* 3243 * Directory entry creation below may acquire the AGF. Remove 3244 * the whiteout from the unlinked list first to preserve correct 3245 * AGI/AGF locking order. This dirties the transaction so failures 3246 * after this point will abort and log recovery will clean up the 3247 * mess. 3248 * 3249 * For whiteouts, we need to bump the link count on the whiteout 3250 * inode. After this point, we have a real link, clear the tmpfile 3251 * state flag from the inode so it doesn't accidentally get misused 3252 * in future. 3253 */ 3254 if (wip) { 3255 struct xfs_perag *pag; 3256 3257 ASSERT(VFS_I(wip)->i_nlink == 0); 3258 3259 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3260 error = xfs_iunlink_remove(tp, pag, wip); 3261 xfs_perag_put(pag); 3262 if (error) 3263 goto out_trans_cancel; 3264 3265 xfs_bumplink(tp, wip); 3266 VFS_I(wip)->i_state &= ~I_LINKABLE; 3267 } 3268 3269 /* 3270 * Set up the target. 3271 */ 3272 if (target_ip == NULL) { 3273 /* 3274 * If target does not exist and the rename crosses 3275 * directories, adjust the target directory link count 3276 * to account for the ".." reference from the new entry. 3277 */ 3278 error = xfs_dir_createname(tp, target_dp, target_name, 3279 src_ip->i_ino, spaceres); 3280 if (error) 3281 goto out_trans_cancel; 3282 3283 xfs_trans_ichgtime(tp, target_dp, 3284 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3285 3286 if (new_parent && src_is_directory) { 3287 xfs_bumplink(tp, target_dp); 3288 } 3289 } else { /* target_ip != NULL */ 3290 /* 3291 * Link the source inode under the target name. 3292 * If the source inode is a directory and we are moving 3293 * it across directories, its ".." entry will be 3294 * inconsistent until we replace that down below. 3295 * 3296 * In case there is already an entry with the same 3297 * name at the destination directory, remove it first. 3298 */ 3299 error = xfs_dir_replace(tp, target_dp, target_name, 3300 src_ip->i_ino, spaceres); 3301 if (error) 3302 goto out_trans_cancel; 3303 3304 xfs_trans_ichgtime(tp, target_dp, 3305 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3306 3307 /* 3308 * Decrement the link count on the target since the target 3309 * dir no longer points to it. 3310 */ 3311 error = xfs_droplink(tp, target_ip); 3312 if (error) 3313 goto out_trans_cancel; 3314 3315 if (src_is_directory) { 3316 /* 3317 * Drop the link from the old "." entry. 3318 */ 3319 error = xfs_droplink(tp, target_ip); 3320 if (error) 3321 goto out_trans_cancel; 3322 } 3323 } /* target_ip != NULL */ 3324 3325 /* 3326 * Remove the source. 3327 */ 3328 if (new_parent && src_is_directory) { 3329 /* 3330 * Rewrite the ".." entry to point to the new 3331 * directory. 3332 */ 3333 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3334 target_dp->i_ino, spaceres); 3335 ASSERT(error != -EEXIST); 3336 if (error) 3337 goto out_trans_cancel; 3338 } 3339 3340 /* 3341 * We always want to hit the ctime on the source inode. 3342 * 3343 * This isn't strictly required by the standards since the source 3344 * inode isn't really being changed, but old unix file systems did 3345 * it and some incremental backup programs won't work without it. 3346 */ 3347 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3348 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3349 3350 /* 3351 * Adjust the link count on src_dp. This is necessary when 3352 * renaming a directory, either within one parent when 3353 * the target existed, or across two parent directories. 3354 */ 3355 if (src_is_directory && (new_parent || target_ip != NULL)) { 3356 3357 /* 3358 * Decrement link count on src_directory since the 3359 * entry that's moved no longer points to it. 3360 */ 3361 error = xfs_droplink(tp, src_dp); 3362 if (error) 3363 goto out_trans_cancel; 3364 } 3365 3366 /* 3367 * For whiteouts, we only need to update the source dirent with the 3368 * inode number of the whiteout inode rather than removing it 3369 * altogether. 3370 */ 3371 if (wip) 3372 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3373 spaceres); 3374 else 3375 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3376 spaceres); 3377 3378 if (error) 3379 goto out_trans_cancel; 3380 3381 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3382 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3383 if (new_parent) 3384 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3385 3386 error = xfs_finish_rename(tp); 3387 if (wip) 3388 xfs_irele(wip); 3389 return error; 3390 3391out_trans_cancel: 3392 xfs_trans_cancel(tp); 3393out_release_wip: 3394 if (wip) 3395 xfs_irele(wip); 3396 if (error == -ENOSPC && nospace_error) 3397 error = nospace_error; 3398 return error; 3399} 3400 3401static int 3402xfs_iflush( 3403 struct xfs_inode *ip, 3404 struct xfs_buf *bp) 3405{ 3406 struct xfs_inode_log_item *iip = ip->i_itemp; 3407 struct xfs_dinode *dip; 3408 struct xfs_mount *mp = ip->i_mount; 3409 int error; 3410 3411 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3412 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3413 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3414 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3415 ASSERT(iip->ili_item.li_buf == bp); 3416 3417 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3418 3419 /* 3420 * We don't flush the inode if any of the following checks fail, but we 3421 * do still update the log item and attach to the backing buffer as if 3422 * the flush happened. This is a formality to facilitate predictable 3423 * error handling as the caller will shutdown and fail the buffer. 3424 */ 3425 error = -EFSCORRUPTED; 3426 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3427 mp, XFS_ERRTAG_IFLUSH_1)) { 3428 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3429 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3430 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3431 goto flush_out; 3432 } 3433 if (S_ISREG(VFS_I(ip)->i_mode)) { 3434 if (XFS_TEST_ERROR( 3435 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3436 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3437 mp, XFS_ERRTAG_IFLUSH_3)) { 3438 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3439 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3440 __func__, ip->i_ino, ip); 3441 goto flush_out; 3442 } 3443 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3444 if (XFS_TEST_ERROR( 3445 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3446 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3447 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3448 mp, XFS_ERRTAG_IFLUSH_4)) { 3449 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3450 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3451 __func__, ip->i_ino, ip); 3452 goto flush_out; 3453 } 3454 } 3455 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3456 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3457 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3458 "%s: detected corrupt incore inode %llu, " 3459 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3460 __func__, ip->i_ino, 3461 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3462 ip->i_nblocks, ip); 3463 goto flush_out; 3464 } 3465 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3466 mp, XFS_ERRTAG_IFLUSH_6)) { 3467 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3468 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3469 __func__, ip->i_ino, ip->i_forkoff, ip); 3470 goto flush_out; 3471 } 3472 3473 /* 3474 * Inode item log recovery for v2 inodes are dependent on the flushiter 3475 * count for correct sequencing. We bump the flush iteration count so 3476 * we can detect flushes which postdate a log record during recovery. 3477 * This is redundant as we now log every change and hence this can't 3478 * happen but we need to still do it to ensure backwards compatibility 3479 * with old kernels that predate logging all inode changes. 3480 */ 3481 if (!xfs_has_v3inodes(mp)) 3482 ip->i_flushiter++; 3483 3484 /* 3485 * If there are inline format data / attr forks attached to this inode, 3486 * make sure they are not corrupt. 3487 */ 3488 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3489 xfs_ifork_verify_local_data(ip)) 3490 goto flush_out; 3491 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3492 xfs_ifork_verify_local_attr(ip)) 3493 goto flush_out; 3494 3495 /* 3496 * Copy the dirty parts of the inode into the on-disk inode. We always 3497 * copy out the core of the inode, because if the inode is dirty at all 3498 * the core must be. 3499 */ 3500 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3501 3502 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3503 if (!xfs_has_v3inodes(mp)) { 3504 if (ip->i_flushiter == DI_MAX_FLUSH) 3505 ip->i_flushiter = 0; 3506 } 3507 3508 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3509 if (XFS_IFORK_Q(ip)) 3510 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3511 3512 /* 3513 * We've recorded everything logged in the inode, so we'd like to clear 3514 * the ili_fields bits so we don't log and flush things unnecessarily. 3515 * However, we can't stop logging all this information until the data 3516 * we've copied into the disk buffer is written to disk. If we did we 3517 * might overwrite the copy of the inode in the log with all the data 3518 * after re-logging only part of it, and in the face of a crash we 3519 * wouldn't have all the data we need to recover. 3520 * 3521 * What we do is move the bits to the ili_last_fields field. When 3522 * logging the inode, these bits are moved back to the ili_fields field. 3523 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3524 * we know that the information those bits represent is permanently on 3525 * disk. As long as the flush completes before the inode is logged 3526 * again, then both ili_fields and ili_last_fields will be cleared. 3527 */ 3528 error = 0; 3529flush_out: 3530 spin_lock(&iip->ili_lock); 3531 iip->ili_last_fields = iip->ili_fields; 3532 iip->ili_fields = 0; 3533 iip->ili_fsync_fields = 0; 3534 spin_unlock(&iip->ili_lock); 3535 3536 /* 3537 * Store the current LSN of the inode so that we can tell whether the 3538 * item has moved in the AIL from xfs_buf_inode_iodone(). 3539 */ 3540 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3541 &iip->ili_item.li_lsn); 3542 3543 /* generate the checksum. */ 3544 xfs_dinode_calc_crc(mp, dip); 3545 return error; 3546} 3547 3548/* 3549 * Non-blocking flush of dirty inode metadata into the backing buffer. 3550 * 3551 * The caller must have a reference to the inode and hold the cluster buffer 3552 * locked. The function will walk across all the inodes on the cluster buffer it 3553 * can find and lock without blocking, and flush them to the cluster buffer. 3554 * 3555 * On successful flushing of at least one inode, the caller must write out the 3556 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3557 * the caller needs to release the buffer. On failure, the filesystem will be 3558 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3559 * will be returned. 3560 */ 3561int 3562xfs_iflush_cluster( 3563 struct xfs_buf *bp) 3564{ 3565 struct xfs_mount *mp = bp->b_mount; 3566 struct xfs_log_item *lip, *n; 3567 struct xfs_inode *ip; 3568 struct xfs_inode_log_item *iip; 3569 int clcount = 0; 3570 int error = 0; 3571 3572 /* 3573 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3574 * will remove itself from the list. 3575 */ 3576 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3577 iip = (struct xfs_inode_log_item *)lip; 3578 ip = iip->ili_inode; 3579 3580 /* 3581 * Quick and dirty check to avoid locks if possible. 3582 */ 3583 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3584 continue; 3585 if (xfs_ipincount(ip)) 3586 continue; 3587 3588 /* 3589 * The inode is still attached to the buffer, which means it is 3590 * dirty but reclaim might try to grab it. Check carefully for 3591 * that, and grab the ilock while still holding the i_flags_lock 3592 * to guarantee reclaim will not be able to reclaim this inode 3593 * once we drop the i_flags_lock. 3594 */ 3595 spin_lock(&ip->i_flags_lock); 3596 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3597 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3598 spin_unlock(&ip->i_flags_lock); 3599 continue; 3600 } 3601 3602 /* 3603 * ILOCK will pin the inode against reclaim and prevent 3604 * concurrent transactions modifying the inode while we are 3605 * flushing the inode. If we get the lock, set the flushing 3606 * state before we drop the i_flags_lock. 3607 */ 3608 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3609 spin_unlock(&ip->i_flags_lock); 3610 continue; 3611 } 3612 __xfs_iflags_set(ip, XFS_IFLUSHING); 3613 spin_unlock(&ip->i_flags_lock); 3614 3615 /* 3616 * Abort flushing this inode if we are shut down because the 3617 * inode may not currently be in the AIL. This can occur when 3618 * log I/O failure unpins the inode without inserting into the 3619 * AIL, leaving a dirty/unpinned inode attached to the buffer 3620 * that otherwise looks like it should be flushed. 3621 */ 3622 if (xlog_is_shutdown(mp->m_log)) { 3623 xfs_iunpin_wait(ip); 3624 xfs_iflush_abort(ip); 3625 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3626 error = -EIO; 3627 continue; 3628 } 3629 3630 /* don't block waiting on a log force to unpin dirty inodes */ 3631 if (xfs_ipincount(ip)) { 3632 xfs_iflags_clear(ip, XFS_IFLUSHING); 3633 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3634 continue; 3635 } 3636 3637 if (!xfs_inode_clean(ip)) 3638 error = xfs_iflush(ip, bp); 3639 else 3640 xfs_iflags_clear(ip, XFS_IFLUSHING); 3641 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3642 if (error) 3643 break; 3644 clcount++; 3645 } 3646 3647 if (error) { 3648 /* 3649 * Shutdown first so we kill the log before we release this 3650 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3651 * of the log, failing it before the _log_ is shut down can 3652 * result in the log tail being moved forward in the journal 3653 * on disk because log writes can still be taking place. Hence 3654 * unpinning the tail will allow the ICREATE intent to be 3655 * removed from the log an recovery will fail with uninitialised 3656 * inode cluster buffers. 3657 */ 3658 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3659 bp->b_flags |= XBF_ASYNC; 3660 xfs_buf_ioend_fail(bp); 3661 return error; 3662 } 3663 3664 if (!clcount) 3665 return -EAGAIN; 3666 3667 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3668 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3669 return 0; 3670 3671} 3672 3673/* Release an inode. */ 3674void 3675xfs_irele( 3676 struct xfs_inode *ip) 3677{ 3678 trace_xfs_irele(ip, _RET_IP_); 3679 iput(VFS_I(ip)); 3680} 3681 3682/* 3683 * Ensure all commited transactions touching the inode are written to the log. 3684 */ 3685int 3686xfs_log_force_inode( 3687 struct xfs_inode *ip) 3688{ 3689 xfs_csn_t seq = 0; 3690 3691 xfs_ilock(ip, XFS_ILOCK_SHARED); 3692 if (xfs_ipincount(ip)) 3693 seq = ip->i_itemp->ili_commit_seq; 3694 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3695 3696 if (!seq) 3697 return 0; 3698 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3699} 3700 3701/* 3702 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3703 * abide vfs locking order (lowest pointer value goes first) and breaking the 3704 * layout leases before proceeding. The loop is needed because we cannot call 3705 * the blocking break_layout() with the iolocks held, and therefore have to 3706 * back out both locks. 3707 */ 3708static int 3709xfs_iolock_two_inodes_and_break_layout( 3710 struct inode *src, 3711 struct inode *dest) 3712{ 3713 int error; 3714 3715 if (src > dest) 3716 swap(src, dest); 3717 3718retry: 3719 /* Wait to break both inodes' layouts before we start locking. */ 3720 error = break_layout(src, true); 3721 if (error) 3722 return error; 3723 if (src != dest) { 3724 error = break_layout(dest, true); 3725 if (error) 3726 return error; 3727 } 3728 3729 /* Lock one inode and make sure nobody got in and leased it. */ 3730 inode_lock(src); 3731 error = break_layout(src, false); 3732 if (error) { 3733 inode_unlock(src); 3734 if (error == -EWOULDBLOCK) 3735 goto retry; 3736 return error; 3737 } 3738 3739 if (src == dest) 3740 return 0; 3741 3742 /* Lock the other inode and make sure nobody got in and leased it. */ 3743 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3744 error = break_layout(dest, false); 3745 if (error) { 3746 inode_unlock(src); 3747 inode_unlock(dest); 3748 if (error == -EWOULDBLOCK) 3749 goto retry; 3750 return error; 3751 } 3752 3753 return 0; 3754} 3755 3756/* 3757 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3758 * mmap activity. 3759 */ 3760int 3761xfs_ilock2_io_mmap( 3762 struct xfs_inode *ip1, 3763 struct xfs_inode *ip2) 3764{ 3765 int ret; 3766 3767 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3768 if (ret) 3769 return ret; 3770 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3771 VFS_I(ip2)->i_mapping); 3772 return 0; 3773} 3774 3775/* Unlock both inodes to allow IO and mmap activity. */ 3776void 3777xfs_iunlock2_io_mmap( 3778 struct xfs_inode *ip1, 3779 struct xfs_inode *ip2) 3780{ 3781 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3782 VFS_I(ip2)->i_mapping); 3783 inode_unlock(VFS_I(ip2)); 3784 if (ip1 != ip2) 3785 inode_unlock(VFS_I(ip1)); 3786}