cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xfs_inode_item.c (28494B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
      4 * All Rights Reserved.
      5 */
      6#include "xfs.h"
      7#include "xfs_fs.h"
      8#include "xfs_shared.h"
      9#include "xfs_format.h"
     10#include "xfs_log_format.h"
     11#include "xfs_trans_resv.h"
     12#include "xfs_mount.h"
     13#include "xfs_inode.h"
     14#include "xfs_trans.h"
     15#include "xfs_inode_item.h"
     16#include "xfs_trace.h"
     17#include "xfs_trans_priv.h"
     18#include "xfs_buf_item.h"
     19#include "xfs_log.h"
     20#include "xfs_log_priv.h"
     21#include "xfs_error.h"
     22
     23#include <linux/iversion.h>
     24
     25struct kmem_cache	*xfs_ili_cache;		/* inode log item */
     26
     27static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
     28{
     29	return container_of(lip, struct xfs_inode_log_item, ili_item);
     30}
     31
     32/*
     33 * The logged size of an inode fork is always the current size of the inode
     34 * fork. This means that when an inode fork is relogged, the size of the logged
     35 * region is determined by the current state, not the combination of the
     36 * previously logged state + the current state. This is different relogging
     37 * behaviour to most other log items which will retain the size of the
     38 * previously logged changes when smaller regions are relogged.
     39 *
     40 * Hence operations that remove data from the inode fork (e.g. shortform
     41 * dir/attr remove, extent form extent removal, etc), the size of the relogged
     42 * inode gets -smaller- rather than stays the same size as the previously logged
     43 * size and this can result in the committing transaction reducing the amount of
     44 * space being consumed by the CIL.
     45 */
     46STATIC void
     47xfs_inode_item_data_fork_size(
     48	struct xfs_inode_log_item *iip,
     49	int			*nvecs,
     50	int			*nbytes)
     51{
     52	struct xfs_inode	*ip = iip->ili_inode;
     53
     54	switch (ip->i_df.if_format) {
     55	case XFS_DINODE_FMT_EXTENTS:
     56		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
     57		    ip->i_df.if_nextents > 0 &&
     58		    ip->i_df.if_bytes > 0) {
     59			/* worst case, doesn't subtract delalloc extents */
     60			*nbytes += XFS_IFORK_DSIZE(ip);
     61			*nvecs += 1;
     62		}
     63		break;
     64	case XFS_DINODE_FMT_BTREE:
     65		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
     66		    ip->i_df.if_broot_bytes > 0) {
     67			*nbytes += ip->i_df.if_broot_bytes;
     68			*nvecs += 1;
     69		}
     70		break;
     71	case XFS_DINODE_FMT_LOCAL:
     72		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
     73		    ip->i_df.if_bytes > 0) {
     74			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
     75			*nvecs += 1;
     76		}
     77		break;
     78
     79	case XFS_DINODE_FMT_DEV:
     80		break;
     81	default:
     82		ASSERT(0);
     83		break;
     84	}
     85}
     86
     87STATIC void
     88xfs_inode_item_attr_fork_size(
     89	struct xfs_inode_log_item *iip,
     90	int			*nvecs,
     91	int			*nbytes)
     92{
     93	struct xfs_inode	*ip = iip->ili_inode;
     94
     95	switch (ip->i_afp->if_format) {
     96	case XFS_DINODE_FMT_EXTENTS:
     97		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
     98		    ip->i_afp->if_nextents > 0 &&
     99		    ip->i_afp->if_bytes > 0) {
    100			/* worst case, doesn't subtract unused space */
    101			*nbytes += XFS_IFORK_ASIZE(ip);
    102			*nvecs += 1;
    103		}
    104		break;
    105	case XFS_DINODE_FMT_BTREE:
    106		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
    107		    ip->i_afp->if_broot_bytes > 0) {
    108			*nbytes += ip->i_afp->if_broot_bytes;
    109			*nvecs += 1;
    110		}
    111		break;
    112	case XFS_DINODE_FMT_LOCAL:
    113		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
    114		    ip->i_afp->if_bytes > 0) {
    115			*nbytes += xlog_calc_iovec_len(ip->i_afp->if_bytes);
    116			*nvecs += 1;
    117		}
    118		break;
    119	default:
    120		ASSERT(0);
    121		break;
    122	}
    123}
    124
    125/*
    126 * This returns the number of iovecs needed to log the given inode item.
    127 *
    128 * We need one iovec for the inode log format structure, one for the
    129 * inode core, and possibly one for the inode data/extents/b-tree root
    130 * and one for the inode attribute data/extents/b-tree root.
    131 */
    132STATIC void
    133xfs_inode_item_size(
    134	struct xfs_log_item	*lip,
    135	int			*nvecs,
    136	int			*nbytes)
    137{
    138	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
    139	struct xfs_inode	*ip = iip->ili_inode;
    140
    141	*nvecs += 2;
    142	*nbytes += sizeof(struct xfs_inode_log_format) +
    143		   xfs_log_dinode_size(ip->i_mount);
    144
    145	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
    146	if (XFS_IFORK_Q(ip))
    147		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
    148}
    149
    150STATIC void
    151xfs_inode_item_format_data_fork(
    152	struct xfs_inode_log_item *iip,
    153	struct xfs_inode_log_format *ilf,
    154	struct xfs_log_vec	*lv,
    155	struct xfs_log_iovec	**vecp)
    156{
    157	struct xfs_inode	*ip = iip->ili_inode;
    158	size_t			data_bytes;
    159
    160	switch (ip->i_df.if_format) {
    161	case XFS_DINODE_FMT_EXTENTS:
    162		iip->ili_fields &=
    163			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
    164
    165		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
    166		    ip->i_df.if_nextents > 0 &&
    167		    ip->i_df.if_bytes > 0) {
    168			struct xfs_bmbt_rec *p;
    169
    170			ASSERT(xfs_iext_count(&ip->i_df) > 0);
    171
    172			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
    173			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
    174			xlog_finish_iovec(lv, *vecp, data_bytes);
    175
    176			ASSERT(data_bytes <= ip->i_df.if_bytes);
    177
    178			ilf->ilf_dsize = data_bytes;
    179			ilf->ilf_size++;
    180		} else {
    181			iip->ili_fields &= ~XFS_ILOG_DEXT;
    182		}
    183		break;
    184	case XFS_DINODE_FMT_BTREE:
    185		iip->ili_fields &=
    186			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
    187
    188		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
    189		    ip->i_df.if_broot_bytes > 0) {
    190			ASSERT(ip->i_df.if_broot != NULL);
    191			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
    192					ip->i_df.if_broot,
    193					ip->i_df.if_broot_bytes);
    194			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
    195			ilf->ilf_size++;
    196		} else {
    197			ASSERT(!(iip->ili_fields &
    198				 XFS_ILOG_DBROOT));
    199			iip->ili_fields &= ~XFS_ILOG_DBROOT;
    200		}
    201		break;
    202	case XFS_DINODE_FMT_LOCAL:
    203		iip->ili_fields &=
    204			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
    205		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
    206		    ip->i_df.if_bytes > 0) {
    207			ASSERT(ip->i_df.if_u1.if_data != NULL);
    208			ASSERT(ip->i_disk_size > 0);
    209			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
    210					ip->i_df.if_u1.if_data,
    211					ip->i_df.if_bytes);
    212			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
    213			ilf->ilf_size++;
    214		} else {
    215			iip->ili_fields &= ~XFS_ILOG_DDATA;
    216		}
    217		break;
    218	case XFS_DINODE_FMT_DEV:
    219		iip->ili_fields &=
    220			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
    221		if (iip->ili_fields & XFS_ILOG_DEV)
    222			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
    223		break;
    224	default:
    225		ASSERT(0);
    226		break;
    227	}
    228}
    229
    230STATIC void
    231xfs_inode_item_format_attr_fork(
    232	struct xfs_inode_log_item *iip,
    233	struct xfs_inode_log_format *ilf,
    234	struct xfs_log_vec	*lv,
    235	struct xfs_log_iovec	**vecp)
    236{
    237	struct xfs_inode	*ip = iip->ili_inode;
    238	size_t			data_bytes;
    239
    240	switch (ip->i_afp->if_format) {
    241	case XFS_DINODE_FMT_EXTENTS:
    242		iip->ili_fields &=
    243			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
    244
    245		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
    246		    ip->i_afp->if_nextents > 0 &&
    247		    ip->i_afp->if_bytes > 0) {
    248			struct xfs_bmbt_rec *p;
    249
    250			ASSERT(xfs_iext_count(ip->i_afp) ==
    251				ip->i_afp->if_nextents);
    252
    253			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
    254			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
    255			xlog_finish_iovec(lv, *vecp, data_bytes);
    256
    257			ilf->ilf_asize = data_bytes;
    258			ilf->ilf_size++;
    259		} else {
    260			iip->ili_fields &= ~XFS_ILOG_AEXT;
    261		}
    262		break;
    263	case XFS_DINODE_FMT_BTREE:
    264		iip->ili_fields &=
    265			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
    266
    267		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
    268		    ip->i_afp->if_broot_bytes > 0) {
    269			ASSERT(ip->i_afp->if_broot != NULL);
    270
    271			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
    272					ip->i_afp->if_broot,
    273					ip->i_afp->if_broot_bytes);
    274			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
    275			ilf->ilf_size++;
    276		} else {
    277			iip->ili_fields &= ~XFS_ILOG_ABROOT;
    278		}
    279		break;
    280	case XFS_DINODE_FMT_LOCAL:
    281		iip->ili_fields &=
    282			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
    283
    284		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
    285		    ip->i_afp->if_bytes > 0) {
    286			ASSERT(ip->i_afp->if_u1.if_data != NULL);
    287			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
    288					ip->i_afp->if_u1.if_data,
    289					ip->i_afp->if_bytes);
    290			ilf->ilf_asize = (unsigned)ip->i_afp->if_bytes;
    291			ilf->ilf_size++;
    292		} else {
    293			iip->ili_fields &= ~XFS_ILOG_ADATA;
    294		}
    295		break;
    296	default:
    297		ASSERT(0);
    298		break;
    299	}
    300}
    301
    302/*
    303 * Convert an incore timestamp to a log timestamp.  Note that the log format
    304 * specifies host endian format!
    305 */
    306static inline xfs_log_timestamp_t
    307xfs_inode_to_log_dinode_ts(
    308	struct xfs_inode		*ip,
    309	const struct timespec64		tv)
    310{
    311	struct xfs_log_legacy_timestamp	*lits;
    312	xfs_log_timestamp_t		its;
    313
    314	if (xfs_inode_has_bigtime(ip))
    315		return xfs_inode_encode_bigtime(tv);
    316
    317	lits = (struct xfs_log_legacy_timestamp *)&its;
    318	lits->t_sec = tv.tv_sec;
    319	lits->t_nsec = tv.tv_nsec;
    320
    321	return its;
    322}
    323
    324/*
    325 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
    326 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
    327 * in memory when logging an inode, so we can just copy it from the on-disk
    328 * inode to the in-log inode here so that recovery of file system with these
    329 * fields set to non-zero values doesn't lose them.  For all other cases we zero
    330 * the fields.
    331 */
    332static void
    333xfs_copy_dm_fields_to_log_dinode(
    334	struct xfs_inode	*ip,
    335	struct xfs_log_dinode	*to)
    336{
    337	struct xfs_dinode	*dip;
    338
    339	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
    340			     ip->i_imap.im_boffset);
    341
    342	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
    343		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
    344		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
    345	} else {
    346		to->di_dmevmask = 0;
    347		to->di_dmstate = 0;
    348	}
    349}
    350
    351static inline void
    352xfs_inode_to_log_dinode_iext_counters(
    353	struct xfs_inode	*ip,
    354	struct xfs_log_dinode	*to)
    355{
    356	if (xfs_inode_has_large_extent_counts(ip)) {
    357		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
    358		to->di_big_anextents = xfs_ifork_nextents(ip->i_afp);
    359		to->di_nrext64_pad = 0;
    360	} else {
    361		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
    362		to->di_anextents = xfs_ifork_nextents(ip->i_afp);
    363	}
    364}
    365
    366static void
    367xfs_inode_to_log_dinode(
    368	struct xfs_inode	*ip,
    369	struct xfs_log_dinode	*to,
    370	xfs_lsn_t		lsn)
    371{
    372	struct inode		*inode = VFS_I(ip);
    373
    374	to->di_magic = XFS_DINODE_MAGIC;
    375	to->di_format = xfs_ifork_format(&ip->i_df);
    376	to->di_uid = i_uid_read(inode);
    377	to->di_gid = i_gid_read(inode);
    378	to->di_projid_lo = ip->i_projid & 0xffff;
    379	to->di_projid_hi = ip->i_projid >> 16;
    380
    381	memset(to->di_pad3, 0, sizeof(to->di_pad3));
    382	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
    383	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
    384	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
    385	to->di_nlink = inode->i_nlink;
    386	to->di_gen = inode->i_generation;
    387	to->di_mode = inode->i_mode;
    388
    389	to->di_size = ip->i_disk_size;
    390	to->di_nblocks = ip->i_nblocks;
    391	to->di_extsize = ip->i_extsize;
    392	to->di_forkoff = ip->i_forkoff;
    393	to->di_aformat = xfs_ifork_format(ip->i_afp);
    394	to->di_flags = ip->i_diflags;
    395
    396	xfs_copy_dm_fields_to_log_dinode(ip, to);
    397
    398	/* log a dummy value to ensure log structure is fully initialised */
    399	to->di_next_unlinked = NULLAGINO;
    400
    401	if (xfs_has_v3inodes(ip->i_mount)) {
    402		to->di_version = 3;
    403		to->di_changecount = inode_peek_iversion(inode);
    404		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
    405		to->di_flags2 = ip->i_diflags2;
    406		to->di_cowextsize = ip->i_cowextsize;
    407		to->di_ino = ip->i_ino;
    408		to->di_lsn = lsn;
    409		memset(to->di_pad2, 0, sizeof(to->di_pad2));
    410		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
    411		to->di_v3_pad = 0;
    412	} else {
    413		to->di_version = 2;
    414		to->di_flushiter = ip->i_flushiter;
    415		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
    416	}
    417
    418	xfs_inode_to_log_dinode_iext_counters(ip, to);
    419}
    420
    421/*
    422 * Format the inode core. Current timestamp data is only in the VFS inode
    423 * fields, so we need to grab them from there. Hence rather than just copying
    424 * the XFS inode core structure, format the fields directly into the iovec.
    425 */
    426static void
    427xfs_inode_item_format_core(
    428	struct xfs_inode	*ip,
    429	struct xfs_log_vec	*lv,
    430	struct xfs_log_iovec	**vecp)
    431{
    432	struct xfs_log_dinode	*dic;
    433
    434	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
    435	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
    436	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
    437}
    438
    439/*
    440 * This is called to fill in the vector of log iovecs for the given inode
    441 * log item.  It fills the first item with an inode log format structure,
    442 * the second with the on-disk inode structure, and a possible third and/or
    443 * fourth with the inode data/extents/b-tree root and inode attributes
    444 * data/extents/b-tree root.
    445 *
    446 * Note: Always use the 64 bit inode log format structure so we don't
    447 * leave an uninitialised hole in the format item on 64 bit systems. Log
    448 * recovery on 32 bit systems handles this just fine, so there's no reason
    449 * for not using an initialising the properly padded structure all the time.
    450 */
    451STATIC void
    452xfs_inode_item_format(
    453	struct xfs_log_item	*lip,
    454	struct xfs_log_vec	*lv)
    455{
    456	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
    457	struct xfs_inode	*ip = iip->ili_inode;
    458	struct xfs_log_iovec	*vecp = NULL;
    459	struct xfs_inode_log_format *ilf;
    460
    461	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
    462	ilf->ilf_type = XFS_LI_INODE;
    463	ilf->ilf_ino = ip->i_ino;
    464	ilf->ilf_blkno = ip->i_imap.im_blkno;
    465	ilf->ilf_len = ip->i_imap.im_len;
    466	ilf->ilf_boffset = ip->i_imap.im_boffset;
    467	ilf->ilf_fields = XFS_ILOG_CORE;
    468	ilf->ilf_size = 2; /* format + core */
    469
    470	/*
    471	 * make sure we don't leak uninitialised data into the log in the case
    472	 * when we don't log every field in the inode.
    473	 */
    474	ilf->ilf_dsize = 0;
    475	ilf->ilf_asize = 0;
    476	ilf->ilf_pad = 0;
    477	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
    478
    479	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
    480
    481	xfs_inode_item_format_core(ip, lv, &vecp);
    482	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
    483	if (XFS_IFORK_Q(ip)) {
    484		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
    485	} else {
    486		iip->ili_fields &=
    487			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
    488	}
    489
    490	/* update the format with the exact fields we actually logged */
    491	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
    492}
    493
    494/*
    495 * This is called to pin the inode associated with the inode log
    496 * item in memory so it cannot be written out.
    497 */
    498STATIC void
    499xfs_inode_item_pin(
    500	struct xfs_log_item	*lip)
    501{
    502	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
    503
    504	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
    505	ASSERT(lip->li_buf);
    506
    507	trace_xfs_inode_pin(ip, _RET_IP_);
    508	atomic_inc(&ip->i_pincount);
    509}
    510
    511
    512/*
    513 * This is called to unpin the inode associated with the inode log
    514 * item which was previously pinned with a call to xfs_inode_item_pin().
    515 *
    516 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
    517 *
    518 * Note that unpin can race with inode cluster buffer freeing marking the buffer
    519 * stale. In that case, flush completions are run from the buffer unpin call,
    520 * which may happen before the inode is unpinned. If we lose the race, there
    521 * will be no buffer attached to the log item, but the inode will be marked
    522 * XFS_ISTALE.
    523 */
    524STATIC void
    525xfs_inode_item_unpin(
    526	struct xfs_log_item	*lip,
    527	int			remove)
    528{
    529	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
    530
    531	trace_xfs_inode_unpin(ip, _RET_IP_);
    532	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
    533	ASSERT(atomic_read(&ip->i_pincount) > 0);
    534	if (atomic_dec_and_test(&ip->i_pincount))
    535		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
    536}
    537
    538STATIC uint
    539xfs_inode_item_push(
    540	struct xfs_log_item	*lip,
    541	struct list_head	*buffer_list)
    542		__releases(&lip->li_ailp->ail_lock)
    543		__acquires(&lip->li_ailp->ail_lock)
    544{
    545	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
    546	struct xfs_inode	*ip = iip->ili_inode;
    547	struct xfs_buf		*bp = lip->li_buf;
    548	uint			rval = XFS_ITEM_SUCCESS;
    549	int			error;
    550
    551	if (!bp || (ip->i_flags & XFS_ISTALE)) {
    552		/*
    553		 * Inode item/buffer is being being aborted due to cluster
    554		 * buffer deletion. Trigger a log force to have that operation
    555		 * completed and items removed from the AIL before the next push
    556		 * attempt.
    557		 */
    558		return XFS_ITEM_PINNED;
    559	}
    560
    561	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
    562		return XFS_ITEM_PINNED;
    563
    564	if (xfs_iflags_test(ip, XFS_IFLUSHING))
    565		return XFS_ITEM_FLUSHING;
    566
    567	if (!xfs_buf_trylock(bp))
    568		return XFS_ITEM_LOCKED;
    569
    570	spin_unlock(&lip->li_ailp->ail_lock);
    571
    572	/*
    573	 * We need to hold a reference for flushing the cluster buffer as it may
    574	 * fail the buffer without IO submission. In which case, we better get a
    575	 * reference for that completion because otherwise we don't get a
    576	 * reference for IO until we queue the buffer for delwri submission.
    577	 */
    578	xfs_buf_hold(bp);
    579	error = xfs_iflush_cluster(bp);
    580	if (!error) {
    581		if (!xfs_buf_delwri_queue(bp, buffer_list))
    582			rval = XFS_ITEM_FLUSHING;
    583		xfs_buf_relse(bp);
    584	} else {
    585		/*
    586		 * Release the buffer if we were unable to flush anything. On
    587		 * any other error, the buffer has already been released.
    588		 */
    589		if (error == -EAGAIN)
    590			xfs_buf_relse(bp);
    591		rval = XFS_ITEM_LOCKED;
    592	}
    593
    594	spin_lock(&lip->li_ailp->ail_lock);
    595	return rval;
    596}
    597
    598/*
    599 * Unlock the inode associated with the inode log item.
    600 */
    601STATIC void
    602xfs_inode_item_release(
    603	struct xfs_log_item	*lip)
    604{
    605	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
    606	struct xfs_inode	*ip = iip->ili_inode;
    607	unsigned short		lock_flags;
    608
    609	ASSERT(ip->i_itemp != NULL);
    610	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
    611
    612	lock_flags = iip->ili_lock_flags;
    613	iip->ili_lock_flags = 0;
    614	if (lock_flags)
    615		xfs_iunlock(ip, lock_flags);
    616}
    617
    618/*
    619 * This is called to find out where the oldest active copy of the inode log
    620 * item in the on disk log resides now that the last log write of it completed
    621 * at the given lsn.  Since we always re-log all dirty data in an inode, the
    622 * latest copy in the on disk log is the only one that matters.  Therefore,
    623 * simply return the given lsn.
    624 *
    625 * If the inode has been marked stale because the cluster is being freed, we
    626 * don't want to (re-)insert this inode into the AIL. There is a race condition
    627 * where the cluster buffer may be unpinned before the inode is inserted into
    628 * the AIL during transaction committed processing. If the buffer is unpinned
    629 * before the inode item has been committed and inserted, then it is possible
    630 * for the buffer to be written and IO completes before the inode is inserted
    631 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
    632 * AIL which will never get removed. It will, however, get reclaimed which
    633 * triggers an assert in xfs_inode_free() complaining about freein an inode
    634 * still in the AIL.
    635 *
    636 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
    637 * transaction committed code knows that it does not need to do any further
    638 * processing on the item.
    639 */
    640STATIC xfs_lsn_t
    641xfs_inode_item_committed(
    642	struct xfs_log_item	*lip,
    643	xfs_lsn_t		lsn)
    644{
    645	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
    646	struct xfs_inode	*ip = iip->ili_inode;
    647
    648	if (xfs_iflags_test(ip, XFS_ISTALE)) {
    649		xfs_inode_item_unpin(lip, 0);
    650		return -1;
    651	}
    652	return lsn;
    653}
    654
    655STATIC void
    656xfs_inode_item_committing(
    657	struct xfs_log_item	*lip,
    658	xfs_csn_t		seq)
    659{
    660	INODE_ITEM(lip)->ili_commit_seq = seq;
    661	return xfs_inode_item_release(lip);
    662}
    663
    664static const struct xfs_item_ops xfs_inode_item_ops = {
    665	.iop_size	= xfs_inode_item_size,
    666	.iop_format	= xfs_inode_item_format,
    667	.iop_pin	= xfs_inode_item_pin,
    668	.iop_unpin	= xfs_inode_item_unpin,
    669	.iop_release	= xfs_inode_item_release,
    670	.iop_committed	= xfs_inode_item_committed,
    671	.iop_push	= xfs_inode_item_push,
    672	.iop_committing	= xfs_inode_item_committing,
    673};
    674
    675
    676/*
    677 * Initialize the inode log item for a newly allocated (in-core) inode.
    678 */
    679void
    680xfs_inode_item_init(
    681	struct xfs_inode	*ip,
    682	struct xfs_mount	*mp)
    683{
    684	struct xfs_inode_log_item *iip;
    685
    686	ASSERT(ip->i_itemp == NULL);
    687	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
    688					      GFP_KERNEL | __GFP_NOFAIL);
    689
    690	iip->ili_inode = ip;
    691	spin_lock_init(&iip->ili_lock);
    692	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
    693						&xfs_inode_item_ops);
    694}
    695
    696/*
    697 * Free the inode log item and any memory hanging off of it.
    698 */
    699void
    700xfs_inode_item_destroy(
    701	struct xfs_inode	*ip)
    702{
    703	struct xfs_inode_log_item *iip = ip->i_itemp;
    704
    705	ASSERT(iip->ili_item.li_buf == NULL);
    706
    707	ip->i_itemp = NULL;
    708	kmem_free(iip->ili_item.li_lv_shadow);
    709	kmem_cache_free(xfs_ili_cache, iip);
    710}
    711
    712
    713/*
    714 * We only want to pull the item from the AIL if it is actually there
    715 * and its location in the log has not changed since we started the
    716 * flush.  Thus, we only bother if the inode's lsn has not changed.
    717 */
    718static void
    719xfs_iflush_ail_updates(
    720	struct xfs_ail		*ailp,
    721	struct list_head	*list)
    722{
    723	struct xfs_log_item	*lip;
    724	xfs_lsn_t		tail_lsn = 0;
    725
    726	/* this is an opencoded batch version of xfs_trans_ail_delete */
    727	spin_lock(&ailp->ail_lock);
    728	list_for_each_entry(lip, list, li_bio_list) {
    729		xfs_lsn_t	lsn;
    730
    731		clear_bit(XFS_LI_FAILED, &lip->li_flags);
    732		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
    733			continue;
    734
    735		/*
    736		 * dgc: Not sure how this happens, but it happens very
    737		 * occassionaly via generic/388.  xfs_iflush_abort() also
    738		 * silently handles this same "under writeback but not in AIL at
    739		 * shutdown" condition via xfs_trans_ail_delete().
    740		 */
    741		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
    742			ASSERT(xlog_is_shutdown(lip->li_log));
    743			continue;
    744		}
    745
    746		lsn = xfs_ail_delete_one(ailp, lip);
    747		if (!tail_lsn && lsn)
    748			tail_lsn = lsn;
    749	}
    750	xfs_ail_update_finish(ailp, tail_lsn);
    751}
    752
    753/*
    754 * Walk the list of inodes that have completed their IOs. If they are clean
    755 * remove them from the list and dissociate them from the buffer. Buffers that
    756 * are still dirty remain linked to the buffer and on the list. Caller must
    757 * handle them appropriately.
    758 */
    759static void
    760xfs_iflush_finish(
    761	struct xfs_buf		*bp,
    762	struct list_head	*list)
    763{
    764	struct xfs_log_item	*lip, *n;
    765
    766	list_for_each_entry_safe(lip, n, list, li_bio_list) {
    767		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
    768		bool	drop_buffer = false;
    769
    770		spin_lock(&iip->ili_lock);
    771
    772		/*
    773		 * Remove the reference to the cluster buffer if the inode is
    774		 * clean in memory and drop the buffer reference once we've
    775		 * dropped the locks we hold.
    776		 */
    777		ASSERT(iip->ili_item.li_buf == bp);
    778		if (!iip->ili_fields) {
    779			iip->ili_item.li_buf = NULL;
    780			list_del_init(&lip->li_bio_list);
    781			drop_buffer = true;
    782		}
    783		iip->ili_last_fields = 0;
    784		iip->ili_flush_lsn = 0;
    785		spin_unlock(&iip->ili_lock);
    786		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
    787		if (drop_buffer)
    788			xfs_buf_rele(bp);
    789	}
    790}
    791
    792/*
    793 * Inode buffer IO completion routine.  It is responsible for removing inodes
    794 * attached to the buffer from the AIL if they have not been re-logged and
    795 * completing the inode flush.
    796 */
    797void
    798xfs_buf_inode_iodone(
    799	struct xfs_buf		*bp)
    800{
    801	struct xfs_log_item	*lip, *n;
    802	LIST_HEAD(flushed_inodes);
    803	LIST_HEAD(ail_updates);
    804
    805	/*
    806	 * Pull the attached inodes from the buffer one at a time and take the
    807	 * appropriate action on them.
    808	 */
    809	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
    810		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
    811
    812		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
    813			xfs_iflush_abort(iip->ili_inode);
    814			continue;
    815		}
    816		if (!iip->ili_last_fields)
    817			continue;
    818
    819		/* Do an unlocked check for needing the AIL lock. */
    820		if (iip->ili_flush_lsn == lip->li_lsn ||
    821		    test_bit(XFS_LI_FAILED, &lip->li_flags))
    822			list_move_tail(&lip->li_bio_list, &ail_updates);
    823		else
    824			list_move_tail(&lip->li_bio_list, &flushed_inodes);
    825	}
    826
    827	if (!list_empty(&ail_updates)) {
    828		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
    829		list_splice_tail(&ail_updates, &flushed_inodes);
    830	}
    831
    832	xfs_iflush_finish(bp, &flushed_inodes);
    833	if (!list_empty(&flushed_inodes))
    834		list_splice_tail(&flushed_inodes, &bp->b_li_list);
    835}
    836
    837void
    838xfs_buf_inode_io_fail(
    839	struct xfs_buf		*bp)
    840{
    841	struct xfs_log_item	*lip;
    842
    843	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
    844		set_bit(XFS_LI_FAILED, &lip->li_flags);
    845}
    846
    847/*
    848 * Clear the inode logging fields so no more flushes are attempted.  If we are
    849 * on a buffer list, it is now safe to remove it because the buffer is
    850 * guaranteed to be locked. The caller will drop the reference to the buffer
    851 * the log item held.
    852 */
    853static void
    854xfs_iflush_abort_clean(
    855	struct xfs_inode_log_item *iip)
    856{
    857	iip->ili_last_fields = 0;
    858	iip->ili_fields = 0;
    859	iip->ili_fsync_fields = 0;
    860	iip->ili_flush_lsn = 0;
    861	iip->ili_item.li_buf = NULL;
    862	list_del_init(&iip->ili_item.li_bio_list);
    863}
    864
    865/*
    866 * Abort flushing the inode from a context holding the cluster buffer locked.
    867 *
    868 * This is the normal runtime method of aborting writeback of an inode that is
    869 * attached to a cluster buffer. It occurs when the inode and the backing
    870 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
    871 * flushing or buffer IO completion encounters a log shutdown situation.
    872 *
    873 * If we need to abort inode writeback and we don't already hold the buffer
    874 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
    875 * necessary in a shutdown situation.
    876 */
    877void
    878xfs_iflush_abort(
    879	struct xfs_inode	*ip)
    880{
    881	struct xfs_inode_log_item *iip = ip->i_itemp;
    882	struct xfs_buf		*bp;
    883
    884	if (!iip) {
    885		/* clean inode, nothing to do */
    886		xfs_iflags_clear(ip, XFS_IFLUSHING);
    887		return;
    888	}
    889
    890	/*
    891	 * Remove the inode item from the AIL before we clear its internal
    892	 * state. Whilst the inode is in the AIL, it should have a valid buffer
    893	 * pointer for push operations to access - it is only safe to remove the
    894	 * inode from the buffer once it has been removed from the AIL.
    895	 *
    896	 * We also clear the failed bit before removing the item from the AIL
    897	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
    898	 * references the inode item owns and needs to hold until we've fully
    899	 * aborted the inode log item and detached it from the buffer.
    900	 */
    901	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
    902	xfs_trans_ail_delete(&iip->ili_item, 0);
    903
    904	/*
    905	 * Grab the inode buffer so can we release the reference the inode log
    906	 * item holds on it.
    907	 */
    908	spin_lock(&iip->ili_lock);
    909	bp = iip->ili_item.li_buf;
    910	xfs_iflush_abort_clean(iip);
    911	spin_unlock(&iip->ili_lock);
    912
    913	xfs_iflags_clear(ip, XFS_IFLUSHING);
    914	if (bp)
    915		xfs_buf_rele(bp);
    916}
    917
    918/*
    919 * Abort an inode flush in the case of a shutdown filesystem. This can be called
    920 * from anywhere with just an inode reference and does not require holding the
    921 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
    922 * it will grab and lock it safely, then abort the inode flush.
    923 */
    924void
    925xfs_iflush_shutdown_abort(
    926	struct xfs_inode	*ip)
    927{
    928	struct xfs_inode_log_item *iip = ip->i_itemp;
    929	struct xfs_buf		*bp;
    930
    931	if (!iip) {
    932		/* clean inode, nothing to do */
    933		xfs_iflags_clear(ip, XFS_IFLUSHING);
    934		return;
    935	}
    936
    937	spin_lock(&iip->ili_lock);
    938	bp = iip->ili_item.li_buf;
    939	if (!bp) {
    940		spin_unlock(&iip->ili_lock);
    941		xfs_iflush_abort(ip);
    942		return;
    943	}
    944
    945	/*
    946	 * We have to take a reference to the buffer so that it doesn't get
    947	 * freed when we drop the ili_lock and then wait to lock the buffer.
    948	 * We'll clean up the extra reference after we pick up the ili_lock
    949	 * again.
    950	 */
    951	xfs_buf_hold(bp);
    952	spin_unlock(&iip->ili_lock);
    953	xfs_buf_lock(bp);
    954
    955	spin_lock(&iip->ili_lock);
    956	if (!iip->ili_item.li_buf) {
    957		/*
    958		 * Raced with another removal, hold the only reference
    959		 * to bp now. Inode should not be in the AIL now, so just clean
    960		 * up and return;
    961		 */
    962		ASSERT(list_empty(&iip->ili_item.li_bio_list));
    963		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
    964		xfs_iflush_abort_clean(iip);
    965		spin_unlock(&iip->ili_lock);
    966		xfs_iflags_clear(ip, XFS_IFLUSHING);
    967		xfs_buf_relse(bp);
    968		return;
    969	}
    970
    971	/*
    972	 * Got two references to bp. The first will get dropped by
    973	 * xfs_iflush_abort() when the item is removed from the buffer list, but
    974	 * we can't drop our reference until _abort() returns because we have to
    975	 * unlock the buffer as well. Hence we abort and then unlock and release
    976	 * our reference to the buffer.
    977	 */
    978	ASSERT(iip->ili_item.li_buf == bp);
    979	spin_unlock(&iip->ili_lock);
    980	xfs_iflush_abort(ip);
    981	xfs_buf_relse(bp);
    982}
    983
    984
    985/*
    986 * convert an xfs_inode_log_format struct from the old 32 bit version
    987 * (which can have different field alignments) to the native 64 bit version
    988 */
    989int
    990xfs_inode_item_format_convert(
    991	struct xfs_log_iovec		*buf,
    992	struct xfs_inode_log_format	*in_f)
    993{
    994	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
    995
    996	if (buf->i_len != sizeof(*in_f32)) {
    997		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
    998		return -EFSCORRUPTED;
    999	}
   1000
   1001	in_f->ilf_type = in_f32->ilf_type;
   1002	in_f->ilf_size = in_f32->ilf_size;
   1003	in_f->ilf_fields = in_f32->ilf_fields;
   1004	in_f->ilf_asize = in_f32->ilf_asize;
   1005	in_f->ilf_dsize = in_f32->ilf_dsize;
   1006	in_f->ilf_ino = in_f32->ilf_ino;
   1007	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
   1008	in_f->ilf_blkno = in_f32->ilf_blkno;
   1009	in_f->ilf_len = in_f32->ilf_len;
   1010	in_f->ilf_boffset = in_f32->ilf_boffset;
   1011	return 0;
   1012}