cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

div64.h (7437B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _ASM_GENERIC_DIV64_H
      3#define _ASM_GENERIC_DIV64_H
      4/*
      5 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
      6 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
      7 *
      8 * Optimization for constant divisors on 32-bit machines:
      9 * Copyright (C) 2006-2015 Nicolas Pitre
     10 *
     11 * The semantics of do_div() is, in C++ notation, observing that the name
     12 * is a function-like macro and the n parameter has the semantics of a C++
     13 * reference:
     14 *
     15 * uint32_t do_div(uint64_t &n, uint32_t base)
     16 * {
     17 * 	uint32_t remainder = n % base;
     18 * 	n = n / base;
     19 * 	return remainder;
     20 * }
     21 *
     22 * NOTE: macro parameter n is evaluated multiple times,
     23 *       beware of side effects!
     24 */
     25
     26#include <linux/types.h>
     27#include <linux/compiler.h>
     28
     29#if BITS_PER_LONG == 64
     30
     31/**
     32 * do_div - returns 2 values: calculate remainder and update new dividend
     33 * @n: uint64_t dividend (will be updated)
     34 * @base: uint32_t divisor
     35 *
     36 * Summary:
     37 * ``uint32_t remainder = n % base;``
     38 * ``n = n / base;``
     39 *
     40 * Return: (uint32_t)remainder
     41 *
     42 * NOTE: macro parameter @n is evaluated multiple times,
     43 * beware of side effects!
     44 */
     45# define do_div(n,base) ({					\
     46	uint32_t __base = (base);				\
     47	uint32_t __rem;						\
     48	__rem = ((uint64_t)(n)) % __base;			\
     49	(n) = ((uint64_t)(n)) / __base;				\
     50	__rem;							\
     51 })
     52
     53#elif BITS_PER_LONG == 32
     54
     55#include <linux/log2.h>
     56
     57/*
     58 * If the divisor happens to be constant, we determine the appropriate
     59 * inverse at compile time to turn the division into a few inline
     60 * multiplications which ought to be much faster.
     61 *
     62 * (It is unfortunate that gcc doesn't perform all this internally.)
     63 */
     64
     65#define __div64_const32(n, ___b)					\
     66({									\
     67	/*								\
     68	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
     69	 *								\
     70	 * We rely on the fact that most of this code gets optimized	\
     71	 * away at compile time due to constant propagation and only	\
     72	 * a few multiplication instructions should remain.		\
     73	 * Hence this monstrous macro (static inline doesn't always	\
     74	 * do the trick here).						\
     75	 */								\
     76	uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\
     77	uint32_t ___p, ___bias;						\
     78									\
     79	/* determine MSB of b */					\
     80	___p = 1 << ilog2(___b);					\
     81									\
     82	/* compute m = ((p << 64) + b - 1) / b */			\
     83	___m = (~0ULL / ___b) * ___p;					\
     84	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\
     85									\
     86	/* one less than the dividend with highest result */		\
     87	___x = ~0ULL / ___b * ___b - 1;					\
     88									\
     89	/* test our ___m with res = m * x / (p << 64) */		\
     90	___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\
     91	___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\
     92	___res += (___x & 0xffffffff) * (___m >> 32);			\
     93	___t = (___res < ___t) ? (1ULL << 32) : 0;			\
     94	___res = (___res >> 32) + ___t;					\
     95	___res += (___m >> 32) * (___x >> 32);				\
     96	___res /= ___p;							\
     97									\
     98	/* Now sanitize and optimize what we've got. */			\
     99	if (~0ULL % (___b / (___b & -___b)) == 0) {			\
    100		/* special case, can be simplified to ... */		\
    101		___n /= (___b & -___b);					\
    102		___m = ~0ULL / (___b / (___b & -___b));			\
    103		___p = 1;						\
    104		___bias = 1;						\
    105	} else if (___res != ___x / ___b) {				\
    106		/*							\
    107		 * We can't get away without a bias to compensate	\
    108		 * for bit truncation errors.  To avoid it we'd need an	\
    109		 * additional bit to represent m which would overflow	\
    110		 * a 64-bit variable.					\
    111		 *							\
    112		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
    113		 */							\
    114		___bias = 1;						\
    115		/* Compute m = (p << 64) / b */				\
    116		___m = (~0ULL / ___b) * ___p;				\
    117		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\
    118	} else {							\
    119		/*							\
    120		 * Reduce m / p, and try to clear bit 31 of m when	\
    121		 * possible, otherwise that'll need extra overflow	\
    122		 * handling later.					\
    123		 */							\
    124		uint32_t ___bits = -(___m & -___m);			\
    125		___bits |= ___m >> 32;					\
    126		___bits = (~___bits) << 1;				\
    127		/*							\
    128		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\
    129		 * Simply apply the maximum possible reduction in that	\
    130		 * case. Otherwise the MSB of ___bits indicates the	\
    131		 * best reduction we should apply.			\
    132		 */							\
    133		if (!___bits) {						\
    134			___p /= (___m & -___m);				\
    135			___m /= (___m & -___m);				\
    136		} else {						\
    137			___p >>= ilog2(___bits);			\
    138			___m >>= ilog2(___bits);			\
    139		}							\
    140		/* No bias needed. */					\
    141		___bias = 0;						\
    142	}								\
    143									\
    144	/*								\
    145	 * Now we have a combination of 2 conditions:			\
    146	 *								\
    147	 * 1) whether or not we need to apply a bias, and		\
    148	 *								\
    149	 * 2) whether or not there might be an overflow in the cross	\
    150	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\
    151	 *								\
    152	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\
    153	 * From now on there will be actual runtime code generated.	\
    154	 */								\
    155	___res = __arch_xprod_64(___m, ___n, ___bias);			\
    156									\
    157	___res /= ___p;							\
    158})
    159
    160#ifndef __arch_xprod_64
    161/*
    162 * Default C implementation for __arch_xprod_64()
    163 *
    164 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
    165 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
    166 *
    167 * The product is a 128-bit value, scaled down to 64 bits.
    168 * Assuming constant propagation to optimize away unused conditional code.
    169 * Architectures may provide their own optimized assembly implementation.
    170 */
    171static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
    172{
    173	uint32_t m_lo = m;
    174	uint32_t m_hi = m >> 32;
    175	uint32_t n_lo = n;
    176	uint32_t n_hi = n >> 32;
    177	uint64_t res;
    178	uint32_t res_lo, res_hi, tmp;
    179
    180	if (!bias) {
    181		res = ((uint64_t)m_lo * n_lo) >> 32;
    182	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
    183		/* there can't be any overflow here */
    184		res = (m + (uint64_t)m_lo * n_lo) >> 32;
    185	} else {
    186		res = m + (uint64_t)m_lo * n_lo;
    187		res_lo = res >> 32;
    188		res_hi = (res_lo < m_hi);
    189		res = res_lo | ((uint64_t)res_hi << 32);
    190	}
    191
    192	if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
    193		/* there can't be any overflow here */
    194		res += (uint64_t)m_lo * n_hi;
    195		res += (uint64_t)m_hi * n_lo;
    196		res >>= 32;
    197	} else {
    198		res += (uint64_t)m_lo * n_hi;
    199		tmp = res >> 32;
    200		res += (uint64_t)m_hi * n_lo;
    201		res_lo = res >> 32;
    202		res_hi = (res_lo < tmp);
    203		res = res_lo | ((uint64_t)res_hi << 32);
    204	}
    205
    206	res += (uint64_t)m_hi * n_hi;
    207
    208	return res;
    209}
    210#endif
    211
    212#ifndef __div64_32
    213extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
    214#endif
    215
    216/* The unnecessary pointer compare is there
    217 * to check for type safety (n must be 64bit)
    218 */
    219# define do_div(n,base) ({				\
    220	uint32_t __base = (base);			\
    221	uint32_t __rem;					\
    222	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\
    223	if (__builtin_constant_p(__base) &&		\
    224	    is_power_of_2(__base)) {			\
    225		__rem = (n) & (__base - 1);		\
    226		(n) >>= ilog2(__base);			\
    227	} else if (__builtin_constant_p(__base) &&	\
    228		   __base != 0) {			\
    229		uint32_t __res_lo, __n_lo = (n);	\
    230		(n) = __div64_const32(n, __base);	\
    231		/* the remainder can be computed with 32-bit regs */ \
    232		__res_lo = (n);				\
    233		__rem = __n_lo - __res_lo * __base;	\
    234	} else if (likely(((n) >> 32) == 0)) {		\
    235		__rem = (uint32_t)(n) % __base;		\
    236		(n) = (uint32_t)(n) / __base;		\
    237	} else {					\
    238		__rem = __div64_32(&(n), __base);	\
    239	}						\
    240	__rem;						\
    241 })
    242
    243#else /* BITS_PER_LONG == ?? */
    244
    245# error do_div() does not yet support the C64
    246
    247#endif /* BITS_PER_LONG */
    248
    249#endif /* _ASM_GENERIC_DIV64_H */