cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tlb.h (19403B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/* include/asm-generic/tlb.h
      3 *
      4 *	Generic TLB shootdown code
      5 *
      6 * Copyright 2001 Red Hat, Inc.
      7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
      8 *
      9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
     10 */
     11#ifndef _ASM_GENERIC__TLB_H
     12#define _ASM_GENERIC__TLB_H
     13
     14#include <linux/mmu_notifier.h>
     15#include <linux/swap.h>
     16#include <linux/hugetlb_inline.h>
     17#include <asm/tlbflush.h>
     18#include <asm/cacheflush.h>
     19
     20/*
     21 * Blindly accessing user memory from NMI context can be dangerous
     22 * if we're in the middle of switching the current user task or switching
     23 * the loaded mm.
     24 */
     25#ifndef nmi_uaccess_okay
     26# define nmi_uaccess_okay() true
     27#endif
     28
     29#ifdef CONFIG_MMU
     30
     31/*
     32 * Generic MMU-gather implementation.
     33 *
     34 * The mmu_gather data structure is used by the mm code to implement the
     35 * correct and efficient ordering of freeing pages and TLB invalidations.
     36 *
     37 * This correct ordering is:
     38 *
     39 *  1) unhook page
     40 *  2) TLB invalidate page
     41 *  3) free page
     42 *
     43 * That is, we must never free a page before we have ensured there are no live
     44 * translations left to it. Otherwise it might be possible to observe (or
     45 * worse, change) the page content after it has been reused.
     46 *
     47 * The mmu_gather API consists of:
     48 *
     49 *  - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
     50 *
     51 *    start and finish a mmu_gather
     52 *
     53 *    Finish in particular will issue a (final) TLB invalidate and free
     54 *    all (remaining) queued pages.
     55 *
     56 *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
     57 *
     58 *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
     59 *    there's large holes between the VMAs.
     60 *
     61 *  - tlb_remove_table()
     62 *
     63 *    tlb_remove_table() is the basic primitive to free page-table directories
     64 *    (__p*_free_tlb()).  In it's most primitive form it is an alias for
     65 *    tlb_remove_page() below, for when page directories are pages and have no
     66 *    additional constraints.
     67 *
     68 *    See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
     69 *
     70 *  - tlb_remove_page() / __tlb_remove_page()
     71 *  - tlb_remove_page_size() / __tlb_remove_page_size()
     72 *
     73 *    __tlb_remove_page_size() is the basic primitive that queues a page for
     74 *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
     75 *    boolean indicating if the queue is (now) full and a call to
     76 *    tlb_flush_mmu() is required.
     77 *
     78 *    tlb_remove_page() and tlb_remove_page_size() imply the call to
     79 *    tlb_flush_mmu() when required and has no return value.
     80 *
     81 *  - tlb_change_page_size()
     82 *
     83 *    call before __tlb_remove_page*() to set the current page-size; implies a
     84 *    possible tlb_flush_mmu() call.
     85 *
     86 *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
     87 *
     88 *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
     89 *                              related state, like the range)
     90 *
     91 *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
     92 *			whatever pages are still batched.
     93 *
     94 *  - mmu_gather::fullmm
     95 *
     96 *    A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
     97 *    the entire mm; this allows a number of optimizations.
     98 *
     99 *    - We can ignore tlb_{start,end}_vma(); because we don't
    100 *      care about ranges. Everything will be shot down.
    101 *
    102 *    - (RISC) architectures that use ASIDs can cycle to a new ASID
    103 *      and delay the invalidation until ASID space runs out.
    104 *
    105 *  - mmu_gather::need_flush_all
    106 *
    107 *    A flag that can be set by the arch code if it wants to force
    108 *    flush the entire TLB irrespective of the range. For instance
    109 *    x86-PAE needs this when changing top-level entries.
    110 *
    111 * And allows the architecture to provide and implement tlb_flush():
    112 *
    113 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
    114 * use of:
    115 *
    116 *  - mmu_gather::start / mmu_gather::end
    117 *
    118 *    which provides the range that needs to be flushed to cover the pages to
    119 *    be freed.
    120 *
    121 *  - mmu_gather::freed_tables
    122 *
    123 *    set when we freed page table pages
    124 *
    125 *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
    126 *
    127 *    returns the smallest TLB entry size unmapped in this range.
    128 *
    129 * If an architecture does not provide tlb_flush() a default implementation
    130 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
    131 * specified, in which case we'll default to flush_tlb_mm().
    132 *
    133 * Additionally there are a few opt-in features:
    134 *
    135 *  MMU_GATHER_PAGE_SIZE
    136 *
    137 *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
    138 *  changes the size and provides mmu_gather::page_size to tlb_flush().
    139 *
    140 *  This might be useful if your architecture has size specific TLB
    141 *  invalidation instructions.
    142 *
    143 *  MMU_GATHER_TABLE_FREE
    144 *
    145 *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
    146 *  for page directores (__p*_free_tlb()).
    147 *
    148 *  Useful if your architecture has non-page page directories.
    149 *
    150 *  When used, an architecture is expected to provide __tlb_remove_table()
    151 *  which does the actual freeing of these pages.
    152 *
    153 *  MMU_GATHER_RCU_TABLE_FREE
    154 *
    155 *  Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
    156 *  comment below).
    157 *
    158 *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
    159 *  and therefore doesn't naturally serialize with software page-table walkers.
    160 *
    161 *  MMU_GATHER_NO_RANGE
    162 *
    163 *  Use this if your architecture lacks an efficient flush_tlb_range().
    164 *
    165 *  MMU_GATHER_NO_GATHER
    166 *
    167 *  If the option is set the mmu_gather will not track individual pages for
    168 *  delayed page free anymore. A platform that enables the option needs to
    169 *  provide its own implementation of the __tlb_remove_page_size() function to
    170 *  free pages.
    171 *
    172 *  This is useful if your architecture already flushes TLB entries in the
    173 *  various ptep_get_and_clear() functions.
    174 */
    175
    176#ifdef CONFIG_MMU_GATHER_TABLE_FREE
    177
    178struct mmu_table_batch {
    179#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
    180	struct rcu_head		rcu;
    181#endif
    182	unsigned int		nr;
    183	void			*tables[];
    184};
    185
    186#define MAX_TABLE_BATCH		\
    187	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
    188
    189extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
    190
    191#else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
    192
    193/*
    194 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
    195 * page directories and we can use the normal page batching to free them.
    196 */
    197#define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
    198
    199#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
    200
    201#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
    202/*
    203 * This allows an architecture that does not use the linux page-tables for
    204 * hardware to skip the TLBI when freeing page tables.
    205 */
    206#ifndef tlb_needs_table_invalidate
    207#define tlb_needs_table_invalidate() (true)
    208#endif
    209
    210#else
    211
    212#ifdef tlb_needs_table_invalidate
    213#error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
    214#endif
    215
    216#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
    217
    218
    219#ifndef CONFIG_MMU_GATHER_NO_GATHER
    220/*
    221 * If we can't allocate a page to make a big batch of page pointers
    222 * to work on, then just handle a few from the on-stack structure.
    223 */
    224#define MMU_GATHER_BUNDLE	8
    225
    226struct mmu_gather_batch {
    227	struct mmu_gather_batch	*next;
    228	unsigned int		nr;
    229	unsigned int		max;
    230	struct page		*pages[];
    231};
    232
    233#define MAX_GATHER_BATCH	\
    234	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
    235
    236/*
    237 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
    238 * lockups for non-preemptible kernels on huge machines when a lot of memory
    239 * is zapped during unmapping.
    240 * 10K pages freed at once should be safe even without a preemption point.
    241 */
    242#define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
    243
    244extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
    245				   int page_size);
    246#endif
    247
    248/*
    249 * struct mmu_gather is an opaque type used by the mm code for passing around
    250 * any data needed by arch specific code for tlb_remove_page.
    251 */
    252struct mmu_gather {
    253	struct mm_struct	*mm;
    254
    255#ifdef CONFIG_MMU_GATHER_TABLE_FREE
    256	struct mmu_table_batch	*batch;
    257#endif
    258
    259	unsigned long		start;
    260	unsigned long		end;
    261	/*
    262	 * we are in the middle of an operation to clear
    263	 * a full mm and can make some optimizations
    264	 */
    265	unsigned int		fullmm : 1;
    266
    267	/*
    268	 * we have performed an operation which
    269	 * requires a complete flush of the tlb
    270	 */
    271	unsigned int		need_flush_all : 1;
    272
    273	/*
    274	 * we have removed page directories
    275	 */
    276	unsigned int		freed_tables : 1;
    277
    278	/*
    279	 * at which levels have we cleared entries?
    280	 */
    281	unsigned int		cleared_ptes : 1;
    282	unsigned int		cleared_pmds : 1;
    283	unsigned int		cleared_puds : 1;
    284	unsigned int		cleared_p4ds : 1;
    285
    286	/*
    287	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
    288	 */
    289	unsigned int		vma_exec : 1;
    290	unsigned int		vma_huge : 1;
    291
    292	unsigned int		batch_count;
    293
    294#ifndef CONFIG_MMU_GATHER_NO_GATHER
    295	struct mmu_gather_batch *active;
    296	struct mmu_gather_batch	local;
    297	struct page		*__pages[MMU_GATHER_BUNDLE];
    298
    299#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
    300	unsigned int page_size;
    301#endif
    302#endif
    303};
    304
    305void tlb_flush_mmu(struct mmu_gather *tlb);
    306
    307static inline void __tlb_adjust_range(struct mmu_gather *tlb,
    308				      unsigned long address,
    309				      unsigned int range_size)
    310{
    311	tlb->start = min(tlb->start, address);
    312	tlb->end = max(tlb->end, address + range_size);
    313}
    314
    315static inline void __tlb_reset_range(struct mmu_gather *tlb)
    316{
    317	if (tlb->fullmm) {
    318		tlb->start = tlb->end = ~0;
    319	} else {
    320		tlb->start = TASK_SIZE;
    321		tlb->end = 0;
    322	}
    323	tlb->freed_tables = 0;
    324	tlb->cleared_ptes = 0;
    325	tlb->cleared_pmds = 0;
    326	tlb->cleared_puds = 0;
    327	tlb->cleared_p4ds = 0;
    328	/*
    329	 * Do not reset mmu_gather::vma_* fields here, we do not
    330	 * call into tlb_start_vma() again to set them if there is an
    331	 * intermediate flush.
    332	 */
    333}
    334
    335#ifdef CONFIG_MMU_GATHER_NO_RANGE
    336
    337#if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
    338#error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
    339#endif
    340
    341/*
    342 * When an architecture does not have efficient means of range flushing TLBs
    343 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
    344 * range small. We equally don't have to worry about page granularity or other
    345 * things.
    346 *
    347 * All we need to do is issue a full flush for any !0 range.
    348 */
    349static inline void tlb_flush(struct mmu_gather *tlb)
    350{
    351	if (tlb->end)
    352		flush_tlb_mm(tlb->mm);
    353}
    354
    355static inline void
    356tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
    357
    358#define tlb_end_vma tlb_end_vma
    359static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
    360
    361#else /* CONFIG_MMU_GATHER_NO_RANGE */
    362
    363#ifndef tlb_flush
    364
    365#if defined(tlb_start_vma) || defined(tlb_end_vma)
    366#error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
    367#endif
    368
    369/*
    370 * When an architecture does not provide its own tlb_flush() implementation
    371 * but does have a reasonably efficient flush_vma_range() implementation
    372 * use that.
    373 */
    374static inline void tlb_flush(struct mmu_gather *tlb)
    375{
    376	if (tlb->fullmm || tlb->need_flush_all) {
    377		flush_tlb_mm(tlb->mm);
    378	} else if (tlb->end) {
    379		struct vm_area_struct vma = {
    380			.vm_mm = tlb->mm,
    381			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
    382				    (tlb->vma_huge ? VM_HUGETLB : 0),
    383		};
    384
    385		flush_tlb_range(&vma, tlb->start, tlb->end);
    386	}
    387}
    388
    389static inline void
    390tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
    391{
    392	/*
    393	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
    394	 * mips-4k) flush only large pages.
    395	 *
    396	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
    397	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
    398	 * range.
    399	 *
    400	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
    401	 * these values the batch is empty.
    402	 */
    403	tlb->vma_huge = is_vm_hugetlb_page(vma);
    404	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
    405}
    406
    407#else
    408
    409static inline void
    410tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
    411
    412#endif
    413
    414#endif /* CONFIG_MMU_GATHER_NO_RANGE */
    415
    416static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
    417{
    418	/*
    419	 * Anything calling __tlb_adjust_range() also sets at least one of
    420	 * these bits.
    421	 */
    422	if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
    423	      tlb->cleared_puds || tlb->cleared_p4ds))
    424		return;
    425
    426	tlb_flush(tlb);
    427	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
    428	__tlb_reset_range(tlb);
    429}
    430
    431static inline void tlb_remove_page_size(struct mmu_gather *tlb,
    432					struct page *page, int page_size)
    433{
    434	if (__tlb_remove_page_size(tlb, page, page_size))
    435		tlb_flush_mmu(tlb);
    436}
    437
    438static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
    439{
    440	return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
    441}
    442
    443/* tlb_remove_page
    444 *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
    445 *	required.
    446 */
    447static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
    448{
    449	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
    450}
    451
    452static inline void tlb_change_page_size(struct mmu_gather *tlb,
    453						     unsigned int page_size)
    454{
    455#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
    456	if (tlb->page_size && tlb->page_size != page_size) {
    457		if (!tlb->fullmm && !tlb->need_flush_all)
    458			tlb_flush_mmu(tlb);
    459	}
    460
    461	tlb->page_size = page_size;
    462#endif
    463}
    464
    465static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
    466{
    467	if (tlb->cleared_ptes)
    468		return PAGE_SHIFT;
    469	if (tlb->cleared_pmds)
    470		return PMD_SHIFT;
    471	if (tlb->cleared_puds)
    472		return PUD_SHIFT;
    473	if (tlb->cleared_p4ds)
    474		return P4D_SHIFT;
    475
    476	return PAGE_SHIFT;
    477}
    478
    479static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
    480{
    481	return 1UL << tlb_get_unmap_shift(tlb);
    482}
    483
    484/*
    485 * In the case of tlb vma handling, we can optimise these away in the
    486 * case where we're doing a full MM flush.  When we're doing a munmap,
    487 * the vmas are adjusted to only cover the region to be torn down.
    488 */
    489#ifndef tlb_start_vma
    490static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
    491{
    492	if (tlb->fullmm)
    493		return;
    494
    495	tlb_update_vma_flags(tlb, vma);
    496	flush_cache_range(vma, vma->vm_start, vma->vm_end);
    497}
    498#endif
    499
    500#ifndef tlb_end_vma
    501static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
    502{
    503	if (tlb->fullmm)
    504		return;
    505
    506	/*
    507	 * Do a TLB flush and reset the range at VMA boundaries; this avoids
    508	 * the ranges growing with the unused space between consecutive VMAs,
    509	 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
    510	 * this.
    511	 */
    512	tlb_flush_mmu_tlbonly(tlb);
    513}
    514#endif
    515
    516/*
    517 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
    518 * and set corresponding cleared_*.
    519 */
    520static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
    521				     unsigned long address, unsigned long size)
    522{
    523	__tlb_adjust_range(tlb, address, size);
    524	tlb->cleared_ptes = 1;
    525}
    526
    527static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
    528				     unsigned long address, unsigned long size)
    529{
    530	__tlb_adjust_range(tlb, address, size);
    531	tlb->cleared_pmds = 1;
    532}
    533
    534static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
    535				     unsigned long address, unsigned long size)
    536{
    537	__tlb_adjust_range(tlb, address, size);
    538	tlb->cleared_puds = 1;
    539}
    540
    541static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
    542				     unsigned long address, unsigned long size)
    543{
    544	__tlb_adjust_range(tlb, address, size);
    545	tlb->cleared_p4ds = 1;
    546}
    547
    548#ifndef __tlb_remove_tlb_entry
    549#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
    550#endif
    551
    552/**
    553 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
    554 *
    555 * Record the fact that pte's were really unmapped by updating the range,
    556 * so we can later optimise away the tlb invalidate.   This helps when
    557 * userspace is unmapping already-unmapped pages, which happens quite a lot.
    558 */
    559#define tlb_remove_tlb_entry(tlb, ptep, address)		\
    560	do {							\
    561		tlb_flush_pte_range(tlb, address, PAGE_SIZE);	\
    562		__tlb_remove_tlb_entry(tlb, ptep, address);	\
    563	} while (0)
    564
    565#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
    566	do {							\
    567		unsigned long _sz = huge_page_size(h);		\
    568		if (_sz >= P4D_SIZE)				\
    569			tlb_flush_p4d_range(tlb, address, _sz);	\
    570		else if (_sz >= PUD_SIZE)			\
    571			tlb_flush_pud_range(tlb, address, _sz);	\
    572		else if (_sz >= PMD_SIZE)			\
    573			tlb_flush_pmd_range(tlb, address, _sz);	\
    574		else						\
    575			tlb_flush_pte_range(tlb, address, _sz);	\
    576		__tlb_remove_tlb_entry(tlb, ptep, address);	\
    577	} while (0)
    578
    579/**
    580 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
    581 * This is a nop so far, because only x86 needs it.
    582 */
    583#ifndef __tlb_remove_pmd_tlb_entry
    584#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
    585#endif
    586
    587#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
    588	do {								\
    589		tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE);	\
    590		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
    591	} while (0)
    592
    593/**
    594 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
    595 * invalidation. This is a nop so far, because only x86 needs it.
    596 */
    597#ifndef __tlb_remove_pud_tlb_entry
    598#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
    599#endif
    600
    601#define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
    602	do {								\
    603		tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE);	\
    604		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
    605	} while (0)
    606
    607/*
    608 * For things like page tables caches (ie caching addresses "inside" the
    609 * page tables, like x86 does), for legacy reasons, flushing an
    610 * individual page had better flush the page table caches behind it. This
    611 * is definitely how x86 works, for example. And if you have an
    612 * architected non-legacy page table cache (which I'm not aware of
    613 * anybody actually doing), you're going to have some architecturally
    614 * explicit flushing for that, likely *separate* from a regular TLB entry
    615 * flush, and thus you'd need more than just some range expansion..
    616 *
    617 * So if we ever find an architecture
    618 * that would want something that odd, I think it is up to that
    619 * architecture to do its own odd thing, not cause pain for others
    620 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
    621 *
    622 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
    623 */
    624
    625#ifndef pte_free_tlb
    626#define pte_free_tlb(tlb, ptep, address)			\
    627	do {							\
    628		tlb_flush_pmd_range(tlb, address, PAGE_SIZE);	\
    629		tlb->freed_tables = 1;				\
    630		__pte_free_tlb(tlb, ptep, address);		\
    631	} while (0)
    632#endif
    633
    634#ifndef pmd_free_tlb
    635#define pmd_free_tlb(tlb, pmdp, address)			\
    636	do {							\
    637		tlb_flush_pud_range(tlb, address, PAGE_SIZE);	\
    638		tlb->freed_tables = 1;				\
    639		__pmd_free_tlb(tlb, pmdp, address);		\
    640	} while (0)
    641#endif
    642
    643#ifndef pud_free_tlb
    644#define pud_free_tlb(tlb, pudp, address)			\
    645	do {							\
    646		tlb_flush_p4d_range(tlb, address, PAGE_SIZE);	\
    647		tlb->freed_tables = 1;				\
    648		__pud_free_tlb(tlb, pudp, address);		\
    649	} while (0)
    650#endif
    651
    652#ifndef p4d_free_tlb
    653#define p4d_free_tlb(tlb, pudp, address)			\
    654	do {							\
    655		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
    656		tlb->freed_tables = 1;				\
    657		__p4d_free_tlb(tlb, pudp, address);		\
    658	} while (0)
    659#endif
    660
    661#ifndef pte_needs_flush
    662static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
    663{
    664	return true;
    665}
    666#endif
    667
    668#ifndef huge_pmd_needs_flush
    669static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
    670{
    671	return true;
    672}
    673#endif
    674
    675#endif /* CONFIG_MMU */
    676
    677#endif /* _ASM_GENERIC__TLB_H */