cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hash.h (34859B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Hash: Hash algorithms under the crypto API
      4 * 
      5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
      6 */
      7
      8#ifndef _CRYPTO_HASH_H
      9#define _CRYPTO_HASH_H
     10
     11#include <linux/crypto.h>
     12#include <linux/string.h>
     13
     14struct crypto_ahash;
     15
     16/**
     17 * DOC: Message Digest Algorithm Definitions
     18 *
     19 * These data structures define modular message digest algorithm
     20 * implementations, managed via crypto_register_ahash(),
     21 * crypto_register_shash(), crypto_unregister_ahash() and
     22 * crypto_unregister_shash().
     23 */
     24
     25/**
     26 * struct hash_alg_common - define properties of message digest
     27 * @digestsize: Size of the result of the transformation. A buffer of this size
     28 *	        must be available to the @final and @finup calls, so they can
     29 *	        store the resulting hash into it. For various predefined sizes,
     30 *	        search include/crypto/ using
     31 *	        git grep _DIGEST_SIZE include/crypto.
     32 * @statesize: Size of the block for partial state of the transformation. A
     33 *	       buffer of this size must be passed to the @export function as it
     34 *	       will save the partial state of the transformation into it. On the
     35 *	       other side, the @import function will load the state from a
     36 *	       buffer of this size as well.
     37 * @base: Start of data structure of cipher algorithm. The common data
     38 *	  structure of crypto_alg contains information common to all ciphers.
     39 *	  The hash_alg_common data structure now adds the hash-specific
     40 *	  information.
     41 */
     42struct hash_alg_common {
     43	unsigned int digestsize;
     44	unsigned int statesize;
     45
     46	struct crypto_alg base;
     47};
     48
     49struct ahash_request {
     50	struct crypto_async_request base;
     51
     52	unsigned int nbytes;
     53	struct scatterlist *src;
     54	u8 *result;
     55
     56	/* This field may only be used by the ahash API code. */
     57	void *priv;
     58
     59	void *__ctx[] CRYPTO_MINALIGN_ATTR;
     60};
     61
     62/**
     63 * struct ahash_alg - asynchronous message digest definition
     64 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
     65 *	  state of the HASH transformation at the beginning. This shall fill in
     66 *	  the internal structures used during the entire duration of the whole
     67 *	  transformation. No data processing happens at this point. Driver code
     68 *	  implementation must not use req->result.
     69 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
     70 *	   function actually pushes blocks of data from upper layers into the
     71 *	   driver, which then passes those to the hardware as seen fit. This
     72 *	   function must not finalize the HASH transformation by calculating the
     73 *	   final message digest as this only adds more data into the
     74 *	   transformation. This function shall not modify the transformation
     75 *	   context, as this function may be called in parallel with the same
     76 *	   transformation object. Data processing can happen synchronously
     77 *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
     78 *	   req->result.
     79 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
     80 *	   transformation and retrieves the resulting hash from the driver and
     81 *	   pushes it back to upper layers. No data processing happens at this
     82 *	   point unless hardware requires it to finish the transformation
     83 *	   (then the data buffered by the device driver is processed).
     84 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
     85 *	   combination of @update and @final calls issued in sequence. As some
     86 *	   hardware cannot do @update and @final separately, this callback was
     87 *	   added to allow such hardware to be used at least by IPsec. Data
     88 *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
     89 *	   at this point.
     90 * @digest: Combination of @init and @update and @final. This function
     91 *	    effectively behaves as the entire chain of operations, @init,
     92 *	    @update and @final issued in sequence. Just like @finup, this was
     93 *	    added for hardware which cannot do even the @finup, but can only do
     94 *	    the whole transformation in one run. Data processing can happen
     95 *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
     96 * @setkey: Set optional key used by the hashing algorithm. Intended to push
     97 *	    optional key used by the hashing algorithm from upper layers into
     98 *	    the driver. This function can store the key in the transformation
     99 *	    context or can outright program it into the hardware. In the former
    100 *	    case, one must be careful to program the key into the hardware at
    101 *	    appropriate time and one must be careful that .setkey() can be
    102 *	    called multiple times during the existence of the transformation
    103 *	    object. Not  all hashing algorithms do implement this function as it
    104 *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
    105 *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
    106 *	    this function. This function must be called before any other of the
    107 *	    @init, @update, @final, @finup, @digest is called. No data
    108 *	    processing happens at this point.
    109 * @export: Export partial state of the transformation. This function dumps the
    110 *	    entire state of the ongoing transformation into a provided block of
    111 *	    data so it can be @import 'ed back later on. This is useful in case
    112 *	    you want to save partial result of the transformation after
    113 *	    processing certain amount of data and reload this partial result
    114 *	    multiple times later on for multiple re-use. No data processing
    115 *	    happens at this point. Driver must not use req->result.
    116 * @import: Import partial state of the transformation. This function loads the
    117 *	    entire state of the ongoing transformation from a provided block of
    118 *	    data so the transformation can continue from this point onward. No
    119 *	    data processing happens at this point. Driver must not use
    120 *	    req->result.
    121 * @init_tfm: Initialize the cryptographic transformation object.
    122 *	      This function is called only once at the instantiation
    123 *	      time, right after the transformation context was
    124 *	      allocated. In case the cryptographic hardware has
    125 *	      some special requirements which need to be handled
    126 *	      by software, this function shall check for the precise
    127 *	      requirement of the transformation and put any software
    128 *	      fallbacks in place.
    129 * @exit_tfm: Deinitialize the cryptographic transformation object.
    130 *	      This is a counterpart to @init_tfm, used to remove
    131 *	      various changes set in @init_tfm.
    132 * @halg: see struct hash_alg_common
    133 */
    134struct ahash_alg {
    135	int (*init)(struct ahash_request *req);
    136	int (*update)(struct ahash_request *req);
    137	int (*final)(struct ahash_request *req);
    138	int (*finup)(struct ahash_request *req);
    139	int (*digest)(struct ahash_request *req);
    140	int (*export)(struct ahash_request *req, void *out);
    141	int (*import)(struct ahash_request *req, const void *in);
    142	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
    143		      unsigned int keylen);
    144	int (*init_tfm)(struct crypto_ahash *tfm);
    145	void (*exit_tfm)(struct crypto_ahash *tfm);
    146
    147	struct hash_alg_common halg;
    148};
    149
    150struct shash_desc {
    151	struct crypto_shash *tfm;
    152	void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
    153};
    154
    155#define HASH_MAX_DIGESTSIZE	 64
    156
    157/*
    158 * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
    159 * containing a 'struct sha3_state'.
    160 */
    161#define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)
    162
    163#define HASH_MAX_STATESIZE	512
    164
    165#define SHASH_DESC_ON_STACK(shash, ctx)					     \
    166	char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
    167		__aligned(__alignof__(struct shash_desc));		     \
    168	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
    169
    170/**
    171 * struct shash_alg - synchronous message digest definition
    172 * @init: see struct ahash_alg
    173 * @update: see struct ahash_alg
    174 * @final: see struct ahash_alg
    175 * @finup: see struct ahash_alg
    176 * @digest: see struct ahash_alg
    177 * @export: see struct ahash_alg
    178 * @import: see struct ahash_alg
    179 * @setkey: see struct ahash_alg
    180 * @init_tfm: Initialize the cryptographic transformation object.
    181 *	      This function is called only once at the instantiation
    182 *	      time, right after the transformation context was
    183 *	      allocated. In case the cryptographic hardware has
    184 *	      some special requirements which need to be handled
    185 *	      by software, this function shall check for the precise
    186 *	      requirement of the transformation and put any software
    187 *	      fallbacks in place.
    188 * @exit_tfm: Deinitialize the cryptographic transformation object.
    189 *	      This is a counterpart to @init_tfm, used to remove
    190 *	      various changes set in @init_tfm.
    191 * @digestsize: see struct ahash_alg
    192 * @statesize: see struct ahash_alg
    193 * @descsize: Size of the operational state for the message digest. This state
    194 * 	      size is the memory size that needs to be allocated for
    195 *	      shash_desc.__ctx
    196 * @base: internally used
    197 */
    198struct shash_alg {
    199	int (*init)(struct shash_desc *desc);
    200	int (*update)(struct shash_desc *desc, const u8 *data,
    201		      unsigned int len);
    202	int (*final)(struct shash_desc *desc, u8 *out);
    203	int (*finup)(struct shash_desc *desc, const u8 *data,
    204		     unsigned int len, u8 *out);
    205	int (*digest)(struct shash_desc *desc, const u8 *data,
    206		      unsigned int len, u8 *out);
    207	int (*export)(struct shash_desc *desc, void *out);
    208	int (*import)(struct shash_desc *desc, const void *in);
    209	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
    210		      unsigned int keylen);
    211	int (*init_tfm)(struct crypto_shash *tfm);
    212	void (*exit_tfm)(struct crypto_shash *tfm);
    213
    214	unsigned int descsize;
    215
    216	/* These fields must match hash_alg_common. */
    217	unsigned int digestsize
    218		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
    219	unsigned int statesize;
    220
    221	struct crypto_alg base;
    222};
    223
    224struct crypto_ahash {
    225	int (*init)(struct ahash_request *req);
    226	int (*update)(struct ahash_request *req);
    227	int (*final)(struct ahash_request *req);
    228	int (*finup)(struct ahash_request *req);
    229	int (*digest)(struct ahash_request *req);
    230	int (*export)(struct ahash_request *req, void *out);
    231	int (*import)(struct ahash_request *req, const void *in);
    232	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
    233		      unsigned int keylen);
    234
    235	unsigned int reqsize;
    236	struct crypto_tfm base;
    237};
    238
    239struct crypto_shash {
    240	unsigned int descsize;
    241	struct crypto_tfm base;
    242};
    243
    244/**
    245 * DOC: Asynchronous Message Digest API
    246 *
    247 * The asynchronous message digest API is used with the ciphers of type
    248 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
    249 *
    250 * The asynchronous cipher operation discussion provided for the
    251 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
    252 */
    253
    254static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
    255{
    256	return container_of(tfm, struct crypto_ahash, base);
    257}
    258
    259/**
    260 * crypto_alloc_ahash() - allocate ahash cipher handle
    261 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
    262 *	      ahash cipher
    263 * @type: specifies the type of the cipher
    264 * @mask: specifies the mask for the cipher
    265 *
    266 * Allocate a cipher handle for an ahash. The returned struct
    267 * crypto_ahash is the cipher handle that is required for any subsequent
    268 * API invocation for that ahash.
    269 *
    270 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
    271 *	   of an error, PTR_ERR() returns the error code.
    272 */
    273struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
    274					u32 mask);
    275
    276static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
    277{
    278	return &tfm->base;
    279}
    280
    281/**
    282 * crypto_free_ahash() - zeroize and free the ahash handle
    283 * @tfm: cipher handle to be freed
    284 *
    285 * If @tfm is a NULL or error pointer, this function does nothing.
    286 */
    287static inline void crypto_free_ahash(struct crypto_ahash *tfm)
    288{
    289	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
    290}
    291
    292/**
    293 * crypto_has_ahash() - Search for the availability of an ahash.
    294 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
    295 *	      ahash
    296 * @type: specifies the type of the ahash
    297 * @mask: specifies the mask for the ahash
    298 *
    299 * Return: true when the ahash is known to the kernel crypto API; false
    300 *	   otherwise
    301 */
    302int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
    303
    304static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
    305{
    306	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
    307}
    308
    309static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
    310{
    311	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
    312}
    313
    314static inline unsigned int crypto_ahash_alignmask(
    315	struct crypto_ahash *tfm)
    316{
    317	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
    318}
    319
    320/**
    321 * crypto_ahash_blocksize() - obtain block size for cipher
    322 * @tfm: cipher handle
    323 *
    324 * The block size for the message digest cipher referenced with the cipher
    325 * handle is returned.
    326 *
    327 * Return: block size of cipher
    328 */
    329static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
    330{
    331	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
    332}
    333
    334static inline struct hash_alg_common *__crypto_hash_alg_common(
    335	struct crypto_alg *alg)
    336{
    337	return container_of(alg, struct hash_alg_common, base);
    338}
    339
    340static inline struct hash_alg_common *crypto_hash_alg_common(
    341	struct crypto_ahash *tfm)
    342{
    343	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
    344}
    345
    346/**
    347 * crypto_ahash_digestsize() - obtain message digest size
    348 * @tfm: cipher handle
    349 *
    350 * The size for the message digest created by the message digest cipher
    351 * referenced with the cipher handle is returned.
    352 *
    353 *
    354 * Return: message digest size of cipher
    355 */
    356static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
    357{
    358	return crypto_hash_alg_common(tfm)->digestsize;
    359}
    360
    361/**
    362 * crypto_ahash_statesize() - obtain size of the ahash state
    363 * @tfm: cipher handle
    364 *
    365 * Return the size of the ahash state. With the crypto_ahash_export()
    366 * function, the caller can export the state into a buffer whose size is
    367 * defined with this function.
    368 *
    369 * Return: size of the ahash state
    370 */
    371static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
    372{
    373	return crypto_hash_alg_common(tfm)->statesize;
    374}
    375
    376static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
    377{
    378	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
    379}
    380
    381static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
    382{
    383	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
    384}
    385
    386static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
    387{
    388	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
    389}
    390
    391/**
    392 * crypto_ahash_reqtfm() - obtain cipher handle from request
    393 * @req: asynchronous request handle that contains the reference to the ahash
    394 *	 cipher handle
    395 *
    396 * Return the ahash cipher handle that is registered with the asynchronous
    397 * request handle ahash_request.
    398 *
    399 * Return: ahash cipher handle
    400 */
    401static inline struct crypto_ahash *crypto_ahash_reqtfm(
    402	struct ahash_request *req)
    403{
    404	return __crypto_ahash_cast(req->base.tfm);
    405}
    406
    407/**
    408 * crypto_ahash_reqsize() - obtain size of the request data structure
    409 * @tfm: cipher handle
    410 *
    411 * Return: size of the request data
    412 */
    413static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
    414{
    415	return tfm->reqsize;
    416}
    417
    418static inline void *ahash_request_ctx(struct ahash_request *req)
    419{
    420	return req->__ctx;
    421}
    422
    423/**
    424 * crypto_ahash_setkey - set key for cipher handle
    425 * @tfm: cipher handle
    426 * @key: buffer holding the key
    427 * @keylen: length of the key in bytes
    428 *
    429 * The caller provided key is set for the ahash cipher. The cipher
    430 * handle must point to a keyed hash in order for this function to succeed.
    431 *
    432 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
    433 */
    434int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
    435			unsigned int keylen);
    436
    437/**
    438 * crypto_ahash_finup() - update and finalize message digest
    439 * @req: reference to the ahash_request handle that holds all information
    440 *	 needed to perform the cipher operation
    441 *
    442 * This function is a "short-hand" for the function calls of
    443 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
    444 * meaning as discussed for those separate functions.
    445 *
    446 * Return: see crypto_ahash_final()
    447 */
    448int crypto_ahash_finup(struct ahash_request *req);
    449
    450/**
    451 * crypto_ahash_final() - calculate message digest
    452 * @req: reference to the ahash_request handle that holds all information
    453 *	 needed to perform the cipher operation
    454 *
    455 * Finalize the message digest operation and create the message digest
    456 * based on all data added to the cipher handle. The message digest is placed
    457 * into the output buffer registered with the ahash_request handle.
    458 *
    459 * Return:
    460 * 0		if the message digest was successfully calculated;
    461 * -EINPROGRESS	if data is fed into hardware (DMA) or queued for later;
    462 * -EBUSY	if queue is full and request should be resubmitted later;
    463 * other < 0	if an error occurred
    464 */
    465int crypto_ahash_final(struct ahash_request *req);
    466
    467/**
    468 * crypto_ahash_digest() - calculate message digest for a buffer
    469 * @req: reference to the ahash_request handle that holds all information
    470 *	 needed to perform the cipher operation
    471 *
    472 * This function is a "short-hand" for the function calls of crypto_ahash_init,
    473 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
    474 * meaning as discussed for those separate three functions.
    475 *
    476 * Return: see crypto_ahash_final()
    477 */
    478int crypto_ahash_digest(struct ahash_request *req);
    479
    480/**
    481 * crypto_ahash_export() - extract current message digest state
    482 * @req: reference to the ahash_request handle whose state is exported
    483 * @out: output buffer of sufficient size that can hold the hash state
    484 *
    485 * This function exports the hash state of the ahash_request handle into the
    486 * caller-allocated output buffer out which must have sufficient size (e.g. by
    487 * calling crypto_ahash_statesize()).
    488 *
    489 * Return: 0 if the export was successful; < 0 if an error occurred
    490 */
    491static inline int crypto_ahash_export(struct ahash_request *req, void *out)
    492{
    493	return crypto_ahash_reqtfm(req)->export(req, out);
    494}
    495
    496/**
    497 * crypto_ahash_import() - import message digest state
    498 * @req: reference to ahash_request handle the state is imported into
    499 * @in: buffer holding the state
    500 *
    501 * This function imports the hash state into the ahash_request handle from the
    502 * input buffer. That buffer should have been generated with the
    503 * crypto_ahash_export function.
    504 *
    505 * Return: 0 if the import was successful; < 0 if an error occurred
    506 */
    507static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
    508{
    509	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    510
    511	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
    512		return -ENOKEY;
    513
    514	return tfm->import(req, in);
    515}
    516
    517/**
    518 * crypto_ahash_init() - (re)initialize message digest handle
    519 * @req: ahash_request handle that already is initialized with all necessary
    520 *	 data using the ahash_request_* API functions
    521 *
    522 * The call (re-)initializes the message digest referenced by the ahash_request
    523 * handle. Any potentially existing state created by previous operations is
    524 * discarded.
    525 *
    526 * Return: see crypto_ahash_final()
    527 */
    528static inline int crypto_ahash_init(struct ahash_request *req)
    529{
    530	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    531
    532	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
    533		return -ENOKEY;
    534
    535	return tfm->init(req);
    536}
    537
    538/**
    539 * crypto_ahash_update() - add data to message digest for processing
    540 * @req: ahash_request handle that was previously initialized with the
    541 *	 crypto_ahash_init call.
    542 *
    543 * Updates the message digest state of the &ahash_request handle. The input data
    544 * is pointed to by the scatter/gather list registered in the &ahash_request
    545 * handle
    546 *
    547 * Return: see crypto_ahash_final()
    548 */
    549static inline int crypto_ahash_update(struct ahash_request *req)
    550{
    551	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    552	struct crypto_alg *alg = tfm->base.__crt_alg;
    553	unsigned int nbytes = req->nbytes;
    554	int ret;
    555
    556	crypto_stats_get(alg);
    557	ret = crypto_ahash_reqtfm(req)->update(req);
    558	crypto_stats_ahash_update(nbytes, ret, alg);
    559	return ret;
    560}
    561
    562/**
    563 * DOC: Asynchronous Hash Request Handle
    564 *
    565 * The &ahash_request data structure contains all pointers to data
    566 * required for the asynchronous cipher operation. This includes the cipher
    567 * handle (which can be used by multiple &ahash_request instances), pointer
    568 * to plaintext and the message digest output buffer, asynchronous callback
    569 * function, etc. It acts as a handle to the ahash_request_* API calls in a
    570 * similar way as ahash handle to the crypto_ahash_* API calls.
    571 */
    572
    573/**
    574 * ahash_request_set_tfm() - update cipher handle reference in request
    575 * @req: request handle to be modified
    576 * @tfm: cipher handle that shall be added to the request handle
    577 *
    578 * Allow the caller to replace the existing ahash handle in the request
    579 * data structure with a different one.
    580 */
    581static inline void ahash_request_set_tfm(struct ahash_request *req,
    582					 struct crypto_ahash *tfm)
    583{
    584	req->base.tfm = crypto_ahash_tfm(tfm);
    585}
    586
    587/**
    588 * ahash_request_alloc() - allocate request data structure
    589 * @tfm: cipher handle to be registered with the request
    590 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
    591 *
    592 * Allocate the request data structure that must be used with the ahash
    593 * message digest API calls. During
    594 * the allocation, the provided ahash handle
    595 * is registered in the request data structure.
    596 *
    597 * Return: allocated request handle in case of success, or NULL if out of memory
    598 */
    599static inline struct ahash_request *ahash_request_alloc(
    600	struct crypto_ahash *tfm, gfp_t gfp)
    601{
    602	struct ahash_request *req;
    603
    604	req = kmalloc(sizeof(struct ahash_request) +
    605		      crypto_ahash_reqsize(tfm), gfp);
    606
    607	if (likely(req))
    608		ahash_request_set_tfm(req, tfm);
    609
    610	return req;
    611}
    612
    613/**
    614 * ahash_request_free() - zeroize and free the request data structure
    615 * @req: request data structure cipher handle to be freed
    616 */
    617static inline void ahash_request_free(struct ahash_request *req)
    618{
    619	kfree_sensitive(req);
    620}
    621
    622static inline void ahash_request_zero(struct ahash_request *req)
    623{
    624	memzero_explicit(req, sizeof(*req) +
    625			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
    626}
    627
    628static inline struct ahash_request *ahash_request_cast(
    629	struct crypto_async_request *req)
    630{
    631	return container_of(req, struct ahash_request, base);
    632}
    633
    634/**
    635 * ahash_request_set_callback() - set asynchronous callback function
    636 * @req: request handle
    637 * @flags: specify zero or an ORing of the flags
    638 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
    639 *	   increase the wait queue beyond the initial maximum size;
    640 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
    641 * @compl: callback function pointer to be registered with the request handle
    642 * @data: The data pointer refers to memory that is not used by the kernel
    643 *	  crypto API, but provided to the callback function for it to use. Here,
    644 *	  the caller can provide a reference to memory the callback function can
    645 *	  operate on. As the callback function is invoked asynchronously to the
    646 *	  related functionality, it may need to access data structures of the
    647 *	  related functionality which can be referenced using this pointer. The
    648 *	  callback function can access the memory via the "data" field in the
    649 *	  &crypto_async_request data structure provided to the callback function.
    650 *
    651 * This function allows setting the callback function that is triggered once
    652 * the cipher operation completes.
    653 *
    654 * The callback function is registered with the &ahash_request handle and
    655 * must comply with the following template::
    656 *
    657 *	void callback_function(struct crypto_async_request *req, int error)
    658 */
    659static inline void ahash_request_set_callback(struct ahash_request *req,
    660					      u32 flags,
    661					      crypto_completion_t compl,
    662					      void *data)
    663{
    664	req->base.complete = compl;
    665	req->base.data = data;
    666	req->base.flags = flags;
    667}
    668
    669/**
    670 * ahash_request_set_crypt() - set data buffers
    671 * @req: ahash_request handle to be updated
    672 * @src: source scatter/gather list
    673 * @result: buffer that is filled with the message digest -- the caller must
    674 *	    ensure that the buffer has sufficient space by, for example, calling
    675 *	    crypto_ahash_digestsize()
    676 * @nbytes: number of bytes to process from the source scatter/gather list
    677 *
    678 * By using this call, the caller references the source scatter/gather list.
    679 * The source scatter/gather list points to the data the message digest is to
    680 * be calculated for.
    681 */
    682static inline void ahash_request_set_crypt(struct ahash_request *req,
    683					   struct scatterlist *src, u8 *result,
    684					   unsigned int nbytes)
    685{
    686	req->src = src;
    687	req->nbytes = nbytes;
    688	req->result = result;
    689}
    690
    691/**
    692 * DOC: Synchronous Message Digest API
    693 *
    694 * The synchronous message digest API is used with the ciphers of type
    695 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
    696 *
    697 * The message digest API is able to maintain state information for the
    698 * caller.
    699 *
    700 * The synchronous message digest API can store user-related context in its
    701 * shash_desc request data structure.
    702 */
    703
    704/**
    705 * crypto_alloc_shash() - allocate message digest handle
    706 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
    707 *	      message digest cipher
    708 * @type: specifies the type of the cipher
    709 * @mask: specifies the mask for the cipher
    710 *
    711 * Allocate a cipher handle for a message digest. The returned &struct
    712 * crypto_shash is the cipher handle that is required for any subsequent
    713 * API invocation for that message digest.
    714 *
    715 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
    716 *	   of an error, PTR_ERR() returns the error code.
    717 */
    718struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
    719					u32 mask);
    720
    721static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
    722{
    723	return &tfm->base;
    724}
    725
    726/**
    727 * crypto_free_shash() - zeroize and free the message digest handle
    728 * @tfm: cipher handle to be freed
    729 *
    730 * If @tfm is a NULL or error pointer, this function does nothing.
    731 */
    732static inline void crypto_free_shash(struct crypto_shash *tfm)
    733{
    734	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
    735}
    736
    737static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
    738{
    739	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
    740}
    741
    742static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
    743{
    744	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
    745}
    746
    747static inline unsigned int crypto_shash_alignmask(
    748	struct crypto_shash *tfm)
    749{
    750	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
    751}
    752
    753/**
    754 * crypto_shash_blocksize() - obtain block size for cipher
    755 * @tfm: cipher handle
    756 *
    757 * The block size for the message digest cipher referenced with the cipher
    758 * handle is returned.
    759 *
    760 * Return: block size of cipher
    761 */
    762static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
    763{
    764	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
    765}
    766
    767static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
    768{
    769	return container_of(alg, struct shash_alg, base);
    770}
    771
    772static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
    773{
    774	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
    775}
    776
    777/**
    778 * crypto_shash_digestsize() - obtain message digest size
    779 * @tfm: cipher handle
    780 *
    781 * The size for the message digest created by the message digest cipher
    782 * referenced with the cipher handle is returned.
    783 *
    784 * Return: digest size of cipher
    785 */
    786static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
    787{
    788	return crypto_shash_alg(tfm)->digestsize;
    789}
    790
    791static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
    792{
    793	return crypto_shash_alg(tfm)->statesize;
    794}
    795
    796static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
    797{
    798	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
    799}
    800
    801static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
    802{
    803	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
    804}
    805
    806static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
    807{
    808	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
    809}
    810
    811/**
    812 * crypto_shash_descsize() - obtain the operational state size
    813 * @tfm: cipher handle
    814 *
    815 * The size of the operational state the cipher needs during operation is
    816 * returned for the hash referenced with the cipher handle. This size is
    817 * required to calculate the memory requirements to allow the caller allocating
    818 * sufficient memory for operational state.
    819 *
    820 * The operational state is defined with struct shash_desc where the size of
    821 * that data structure is to be calculated as
    822 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
    823 *
    824 * Return: size of the operational state
    825 */
    826static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
    827{
    828	return tfm->descsize;
    829}
    830
    831static inline void *shash_desc_ctx(struct shash_desc *desc)
    832{
    833	return desc->__ctx;
    834}
    835
    836/**
    837 * crypto_shash_setkey() - set key for message digest
    838 * @tfm: cipher handle
    839 * @key: buffer holding the key
    840 * @keylen: length of the key in bytes
    841 *
    842 * The caller provided key is set for the keyed message digest cipher. The
    843 * cipher handle must point to a keyed message digest cipher in order for this
    844 * function to succeed.
    845 *
    846 * Context: Any context.
    847 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
    848 */
    849int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
    850			unsigned int keylen);
    851
    852/**
    853 * crypto_shash_digest() - calculate message digest for buffer
    854 * @desc: see crypto_shash_final()
    855 * @data: see crypto_shash_update()
    856 * @len: see crypto_shash_update()
    857 * @out: see crypto_shash_final()
    858 *
    859 * This function is a "short-hand" for the function calls of crypto_shash_init,
    860 * crypto_shash_update and crypto_shash_final. The parameters have the same
    861 * meaning as discussed for those separate three functions.
    862 *
    863 * Context: Any context.
    864 * Return: 0 if the message digest creation was successful; < 0 if an error
    865 *	   occurred
    866 */
    867int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
    868			unsigned int len, u8 *out);
    869
    870/**
    871 * crypto_shash_tfm_digest() - calculate message digest for buffer
    872 * @tfm: hash transformation object
    873 * @data: see crypto_shash_update()
    874 * @len: see crypto_shash_update()
    875 * @out: see crypto_shash_final()
    876 *
    877 * This is a simplified version of crypto_shash_digest() for users who don't
    878 * want to allocate their own hash descriptor (shash_desc).  Instead,
    879 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
    880 * directly, and it allocates a hash descriptor on the stack internally.
    881 * Note that this stack allocation may be fairly large.
    882 *
    883 * Context: Any context.
    884 * Return: 0 on success; < 0 if an error occurred.
    885 */
    886int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
    887			    unsigned int len, u8 *out);
    888
    889/**
    890 * crypto_shash_export() - extract operational state for message digest
    891 * @desc: reference to the operational state handle whose state is exported
    892 * @out: output buffer of sufficient size that can hold the hash state
    893 *
    894 * This function exports the hash state of the operational state handle into the
    895 * caller-allocated output buffer out which must have sufficient size (e.g. by
    896 * calling crypto_shash_descsize).
    897 *
    898 * Context: Any context.
    899 * Return: 0 if the export creation was successful; < 0 if an error occurred
    900 */
    901static inline int crypto_shash_export(struct shash_desc *desc, void *out)
    902{
    903	return crypto_shash_alg(desc->tfm)->export(desc, out);
    904}
    905
    906/**
    907 * crypto_shash_import() - import operational state
    908 * @desc: reference to the operational state handle the state imported into
    909 * @in: buffer holding the state
    910 *
    911 * This function imports the hash state into the operational state handle from
    912 * the input buffer. That buffer should have been generated with the
    913 * crypto_ahash_export function.
    914 *
    915 * Context: Any context.
    916 * Return: 0 if the import was successful; < 0 if an error occurred
    917 */
    918static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
    919{
    920	struct crypto_shash *tfm = desc->tfm;
    921
    922	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
    923		return -ENOKEY;
    924
    925	return crypto_shash_alg(tfm)->import(desc, in);
    926}
    927
    928/**
    929 * crypto_shash_init() - (re)initialize message digest
    930 * @desc: operational state handle that is already filled
    931 *
    932 * The call (re-)initializes the message digest referenced by the
    933 * operational state handle. Any potentially existing state created by
    934 * previous operations is discarded.
    935 *
    936 * Context: Any context.
    937 * Return: 0 if the message digest initialization was successful; < 0 if an
    938 *	   error occurred
    939 */
    940static inline int crypto_shash_init(struct shash_desc *desc)
    941{
    942	struct crypto_shash *tfm = desc->tfm;
    943
    944	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
    945		return -ENOKEY;
    946
    947	return crypto_shash_alg(tfm)->init(desc);
    948}
    949
    950/**
    951 * crypto_shash_update() - add data to message digest for processing
    952 * @desc: operational state handle that is already initialized
    953 * @data: input data to be added to the message digest
    954 * @len: length of the input data
    955 *
    956 * Updates the message digest state of the operational state handle.
    957 *
    958 * Context: Any context.
    959 * Return: 0 if the message digest update was successful; < 0 if an error
    960 *	   occurred
    961 */
    962int crypto_shash_update(struct shash_desc *desc, const u8 *data,
    963			unsigned int len);
    964
    965/**
    966 * crypto_shash_final() - calculate message digest
    967 * @desc: operational state handle that is already filled with data
    968 * @out: output buffer filled with the message digest
    969 *
    970 * Finalize the message digest operation and create the message digest
    971 * based on all data added to the cipher handle. The message digest is placed
    972 * into the output buffer. The caller must ensure that the output buffer is
    973 * large enough by using crypto_shash_digestsize.
    974 *
    975 * Context: Any context.
    976 * Return: 0 if the message digest creation was successful; < 0 if an error
    977 *	   occurred
    978 */
    979int crypto_shash_final(struct shash_desc *desc, u8 *out);
    980
    981/**
    982 * crypto_shash_finup() - calculate message digest of buffer
    983 * @desc: see crypto_shash_final()
    984 * @data: see crypto_shash_update()
    985 * @len: see crypto_shash_update()
    986 * @out: see crypto_shash_final()
    987 *
    988 * This function is a "short-hand" for the function calls of
    989 * crypto_shash_update and crypto_shash_final. The parameters have the same
    990 * meaning as discussed for those separate functions.
    991 *
    992 * Context: Any context.
    993 * Return: 0 if the message digest creation was successful; < 0 if an error
    994 *	   occurred
    995 */
    996int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
    997		       unsigned int len, u8 *out);
    998
    999static inline void shash_desc_zero(struct shash_desc *desc)
   1000{
   1001	memzero_explicit(desc,
   1002			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
   1003}
   1004
   1005#endif	/* _CRYPTO_HASH_H */