cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ecc.h (8804B)


      1/*
      2 * Copyright (c) 2013, Kenneth MacKay
      3 * All rights reserved.
      4 *
      5 * Redistribution and use in source and binary forms, with or without
      6 * modification, are permitted provided that the following conditions are
      7 * met:
      8 *  * Redistributions of source code must retain the above copyright
      9 *   notice, this list of conditions and the following disclaimer.
     10 *  * Redistributions in binary form must reproduce the above copyright
     11 *    notice, this list of conditions and the following disclaimer in the
     12 *    documentation and/or other materials provided with the distribution.
     13 *
     14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25 */
     26#ifndef _CRYPTO_ECC_H
     27#define _CRYPTO_ECC_H
     28
     29#include <crypto/ecc_curve.h>
     30#include <asm/unaligned.h>
     31
     32/* One digit is u64 qword. */
     33#define ECC_CURVE_NIST_P192_DIGITS  3
     34#define ECC_CURVE_NIST_P256_DIGITS  4
     35#define ECC_CURVE_NIST_P384_DIGITS  6
     36#define ECC_MAX_DIGITS              (512 / 64) /* due to ecrdsa */
     37
     38#define ECC_DIGITS_TO_BYTES_SHIFT 3
     39
     40#define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
     41
     42#define ECC_POINT_INIT(x, y, ndigits)	(struct ecc_point) { x, y, ndigits }
     43
     44/**
     45 * ecc_swap_digits() - Copy ndigits from big endian array to native array
     46 * @in:       Input array
     47 * @out:      Output array
     48 * @ndigits:  Number of digits to copy
     49 */
     50static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits)
     51{
     52	const __be64 *src = (__force __be64 *)in;
     53	int i;
     54
     55	for (i = 0; i < ndigits; i++)
     56		out[i] = get_unaligned_be64(&src[ndigits - 1 - i]);
     57}
     58
     59/**
     60 * ecc_is_key_valid() - Validate a given ECDH private key
     61 *
     62 * @curve_id:		id representing the curve to use
     63 * @ndigits:		curve's number of digits
     64 * @private_key:	private key to be used for the given curve
     65 * @private_key_len:	private key length
     66 *
     67 * Returns 0 if the key is acceptable, a negative value otherwise
     68 */
     69int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
     70		     const u64 *private_key, unsigned int private_key_len);
     71
     72/**
     73 * ecc_gen_privkey() -  Generates an ECC private key.
     74 * The private key is a random integer in the range 0 < random < n, where n is a
     75 * prime that is the order of the cyclic subgroup generated by the distinguished
     76 * point G.
     77 * @curve_id:		id representing the curve to use
     78 * @ndigits:		curve number of digits
     79 * @private_key:	buffer for storing the generated private key
     80 *
     81 * Returns 0 if the private key was generated successfully, a negative value
     82 * if an error occurred.
     83 */
     84int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey);
     85
     86/**
     87 * ecc_make_pub_key() - Compute an ECC public key
     88 *
     89 * @curve_id:		id representing the curve to use
     90 * @ndigits:		curve's number of digits
     91 * @private_key:	pregenerated private key for the given curve
     92 * @public_key:		buffer for storing the generated public key
     93 *
     94 * Returns 0 if the public key was generated successfully, a negative value
     95 * if an error occurred.
     96 */
     97int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
     98		     const u64 *private_key, u64 *public_key);
     99
    100/**
    101 * crypto_ecdh_shared_secret() - Compute a shared secret
    102 *
    103 * @curve_id:		id representing the curve to use
    104 * @ndigits:		curve's number of digits
    105 * @private_key:	private key of part A
    106 * @public_key:		public key of counterpart B
    107 * @secret:		buffer for storing the calculated shared secret
    108 *
    109 * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
    110 * before using it for symmetric encryption or HMAC.
    111 *
    112 * Returns 0 if the shared secret was generated successfully, a negative value
    113 * if an error occurred.
    114 */
    115int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
    116			      const u64 *private_key, const u64 *public_key,
    117			      u64 *secret);
    118
    119/**
    120 * ecc_is_pubkey_valid_partial() - Partial public key validation
    121 *
    122 * @curve:		elliptic curve domain parameters
    123 * @pk:			public key as a point
    124 *
    125 * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
    126 * Public-Key Validation Routine.
    127 *
    128 * Note: There is no check that the public key is in the correct elliptic curve
    129 * subgroup.
    130 *
    131 * Return: 0 if validation is successful, -EINVAL if validation is failed.
    132 */
    133int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
    134				struct ecc_point *pk);
    135
    136/**
    137 * ecc_is_pubkey_valid_full() - Full public key validation
    138 *
    139 * @curve:		elliptic curve domain parameters
    140 * @pk:			public key as a point
    141 *
    142 * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
    143 * Public-Key Validation Routine.
    144 *
    145 * Return: 0 if validation is successful, -EINVAL if validation is failed.
    146 */
    147int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
    148			     struct ecc_point *pk);
    149
    150/**
    151 * vli_is_zero() - Determine is vli is zero
    152 *
    153 * @vli:		vli to check.
    154 * @ndigits:		length of the @vli
    155 */
    156bool vli_is_zero(const u64 *vli, unsigned int ndigits);
    157
    158/**
    159 * vli_cmp() - compare left and right vlis
    160 *
    161 * @left:		vli
    162 * @right:		vli
    163 * @ndigits:		length of both vlis
    164 *
    165 * Returns sign of @left - @right, i.e. -1 if @left < @right,
    166 * 0 if @left == @right, 1 if @left > @right.
    167 */
    168int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
    169
    170/**
    171 * vli_sub() - Subtracts right from left
    172 *
    173 * @result:		where to write result
    174 * @left:		vli
    175 * @right		vli
    176 * @ndigits:		length of all vlis
    177 *
    178 * Note: can modify in-place.
    179 *
    180 * Return: carry bit.
    181 */
    182u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
    183	    unsigned int ndigits);
    184
    185/**
    186 * vli_from_be64() - Load vli from big-endian u64 array
    187 *
    188 * @dest:		destination vli
    189 * @src:		source array of u64 BE values
    190 * @ndigits:		length of both vli and array
    191 */
    192void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
    193
    194/**
    195 * vli_from_le64() - Load vli from little-endian u64 array
    196 *
    197 * @dest:		destination vli
    198 * @src:		source array of u64 LE values
    199 * @ndigits:		length of both vli and array
    200 */
    201void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
    202
    203/**
    204 * vli_mod_inv() - Modular inversion
    205 *
    206 * @result:		where to write vli number
    207 * @input:		vli value to operate on
    208 * @mod:		modulus
    209 * @ndigits:		length of all vlis
    210 */
    211void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
    212		 unsigned int ndigits);
    213
    214/**
    215 * vli_mod_mult_slow() - Modular multiplication
    216 *
    217 * @result:		where to write result value
    218 * @left:		vli number to multiply with @right
    219 * @right:		vli number to multiply with @left
    220 * @mod:		modulus
    221 * @ndigits:		length of all vlis
    222 *
    223 * Note: Assumes that mod is big enough curve order.
    224 */
    225void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
    226		       const u64 *mod, unsigned int ndigits);
    227
    228/**
    229 * vli_num_bits() - Counts the number of bits required for vli.
    230 *
    231 * @vli:		vli to check.
    232 * @ndigits:		Length of the @vli
    233 *
    234 * Return: The number of bits required to represent @vli.
    235 */
    236unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits);
    237
    238/**
    239 * ecc_aloc_point() - Allocate ECC point.
    240 *
    241 * @ndigits:		Length of vlis in u64 qwords.
    242 *
    243 * Return: Pointer to the allocated point or NULL if allocation failed.
    244 */
    245struct ecc_point *ecc_alloc_point(unsigned int ndigits);
    246
    247/**
    248 * ecc_free_point() - Free ECC point.
    249 *
    250 * @p:			The point to free.
    251 */
    252void ecc_free_point(struct ecc_point *p);
    253
    254/**
    255 * ecc_point_is_zero() - Check if point is zero.
    256 *
    257 * @p:			Point to check for zero.
    258 *
    259 * Return: true if point is the point at infinity, false otherwise.
    260 */
    261bool ecc_point_is_zero(const struct ecc_point *point);
    262
    263/**
    264 * ecc_point_mult_shamir() - Add two points multiplied by scalars
    265 *
    266 * @result:		resulting point
    267 * @x:			scalar to multiply with @p
    268 * @p:			point to multiply with @x
    269 * @y:			scalar to multiply with @q
    270 * @q:			point to multiply with @y
    271 * @curve:		curve
    272 *
    273 * Returns result = x * p + x * q over the curve.
    274 * This works faster than two multiplications and addition.
    275 */
    276void ecc_point_mult_shamir(const struct ecc_point *result,
    277			   const u64 *x, const struct ecc_point *p,
    278			   const u64 *y, const struct ecc_point *q,
    279			   const struct ecc_curve *curve);
    280
    281#endif