cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

skcipher.h (20506B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Symmetric key ciphers.
      4 * 
      5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
      6 */
      7
      8#ifndef _CRYPTO_SKCIPHER_H
      9#define _CRYPTO_SKCIPHER_H
     10
     11#include <linux/container_of.h>
     12#include <linux/crypto.h>
     13#include <linux/slab.h>
     14#include <linux/string.h>
     15#include <linux/types.h>
     16
     17struct scatterlist;
     18
     19/**
     20 *	struct skcipher_request - Symmetric key cipher request
     21 *	@cryptlen: Number of bytes to encrypt or decrypt
     22 *	@iv: Initialisation Vector
     23 *	@src: Source SG list
     24 *	@dst: Destination SG list
     25 *	@base: Underlying async request
     26 *	@__ctx: Start of private context data
     27 */
     28struct skcipher_request {
     29	unsigned int cryptlen;
     30
     31	u8 *iv;
     32
     33	struct scatterlist *src;
     34	struct scatterlist *dst;
     35
     36	struct crypto_async_request base;
     37
     38	void *__ctx[] CRYPTO_MINALIGN_ATTR;
     39};
     40
     41struct crypto_skcipher {
     42	unsigned int reqsize;
     43
     44	struct crypto_tfm base;
     45};
     46
     47struct crypto_sync_skcipher {
     48	struct crypto_skcipher base;
     49};
     50
     51/**
     52 * struct skcipher_alg - symmetric key cipher definition
     53 * @min_keysize: Minimum key size supported by the transformation. This is the
     54 *		 smallest key length supported by this transformation algorithm.
     55 *		 This must be set to one of the pre-defined values as this is
     56 *		 not hardware specific. Possible values for this field can be
     57 *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
     58 * @max_keysize: Maximum key size supported by the transformation. This is the
     59 *		 largest key length supported by this transformation algorithm.
     60 *		 This must be set to one of the pre-defined values as this is
     61 *		 not hardware specific. Possible values for this field can be
     62 *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
     63 * @setkey: Set key for the transformation. This function is used to either
     64 *	    program a supplied key into the hardware or store the key in the
     65 *	    transformation context for programming it later. Note that this
     66 *	    function does modify the transformation context. This function can
     67 *	    be called multiple times during the existence of the transformation
     68 *	    object, so one must make sure the key is properly reprogrammed into
     69 *	    the hardware. This function is also responsible for checking the key
     70 *	    length for validity. In case a software fallback was put in place in
     71 *	    the @cra_init call, this function might need to use the fallback if
     72 *	    the algorithm doesn't support all of the key sizes.
     73 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
     74 *	     the supplied scatterlist containing the blocks of data. The crypto
     75 *	     API consumer is responsible for aligning the entries of the
     76 *	     scatterlist properly and making sure the chunks are correctly
     77 *	     sized. In case a software fallback was put in place in the
     78 *	     @cra_init call, this function might need to use the fallback if
     79 *	     the algorithm doesn't support all of the key sizes. In case the
     80 *	     key was stored in transformation context, the key might need to be
     81 *	     re-programmed into the hardware in this function. This function
     82 *	     shall not modify the transformation context, as this function may
     83 *	     be called in parallel with the same transformation object.
     84 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
     85 *	     and the conditions are exactly the same.
     86 * @init: Initialize the cryptographic transformation object. This function
     87 *	  is used to initialize the cryptographic transformation object.
     88 *	  This function is called only once at the instantiation time, right
     89 *	  after the transformation context was allocated. In case the
     90 *	  cryptographic hardware has some special requirements which need to
     91 *	  be handled by software, this function shall check for the precise
     92 *	  requirement of the transformation and put any software fallbacks
     93 *	  in place.
     94 * @exit: Deinitialize the cryptographic transformation object. This is a
     95 *	  counterpart to @init, used to remove various changes set in
     96 *	  @init.
     97 * @ivsize: IV size applicable for transformation. The consumer must provide an
     98 *	    IV of exactly that size to perform the encrypt or decrypt operation.
     99 * @chunksize: Equal to the block size except for stream ciphers such as
    100 *	       CTR where it is set to the underlying block size.
    101 * @walksize: Equal to the chunk size except in cases where the algorithm is
    102 * 	      considerably more efficient if it can operate on multiple chunks
    103 * 	      in parallel. Should be a multiple of chunksize.
    104 * @base: Definition of a generic crypto algorithm.
    105 *
    106 * All fields except @ivsize are mandatory and must be filled.
    107 */
    108struct skcipher_alg {
    109	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
    110	              unsigned int keylen);
    111	int (*encrypt)(struct skcipher_request *req);
    112	int (*decrypt)(struct skcipher_request *req);
    113	int (*init)(struct crypto_skcipher *tfm);
    114	void (*exit)(struct crypto_skcipher *tfm);
    115
    116	unsigned int min_keysize;
    117	unsigned int max_keysize;
    118	unsigned int ivsize;
    119	unsigned int chunksize;
    120	unsigned int walksize;
    121
    122	struct crypto_alg base;
    123};
    124
    125#define MAX_SYNC_SKCIPHER_REQSIZE      384
    126/*
    127 * This performs a type-check against the "tfm" argument to make sure
    128 * all users have the correct skcipher tfm for doing on-stack requests.
    129 */
    130#define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
    131	char __##name##_desc[sizeof(struct skcipher_request) + \
    132			     MAX_SYNC_SKCIPHER_REQSIZE + \
    133			     (!(sizeof((struct crypto_sync_skcipher *)1 == \
    134				       (typeof(tfm))1))) \
    135			    ] CRYPTO_MINALIGN_ATTR; \
    136	struct skcipher_request *name = (void *)__##name##_desc
    137
    138/**
    139 * DOC: Symmetric Key Cipher API
    140 *
    141 * Symmetric key cipher API is used with the ciphers of type
    142 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
    143 *
    144 * Asynchronous cipher operations imply that the function invocation for a
    145 * cipher request returns immediately before the completion of the operation.
    146 * The cipher request is scheduled as a separate kernel thread and therefore
    147 * load-balanced on the different CPUs via the process scheduler. To allow
    148 * the kernel crypto API to inform the caller about the completion of a cipher
    149 * request, the caller must provide a callback function. That function is
    150 * invoked with the cipher handle when the request completes.
    151 *
    152 * To support the asynchronous operation, additional information than just the
    153 * cipher handle must be supplied to the kernel crypto API. That additional
    154 * information is given by filling in the skcipher_request data structure.
    155 *
    156 * For the symmetric key cipher API, the state is maintained with the tfm
    157 * cipher handle. A single tfm can be used across multiple calls and in
    158 * parallel. For asynchronous block cipher calls, context data supplied and
    159 * only used by the caller can be referenced the request data structure in
    160 * addition to the IV used for the cipher request. The maintenance of such
    161 * state information would be important for a crypto driver implementer to
    162 * have, because when calling the callback function upon completion of the
    163 * cipher operation, that callback function may need some information about
    164 * which operation just finished if it invoked multiple in parallel. This
    165 * state information is unused by the kernel crypto API.
    166 */
    167
    168static inline struct crypto_skcipher *__crypto_skcipher_cast(
    169	struct crypto_tfm *tfm)
    170{
    171	return container_of(tfm, struct crypto_skcipher, base);
    172}
    173
    174/**
    175 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
    176 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
    177 *	      skcipher cipher
    178 * @type: specifies the type of the cipher
    179 * @mask: specifies the mask for the cipher
    180 *
    181 * Allocate a cipher handle for an skcipher. The returned struct
    182 * crypto_skcipher is the cipher handle that is required for any subsequent
    183 * API invocation for that skcipher.
    184 *
    185 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
    186 *	   of an error, PTR_ERR() returns the error code.
    187 */
    188struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
    189					      u32 type, u32 mask);
    190
    191struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
    192					      u32 type, u32 mask);
    193
    194static inline struct crypto_tfm *crypto_skcipher_tfm(
    195	struct crypto_skcipher *tfm)
    196{
    197	return &tfm->base;
    198}
    199
    200/**
    201 * crypto_free_skcipher() - zeroize and free cipher handle
    202 * @tfm: cipher handle to be freed
    203 *
    204 * If @tfm is a NULL or error pointer, this function does nothing.
    205 */
    206static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
    207{
    208	crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
    209}
    210
    211static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
    212{
    213	crypto_free_skcipher(&tfm->base);
    214}
    215
    216/**
    217 * crypto_has_skcipher() - Search for the availability of an skcipher.
    218 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
    219 *	      skcipher
    220 * @type: specifies the type of the skcipher
    221 * @mask: specifies the mask for the skcipher
    222 *
    223 * Return: true when the skcipher is known to the kernel crypto API; false
    224 *	   otherwise
    225 */
    226int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
    227
    228static inline const char *crypto_skcipher_driver_name(
    229	struct crypto_skcipher *tfm)
    230{
    231	return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
    232}
    233
    234static inline struct skcipher_alg *crypto_skcipher_alg(
    235	struct crypto_skcipher *tfm)
    236{
    237	return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
    238			    struct skcipher_alg, base);
    239}
    240
    241static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
    242{
    243	return alg->ivsize;
    244}
    245
    246/**
    247 * crypto_skcipher_ivsize() - obtain IV size
    248 * @tfm: cipher handle
    249 *
    250 * The size of the IV for the skcipher referenced by the cipher handle is
    251 * returned. This IV size may be zero if the cipher does not need an IV.
    252 *
    253 * Return: IV size in bytes
    254 */
    255static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
    256{
    257	return crypto_skcipher_alg(tfm)->ivsize;
    258}
    259
    260static inline unsigned int crypto_sync_skcipher_ivsize(
    261	struct crypto_sync_skcipher *tfm)
    262{
    263	return crypto_skcipher_ivsize(&tfm->base);
    264}
    265
    266/**
    267 * crypto_skcipher_blocksize() - obtain block size of cipher
    268 * @tfm: cipher handle
    269 *
    270 * The block size for the skcipher referenced with the cipher handle is
    271 * returned. The caller may use that information to allocate appropriate
    272 * memory for the data returned by the encryption or decryption operation
    273 *
    274 * Return: block size of cipher
    275 */
    276static inline unsigned int crypto_skcipher_blocksize(
    277	struct crypto_skcipher *tfm)
    278{
    279	return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
    280}
    281
    282static inline unsigned int crypto_skcipher_alg_chunksize(
    283	struct skcipher_alg *alg)
    284{
    285	return alg->chunksize;
    286}
    287
    288/**
    289 * crypto_skcipher_chunksize() - obtain chunk size
    290 * @tfm: cipher handle
    291 *
    292 * The block size is set to one for ciphers such as CTR.  However,
    293 * you still need to provide incremental updates in multiples of
    294 * the underlying block size as the IV does not have sub-block
    295 * granularity.  This is known in this API as the chunk size.
    296 *
    297 * Return: chunk size in bytes
    298 */
    299static inline unsigned int crypto_skcipher_chunksize(
    300	struct crypto_skcipher *tfm)
    301{
    302	return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
    303}
    304
    305static inline unsigned int crypto_sync_skcipher_blocksize(
    306	struct crypto_sync_skcipher *tfm)
    307{
    308	return crypto_skcipher_blocksize(&tfm->base);
    309}
    310
    311static inline unsigned int crypto_skcipher_alignmask(
    312	struct crypto_skcipher *tfm)
    313{
    314	return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
    315}
    316
    317static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
    318{
    319	return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
    320}
    321
    322static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
    323					       u32 flags)
    324{
    325	crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
    326}
    327
    328static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
    329						 u32 flags)
    330{
    331	crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
    332}
    333
    334static inline u32 crypto_sync_skcipher_get_flags(
    335	struct crypto_sync_skcipher *tfm)
    336{
    337	return crypto_skcipher_get_flags(&tfm->base);
    338}
    339
    340static inline void crypto_sync_skcipher_set_flags(
    341	struct crypto_sync_skcipher *tfm, u32 flags)
    342{
    343	crypto_skcipher_set_flags(&tfm->base, flags);
    344}
    345
    346static inline void crypto_sync_skcipher_clear_flags(
    347	struct crypto_sync_skcipher *tfm, u32 flags)
    348{
    349	crypto_skcipher_clear_flags(&tfm->base, flags);
    350}
    351
    352/**
    353 * crypto_skcipher_setkey() - set key for cipher
    354 * @tfm: cipher handle
    355 * @key: buffer holding the key
    356 * @keylen: length of the key in bytes
    357 *
    358 * The caller provided key is set for the skcipher referenced by the cipher
    359 * handle.
    360 *
    361 * Note, the key length determines the cipher type. Many block ciphers implement
    362 * different cipher modes depending on the key size, such as AES-128 vs AES-192
    363 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
    364 * is performed.
    365 *
    366 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
    367 */
    368int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
    369			   const u8 *key, unsigned int keylen);
    370
    371static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
    372					 const u8 *key, unsigned int keylen)
    373{
    374	return crypto_skcipher_setkey(&tfm->base, key, keylen);
    375}
    376
    377static inline unsigned int crypto_skcipher_min_keysize(
    378	struct crypto_skcipher *tfm)
    379{
    380	return crypto_skcipher_alg(tfm)->min_keysize;
    381}
    382
    383static inline unsigned int crypto_skcipher_max_keysize(
    384	struct crypto_skcipher *tfm)
    385{
    386	return crypto_skcipher_alg(tfm)->max_keysize;
    387}
    388
    389/**
    390 * crypto_skcipher_reqtfm() - obtain cipher handle from request
    391 * @req: skcipher_request out of which the cipher handle is to be obtained
    392 *
    393 * Return the crypto_skcipher handle when furnishing an skcipher_request
    394 * data structure.
    395 *
    396 * Return: crypto_skcipher handle
    397 */
    398static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
    399	struct skcipher_request *req)
    400{
    401	return __crypto_skcipher_cast(req->base.tfm);
    402}
    403
    404static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
    405	struct skcipher_request *req)
    406{
    407	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    408
    409	return container_of(tfm, struct crypto_sync_skcipher, base);
    410}
    411
    412/**
    413 * crypto_skcipher_encrypt() - encrypt plaintext
    414 * @req: reference to the skcipher_request handle that holds all information
    415 *	 needed to perform the cipher operation
    416 *
    417 * Encrypt plaintext data using the skcipher_request handle. That data
    418 * structure and how it is filled with data is discussed with the
    419 * skcipher_request_* functions.
    420 *
    421 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
    422 */
    423int crypto_skcipher_encrypt(struct skcipher_request *req);
    424
    425/**
    426 * crypto_skcipher_decrypt() - decrypt ciphertext
    427 * @req: reference to the skcipher_request handle that holds all information
    428 *	 needed to perform the cipher operation
    429 *
    430 * Decrypt ciphertext data using the skcipher_request handle. That data
    431 * structure and how it is filled with data is discussed with the
    432 * skcipher_request_* functions.
    433 *
    434 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
    435 */
    436int crypto_skcipher_decrypt(struct skcipher_request *req);
    437
    438/**
    439 * DOC: Symmetric Key Cipher Request Handle
    440 *
    441 * The skcipher_request data structure contains all pointers to data
    442 * required for the symmetric key cipher operation. This includes the cipher
    443 * handle (which can be used by multiple skcipher_request instances), pointer
    444 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
    445 * as a handle to the skcipher_request_* API calls in a similar way as
    446 * skcipher handle to the crypto_skcipher_* API calls.
    447 */
    448
    449/**
    450 * crypto_skcipher_reqsize() - obtain size of the request data structure
    451 * @tfm: cipher handle
    452 *
    453 * Return: number of bytes
    454 */
    455static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
    456{
    457	return tfm->reqsize;
    458}
    459
    460/**
    461 * skcipher_request_set_tfm() - update cipher handle reference in request
    462 * @req: request handle to be modified
    463 * @tfm: cipher handle that shall be added to the request handle
    464 *
    465 * Allow the caller to replace the existing skcipher handle in the request
    466 * data structure with a different one.
    467 */
    468static inline void skcipher_request_set_tfm(struct skcipher_request *req,
    469					    struct crypto_skcipher *tfm)
    470{
    471	req->base.tfm = crypto_skcipher_tfm(tfm);
    472}
    473
    474static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
    475					    struct crypto_sync_skcipher *tfm)
    476{
    477	skcipher_request_set_tfm(req, &tfm->base);
    478}
    479
    480static inline struct skcipher_request *skcipher_request_cast(
    481	struct crypto_async_request *req)
    482{
    483	return container_of(req, struct skcipher_request, base);
    484}
    485
    486/**
    487 * skcipher_request_alloc() - allocate request data structure
    488 * @tfm: cipher handle to be registered with the request
    489 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
    490 *
    491 * Allocate the request data structure that must be used with the skcipher
    492 * encrypt and decrypt API calls. During the allocation, the provided skcipher
    493 * handle is registered in the request data structure.
    494 *
    495 * Return: allocated request handle in case of success, or NULL if out of memory
    496 */
    497static inline struct skcipher_request *skcipher_request_alloc(
    498	struct crypto_skcipher *tfm, gfp_t gfp)
    499{
    500	struct skcipher_request *req;
    501
    502	req = kmalloc(sizeof(struct skcipher_request) +
    503		      crypto_skcipher_reqsize(tfm), gfp);
    504
    505	if (likely(req))
    506		skcipher_request_set_tfm(req, tfm);
    507
    508	return req;
    509}
    510
    511/**
    512 * skcipher_request_free() - zeroize and free request data structure
    513 * @req: request data structure cipher handle to be freed
    514 */
    515static inline void skcipher_request_free(struct skcipher_request *req)
    516{
    517	kfree_sensitive(req);
    518}
    519
    520static inline void skcipher_request_zero(struct skcipher_request *req)
    521{
    522	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    523
    524	memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
    525}
    526
    527/**
    528 * skcipher_request_set_callback() - set asynchronous callback function
    529 * @req: request handle
    530 * @flags: specify zero or an ORing of the flags
    531 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
    532 *	   increase the wait queue beyond the initial maximum size;
    533 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
    534 * @compl: callback function pointer to be registered with the request handle
    535 * @data: The data pointer refers to memory that is not used by the kernel
    536 *	  crypto API, but provided to the callback function for it to use. Here,
    537 *	  the caller can provide a reference to memory the callback function can
    538 *	  operate on. As the callback function is invoked asynchronously to the
    539 *	  related functionality, it may need to access data structures of the
    540 *	  related functionality which can be referenced using this pointer. The
    541 *	  callback function can access the memory via the "data" field in the
    542 *	  crypto_async_request data structure provided to the callback function.
    543 *
    544 * This function allows setting the callback function that is triggered once the
    545 * cipher operation completes.
    546 *
    547 * The callback function is registered with the skcipher_request handle and
    548 * must comply with the following template::
    549 *
    550 *	void callback_function(struct crypto_async_request *req, int error)
    551 */
    552static inline void skcipher_request_set_callback(struct skcipher_request *req,
    553						 u32 flags,
    554						 crypto_completion_t compl,
    555						 void *data)
    556{
    557	req->base.complete = compl;
    558	req->base.data = data;
    559	req->base.flags = flags;
    560}
    561
    562/**
    563 * skcipher_request_set_crypt() - set data buffers
    564 * @req: request handle
    565 * @src: source scatter / gather list
    566 * @dst: destination scatter / gather list
    567 * @cryptlen: number of bytes to process from @src
    568 * @iv: IV for the cipher operation which must comply with the IV size defined
    569 *      by crypto_skcipher_ivsize
    570 *
    571 * This function allows setting of the source data and destination data
    572 * scatter / gather lists.
    573 *
    574 * For encryption, the source is treated as the plaintext and the
    575 * destination is the ciphertext. For a decryption operation, the use is
    576 * reversed - the source is the ciphertext and the destination is the plaintext.
    577 */
    578static inline void skcipher_request_set_crypt(
    579	struct skcipher_request *req,
    580	struct scatterlist *src, struct scatterlist *dst,
    581	unsigned int cryptlen, void *iv)
    582{
    583	req->src = src;
    584	req->dst = dst;
    585	req->cryptlen = cryptlen;
    586	req->iv = iv;
    587}
    588
    589#endif	/* _CRYPTO_SKCIPHER_H */
    590