virtchnl.h (52898B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/******************************************************************************* 3 * 4 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver 5 * Copyright(c) 2013 - 2014 Intel Corporation. 6 * 7 * Contact Information: 8 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 9 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 10 * 11 ******************************************************************************/ 12 13#ifndef _VIRTCHNL_H_ 14#define _VIRTCHNL_H_ 15 16/* Description: 17 * This header file describes the VF-PF communication protocol used 18 * by the drivers for all devices starting from our 40G product line 19 * 20 * Admin queue buffer usage: 21 * desc->opcode is always aqc_opc_send_msg_to_pf 22 * flags, retval, datalen, and data addr are all used normally. 23 * The Firmware copies the cookie fields when sending messages between the 24 * PF and VF, but uses all other fields internally. Due to this limitation, 25 * we must send all messages as "indirect", i.e. using an external buffer. 26 * 27 * All the VSI indexes are relative to the VF. Each VF can have maximum of 28 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 29 * have a maximum of sixteen queues for all of its VSIs. 30 * 31 * The PF is required to return a status code in v_retval for all messages 32 * except RESET_VF, which does not require any response. The return value 33 * is of status_code type, defined in the shared type.h. 34 * 35 * In general, VF driver initialization should roughly follow the order of 36 * these opcodes. The VF driver must first validate the API version of the 37 * PF driver, then request a reset, then get resources, then configure 38 * queues and interrupts. After these operations are complete, the VF 39 * driver may start its queues, optionally add MAC and VLAN filters, and 40 * process traffic. 41 */ 42 43/* START GENERIC DEFINES 44 * Need to ensure the following enums and defines hold the same meaning and 45 * value in current and future projects 46 */ 47 48/* Error Codes */ 49enum virtchnl_status_code { 50 VIRTCHNL_STATUS_SUCCESS = 0, 51 VIRTCHNL_STATUS_ERR_PARAM = -5, 52 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 53 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 54 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 55 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 56 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 57 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 58}; 59 60/* Backward compatibility */ 61#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 62#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 63 64#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 65#define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 66#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 67#define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 68#define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 69#define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 70#define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 71#define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 72 73enum virtchnl_link_speed { 74 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 75 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 76 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 77 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 78 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 79 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 80 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 81 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 82 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 83}; 84 85/* for hsplit_0 field of Rx HMC context */ 86/* deprecated with AVF 1.0 */ 87enum virtchnl_rx_hsplit { 88 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 89 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 90 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 91 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 92 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 93}; 94 95/* END GENERIC DEFINES */ 96 97/* Opcodes for VF-PF communication. These are placed in the v_opcode field 98 * of the virtchnl_msg structure. 99 */ 100enum virtchnl_ops { 101/* The PF sends status change events to VFs using 102 * the VIRTCHNL_OP_EVENT opcode. 103 * VFs send requests to the PF using the other ops. 104 * Use of "advanced opcode" features must be negotiated as part of capabilities 105 * exchange and are not considered part of base mode feature set. 106 */ 107 VIRTCHNL_OP_UNKNOWN = 0, 108 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 109 VIRTCHNL_OP_RESET_VF = 2, 110 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 111 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 112 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 113 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 114 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 115 VIRTCHNL_OP_ENABLE_QUEUES = 8, 116 VIRTCHNL_OP_DISABLE_QUEUES = 9, 117 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 118 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 119 VIRTCHNL_OP_ADD_VLAN = 12, 120 VIRTCHNL_OP_DEL_VLAN = 13, 121 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 122 VIRTCHNL_OP_GET_STATS = 15, 123 VIRTCHNL_OP_RSVD = 16, 124 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 125 VIRTCHNL_OP_IWARP = 20, /* advanced opcode */ 126 VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */ 127 VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */ 128 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 129 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 130 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 131 VIRTCHNL_OP_SET_RSS_HENA = 26, 132 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 133 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 134 VIRTCHNL_OP_REQUEST_QUEUES = 29, 135 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 136 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 137 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 138 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 139 /* opcode 34 - 44 are reserved */ 140 VIRTCHNL_OP_ADD_RSS_CFG = 45, 141 VIRTCHNL_OP_DEL_RSS_CFG = 46, 142 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 143 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 144 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 145 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 146 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 147 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 148 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 149 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 150 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 151 VIRTCHNL_OP_MAX, 152}; 153 154/* These macros are used to generate compilation errors if a structure/union 155 * is not exactly the correct length. It gives a divide by zero error if the 156 * structure/union is not of the correct size, otherwise it creates an enum 157 * that is never used. 158 */ 159#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 160 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 161#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 162 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 163 164/* Virtual channel message descriptor. This overlays the admin queue 165 * descriptor. All other data is passed in external buffers. 166 */ 167 168struct virtchnl_msg { 169 u8 pad[8]; /* AQ flags/opcode/len/retval fields */ 170 enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */ 171 enum virtchnl_status_code v_retval; /* ditto for desc->retval */ 172 u32 vfid; /* used by PF when sending to VF */ 173}; 174 175VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg); 176 177/* Message descriptions and data structures. */ 178 179/* VIRTCHNL_OP_VERSION 180 * VF posts its version number to the PF. PF responds with its version number 181 * in the same format, along with a return code. 182 * Reply from PF has its major/minor versions also in param0 and param1. 183 * If there is a major version mismatch, then the VF cannot operate. 184 * If there is a minor version mismatch, then the VF can operate but should 185 * add a warning to the system log. 186 * 187 * This enum element MUST always be specified as == 1, regardless of other 188 * changes in the API. The PF must always respond to this message without 189 * error regardless of version mismatch. 190 */ 191#define VIRTCHNL_VERSION_MAJOR 1 192#define VIRTCHNL_VERSION_MINOR 1 193#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 194 195struct virtchnl_version_info { 196 u32 major; 197 u32 minor; 198}; 199 200VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 201 202#define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0)) 203#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 204 205/* VIRTCHNL_OP_RESET_VF 206 * VF sends this request to PF with no parameters 207 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 208 * until reset completion is indicated. The admin queue must be reinitialized 209 * after this operation. 210 * 211 * When reset is complete, PF must ensure that all queues in all VSIs associated 212 * with the VF are stopped, all queue configurations in the HMC are set to 0, 213 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 214 * are cleared. 215 */ 216 217/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 218 * vsi_type should always be 6 for backward compatibility. Add other fields 219 * as needed. 220 */ 221enum virtchnl_vsi_type { 222 VIRTCHNL_VSI_TYPE_INVALID = 0, 223 VIRTCHNL_VSI_SRIOV = 6, 224}; 225 226/* VIRTCHNL_OP_GET_VF_RESOURCES 227 * Version 1.0 VF sends this request to PF with no parameters 228 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 229 * PF responds with an indirect message containing 230 * virtchnl_vf_resource and one or more 231 * virtchnl_vsi_resource structures. 232 */ 233 234struct virtchnl_vsi_resource { 235 u16 vsi_id; 236 u16 num_queue_pairs; 237 enum virtchnl_vsi_type vsi_type; 238 u16 qset_handle; 239 u8 default_mac_addr[ETH_ALEN]; 240}; 241 242VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 243 244/* VF capability flags 245 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 246 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 247 */ 248#define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 249#define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1) 250#define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 251#define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 252#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 253#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 254/* used to negotiate communicating link speeds in Mbps */ 255#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 256#define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 257#define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 258#define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 259#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 260#define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 261#define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 262#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 263#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 264#define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 265#define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 266#define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 267#define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 268 269#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 270 VIRTCHNL_VF_OFFLOAD_VLAN | \ 271 VIRTCHNL_VF_OFFLOAD_RSS_PF) 272 273struct virtchnl_vf_resource { 274 u16 num_vsis; 275 u16 num_queue_pairs; 276 u16 max_vectors; 277 u16 max_mtu; 278 279 u32 vf_cap_flags; 280 u32 rss_key_size; 281 u32 rss_lut_size; 282 283 struct virtchnl_vsi_resource vsi_res[1]; 284}; 285 286VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource); 287 288/* VIRTCHNL_OP_CONFIG_TX_QUEUE 289 * VF sends this message to set up parameters for one TX queue. 290 * External data buffer contains one instance of virtchnl_txq_info. 291 * PF configures requested queue and returns a status code. 292 */ 293 294/* Tx queue config info */ 295struct virtchnl_txq_info { 296 u16 vsi_id; 297 u16 queue_id; 298 u16 ring_len; /* number of descriptors, multiple of 8 */ 299 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 300 u64 dma_ring_addr; 301 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 302}; 303 304VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 305 306/* VIRTCHNL_OP_CONFIG_RX_QUEUE 307 * VF sends this message to set up parameters for one RX queue. 308 * External data buffer contains one instance of virtchnl_rxq_info. 309 * PF configures requested queue and returns a status code. 310 */ 311 312/* Rx queue config info */ 313struct virtchnl_rxq_info { 314 u16 vsi_id; 315 u16 queue_id; 316 u32 ring_len; /* number of descriptors, multiple of 32 */ 317 u16 hdr_size; 318 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 319 u32 databuffer_size; 320 u32 max_pkt_size; 321 u32 pad1; 322 u64 dma_ring_addr; 323 enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */ 324 u32 pad2; 325}; 326 327VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 328 329/* VIRTCHNL_OP_CONFIG_VSI_QUEUES 330 * VF sends this message to set parameters for all active TX and RX queues 331 * associated with the specified VSI. 332 * PF configures queues and returns status. 333 * If the number of queues specified is greater than the number of queues 334 * associated with the VSI, an error is returned and no queues are configured. 335 */ 336struct virtchnl_queue_pair_info { 337 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 338 struct virtchnl_txq_info txq; 339 struct virtchnl_rxq_info rxq; 340}; 341 342VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 343 344struct virtchnl_vsi_queue_config_info { 345 u16 vsi_id; 346 u16 num_queue_pairs; 347 u32 pad; 348 struct virtchnl_queue_pair_info qpair[1]; 349}; 350 351VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info); 352 353/* VIRTCHNL_OP_REQUEST_QUEUES 354 * VF sends this message to request the PF to allocate additional queues to 355 * this VF. Each VF gets a guaranteed number of queues on init but asking for 356 * additional queues must be negotiated. This is a best effort request as it 357 * is possible the PF does not have enough queues left to support the request. 358 * If the PF cannot support the number requested it will respond with the 359 * maximum number it is able to support. If the request is successful, PF will 360 * then reset the VF to institute required changes. 361 */ 362 363/* VF resource request */ 364struct virtchnl_vf_res_request { 365 u16 num_queue_pairs; 366}; 367 368/* VIRTCHNL_OP_CONFIG_IRQ_MAP 369 * VF uses this message to map vectors to queues. 370 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 371 * are to be associated with the specified vector. 372 * The "other" causes are always mapped to vector 0. 373 * PF configures interrupt mapping and returns status. 374 */ 375struct virtchnl_vector_map { 376 u16 vsi_id; 377 u16 vector_id; 378 u16 rxq_map; 379 u16 txq_map; 380 u16 rxitr_idx; 381 u16 txitr_idx; 382}; 383 384VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 385 386struct virtchnl_irq_map_info { 387 u16 num_vectors; 388 struct virtchnl_vector_map vecmap[1]; 389}; 390 391VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info); 392 393/* VIRTCHNL_OP_ENABLE_QUEUES 394 * VIRTCHNL_OP_DISABLE_QUEUES 395 * VF sends these message to enable or disable TX/RX queue pairs. 396 * The queues fields are bitmaps indicating which queues to act upon. 397 * (Currently, we only support 16 queues per VF, but we make the field 398 * u32 to allow for expansion.) 399 * PF performs requested action and returns status. 400 */ 401struct virtchnl_queue_select { 402 u16 vsi_id; 403 u16 pad; 404 u32 rx_queues; 405 u32 tx_queues; 406}; 407 408VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 409 410/* VIRTCHNL_OP_ADD_ETH_ADDR 411 * VF sends this message in order to add one or more unicast or multicast 412 * address filters for the specified VSI. 413 * PF adds the filters and returns status. 414 */ 415 416/* VIRTCHNL_OP_DEL_ETH_ADDR 417 * VF sends this message in order to remove one or more unicast or multicast 418 * filters for the specified VSI. 419 * PF removes the filters and returns status. 420 */ 421 422/* VIRTCHNL_ETHER_ADDR_LEGACY 423 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 424 * bytes. Moving forward all VF drivers should not set type to 425 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 426 * behavior. The control plane function (i.e. PF) can use a best effort method 427 * of tracking the primary/device unicast in this case, but there is no 428 * guarantee and functionality depends on the implementation of the PF. 429 */ 430 431/* VIRTCHNL_ETHER_ADDR_PRIMARY 432 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 433 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 434 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 435 * function (i.e. PF) to accurately track and use this MAC address for 436 * displaying on the host and for VM/function reset. 437 */ 438 439/* VIRTCHNL_ETHER_ADDR_EXTRA 440 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 441 * unicast and/or multicast filters that are being added/deleted via 442 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 443 */ 444struct virtchnl_ether_addr { 445 u8 addr[ETH_ALEN]; 446 u8 type; 447#define VIRTCHNL_ETHER_ADDR_LEGACY 0 448#define VIRTCHNL_ETHER_ADDR_PRIMARY 1 449#define VIRTCHNL_ETHER_ADDR_EXTRA 2 450#define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 451 u8 pad; 452}; 453 454VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 455 456struct virtchnl_ether_addr_list { 457 u16 vsi_id; 458 u16 num_elements; 459 struct virtchnl_ether_addr list[1]; 460}; 461 462VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list); 463 464/* VIRTCHNL_OP_ADD_VLAN 465 * VF sends this message to add one or more VLAN tag filters for receives. 466 * PF adds the filters and returns status. 467 * If a port VLAN is configured by the PF, this operation will return an 468 * error to the VF. 469 */ 470 471/* VIRTCHNL_OP_DEL_VLAN 472 * VF sends this message to remove one or more VLAN tag filters for receives. 473 * PF removes the filters and returns status. 474 * If a port VLAN is configured by the PF, this operation will return an 475 * error to the VF. 476 */ 477 478struct virtchnl_vlan_filter_list { 479 u16 vsi_id; 480 u16 num_elements; 481 u16 vlan_id[1]; 482}; 483 484VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list); 485 486/* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 487 * structures and opcodes. 488 * 489 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 490 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 491 * 492 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 493 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 494 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 495 * 496 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 497 * by the PF concurrently. For example, if the PF can support 498 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 499 * would OR the following bits: 500 * 501 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 502 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 503 * VIRTCHNL_VLAN_ETHERTYPE_AND; 504 * 505 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 506 * and 0x88A8 VLAN ethertypes. 507 * 508 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 509 * by the PF concurrently. For example if the PF can support 510 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 511 * offload it would OR the following bits: 512 * 513 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 514 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 515 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 516 * 517 * The VF would interpret this as VLAN stripping can be supported on either 518 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 519 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 520 * the previously set value. 521 * 522 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 523 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 524 * 525 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 526 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 527 * 528 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 529 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 530 * 531 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 532 * VLAN filtering if the underlying PF supports it. 533 * 534 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 535 * certain VLAN capability can be toggled. For example if the underlying PF/CP 536 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 537 * set this bit along with the supported ethertypes. 538 */ 539enum virtchnl_vlan_support { 540 VIRTCHNL_VLAN_UNSUPPORTED = 0, 541 VIRTCHNL_VLAN_ETHERTYPE_8100 = BIT(0), 542 VIRTCHNL_VLAN_ETHERTYPE_88A8 = BIT(1), 543 VIRTCHNL_VLAN_ETHERTYPE_9100 = BIT(2), 544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = BIT(8), 545 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = BIT(9), 546 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = BIT(10), 547 VIRTCHNL_VLAN_PRIO = BIT(24), 548 VIRTCHNL_VLAN_FILTER_MASK = BIT(28), 549 VIRTCHNL_VLAN_ETHERTYPE_AND = BIT(29), 550 VIRTCHNL_VLAN_ETHERTYPE_XOR = BIT(30), 551 VIRTCHNL_VLAN_TOGGLE = BIT(31), 552}; 553 554/* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 555 * for filtering, insertion, and stripping capabilities. 556 * 557 * If only outer capabilities are supported (for filtering, insertion, and/or 558 * stripping) then this refers to the outer most or single VLAN from the VF's 559 * perspective. 560 * 561 * If only inner capabilities are supported (for filtering, insertion, and/or 562 * stripping) then this refers to the outer most or single VLAN from the VF's 563 * perspective. Functionally this is the same as if only outer capabilities are 564 * supported. The VF driver is just forced to use the inner fields when 565 * adding/deleting filters and enabling/disabling offloads (if supported). 566 * 567 * If both outer and inner capabilities are supported (for filtering, insertion, 568 * and/or stripping) then outer refers to the outer most or single VLAN and 569 * inner refers to the second VLAN, if it exists, in the packet. 570 * 571 * There is no support for tunneled VLAN offloads, so outer or inner are never 572 * referring to a tunneled packet from the VF's perspective. 573 */ 574struct virtchnl_vlan_supported_caps { 575 u32 outer; 576 u32 inner; 577}; 578 579/* The PF populates these fields based on the supported VLAN filtering. If a 580 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 581 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 582 * the unsupported fields. 583 * 584 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 585 * VIRTCHNL_VLAN_TOGGLE bit is set. 586 * 587 * The ethertype(s) specified in the ethertype_init field are the ethertypes 588 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 589 * most VLAN from the VF's perspective. If both inner and outer filtering are 590 * allowed then ethertype_init only refers to the outer most VLAN as only 591 * VLAN ethertype supported for inner VLAN filtering is 592 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 593 * when both inner and outer filtering are allowed. 594 * 595 * The max_filters field tells the VF how many VLAN filters it's allowed to have 596 * at any one time. If it exceeds this amount and tries to add another filter, 597 * then the request will be rejected by the PF. To prevent failures, the VF 598 * should keep track of how many VLAN filters it has added and not attempt to 599 * add more than max_filters. 600 */ 601struct virtchnl_vlan_filtering_caps { 602 struct virtchnl_vlan_supported_caps filtering_support; 603 u32 ethertype_init; 604 u16 max_filters; 605 u8 pad[2]; 606}; 607 608VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 609 610/* This enum is used for the virtchnl_vlan_offload_caps structure to specify 611 * if the PF supports a different ethertype for stripping and insertion. 612 * 613 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 614 * for stripping affect the ethertype(s) specified for insertion and visa versa 615 * as well. If the VF tries to configure VLAN stripping via 616 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 617 * that will be the ethertype for both stripping and insertion. 618 * 619 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 620 * stripping do not affect the ethertype(s) specified for insertion and visa 621 * versa. 622 */ 623enum virtchnl_vlan_ethertype_match { 624 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 625 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 626}; 627 628/* The PF populates these fields based on the supported VLAN offloads. If a 629 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 630 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 631 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 632 * 633 * Also, a VF is only allowed to toggle its VLAN offload setting if the 634 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 635 * 636 * The VF driver needs to be aware of how the tags are stripped by hardware and 637 * inserted by the VF driver based on the level of offload support. The PF will 638 * populate these fields based on where the VLAN tags are expected to be 639 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 640 * interpret these fields. See the definition of the 641 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 642 * enumeration. 643 */ 644struct virtchnl_vlan_offload_caps { 645 struct virtchnl_vlan_supported_caps stripping_support; 646 struct virtchnl_vlan_supported_caps insertion_support; 647 u32 ethertype_init; 648 u8 ethertype_match; 649 u8 pad[3]; 650}; 651 652VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 653 654/* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 655 * VF sends this message to determine its VLAN capabilities. 656 * 657 * PF will mark which capabilities it supports based on hardware support and 658 * current configuration. For example, if a port VLAN is configured the PF will 659 * not allow outer VLAN filtering, stripping, or insertion to be configured so 660 * it will block these features from the VF. 661 * 662 * The VF will need to cross reference its capabilities with the PFs 663 * capabilities in the response message from the PF to determine the VLAN 664 * support. 665 */ 666struct virtchnl_vlan_caps { 667 struct virtchnl_vlan_filtering_caps filtering; 668 struct virtchnl_vlan_offload_caps offloads; 669}; 670 671VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 672 673struct virtchnl_vlan { 674 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 675 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 676 * filtering caps 677 */ 678 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 679 * filtering caps. Note that tpid here does not refer to 680 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 681 * actual 2-byte VLAN TPID 682 */ 683 u8 pad[2]; 684}; 685 686VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 687 688struct virtchnl_vlan_filter { 689 struct virtchnl_vlan inner; 690 struct virtchnl_vlan outer; 691 u8 pad[16]; 692}; 693 694VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 695 696/* VIRTCHNL_OP_ADD_VLAN_V2 697 * VIRTCHNL_OP_DEL_VLAN_V2 698 * 699 * VF sends these messages to add/del one or more VLAN tag filters for Rx 700 * traffic. 701 * 702 * The PF attempts to add the filters and returns status. 703 * 704 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 705 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 706 */ 707struct virtchnl_vlan_filter_list_v2 { 708 u16 vport_id; 709 u16 num_elements; 710 u8 pad[4]; 711 struct virtchnl_vlan_filter filters[1]; 712}; 713 714VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2); 715 716/* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 717 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 718 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 719 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 720 * 721 * VF sends this message to enable or disable VLAN stripping or insertion. It 722 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 723 * allowed and whether or not it's allowed to enable/disable the specific 724 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 725 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 726 * messages are allowed. 727 * 728 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 729 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 730 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 731 * case means the outer most or single VLAN from the VF's perspective. This is 732 * because no outer offloads are supported. See the comments above the 733 * virtchnl_vlan_supported_caps structure for more details. 734 * 735 * virtchnl_vlan_caps.offloads.stripping_support.inner = 736 * VIRTCHNL_VLAN_TOGGLE | 737 * VIRTCHNL_VLAN_ETHERTYPE_8100; 738 * 739 * virtchnl_vlan_caps.offloads.insertion_support.inner = 740 * VIRTCHNL_VLAN_TOGGLE | 741 * VIRTCHNL_VLAN_ETHERTYPE_8100; 742 * 743 * In order to enable inner (again note that in this case inner is the outer 744 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 745 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 746 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 747 * 748 * virtchnl_vlan_setting.inner_ethertype_setting = 749 * VIRTCHNL_VLAN_ETHERTYPE_8100; 750 * 751 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 752 * initialization. 753 * 754 * The reason that VLAN TPID(s) are not being used for the 755 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 756 * possible a device could support VLAN insertion and/or stripping offload on 757 * multiple ethertypes concurrently, so this method allows a VF to request 758 * multiple ethertypes in one message using the virtchnl_vlan_support 759 * enumeration. 760 * 761 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 762 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 763 * VLAN insertion and stripping simultaneously. The 764 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 765 * populated based on what the PF can support. 766 * 767 * virtchnl_vlan_caps.offloads.stripping_support.outer = 768 * VIRTCHNL_VLAN_TOGGLE | 769 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 770 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 771 * VIRTCHNL_VLAN_ETHERTYPE_AND; 772 * 773 * virtchnl_vlan_caps.offloads.insertion_support.outer = 774 * VIRTCHNL_VLAN_TOGGLE | 775 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 776 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 777 * VIRTCHNL_VLAN_ETHERTYPE_AND; 778 * 779 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 780 * would populate the virthcnl_vlan_offload_structure in the following manner 781 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 782 * 783 * virtchnl_vlan_setting.outer_ethertype_setting = 784 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 785 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 786 * 787 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 788 * initialization. 789 * 790 * There is also the case where a PF and the underlying hardware can support 791 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 792 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 793 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 794 * offloads. The ethertypes must match for stripping and insertion. 795 * 796 * virtchnl_vlan_caps.offloads.stripping_support.outer = 797 * VIRTCHNL_VLAN_TOGGLE | 798 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 799 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 800 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 801 * 802 * virtchnl_vlan_caps.offloads.insertion_support.outer = 803 * VIRTCHNL_VLAN_TOGGLE | 804 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 805 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 806 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 807 * 808 * virtchnl_vlan_caps.offloads.ethertype_match = 809 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 810 * 811 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 812 * populate the virtchnl_vlan_setting structure in the following manner and send 813 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 814 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 815 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 816 * 817 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 818 * 819 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 820 * initialization. 821 */ 822struct virtchnl_vlan_setting { 823 u32 outer_ethertype_setting; 824 u32 inner_ethertype_setting; 825 u16 vport_id; 826 u8 pad[6]; 827}; 828 829VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 830 831/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 832 * VF sends VSI id and flags. 833 * PF returns status code in retval. 834 * Note: we assume that broadcast accept mode is always enabled. 835 */ 836struct virtchnl_promisc_info { 837 u16 vsi_id; 838 u16 flags; 839}; 840 841VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 842 843#define FLAG_VF_UNICAST_PROMISC 0x00000001 844#define FLAG_VF_MULTICAST_PROMISC 0x00000002 845 846/* VIRTCHNL_OP_GET_STATS 847 * VF sends this message to request stats for the selected VSI. VF uses 848 * the virtchnl_queue_select struct to specify the VSI. The queue_id 849 * field is ignored by the PF. 850 * 851 * PF replies with struct eth_stats in an external buffer. 852 */ 853 854/* VIRTCHNL_OP_CONFIG_RSS_KEY 855 * VIRTCHNL_OP_CONFIG_RSS_LUT 856 * VF sends these messages to configure RSS. Only supported if both PF 857 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 858 * configuration negotiation. If this is the case, then the RSS fields in 859 * the VF resource struct are valid. 860 * Both the key and LUT are initialized to 0 by the PF, meaning that 861 * RSS is effectively disabled until set up by the VF. 862 */ 863struct virtchnl_rss_key { 864 u16 vsi_id; 865 u16 key_len; 866 u8 key[1]; /* RSS hash key, packed bytes */ 867}; 868 869VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key); 870 871struct virtchnl_rss_lut { 872 u16 vsi_id; 873 u16 lut_entries; 874 u8 lut[1]; /* RSS lookup table */ 875}; 876 877VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut); 878 879/* VIRTCHNL_OP_GET_RSS_HENA_CAPS 880 * VIRTCHNL_OP_SET_RSS_HENA 881 * VF sends these messages to get and set the hash filter enable bits for RSS. 882 * By default, the PF sets these to all possible traffic types that the 883 * hardware supports. The VF can query this value if it wants to change the 884 * traffic types that are hashed by the hardware. 885 */ 886struct virtchnl_rss_hena { 887 u64 hena; 888}; 889 890VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 891 892/* VIRTCHNL_OP_ENABLE_CHANNELS 893 * VIRTCHNL_OP_DISABLE_CHANNELS 894 * VF sends these messages to enable or disable channels based on 895 * the user specified queue count and queue offset for each traffic class. 896 * This struct encompasses all the information that the PF needs from 897 * VF to create a channel. 898 */ 899struct virtchnl_channel_info { 900 u16 count; /* number of queues in a channel */ 901 u16 offset; /* queues in a channel start from 'offset' */ 902 u32 pad; 903 u64 max_tx_rate; 904}; 905 906VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 907 908struct virtchnl_tc_info { 909 u32 num_tc; 910 u32 pad; 911 struct virtchnl_channel_info list[1]; 912}; 913 914VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info); 915 916/* VIRTCHNL_ADD_CLOUD_FILTER 917 * VIRTCHNL_DEL_CLOUD_FILTER 918 * VF sends these messages to add or delete a cloud filter based on the 919 * user specified match and action filters. These structures encompass 920 * all the information that the PF needs from the VF to add/delete a 921 * cloud filter. 922 */ 923 924struct virtchnl_l4_spec { 925 u8 src_mac[ETH_ALEN]; 926 u8 dst_mac[ETH_ALEN]; 927 __be16 vlan_id; 928 __be16 pad; /* reserved for future use */ 929 __be32 src_ip[4]; 930 __be32 dst_ip[4]; 931 __be16 src_port; 932 __be16 dst_port; 933}; 934 935VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 936 937union virtchnl_flow_spec { 938 struct virtchnl_l4_spec tcp_spec; 939 u8 buffer[128]; /* reserved for future use */ 940}; 941 942VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 943 944enum virtchnl_action { 945 /* action types */ 946 VIRTCHNL_ACTION_DROP = 0, 947 VIRTCHNL_ACTION_TC_REDIRECT, 948 VIRTCHNL_ACTION_PASSTHRU, 949 VIRTCHNL_ACTION_QUEUE, 950 VIRTCHNL_ACTION_Q_REGION, 951 VIRTCHNL_ACTION_MARK, 952 VIRTCHNL_ACTION_COUNT, 953}; 954 955enum virtchnl_flow_type { 956 /* flow types */ 957 VIRTCHNL_TCP_V4_FLOW = 0, 958 VIRTCHNL_TCP_V6_FLOW, 959}; 960 961struct virtchnl_filter { 962 union virtchnl_flow_spec data; 963 union virtchnl_flow_spec mask; 964 enum virtchnl_flow_type flow_type; 965 enum virtchnl_action action; 966 u32 action_meta; 967 u8 field_flags; 968 u8 pad[3]; 969}; 970 971VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 972 973/* VIRTCHNL_OP_EVENT 974 * PF sends this message to inform the VF driver of events that may affect it. 975 * No direct response is expected from the VF, though it may generate other 976 * messages in response to this one. 977 */ 978enum virtchnl_event_codes { 979 VIRTCHNL_EVENT_UNKNOWN = 0, 980 VIRTCHNL_EVENT_LINK_CHANGE, 981 VIRTCHNL_EVENT_RESET_IMPENDING, 982 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 983}; 984 985#define PF_EVENT_SEVERITY_INFO 0 986#define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 987 988struct virtchnl_pf_event { 989 enum virtchnl_event_codes event; 990 union { 991 /* If the PF driver does not support the new speed reporting 992 * capabilities then use link_event else use link_event_adv to 993 * get the speed and link information. The ability to understand 994 * new speeds is indicated by setting the capability flag 995 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 996 * in virtchnl_vf_resource struct and can be used to determine 997 * which link event struct to use below. 998 */ 999 struct { 1000 enum virtchnl_link_speed link_speed; 1001 bool link_status; 1002 } link_event; 1003 struct { 1004 /* link_speed provided in Mbps */ 1005 u32 link_speed; 1006 u8 link_status; 1007 u8 pad[3]; 1008 } link_event_adv; 1009 } event_data; 1010 1011 int severity; 1012}; 1013 1014VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1015 1016/* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP 1017 * VF uses this message to request PF to map IWARP vectors to IWARP queues. 1018 * The request for this originates from the VF IWARP driver through 1019 * a client interface between VF LAN and VF IWARP driver. 1020 * A vector could have an AEQ and CEQ attached to it although 1021 * there is a single AEQ per VF IWARP instance in which case 1022 * most vectors will have an INVALID_IDX for aeq and valid idx for ceq. 1023 * There will never be a case where there will be multiple CEQs attached 1024 * to a single vector. 1025 * PF configures interrupt mapping and returns status. 1026 */ 1027 1028struct virtchnl_iwarp_qv_info { 1029 u32 v_idx; /* msix_vector */ 1030 u16 ceq_idx; 1031 u16 aeq_idx; 1032 u8 itr_idx; 1033 u8 pad[3]; 1034}; 1035 1036VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info); 1037 1038struct virtchnl_iwarp_qvlist_info { 1039 u32 num_vectors; 1040 struct virtchnl_iwarp_qv_info qv_info[1]; 1041}; 1042 1043VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info); 1044 1045/* VF reset states - these are written into the RSTAT register: 1046 * VFGEN_RSTAT on the VF 1047 * When the PF initiates a reset, it writes 0 1048 * When the reset is complete, it writes 1 1049 * When the PF detects that the VF has recovered, it writes 2 1050 * VF checks this register periodically to determine if a reset has occurred, 1051 * then polls it to know when the reset is complete. 1052 * If either the PF or VF reads the register while the hardware 1053 * is in a reset state, it will return DEADBEEF, which, when masked 1054 * will result in 3. 1055 */ 1056enum virtchnl_vfr_states { 1057 VIRTCHNL_VFR_INPROGRESS = 0, 1058 VIRTCHNL_VFR_COMPLETED, 1059 VIRTCHNL_VFR_VFACTIVE, 1060}; 1061 1062/* Type of RSS algorithm */ 1063enum virtchnl_rss_algorithm { 1064 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 1065 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, 1066 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 1067 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 1068}; 1069 1070#define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1071#define PROTO_HDR_SHIFT 5 1072#define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT) 1073#define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1074 1075/* VF use these macros to configure each protocol header. 1076 * Specify which protocol headers and protocol header fields base on 1077 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1078 * @param hdr: a struct of virtchnl_proto_hdr 1079 * @param hdr_type: ETH/IPV4/TCP, etc 1080 * @param field: SRC/DST/TEID/SPI, etc 1081 */ 1082#define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1083 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1084#define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1085 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1086#define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1087 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1088#define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1089 1090#define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1091 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1092 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1093#define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1094 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1095 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1096 1097#define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1098 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1099#define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1100 (((hdr)->type) >> PROTO_HDR_SHIFT) 1101#define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1102 ((hdr)->type == ((val) >> PROTO_HDR_SHIFT)) 1103#define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1104 (VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \ 1105 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val))) 1106 1107/* Protocol header type within a packet segment. A segment consists of one or 1108 * more protocol headers that make up a logical group of protocol headers. Each 1109 * logical group of protocol headers encapsulates or is encapsulated using/by 1110 * tunneling or encapsulation protocols for network virtualization. 1111 */ 1112enum virtchnl_proto_hdr_type { 1113 VIRTCHNL_PROTO_HDR_NONE, 1114 VIRTCHNL_PROTO_HDR_ETH, 1115 VIRTCHNL_PROTO_HDR_S_VLAN, 1116 VIRTCHNL_PROTO_HDR_C_VLAN, 1117 VIRTCHNL_PROTO_HDR_IPV4, 1118 VIRTCHNL_PROTO_HDR_IPV6, 1119 VIRTCHNL_PROTO_HDR_TCP, 1120 VIRTCHNL_PROTO_HDR_UDP, 1121 VIRTCHNL_PROTO_HDR_SCTP, 1122 VIRTCHNL_PROTO_HDR_GTPU_IP, 1123 VIRTCHNL_PROTO_HDR_GTPU_EH, 1124 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1125 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1126 VIRTCHNL_PROTO_HDR_PPPOE, 1127 VIRTCHNL_PROTO_HDR_L2TPV3, 1128 VIRTCHNL_PROTO_HDR_ESP, 1129 VIRTCHNL_PROTO_HDR_AH, 1130 VIRTCHNL_PROTO_HDR_PFCP, 1131}; 1132 1133/* Protocol header field within a protocol header. */ 1134enum virtchnl_proto_hdr_field { 1135 /* ETHER */ 1136 VIRTCHNL_PROTO_HDR_ETH_SRC = 1137 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1138 VIRTCHNL_PROTO_HDR_ETH_DST, 1139 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1140 /* S-VLAN */ 1141 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1142 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1143 /* C-VLAN */ 1144 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1145 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1146 /* IPV4 */ 1147 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1148 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1149 VIRTCHNL_PROTO_HDR_IPV4_DST, 1150 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1151 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1152 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1153 /* IPV6 */ 1154 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1155 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1156 VIRTCHNL_PROTO_HDR_IPV6_DST, 1157 VIRTCHNL_PROTO_HDR_IPV6_TC, 1158 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1159 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1160 /* TCP */ 1161 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1162 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1163 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1164 /* UDP */ 1165 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1166 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1167 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1168 /* SCTP */ 1169 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1170 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1171 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1172 /* GTPU_IP */ 1173 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1174 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1175 /* GTPU_EH */ 1176 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1177 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1178 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1179 /* PPPOE */ 1180 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1181 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1182 /* L2TPV3 */ 1183 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1184 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1185 /* ESP */ 1186 VIRTCHNL_PROTO_HDR_ESP_SPI = 1187 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1188 /* AH */ 1189 VIRTCHNL_PROTO_HDR_AH_SPI = 1190 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1191 /* PFCP */ 1192 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1193 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1194 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1195}; 1196 1197struct virtchnl_proto_hdr { 1198 enum virtchnl_proto_hdr_type type; 1199 u32 field_selector; /* a bit mask to select field for header type */ 1200 u8 buffer[64]; 1201 /** 1202 * binary buffer in network order for specific header type. 1203 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1204 * header is expected to be copied into the buffer. 1205 */ 1206}; 1207 1208VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1209 1210struct virtchnl_proto_hdrs { 1211 u8 tunnel_level; 1212 u8 pad[3]; 1213 /** 1214 * specify where protocol header start from. 1215 * 0 - from the outer layer 1216 * 1 - from the first inner layer 1217 * 2 - from the second inner layer 1218 * .... 1219 **/ 1220 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ 1221 struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1222}; 1223 1224VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1225 1226struct virtchnl_rss_cfg { 1227 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1228 enum virtchnl_rss_algorithm rss_algorithm; /* RSS algorithm type */ 1229 u8 reserved[128]; /* reserve for future */ 1230}; 1231 1232VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1233 1234/* action configuration for FDIR */ 1235struct virtchnl_filter_action { 1236 enum virtchnl_action type; 1237 union { 1238 /* used for queue and qgroup action */ 1239 struct { 1240 u16 index; 1241 u8 region; 1242 } queue; 1243 /* used for count action */ 1244 struct { 1245 /* share counter ID with other flow rules */ 1246 u8 shared; 1247 u32 id; /* counter ID */ 1248 } count; 1249 /* used for mark action */ 1250 u32 mark_id; 1251 u8 reserve[32]; 1252 } act_conf; 1253}; 1254 1255VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1256 1257#define VIRTCHNL_MAX_NUM_ACTIONS 8 1258 1259struct virtchnl_filter_action_set { 1260 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1261 int count; 1262 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1263}; 1264 1265VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1266 1267/* pattern and action for FDIR rule */ 1268struct virtchnl_fdir_rule { 1269 struct virtchnl_proto_hdrs proto_hdrs; 1270 struct virtchnl_filter_action_set action_set; 1271}; 1272 1273VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1274 1275/* Status returned to VF after VF requests FDIR commands 1276 * VIRTCHNL_FDIR_SUCCESS 1277 * VF FDIR related request is successfully done by PF 1278 * The request can be OP_ADD/DEL. 1279 * 1280 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1281 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1282 * 1283 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1284 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1285 * 1286 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1287 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1288 * 1289 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1290 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1291 * 1292 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1293 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1294 * or HW doesn't support. 1295 * 1296 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1297 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1298 * for programming. 1299 */ 1300enum virtchnl_fdir_prgm_status { 1301 VIRTCHNL_FDIR_SUCCESS = 0, 1302 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1303 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1304 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1305 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1306 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1307 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1308}; 1309 1310/* VIRTCHNL_OP_ADD_FDIR_FILTER 1311 * VF sends this request to PF by filling out vsi_id, 1312 * validate_only and rule_cfg. PF will return flow_id 1313 * if the request is successfully done and return add_status to VF. 1314 */ 1315struct virtchnl_fdir_add { 1316 u16 vsi_id; /* INPUT */ 1317 /* 1318 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1319 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1320 */ 1321 u16 validate_only; /* INPUT */ 1322 u32 flow_id; /* OUTPUT */ 1323 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1324 enum virtchnl_fdir_prgm_status status; /* OUTPUT */ 1325}; 1326 1327VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1328 1329/* VIRTCHNL_OP_DEL_FDIR_FILTER 1330 * VF sends this request to PF by filling out vsi_id 1331 * and flow_id. PF will return del_status to VF. 1332 */ 1333struct virtchnl_fdir_del { 1334 u16 vsi_id; /* INPUT */ 1335 u16 pad; 1336 u32 flow_id; /* INPUT */ 1337 enum virtchnl_fdir_prgm_status status; /* OUTPUT */ 1338}; 1339 1340VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1341 1342/** 1343 * virtchnl_vc_validate_vf_msg 1344 * @ver: Virtchnl version info 1345 * @v_opcode: Opcode for the message 1346 * @msg: pointer to the msg buffer 1347 * @msglen: msg length 1348 * 1349 * validate msg format against struct for each opcode 1350 */ 1351static inline int 1352virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 1353 u8 *msg, u16 msglen) 1354{ 1355 bool err_msg_format = false; 1356 int valid_len = 0; 1357 1358 /* Validate message length. */ 1359 switch (v_opcode) { 1360 case VIRTCHNL_OP_VERSION: 1361 valid_len = sizeof(struct virtchnl_version_info); 1362 break; 1363 case VIRTCHNL_OP_RESET_VF: 1364 break; 1365 case VIRTCHNL_OP_GET_VF_RESOURCES: 1366 if (VF_IS_V11(ver)) 1367 valid_len = sizeof(u32); 1368 break; 1369 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 1370 valid_len = sizeof(struct virtchnl_txq_info); 1371 break; 1372 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 1373 valid_len = sizeof(struct virtchnl_rxq_info); 1374 break; 1375 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 1376 valid_len = sizeof(struct virtchnl_vsi_queue_config_info); 1377 if (msglen >= valid_len) { 1378 struct virtchnl_vsi_queue_config_info *vqc = 1379 (struct virtchnl_vsi_queue_config_info *)msg; 1380 valid_len += (vqc->num_queue_pairs * 1381 sizeof(struct 1382 virtchnl_queue_pair_info)); 1383 if (vqc->num_queue_pairs == 0) 1384 err_msg_format = true; 1385 } 1386 break; 1387 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 1388 valid_len = sizeof(struct virtchnl_irq_map_info); 1389 if (msglen >= valid_len) { 1390 struct virtchnl_irq_map_info *vimi = 1391 (struct virtchnl_irq_map_info *)msg; 1392 valid_len += (vimi->num_vectors * 1393 sizeof(struct virtchnl_vector_map)); 1394 if (vimi->num_vectors == 0) 1395 err_msg_format = true; 1396 } 1397 break; 1398 case VIRTCHNL_OP_ENABLE_QUEUES: 1399 case VIRTCHNL_OP_DISABLE_QUEUES: 1400 valid_len = sizeof(struct virtchnl_queue_select); 1401 break; 1402 case VIRTCHNL_OP_ADD_ETH_ADDR: 1403 case VIRTCHNL_OP_DEL_ETH_ADDR: 1404 valid_len = sizeof(struct virtchnl_ether_addr_list); 1405 if (msglen >= valid_len) { 1406 struct virtchnl_ether_addr_list *veal = 1407 (struct virtchnl_ether_addr_list *)msg; 1408 valid_len += veal->num_elements * 1409 sizeof(struct virtchnl_ether_addr); 1410 if (veal->num_elements == 0) 1411 err_msg_format = true; 1412 } 1413 break; 1414 case VIRTCHNL_OP_ADD_VLAN: 1415 case VIRTCHNL_OP_DEL_VLAN: 1416 valid_len = sizeof(struct virtchnl_vlan_filter_list); 1417 if (msglen >= valid_len) { 1418 struct virtchnl_vlan_filter_list *vfl = 1419 (struct virtchnl_vlan_filter_list *)msg; 1420 valid_len += vfl->num_elements * sizeof(u16); 1421 if (vfl->num_elements == 0) 1422 err_msg_format = true; 1423 } 1424 break; 1425 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 1426 valid_len = sizeof(struct virtchnl_promisc_info); 1427 break; 1428 case VIRTCHNL_OP_GET_STATS: 1429 valid_len = sizeof(struct virtchnl_queue_select); 1430 break; 1431 case VIRTCHNL_OP_IWARP: 1432 /* These messages are opaque to us and will be validated in 1433 * the RDMA client code. We just need to check for nonzero 1434 * length. The firmware will enforce max length restrictions. 1435 */ 1436 if (msglen) 1437 valid_len = msglen; 1438 else 1439 err_msg_format = true; 1440 break; 1441 case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP: 1442 break; 1443 case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP: 1444 valid_len = sizeof(struct virtchnl_iwarp_qvlist_info); 1445 if (msglen >= valid_len) { 1446 struct virtchnl_iwarp_qvlist_info *qv = 1447 (struct virtchnl_iwarp_qvlist_info *)msg; 1448 if (qv->num_vectors == 0) { 1449 err_msg_format = true; 1450 break; 1451 } 1452 valid_len += ((qv->num_vectors - 1) * 1453 sizeof(struct virtchnl_iwarp_qv_info)); 1454 } 1455 break; 1456 case VIRTCHNL_OP_CONFIG_RSS_KEY: 1457 valid_len = sizeof(struct virtchnl_rss_key); 1458 if (msglen >= valid_len) { 1459 struct virtchnl_rss_key *vrk = 1460 (struct virtchnl_rss_key *)msg; 1461 valid_len += vrk->key_len - 1; 1462 } 1463 break; 1464 case VIRTCHNL_OP_CONFIG_RSS_LUT: 1465 valid_len = sizeof(struct virtchnl_rss_lut); 1466 if (msglen >= valid_len) { 1467 struct virtchnl_rss_lut *vrl = 1468 (struct virtchnl_rss_lut *)msg; 1469 valid_len += vrl->lut_entries - 1; 1470 } 1471 break; 1472 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 1473 break; 1474 case VIRTCHNL_OP_SET_RSS_HENA: 1475 valid_len = sizeof(struct virtchnl_rss_hena); 1476 break; 1477 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 1478 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 1479 break; 1480 case VIRTCHNL_OP_REQUEST_QUEUES: 1481 valid_len = sizeof(struct virtchnl_vf_res_request); 1482 break; 1483 case VIRTCHNL_OP_ENABLE_CHANNELS: 1484 valid_len = sizeof(struct virtchnl_tc_info); 1485 if (msglen >= valid_len) { 1486 struct virtchnl_tc_info *vti = 1487 (struct virtchnl_tc_info *)msg; 1488 valid_len += (vti->num_tc - 1) * 1489 sizeof(struct virtchnl_channel_info); 1490 if (vti->num_tc == 0) 1491 err_msg_format = true; 1492 } 1493 break; 1494 case VIRTCHNL_OP_DISABLE_CHANNELS: 1495 break; 1496 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 1497 valid_len = sizeof(struct virtchnl_filter); 1498 break; 1499 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 1500 valid_len = sizeof(struct virtchnl_filter); 1501 break; 1502 case VIRTCHNL_OP_ADD_RSS_CFG: 1503 case VIRTCHNL_OP_DEL_RSS_CFG: 1504 valid_len = sizeof(struct virtchnl_rss_cfg); 1505 break; 1506 case VIRTCHNL_OP_ADD_FDIR_FILTER: 1507 valid_len = sizeof(struct virtchnl_fdir_add); 1508 break; 1509 case VIRTCHNL_OP_DEL_FDIR_FILTER: 1510 valid_len = sizeof(struct virtchnl_fdir_del); 1511 break; 1512 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 1513 break; 1514 case VIRTCHNL_OP_ADD_VLAN_V2: 1515 case VIRTCHNL_OP_DEL_VLAN_V2: 1516 valid_len = sizeof(struct virtchnl_vlan_filter_list_v2); 1517 if (msglen >= valid_len) { 1518 struct virtchnl_vlan_filter_list_v2 *vfl = 1519 (struct virtchnl_vlan_filter_list_v2 *)msg; 1520 1521 valid_len += (vfl->num_elements - 1) * 1522 sizeof(struct virtchnl_vlan_filter); 1523 1524 if (vfl->num_elements == 0) { 1525 err_msg_format = true; 1526 break; 1527 } 1528 } 1529 break; 1530 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 1531 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 1532 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 1533 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 1534 valid_len = sizeof(struct virtchnl_vlan_setting); 1535 break; 1536 /* These are always errors coming from the VF. */ 1537 case VIRTCHNL_OP_EVENT: 1538 case VIRTCHNL_OP_UNKNOWN: 1539 default: 1540 return VIRTCHNL_STATUS_ERR_PARAM; 1541 } 1542 /* few more checks */ 1543 if (err_msg_format || valid_len != msglen) 1544 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 1545 1546 return 0; 1547} 1548#endif /* _VIRTCHNL_H_ */