blkdev.h (46470B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5#ifndef _LINUX_BLKDEV_H 6#define _LINUX_BLKDEV_H 7 8#include <linux/types.h> 9#include <linux/blk_types.h> 10#include <linux/device.h> 11#include <linux/list.h> 12#include <linux/llist.h> 13#include <linux/minmax.h> 14#include <linux/timer.h> 15#include <linux/workqueue.h> 16#include <linux/wait.h> 17#include <linux/bio.h> 18#include <linux/gfp.h> 19#include <linux/kdev_t.h> 20#include <linux/rcupdate.h> 21#include <linux/percpu-refcount.h> 22#include <linux/blkzoned.h> 23#include <linux/sched.h> 24#include <linux/sbitmap.h> 25#include <linux/srcu.h> 26#include <linux/uuid.h> 27#include <linux/xarray.h> 28 29struct module; 30struct request_queue; 31struct elevator_queue; 32struct blk_trace; 33struct request; 34struct sg_io_hdr; 35struct blkcg_gq; 36struct blk_flush_queue; 37struct kiocb; 38struct pr_ops; 39struct rq_qos; 40struct blk_queue_stats; 41struct blk_stat_callback; 42struct blk_crypto_profile; 43 44extern const struct device_type disk_type; 45extern struct device_type part_type; 46extern struct class block_class; 47 48/* Must be consistent with blk_mq_poll_stats_bkt() */ 49#define BLK_MQ_POLL_STATS_BKTS 16 50 51/* Doing classic polling */ 52#define BLK_MQ_POLL_CLASSIC -1 53 54/* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58#define BLKCG_MAX_POLS 6 59 60#define DISK_MAX_PARTS 256 61#define DISK_NAME_LEN 32 62 63#define PARTITION_META_INFO_VOLNAMELTH 64 64/* 65 * Enough for the string representation of any kind of UUID plus NULL. 66 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 67 */ 68#define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 69 70struct partition_meta_info { 71 char uuid[PARTITION_META_INFO_UUIDLTH]; 72 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 73}; 74 75/** 76 * DOC: genhd capability flags 77 * 78 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 79 * removable media. When set, the device remains present even when media is not 80 * inserted. Shall not be set for devices which are removed entirely when the 81 * media is removed. 82 * 83 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 84 * doesn't appear in sysfs, and can't be opened from userspace or using 85 * blkdev_get*. Used for the underlying components of multipath devices. 86 * 87 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 88 * scan for partitions from add_disk, and users can't add partitions manually. 89 * 90 */ 91enum { 92 GENHD_FL_REMOVABLE = 1 << 0, 93 GENHD_FL_HIDDEN = 1 << 1, 94 GENHD_FL_NO_PART = 1 << 2, 95}; 96 97enum { 98 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 99 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 100}; 101 102enum { 103 /* Poll even if events_poll_msecs is unset */ 104 DISK_EVENT_FLAG_POLL = 1 << 0, 105 /* Forward events to udev */ 106 DISK_EVENT_FLAG_UEVENT = 1 << 1, 107 /* Block event polling when open for exclusive write */ 108 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 109}; 110 111struct disk_events; 112struct badblocks; 113 114struct blk_integrity { 115 const struct blk_integrity_profile *profile; 116 unsigned char flags; 117 unsigned char tuple_size; 118 unsigned char interval_exp; 119 unsigned char tag_size; 120}; 121 122struct gendisk { 123 /* 124 * major/first_minor/minors should not be set by any new driver, the 125 * block core will take care of allocating them automatically. 126 */ 127 int major; 128 int first_minor; 129 int minors; 130 131 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 132 133 unsigned short events; /* supported events */ 134 unsigned short event_flags; /* flags related to event processing */ 135 136 struct xarray part_tbl; 137 struct block_device *part0; 138 139 const struct block_device_operations *fops; 140 struct request_queue *queue; 141 void *private_data; 142 143 int flags; 144 unsigned long state; 145#define GD_NEED_PART_SCAN 0 146#define GD_READ_ONLY 1 147#define GD_DEAD 2 148#define GD_NATIVE_CAPACITY 3 149#define GD_ADDED 4 150#define GD_SUPPRESS_PART_SCAN 5 151 152 struct mutex open_mutex; /* open/close mutex */ 153 unsigned open_partitions; /* number of open partitions */ 154 155 struct backing_dev_info *bdi; 156 struct kobject *slave_dir; 157#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 158 struct list_head slave_bdevs; 159#endif 160 struct timer_rand_state *random; 161 atomic_t sync_io; /* RAID */ 162 struct disk_events *ev; 163#ifdef CONFIG_BLK_DEV_INTEGRITY 164 struct kobject integrity_kobj; 165#endif /* CONFIG_BLK_DEV_INTEGRITY */ 166#if IS_ENABLED(CONFIG_CDROM) 167 struct cdrom_device_info *cdi; 168#endif 169 int node_id; 170 struct badblocks *bb; 171 struct lockdep_map lockdep_map; 172 u64 diskseq; 173}; 174 175static inline bool disk_live(struct gendisk *disk) 176{ 177 return !inode_unhashed(disk->part0->bd_inode); 178} 179 180/** 181 * disk_openers - returns how many openers are there for a disk 182 * @disk: disk to check 183 * 184 * This returns the number of openers for a disk. Note that this value is only 185 * stable if disk->open_mutex is held. 186 * 187 * Note: Due to a quirk in the block layer open code, each open partition is 188 * only counted once even if there are multiple openers. 189 */ 190static inline unsigned int disk_openers(struct gendisk *disk) 191{ 192 return atomic_read(&disk->part0->bd_openers); 193} 194 195/* 196 * The gendisk is refcounted by the part0 block_device, and the bd_device 197 * therein is also used for device model presentation in sysfs. 198 */ 199#define dev_to_disk(device) \ 200 (dev_to_bdev(device)->bd_disk) 201#define disk_to_dev(disk) \ 202 (&((disk)->part0->bd_device)) 203 204#if IS_REACHABLE(CONFIG_CDROM) 205#define disk_to_cdi(disk) ((disk)->cdi) 206#else 207#define disk_to_cdi(disk) NULL 208#endif 209 210static inline dev_t disk_devt(struct gendisk *disk) 211{ 212 return MKDEV(disk->major, disk->first_minor); 213} 214 215static inline int blk_validate_block_size(unsigned long bsize) 216{ 217 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 218 return -EINVAL; 219 220 return 0; 221} 222 223static inline bool blk_op_is_passthrough(unsigned int op) 224{ 225 op &= REQ_OP_MASK; 226 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 227} 228 229/* 230 * Zoned block device models (zoned limit). 231 * 232 * Note: This needs to be ordered from the least to the most severe 233 * restrictions for the inheritance in blk_stack_limits() to work. 234 */ 235enum blk_zoned_model { 236 BLK_ZONED_NONE = 0, /* Regular block device */ 237 BLK_ZONED_HA, /* Host-aware zoned block device */ 238 BLK_ZONED_HM, /* Host-managed zoned block device */ 239}; 240 241/* 242 * BLK_BOUNCE_NONE: never bounce (default) 243 * BLK_BOUNCE_HIGH: bounce all highmem pages 244 */ 245enum blk_bounce { 246 BLK_BOUNCE_NONE, 247 BLK_BOUNCE_HIGH, 248}; 249 250struct queue_limits { 251 enum blk_bounce bounce; 252 unsigned long seg_boundary_mask; 253 unsigned long virt_boundary_mask; 254 255 unsigned int max_hw_sectors; 256 unsigned int max_dev_sectors; 257 unsigned int chunk_sectors; 258 unsigned int max_sectors; 259 unsigned int max_segment_size; 260 unsigned int physical_block_size; 261 unsigned int logical_block_size; 262 unsigned int alignment_offset; 263 unsigned int io_min; 264 unsigned int io_opt; 265 unsigned int max_discard_sectors; 266 unsigned int max_hw_discard_sectors; 267 unsigned int max_secure_erase_sectors; 268 unsigned int max_write_zeroes_sectors; 269 unsigned int max_zone_append_sectors; 270 unsigned int discard_granularity; 271 unsigned int discard_alignment; 272 unsigned int zone_write_granularity; 273 274 unsigned short max_segments; 275 unsigned short max_integrity_segments; 276 unsigned short max_discard_segments; 277 278 unsigned char misaligned; 279 unsigned char discard_misaligned; 280 unsigned char raid_partial_stripes_expensive; 281 enum blk_zoned_model zoned; 282}; 283 284typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 285 void *data); 286 287void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 288 289#ifdef CONFIG_BLK_DEV_ZONED 290 291#define BLK_ALL_ZONES ((unsigned int)-1) 292int blkdev_report_zones(struct block_device *bdev, sector_t sector, 293 unsigned int nr_zones, report_zones_cb cb, void *data); 294unsigned int blkdev_nr_zones(struct gendisk *disk); 295extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 296 sector_t sectors, sector_t nr_sectors, 297 gfp_t gfp_mask); 298int blk_revalidate_disk_zones(struct gendisk *disk, 299 void (*update_driver_data)(struct gendisk *disk)); 300 301extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 302 unsigned int cmd, unsigned long arg); 303extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 304 unsigned int cmd, unsigned long arg); 305 306#else /* CONFIG_BLK_DEV_ZONED */ 307 308static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 309{ 310 return 0; 311} 312 313static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 314 fmode_t mode, unsigned int cmd, 315 unsigned long arg) 316{ 317 return -ENOTTY; 318} 319 320static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 321 fmode_t mode, unsigned int cmd, 322 unsigned long arg) 323{ 324 return -ENOTTY; 325} 326 327#endif /* CONFIG_BLK_DEV_ZONED */ 328 329/* 330 * Independent access ranges: struct blk_independent_access_range describes 331 * a range of contiguous sectors that can be accessed using device command 332 * execution resources that are independent from the resources used for 333 * other access ranges. This is typically found with single-LUN multi-actuator 334 * HDDs where each access range is served by a different set of heads. 335 * The set of independent ranges supported by the device is defined using 336 * struct blk_independent_access_ranges. The independent ranges must not overlap 337 * and must include all sectors within the disk capacity (no sector holes 338 * allowed). 339 * For a device with multiple ranges, requests targeting sectors in different 340 * ranges can be executed in parallel. A request can straddle an access range 341 * boundary. 342 */ 343struct blk_independent_access_range { 344 struct kobject kobj; 345 sector_t sector; 346 sector_t nr_sectors; 347}; 348 349struct blk_independent_access_ranges { 350 struct kobject kobj; 351 bool sysfs_registered; 352 unsigned int nr_ia_ranges; 353 struct blk_independent_access_range ia_range[]; 354}; 355 356struct request_queue { 357 struct request *last_merge; 358 struct elevator_queue *elevator; 359 360 struct percpu_ref q_usage_counter; 361 362 struct blk_queue_stats *stats; 363 struct rq_qos *rq_qos; 364 365 const struct blk_mq_ops *mq_ops; 366 367 /* sw queues */ 368 struct blk_mq_ctx __percpu *queue_ctx; 369 370 unsigned int queue_depth; 371 372 /* hw dispatch queues */ 373 struct xarray hctx_table; 374 unsigned int nr_hw_queues; 375 376 /* 377 * The queue owner gets to use this for whatever they like. 378 * ll_rw_blk doesn't touch it. 379 */ 380 void *queuedata; 381 382 /* 383 * various queue flags, see QUEUE_* below 384 */ 385 unsigned long queue_flags; 386 /* 387 * Number of contexts that have called blk_set_pm_only(). If this 388 * counter is above zero then only RQF_PM requests are processed. 389 */ 390 atomic_t pm_only; 391 392 /* 393 * ida allocated id for this queue. Used to index queues from 394 * ioctx. 395 */ 396 int id; 397 398 spinlock_t queue_lock; 399 400 struct gendisk *disk; 401 402 /* 403 * queue kobject 404 */ 405 struct kobject kobj; 406 407 /* 408 * mq queue kobject 409 */ 410 struct kobject *mq_kobj; 411 412#ifdef CONFIG_BLK_DEV_INTEGRITY 413 struct blk_integrity integrity; 414#endif /* CONFIG_BLK_DEV_INTEGRITY */ 415 416#ifdef CONFIG_PM 417 struct device *dev; 418 enum rpm_status rpm_status; 419#endif 420 421 /* 422 * queue settings 423 */ 424 unsigned long nr_requests; /* Max # of requests */ 425 426 unsigned int dma_pad_mask; 427 unsigned int dma_alignment; 428 429#ifdef CONFIG_BLK_INLINE_ENCRYPTION 430 struct blk_crypto_profile *crypto_profile; 431 struct kobject *crypto_kobject; 432#endif 433 434 unsigned int rq_timeout; 435 int poll_nsec; 436 437 struct blk_stat_callback *poll_cb; 438 struct blk_rq_stat *poll_stat; 439 440 struct timer_list timeout; 441 struct work_struct timeout_work; 442 443 atomic_t nr_active_requests_shared_tags; 444 445 struct blk_mq_tags *sched_shared_tags; 446 447 struct list_head icq_list; 448#ifdef CONFIG_BLK_CGROUP 449 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 450 struct blkcg_gq *root_blkg; 451 struct list_head blkg_list; 452#endif 453 454 struct queue_limits limits; 455 456 unsigned int required_elevator_features; 457 458#ifdef CONFIG_BLK_DEV_ZONED 459 /* 460 * Zoned block device information for request dispatch control. 461 * nr_zones is the total number of zones of the device. This is always 462 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 463 * bits which indicates if a zone is conventional (bit set) or 464 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 465 * bits which indicates if a zone is write locked, that is, if a write 466 * request targeting the zone was dispatched. All three fields are 467 * initialized by the low level device driver (e.g. scsi/sd.c). 468 * Stacking drivers (device mappers) may or may not initialize 469 * these fields. 470 * 471 * Reads of this information must be protected with blk_queue_enter() / 472 * blk_queue_exit(). Modifying this information is only allowed while 473 * no requests are being processed. See also blk_mq_freeze_queue() and 474 * blk_mq_unfreeze_queue(). 475 */ 476 unsigned int nr_zones; 477 unsigned long *conv_zones_bitmap; 478 unsigned long *seq_zones_wlock; 479 unsigned int max_open_zones; 480 unsigned int max_active_zones; 481#endif /* CONFIG_BLK_DEV_ZONED */ 482 483 int node; 484#ifdef CONFIG_BLK_DEV_IO_TRACE 485 struct blk_trace __rcu *blk_trace; 486#endif 487 /* 488 * for flush operations 489 */ 490 struct blk_flush_queue *fq; 491 492 struct list_head requeue_list; 493 spinlock_t requeue_lock; 494 struct delayed_work requeue_work; 495 496 struct mutex sysfs_lock; 497 struct mutex sysfs_dir_lock; 498 499 /* 500 * for reusing dead hctx instance in case of updating 501 * nr_hw_queues 502 */ 503 struct list_head unused_hctx_list; 504 spinlock_t unused_hctx_lock; 505 506 int mq_freeze_depth; 507 508#ifdef CONFIG_BLK_DEV_THROTTLING 509 /* Throttle data */ 510 struct throtl_data *td; 511#endif 512 struct rcu_head rcu_head; 513 wait_queue_head_t mq_freeze_wq; 514 /* 515 * Protect concurrent access to q_usage_counter by 516 * percpu_ref_kill() and percpu_ref_reinit(). 517 */ 518 struct mutex mq_freeze_lock; 519 520 int quiesce_depth; 521 522 struct blk_mq_tag_set *tag_set; 523 struct list_head tag_set_list; 524 struct bio_set bio_split; 525 526 struct dentry *debugfs_dir; 527 struct dentry *sched_debugfs_dir; 528 struct dentry *rqos_debugfs_dir; 529 /* 530 * Serializes all debugfs metadata operations using the above dentries. 531 */ 532 struct mutex debugfs_mutex; 533 534 bool mq_sysfs_init_done; 535 536 /* 537 * Independent sector access ranges. This is always NULL for 538 * devices that do not have multiple independent access ranges. 539 */ 540 struct blk_independent_access_ranges *ia_ranges; 541 542 /** 543 * @srcu: Sleepable RCU. Use as lock when type of the request queue 544 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member 545 */ 546 struct srcu_struct srcu[]; 547}; 548 549/* Keep blk_queue_flag_name[] in sync with the definitions below */ 550#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 551#define QUEUE_FLAG_DYING 1 /* queue being torn down */ 552#define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */ 553#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 554#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 555#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 556#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 557#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 558#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 559#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 560#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 561#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 562#define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 563#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 564#define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 565#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 566#define QUEUE_FLAG_WC 17 /* Write back caching */ 567#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 568#define QUEUE_FLAG_DAX 19 /* device supports DAX */ 569#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 570#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 571#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 572#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 573#define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 574#define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 575#define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 576#define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 577#define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 578 579#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 580 (1 << QUEUE_FLAG_SAME_COMP) | \ 581 (1 << QUEUE_FLAG_NOWAIT)) 582 583void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 584void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 585bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 586 587#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 588#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 589#define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags) 590#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 591#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 592#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 593#define blk_queue_noxmerges(q) \ 594 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 595#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 596#define blk_queue_stable_writes(q) \ 597 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 598#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 599#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 600#define blk_queue_zone_resetall(q) \ 601 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 602#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 603#define blk_queue_pci_p2pdma(q) \ 604 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 605#ifdef CONFIG_BLK_RQ_ALLOC_TIME 606#define blk_queue_rq_alloc_time(q) \ 607 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 608#else 609#define blk_queue_rq_alloc_time(q) false 610#endif 611 612#define blk_noretry_request(rq) \ 613 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 614 REQ_FAILFAST_DRIVER)) 615#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 616#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 617#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 618#define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 619#define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 620 621extern void blk_set_pm_only(struct request_queue *q); 622extern void blk_clear_pm_only(struct request_queue *q); 623 624#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 625 626#define dma_map_bvec(dev, bv, dir, attrs) \ 627 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 628 (dir), (attrs)) 629 630static inline bool queue_is_mq(struct request_queue *q) 631{ 632 return q->mq_ops; 633} 634 635#ifdef CONFIG_PM 636static inline enum rpm_status queue_rpm_status(struct request_queue *q) 637{ 638 return q->rpm_status; 639} 640#else 641static inline enum rpm_status queue_rpm_status(struct request_queue *q) 642{ 643 return RPM_ACTIVE; 644} 645#endif 646 647static inline enum blk_zoned_model 648blk_queue_zoned_model(struct request_queue *q) 649{ 650 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 651 return q->limits.zoned; 652 return BLK_ZONED_NONE; 653} 654 655static inline bool blk_queue_is_zoned(struct request_queue *q) 656{ 657 switch (blk_queue_zoned_model(q)) { 658 case BLK_ZONED_HA: 659 case BLK_ZONED_HM: 660 return true; 661 default: 662 return false; 663 } 664} 665 666static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 667{ 668 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 669} 670 671#ifdef CONFIG_BLK_DEV_ZONED 672static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 673{ 674 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 675} 676 677static inline unsigned int blk_queue_zone_no(struct request_queue *q, 678 sector_t sector) 679{ 680 if (!blk_queue_is_zoned(q)) 681 return 0; 682 return sector >> ilog2(q->limits.chunk_sectors); 683} 684 685static inline bool blk_queue_zone_is_seq(struct request_queue *q, 686 sector_t sector) 687{ 688 if (!blk_queue_is_zoned(q)) 689 return false; 690 if (!q->conv_zones_bitmap) 691 return true; 692 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 693} 694 695static inline void blk_queue_max_open_zones(struct request_queue *q, 696 unsigned int max_open_zones) 697{ 698 q->max_open_zones = max_open_zones; 699} 700 701static inline unsigned int queue_max_open_zones(const struct request_queue *q) 702{ 703 return q->max_open_zones; 704} 705 706static inline void blk_queue_max_active_zones(struct request_queue *q, 707 unsigned int max_active_zones) 708{ 709 q->max_active_zones = max_active_zones; 710} 711 712static inline unsigned int queue_max_active_zones(const struct request_queue *q) 713{ 714 return q->max_active_zones; 715} 716#else /* CONFIG_BLK_DEV_ZONED */ 717static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 718{ 719 return 0; 720} 721static inline bool blk_queue_zone_is_seq(struct request_queue *q, 722 sector_t sector) 723{ 724 return false; 725} 726static inline unsigned int blk_queue_zone_no(struct request_queue *q, 727 sector_t sector) 728{ 729 return 0; 730} 731static inline unsigned int queue_max_open_zones(const struct request_queue *q) 732{ 733 return 0; 734} 735static inline unsigned int queue_max_active_zones(const struct request_queue *q) 736{ 737 return 0; 738} 739#endif /* CONFIG_BLK_DEV_ZONED */ 740 741static inline unsigned int blk_queue_depth(struct request_queue *q) 742{ 743 if (q->queue_depth) 744 return q->queue_depth; 745 746 return q->nr_requests; 747} 748 749/* 750 * default timeout for SG_IO if none specified 751 */ 752#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 753#define BLK_MIN_SG_TIMEOUT (7 * HZ) 754 755/* This should not be used directly - use rq_for_each_segment */ 756#define for_each_bio(_bio) \ 757 for (; _bio; _bio = _bio->bi_next) 758 759int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 760 const struct attribute_group **groups); 761static inline int __must_check add_disk(struct gendisk *disk) 762{ 763 return device_add_disk(NULL, disk, NULL); 764} 765void del_gendisk(struct gendisk *gp); 766void invalidate_disk(struct gendisk *disk); 767void set_disk_ro(struct gendisk *disk, bool read_only); 768void disk_uevent(struct gendisk *disk, enum kobject_action action); 769 770static inline int get_disk_ro(struct gendisk *disk) 771{ 772 return disk->part0->bd_read_only || 773 test_bit(GD_READ_ONLY, &disk->state); 774} 775 776static inline int bdev_read_only(struct block_device *bdev) 777{ 778 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 779} 780 781bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 782bool disk_force_media_change(struct gendisk *disk, unsigned int events); 783 784void add_disk_randomness(struct gendisk *disk) __latent_entropy; 785void rand_initialize_disk(struct gendisk *disk); 786 787static inline sector_t get_start_sect(struct block_device *bdev) 788{ 789 return bdev->bd_start_sect; 790} 791 792static inline sector_t bdev_nr_sectors(struct block_device *bdev) 793{ 794 return bdev->bd_nr_sectors; 795} 796 797static inline loff_t bdev_nr_bytes(struct block_device *bdev) 798{ 799 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 800} 801 802static inline sector_t get_capacity(struct gendisk *disk) 803{ 804 return bdev_nr_sectors(disk->part0); 805} 806 807static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 808{ 809 return bdev_nr_sectors(sb->s_bdev) >> 810 (sb->s_blocksize_bits - SECTOR_SHIFT); 811} 812 813int bdev_disk_changed(struct gendisk *disk, bool invalidate); 814 815struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 816 struct lock_class_key *lkclass); 817void put_disk(struct gendisk *disk); 818struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 819 820/** 821 * blk_alloc_disk - allocate a gendisk structure 822 * @node_id: numa node to allocate on 823 * 824 * Allocate and pre-initialize a gendisk structure for use with BIO based 825 * drivers. 826 * 827 * Context: can sleep 828 */ 829#define blk_alloc_disk(node_id) \ 830({ \ 831 static struct lock_class_key __key; \ 832 \ 833 __blk_alloc_disk(node_id, &__key); \ 834}) 835void blk_cleanup_disk(struct gendisk *disk); 836 837int __register_blkdev(unsigned int major, const char *name, 838 void (*probe)(dev_t devt)); 839#define register_blkdev(major, name) \ 840 __register_blkdev(major, name, NULL) 841void unregister_blkdev(unsigned int major, const char *name); 842 843bool bdev_check_media_change(struct block_device *bdev); 844int __invalidate_device(struct block_device *bdev, bool kill_dirty); 845void set_capacity(struct gendisk *disk, sector_t size); 846 847#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 848int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 849void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 850int bd_register_pending_holders(struct gendisk *disk); 851#else 852static inline int bd_link_disk_holder(struct block_device *bdev, 853 struct gendisk *disk) 854{ 855 return 0; 856} 857static inline void bd_unlink_disk_holder(struct block_device *bdev, 858 struct gendisk *disk) 859{ 860} 861static inline int bd_register_pending_holders(struct gendisk *disk) 862{ 863 return 0; 864} 865#endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 866 867dev_t part_devt(struct gendisk *disk, u8 partno); 868void inc_diskseq(struct gendisk *disk); 869dev_t blk_lookup_devt(const char *name, int partno); 870void blk_request_module(dev_t devt); 871 872extern int blk_register_queue(struct gendisk *disk); 873extern void blk_unregister_queue(struct gendisk *disk); 874void submit_bio_noacct(struct bio *bio); 875 876extern int blk_lld_busy(struct request_queue *q); 877extern void blk_queue_split(struct bio **); 878extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 879extern void blk_queue_exit(struct request_queue *q); 880extern void blk_sync_queue(struct request_queue *q); 881 882/* Helper to convert REQ_OP_XXX to its string format XXX */ 883extern const char *blk_op_str(unsigned int op); 884 885int blk_status_to_errno(blk_status_t status); 886blk_status_t errno_to_blk_status(int errno); 887 888/* only poll the hardware once, don't continue until a completion was found */ 889#define BLK_POLL_ONESHOT (1 << 0) 890/* do not sleep to wait for the expected completion time */ 891#define BLK_POLL_NOSLEEP (1 << 1) 892int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 893int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 894 unsigned int flags); 895 896static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 897{ 898 return bdev->bd_queue; /* this is never NULL */ 899} 900 901#ifdef CONFIG_BLK_DEV_ZONED 902 903/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 904const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 905 906static inline unsigned int bio_zone_no(struct bio *bio) 907{ 908 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 909 bio->bi_iter.bi_sector); 910} 911 912static inline unsigned int bio_zone_is_seq(struct bio *bio) 913{ 914 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 915 bio->bi_iter.bi_sector); 916} 917#endif /* CONFIG_BLK_DEV_ZONED */ 918 919static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 920 int op) 921{ 922 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 923 return min(q->limits.max_discard_sectors, 924 UINT_MAX >> SECTOR_SHIFT); 925 926 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 927 return q->limits.max_write_zeroes_sectors; 928 929 return q->limits.max_sectors; 930} 931 932/* 933 * Return maximum size of a request at given offset. Only valid for 934 * file system requests. 935 */ 936static inline unsigned int blk_max_size_offset(struct request_queue *q, 937 sector_t offset, 938 unsigned int chunk_sectors) 939{ 940 if (!chunk_sectors) { 941 if (q->limits.chunk_sectors) 942 chunk_sectors = q->limits.chunk_sectors; 943 else 944 return q->limits.max_sectors; 945 } 946 947 if (likely(is_power_of_2(chunk_sectors))) 948 chunk_sectors -= offset & (chunk_sectors - 1); 949 else 950 chunk_sectors -= sector_div(offset, chunk_sectors); 951 952 return min(q->limits.max_sectors, chunk_sectors); 953} 954 955/* 956 * Access functions for manipulating queue properties 957 */ 958extern void blk_cleanup_queue(struct request_queue *); 959void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 960extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 961extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 962extern void blk_queue_max_segments(struct request_queue *, unsigned short); 963extern void blk_queue_max_discard_segments(struct request_queue *, 964 unsigned short); 965void blk_queue_max_secure_erase_sectors(struct request_queue *q, 966 unsigned int max_sectors); 967extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 968extern void blk_queue_max_discard_sectors(struct request_queue *q, 969 unsigned int max_discard_sectors); 970extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 971 unsigned int max_write_same_sectors); 972extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 973extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 974 unsigned int max_zone_append_sectors); 975extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 976void blk_queue_zone_write_granularity(struct request_queue *q, 977 unsigned int size); 978extern void blk_queue_alignment_offset(struct request_queue *q, 979 unsigned int alignment); 980void disk_update_readahead(struct gendisk *disk); 981extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 982extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 983extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 984extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 985extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 986extern void blk_set_default_limits(struct queue_limits *lim); 987extern void blk_set_stacking_limits(struct queue_limits *lim); 988extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 989 sector_t offset); 990extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 991 sector_t offset); 992extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 993extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 994extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 995extern void blk_queue_dma_alignment(struct request_queue *, int); 996extern void blk_queue_update_dma_alignment(struct request_queue *, int); 997extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 998extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 999 1000struct blk_independent_access_ranges * 1001disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 1002void disk_set_independent_access_ranges(struct gendisk *disk, 1003 struct blk_independent_access_ranges *iars); 1004 1005/* 1006 * Elevator features for blk_queue_required_elevator_features: 1007 */ 1008/* Supports zoned block devices sequential write constraint */ 1009#define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 1010 1011extern void blk_queue_required_elevator_features(struct request_queue *q, 1012 unsigned int features); 1013extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1014 struct device *dev); 1015 1016bool __must_check blk_get_queue(struct request_queue *); 1017extern void blk_put_queue(struct request_queue *); 1018 1019void blk_mark_disk_dead(struct gendisk *disk); 1020 1021#ifdef CONFIG_BLOCK 1022/* 1023 * blk_plug permits building a queue of related requests by holding the I/O 1024 * fragments for a short period. This allows merging of sequential requests 1025 * into single larger request. As the requests are moved from a per-task list to 1026 * the device's request_queue in a batch, this results in improved scalability 1027 * as the lock contention for request_queue lock is reduced. 1028 * 1029 * It is ok not to disable preemption when adding the request to the plug list 1030 * or when attempting a merge. For details, please see schedule() where 1031 * blk_flush_plug() is called. 1032 */ 1033struct blk_plug { 1034 struct request *mq_list; /* blk-mq requests */ 1035 1036 /* if ios_left is > 1, we can batch tag/rq allocations */ 1037 struct request *cached_rq; 1038 unsigned short nr_ios; 1039 1040 unsigned short rq_count; 1041 1042 bool multiple_queues; 1043 bool has_elevator; 1044 bool nowait; 1045 1046 struct list_head cb_list; /* md requires an unplug callback */ 1047}; 1048 1049struct blk_plug_cb; 1050typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1051struct blk_plug_cb { 1052 struct list_head list; 1053 blk_plug_cb_fn callback; 1054 void *data; 1055}; 1056extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1057 void *data, int size); 1058extern void blk_start_plug(struct blk_plug *); 1059extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1060extern void blk_finish_plug(struct blk_plug *); 1061 1062void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1063static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1064{ 1065 if (plug) 1066 __blk_flush_plug(plug, async); 1067} 1068 1069int blkdev_issue_flush(struct block_device *bdev); 1070long nr_blockdev_pages(void); 1071#else /* CONFIG_BLOCK */ 1072struct blk_plug { 1073}; 1074 1075static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1076 unsigned short nr_ios) 1077{ 1078} 1079 1080static inline void blk_start_plug(struct blk_plug *plug) 1081{ 1082} 1083 1084static inline void blk_finish_plug(struct blk_plug *plug) 1085{ 1086} 1087 1088static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1089{ 1090} 1091 1092static inline int blkdev_issue_flush(struct block_device *bdev) 1093{ 1094 return 0; 1095} 1096 1097static inline long nr_blockdev_pages(void) 1098{ 1099 return 0; 1100} 1101#endif /* CONFIG_BLOCK */ 1102 1103extern void blk_io_schedule(void); 1104 1105int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1106 sector_t nr_sects, gfp_t gfp_mask); 1107int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1108 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1109int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1110 sector_t nr_sects, gfp_t gfp); 1111 1112#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1113#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1114 1115extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1116 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1117 unsigned flags); 1118extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1119 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1120 1121static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1122 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1123{ 1124 return blkdev_issue_discard(sb->s_bdev, 1125 block << (sb->s_blocksize_bits - 1126 SECTOR_SHIFT), 1127 nr_blocks << (sb->s_blocksize_bits - 1128 SECTOR_SHIFT), 1129 gfp_mask); 1130} 1131static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1132 sector_t nr_blocks, gfp_t gfp_mask) 1133{ 1134 return blkdev_issue_zeroout(sb->s_bdev, 1135 block << (sb->s_blocksize_bits - 1136 SECTOR_SHIFT), 1137 nr_blocks << (sb->s_blocksize_bits - 1138 SECTOR_SHIFT), 1139 gfp_mask, 0); 1140} 1141 1142static inline bool bdev_is_partition(struct block_device *bdev) 1143{ 1144 return bdev->bd_partno; 1145} 1146 1147enum blk_default_limits { 1148 BLK_MAX_SEGMENTS = 128, 1149 BLK_SAFE_MAX_SECTORS = 255, 1150 BLK_DEF_MAX_SECTORS = 2560, 1151 BLK_MAX_SEGMENT_SIZE = 65536, 1152 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1153}; 1154 1155static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1156{ 1157 return q->limits.seg_boundary_mask; 1158} 1159 1160static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1161{ 1162 return q->limits.virt_boundary_mask; 1163} 1164 1165static inline unsigned int queue_max_sectors(const struct request_queue *q) 1166{ 1167 return q->limits.max_sectors; 1168} 1169 1170static inline unsigned int queue_max_bytes(struct request_queue *q) 1171{ 1172 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1173} 1174 1175static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1176{ 1177 return q->limits.max_hw_sectors; 1178} 1179 1180static inline unsigned short queue_max_segments(const struct request_queue *q) 1181{ 1182 return q->limits.max_segments; 1183} 1184 1185static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1186{ 1187 return q->limits.max_discard_segments; 1188} 1189 1190static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1191{ 1192 return q->limits.max_segment_size; 1193} 1194 1195static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1196{ 1197 1198 const struct queue_limits *l = &q->limits; 1199 1200 return min(l->max_zone_append_sectors, l->max_sectors); 1201} 1202 1203static inline unsigned int 1204bdev_max_zone_append_sectors(struct block_device *bdev) 1205{ 1206 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1207} 1208 1209static inline unsigned queue_logical_block_size(const struct request_queue *q) 1210{ 1211 int retval = 512; 1212 1213 if (q && q->limits.logical_block_size) 1214 retval = q->limits.logical_block_size; 1215 1216 return retval; 1217} 1218 1219static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1220{ 1221 return queue_logical_block_size(bdev_get_queue(bdev)); 1222} 1223 1224static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1225{ 1226 return q->limits.physical_block_size; 1227} 1228 1229static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1230{ 1231 return queue_physical_block_size(bdev_get_queue(bdev)); 1232} 1233 1234static inline unsigned int queue_io_min(const struct request_queue *q) 1235{ 1236 return q->limits.io_min; 1237} 1238 1239static inline int bdev_io_min(struct block_device *bdev) 1240{ 1241 return queue_io_min(bdev_get_queue(bdev)); 1242} 1243 1244static inline unsigned int queue_io_opt(const struct request_queue *q) 1245{ 1246 return q->limits.io_opt; 1247} 1248 1249static inline int bdev_io_opt(struct block_device *bdev) 1250{ 1251 return queue_io_opt(bdev_get_queue(bdev)); 1252} 1253 1254static inline unsigned int 1255queue_zone_write_granularity(const struct request_queue *q) 1256{ 1257 return q->limits.zone_write_granularity; 1258} 1259 1260static inline unsigned int 1261bdev_zone_write_granularity(struct block_device *bdev) 1262{ 1263 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1264} 1265 1266int bdev_alignment_offset(struct block_device *bdev); 1267unsigned int bdev_discard_alignment(struct block_device *bdev); 1268 1269static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1270{ 1271 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1272} 1273 1274static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1275{ 1276 return bdev_get_queue(bdev)->limits.discard_granularity; 1277} 1278 1279static inline unsigned int 1280bdev_max_secure_erase_sectors(struct block_device *bdev) 1281{ 1282 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1283} 1284 1285static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1286{ 1287 struct request_queue *q = bdev_get_queue(bdev); 1288 1289 if (q) 1290 return q->limits.max_write_zeroes_sectors; 1291 1292 return 0; 1293} 1294 1295static inline bool bdev_nonrot(struct block_device *bdev) 1296{ 1297 return blk_queue_nonrot(bdev_get_queue(bdev)); 1298} 1299 1300static inline bool bdev_stable_writes(struct block_device *bdev) 1301{ 1302 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1303 &bdev_get_queue(bdev)->queue_flags); 1304} 1305 1306static inline bool bdev_write_cache(struct block_device *bdev) 1307{ 1308 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1309} 1310 1311static inline bool bdev_fua(struct block_device *bdev) 1312{ 1313 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1314} 1315 1316static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1317{ 1318 struct request_queue *q = bdev_get_queue(bdev); 1319 1320 if (q) 1321 return blk_queue_zoned_model(q); 1322 1323 return BLK_ZONED_NONE; 1324} 1325 1326static inline bool bdev_is_zoned(struct block_device *bdev) 1327{ 1328 struct request_queue *q = bdev_get_queue(bdev); 1329 1330 if (q) 1331 return blk_queue_is_zoned(q); 1332 1333 return false; 1334} 1335 1336static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1337{ 1338 struct request_queue *q = bdev_get_queue(bdev); 1339 1340 if (q) 1341 return blk_queue_zone_sectors(q); 1342 return 0; 1343} 1344 1345static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1346{ 1347 struct request_queue *q = bdev_get_queue(bdev); 1348 1349 if (q) 1350 return queue_max_open_zones(q); 1351 return 0; 1352} 1353 1354static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1355{ 1356 struct request_queue *q = bdev_get_queue(bdev); 1357 1358 if (q) 1359 return queue_max_active_zones(q); 1360 return 0; 1361} 1362 1363static inline int queue_dma_alignment(const struct request_queue *q) 1364{ 1365 return q ? q->dma_alignment : 511; 1366} 1367 1368static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1369 unsigned int len) 1370{ 1371 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1372 return !(addr & alignment) && !(len & alignment); 1373} 1374 1375/* assumes size > 256 */ 1376static inline unsigned int blksize_bits(unsigned int size) 1377{ 1378 unsigned int bits = 8; 1379 do { 1380 bits++; 1381 size >>= 1; 1382 } while (size > 256); 1383 return bits; 1384} 1385 1386static inline unsigned int block_size(struct block_device *bdev) 1387{ 1388 return 1 << bdev->bd_inode->i_blkbits; 1389} 1390 1391int kblockd_schedule_work(struct work_struct *work); 1392int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1393 1394#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1395 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1396#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1397 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1398 1399#ifdef CONFIG_BLK_INLINE_ENCRYPTION 1400 1401bool blk_crypto_register(struct blk_crypto_profile *profile, 1402 struct request_queue *q); 1403 1404#else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1405 1406static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1407 struct request_queue *q) 1408{ 1409 return true; 1410} 1411 1412#endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1413 1414enum blk_unique_id { 1415 /* these match the Designator Types specified in SPC */ 1416 BLK_UID_T10 = 1, 1417 BLK_UID_EUI64 = 2, 1418 BLK_UID_NAA = 3, 1419}; 1420 1421#define NFL4_UFLG_MASK 0x0000003F 1422 1423struct block_device_operations { 1424 void (*submit_bio)(struct bio *bio); 1425 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1426 unsigned int flags); 1427 int (*open) (struct block_device *, fmode_t); 1428 void (*release) (struct gendisk *, fmode_t); 1429 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1430 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1431 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1432 unsigned int (*check_events) (struct gendisk *disk, 1433 unsigned int clearing); 1434 void (*unlock_native_capacity) (struct gendisk *); 1435 int (*getgeo)(struct block_device *, struct hd_geometry *); 1436 int (*set_read_only)(struct block_device *bdev, bool ro); 1437 void (*free_disk)(struct gendisk *disk); 1438 /* this callback is with swap_lock and sometimes page table lock held */ 1439 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1440 int (*report_zones)(struct gendisk *, sector_t sector, 1441 unsigned int nr_zones, report_zones_cb cb, void *data); 1442 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1443 /* returns the length of the identifier or a negative errno: */ 1444 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1445 enum blk_unique_id id_type); 1446 struct module *owner; 1447 const struct pr_ops *pr_ops; 1448 1449 /* 1450 * Special callback for probing GPT entry at a given sector. 1451 * Needed by Android devices, used by GPT scanner and MMC blk 1452 * driver. 1453 */ 1454 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1455}; 1456 1457#ifdef CONFIG_COMPAT 1458extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1459 unsigned int, unsigned long); 1460#else 1461#define blkdev_compat_ptr_ioctl NULL 1462#endif 1463 1464extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1465extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1466 struct writeback_control *); 1467 1468static inline void blk_wake_io_task(struct task_struct *waiter) 1469{ 1470 /* 1471 * If we're polling, the task itself is doing the completions. For 1472 * that case, we don't need to signal a wakeup, it's enough to just 1473 * mark us as RUNNING. 1474 */ 1475 if (waiter == current) 1476 __set_current_state(TASK_RUNNING); 1477 else 1478 wake_up_process(waiter); 1479} 1480 1481unsigned long bdev_start_io_acct(struct block_device *bdev, 1482 unsigned int sectors, unsigned int op, 1483 unsigned long start_time); 1484void bdev_end_io_acct(struct block_device *bdev, unsigned int op, 1485 unsigned long start_time); 1486 1487void bio_start_io_acct_time(struct bio *bio, unsigned long start_time); 1488unsigned long bio_start_io_acct(struct bio *bio); 1489void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1490 struct block_device *orig_bdev); 1491 1492/** 1493 * bio_end_io_acct - end I/O accounting for bio based drivers 1494 * @bio: bio to end account for 1495 * @start_time: start time returned by bio_start_io_acct() 1496 */ 1497static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1498{ 1499 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1500} 1501 1502int bdev_read_only(struct block_device *bdev); 1503int set_blocksize(struct block_device *bdev, int size); 1504 1505const char *bdevname(struct block_device *bdev, char *buffer); 1506int lookup_bdev(const char *pathname, dev_t *dev); 1507 1508void blkdev_show(struct seq_file *seqf, off_t offset); 1509 1510#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1511#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1512#ifdef CONFIG_BLOCK 1513#define BLKDEV_MAJOR_MAX 512 1514#else 1515#define BLKDEV_MAJOR_MAX 0 1516#endif 1517 1518struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1519 void *holder); 1520struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1521int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1522void bd_abort_claiming(struct block_device *bdev, void *holder); 1523void blkdev_put(struct block_device *bdev, fmode_t mode); 1524 1525/* just for blk-cgroup, don't use elsewhere */ 1526struct block_device *blkdev_get_no_open(dev_t dev); 1527void blkdev_put_no_open(struct block_device *bdev); 1528 1529struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1530void bdev_add(struct block_device *bdev, dev_t dev); 1531struct block_device *I_BDEV(struct inode *inode); 1532int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1533 loff_t lend); 1534 1535#ifdef CONFIG_BLOCK 1536void invalidate_bdev(struct block_device *bdev); 1537int sync_blockdev(struct block_device *bdev); 1538int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1539int sync_blockdev_nowait(struct block_device *bdev); 1540void sync_bdevs(bool wait); 1541void printk_all_partitions(void); 1542#else 1543static inline void invalidate_bdev(struct block_device *bdev) 1544{ 1545} 1546static inline int sync_blockdev(struct block_device *bdev) 1547{ 1548 return 0; 1549} 1550static inline int sync_blockdev_nowait(struct block_device *bdev) 1551{ 1552 return 0; 1553} 1554static inline void sync_bdevs(bool wait) 1555{ 1556} 1557static inline void printk_all_partitions(void) 1558{ 1559} 1560#endif /* CONFIG_BLOCK */ 1561 1562int fsync_bdev(struct block_device *bdev); 1563 1564int freeze_bdev(struct block_device *bdev); 1565int thaw_bdev(struct block_device *bdev); 1566 1567struct io_comp_batch { 1568 struct request *req_list; 1569 bool need_ts; 1570 void (*complete)(struct io_comp_batch *); 1571}; 1572 1573#define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1574 1575#endif /* _LINUX_BLKDEV_H */