bpf_verifier.h (21004B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_VERIFIER_H 5#define _LINUX_BPF_VERIFIER_H 1 6 7#include <linux/bpf.h> /* for enum bpf_reg_type */ 8#include <linux/btf.h> /* for struct btf and btf_id() */ 9#include <linux/filter.h> /* for MAX_BPF_STACK */ 10#include <linux/tnum.h> 11 12/* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16#define BPF_MAX_VAR_OFF (1 << 29) 17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20#define BPF_MAX_VAR_SIZ (1 << 29) 21/* size of type_str_buf in bpf_verifier. */ 22#define TYPE_STR_BUF_LEN 64 23 24/* Liveness marks, used for registers and spilled-regs (in stack slots). 25 * Read marks propagate upwards until they find a write mark; they record that 26 * "one of this state's descendants read this reg" (and therefore the reg is 27 * relevant for states_equal() checks). 28 * Write marks collect downwards and do not propagate; they record that "the 29 * straight-line code that reached this state (from its parent) wrote this reg" 30 * (and therefore that reads propagated from this state or its descendants 31 * should not propagate to its parent). 32 * A state with a write mark can receive read marks; it just won't propagate 33 * them to its parent, since the write mark is a property, not of the state, 34 * but of the link between it and its parent. See mark_reg_read() and 35 * mark_stack_slot_read() in kernel/bpf/verifier.c. 36 */ 37enum bpf_reg_liveness { 38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 39 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 40 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 41 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 42 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 43 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 44}; 45 46struct bpf_reg_state { 47 /* Ordering of fields matters. See states_equal() */ 48 enum bpf_reg_type type; 49 /* Fixed part of pointer offset, pointer types only */ 50 s32 off; 51 union { 52 /* valid when type == PTR_TO_PACKET */ 53 int range; 54 55 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 56 * PTR_TO_MAP_VALUE_OR_NULL 57 */ 58 struct { 59 struct bpf_map *map_ptr; 60 /* To distinguish map lookups from outer map 61 * the map_uid is non-zero for registers 62 * pointing to inner maps. 63 */ 64 u32 map_uid; 65 }; 66 67 /* for PTR_TO_BTF_ID */ 68 struct { 69 struct btf *btf; 70 u32 btf_id; 71 }; 72 73 u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 74 75 /* For dynptr stack slots */ 76 struct { 77 enum bpf_dynptr_type type; 78 /* A dynptr is 16 bytes so it takes up 2 stack slots. 79 * We need to track which slot is the first slot 80 * to protect against cases where the user may try to 81 * pass in an address starting at the second slot of the 82 * dynptr. 83 */ 84 bool first_slot; 85 } dynptr; 86 87 /* Max size from any of the above. */ 88 struct { 89 unsigned long raw1; 90 unsigned long raw2; 91 } raw; 92 93 u32 subprogno; /* for PTR_TO_FUNC */ 94 }; 95 /* For PTR_TO_PACKET, used to find other pointers with the same variable 96 * offset, so they can share range knowledge. 97 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 98 * came from, when one is tested for != NULL. 99 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 100 * for the purpose of tracking that it's freed. 101 * For PTR_TO_SOCKET this is used to share which pointers retain the 102 * same reference to the socket, to determine proper reference freeing. 103 * For stack slots that are dynptrs, this is used to track references to 104 * the dynptr to determine proper reference freeing. 105 */ 106 u32 id; 107 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 108 * from a pointer-cast helper, bpf_sk_fullsock() and 109 * bpf_tcp_sock(). 110 * 111 * Consider the following where "sk" is a reference counted 112 * pointer returned from "sk = bpf_sk_lookup_tcp();": 113 * 114 * 1: sk = bpf_sk_lookup_tcp(); 115 * 2: if (!sk) { return 0; } 116 * 3: fullsock = bpf_sk_fullsock(sk); 117 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 118 * 5: tp = bpf_tcp_sock(fullsock); 119 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 120 * 7: bpf_sk_release(sk); 121 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 122 * 123 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 124 * "tp" ptr should be invalidated also. In order to do that, 125 * the reg holding "fullsock" and "sk" need to remember 126 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 127 * such that the verifier can reset all regs which have 128 * ref_obj_id matching the sk_reg->id. 129 * 130 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 131 * sk_reg->id will stay as NULL-marking purpose only. 132 * After NULL-marking is done, sk_reg->id can be reset to 0. 133 * 134 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 135 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 136 * 137 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 138 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 139 * which is the same as sk_reg->ref_obj_id. 140 * 141 * From the verifier perspective, if sk, fullsock and tp 142 * are not NULL, they are the same ptr with different 143 * reg->type. In particular, bpf_sk_release(tp) is also 144 * allowed and has the same effect as bpf_sk_release(sk). 145 */ 146 u32 ref_obj_id; 147 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 148 * the actual value. 149 * For pointer types, this represents the variable part of the offset 150 * from the pointed-to object, and is shared with all bpf_reg_states 151 * with the same id as us. 152 */ 153 struct tnum var_off; 154 /* Used to determine if any memory access using this register will 155 * result in a bad access. 156 * These refer to the same value as var_off, not necessarily the actual 157 * contents of the register. 158 */ 159 s64 smin_value; /* minimum possible (s64)value */ 160 s64 smax_value; /* maximum possible (s64)value */ 161 u64 umin_value; /* minimum possible (u64)value */ 162 u64 umax_value; /* maximum possible (u64)value */ 163 s32 s32_min_value; /* minimum possible (s32)value */ 164 s32 s32_max_value; /* maximum possible (s32)value */ 165 u32 u32_min_value; /* minimum possible (u32)value */ 166 u32 u32_max_value; /* maximum possible (u32)value */ 167 /* parentage chain for liveness checking */ 168 struct bpf_reg_state *parent; 169 /* Inside the callee two registers can be both PTR_TO_STACK like 170 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 171 * while another to the caller's stack. To differentiate them 'frameno' 172 * is used which is an index in bpf_verifier_state->frame[] array 173 * pointing to bpf_func_state. 174 */ 175 u32 frameno; 176 /* Tracks subreg definition. The stored value is the insn_idx of the 177 * writing insn. This is safe because subreg_def is used before any insn 178 * patching which only happens after main verification finished. 179 */ 180 s32 subreg_def; 181 enum bpf_reg_liveness live; 182 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 183 bool precise; 184}; 185 186enum bpf_stack_slot_type { 187 STACK_INVALID, /* nothing was stored in this stack slot */ 188 STACK_SPILL, /* register spilled into stack */ 189 STACK_MISC, /* BPF program wrote some data into this slot */ 190 STACK_ZERO, /* BPF program wrote constant zero */ 191 /* A dynptr is stored in this stack slot. The type of dynptr 192 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 193 */ 194 STACK_DYNPTR, 195}; 196 197#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 198#define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 199#define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 200 201struct bpf_stack_state { 202 struct bpf_reg_state spilled_ptr; 203 u8 slot_type[BPF_REG_SIZE]; 204}; 205 206struct bpf_reference_state { 207 /* Track each reference created with a unique id, even if the same 208 * instruction creates the reference multiple times (eg, via CALL). 209 */ 210 int id; 211 /* Instruction where the allocation of this reference occurred. This 212 * is used purely to inform the user of a reference leak. 213 */ 214 int insn_idx; 215}; 216 217/* state of the program: 218 * type of all registers and stack info 219 */ 220struct bpf_func_state { 221 struct bpf_reg_state regs[MAX_BPF_REG]; 222 /* index of call instruction that called into this func */ 223 int callsite; 224 /* stack frame number of this function state from pov of 225 * enclosing bpf_verifier_state. 226 * 0 = main function, 1 = first callee. 227 */ 228 u32 frameno; 229 /* subprog number == index within subprog_info 230 * zero == main subprog 231 */ 232 u32 subprogno; 233 /* Every bpf_timer_start will increment async_entry_cnt. 234 * It's used to distinguish: 235 * void foo(void) { for(;;); } 236 * void foo(void) { bpf_timer_set_callback(,foo); } 237 */ 238 u32 async_entry_cnt; 239 bool in_callback_fn; 240 bool in_async_callback_fn; 241 242 /* The following fields should be last. See copy_func_state() */ 243 int acquired_refs; 244 struct bpf_reference_state *refs; 245 int allocated_stack; 246 struct bpf_stack_state *stack; 247}; 248 249struct bpf_idx_pair { 250 u32 prev_idx; 251 u32 idx; 252}; 253 254struct bpf_id_pair { 255 u32 old; 256 u32 cur; 257}; 258 259/* Maximum number of register states that can exist at once */ 260#define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 261#define MAX_CALL_FRAMES 8 262struct bpf_verifier_state { 263 /* call stack tracking */ 264 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 265 struct bpf_verifier_state *parent; 266 /* 267 * 'branches' field is the number of branches left to explore: 268 * 0 - all possible paths from this state reached bpf_exit or 269 * were safely pruned 270 * 1 - at least one path is being explored. 271 * This state hasn't reached bpf_exit 272 * 2 - at least two paths are being explored. 273 * This state is an immediate parent of two children. 274 * One is fallthrough branch with branches==1 and another 275 * state is pushed into stack (to be explored later) also with 276 * branches==1. The parent of this state has branches==1. 277 * The verifier state tree connected via 'parent' pointer looks like: 278 * 1 279 * 1 280 * 2 -> 1 (first 'if' pushed into stack) 281 * 1 282 * 2 -> 1 (second 'if' pushed into stack) 283 * 1 284 * 1 285 * 1 bpf_exit. 286 * 287 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 288 * and the verifier state tree will look: 289 * 1 290 * 1 291 * 2 -> 1 (first 'if' pushed into stack) 292 * 1 293 * 1 -> 1 (second 'if' pushed into stack) 294 * 0 295 * 0 296 * 0 bpf_exit. 297 * After pop_stack() the do_check() will resume at second 'if'. 298 * 299 * If is_state_visited() sees a state with branches > 0 it means 300 * there is a loop. If such state is exactly equal to the current state 301 * it's an infinite loop. Note states_equal() checks for states 302 * equvalency, so two states being 'states_equal' does not mean 303 * infinite loop. The exact comparison is provided by 304 * states_maybe_looping() function. It's a stronger pre-check and 305 * much faster than states_equal(). 306 * 307 * This algorithm may not find all possible infinite loops or 308 * loop iteration count may be too high. 309 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 310 */ 311 u32 branches; 312 u32 insn_idx; 313 u32 curframe; 314 u32 active_spin_lock; 315 bool speculative; 316 317 /* first and last insn idx of this verifier state */ 318 u32 first_insn_idx; 319 u32 last_insn_idx; 320 /* jmp history recorded from first to last. 321 * backtracking is using it to go from last to first. 322 * For most states jmp_history_cnt is [0-3]. 323 * For loops can go up to ~40. 324 */ 325 struct bpf_idx_pair *jmp_history; 326 u32 jmp_history_cnt; 327}; 328 329#define bpf_get_spilled_reg(slot, frame) \ 330 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 331 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 332 ? &frame->stack[slot].spilled_ptr : NULL) 333 334/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 335#define bpf_for_each_spilled_reg(iter, frame, reg) \ 336 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 337 iter < frame->allocated_stack / BPF_REG_SIZE; \ 338 iter++, reg = bpf_get_spilled_reg(iter, frame)) 339 340/* linked list of verifier states used to prune search */ 341struct bpf_verifier_state_list { 342 struct bpf_verifier_state state; 343 struct bpf_verifier_state_list *next; 344 int miss_cnt, hit_cnt; 345}; 346 347/* Possible states for alu_state member. */ 348#define BPF_ALU_SANITIZE_SRC (1U << 0) 349#define BPF_ALU_SANITIZE_DST (1U << 1) 350#define BPF_ALU_NEG_VALUE (1U << 2) 351#define BPF_ALU_NON_POINTER (1U << 3) 352#define BPF_ALU_IMMEDIATE (1U << 4) 353#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 354 BPF_ALU_SANITIZE_DST) 355 356struct bpf_insn_aux_data { 357 union { 358 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 359 unsigned long map_ptr_state; /* pointer/poison value for maps */ 360 s32 call_imm; /* saved imm field of call insn */ 361 u32 alu_limit; /* limit for add/sub register with pointer */ 362 struct { 363 u32 map_index; /* index into used_maps[] */ 364 u32 map_off; /* offset from value base address */ 365 }; 366 struct { 367 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 368 union { 369 struct { 370 struct btf *btf; 371 u32 btf_id; /* btf_id for struct typed var */ 372 }; 373 u32 mem_size; /* mem_size for non-struct typed var */ 374 }; 375 } btf_var; 376 }; 377 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 378 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 379 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 380 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 381 bool zext_dst; /* this insn zero extends dst reg */ 382 u8 alu_state; /* used in combination with alu_limit */ 383 384 /* below fields are initialized once */ 385 unsigned int orig_idx; /* original instruction index */ 386 bool prune_point; 387}; 388 389#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 390#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 391 392#define BPF_VERIFIER_TMP_LOG_SIZE 1024 393 394struct bpf_verifier_log { 395 u32 level; 396 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 397 char __user *ubuf; 398 u32 len_used; 399 u32 len_total; 400}; 401 402static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 403{ 404 return log->len_used >= log->len_total - 1; 405} 406 407#define BPF_LOG_LEVEL1 1 408#define BPF_LOG_LEVEL2 2 409#define BPF_LOG_STATS 4 410#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 411#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS) 412#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 413#define BPF_LOG_MIN_ALIGNMENT 8U 414#define BPF_LOG_ALIGNMENT 40U 415 416static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 417{ 418 return log && 419 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) || 420 log->level == BPF_LOG_KERNEL); 421} 422 423static inline bool 424bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log) 425{ 426 return log->len_total >= 128 && log->len_total <= UINT_MAX >> 2 && 427 log->level && log->ubuf && !(log->level & ~BPF_LOG_MASK); 428} 429 430#define BPF_MAX_SUBPROGS 256 431 432struct bpf_subprog_info { 433 /* 'start' has to be the first field otherwise find_subprog() won't work */ 434 u32 start; /* insn idx of function entry point */ 435 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 436 u16 stack_depth; /* max. stack depth used by this function */ 437 bool has_tail_call; 438 bool tail_call_reachable; 439 bool has_ld_abs; 440 bool is_async_cb; 441}; 442 443/* single container for all structs 444 * one verifier_env per bpf_check() call 445 */ 446struct bpf_verifier_env { 447 u32 insn_idx; 448 u32 prev_insn_idx; 449 struct bpf_prog *prog; /* eBPF program being verified */ 450 const struct bpf_verifier_ops *ops; 451 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 452 int stack_size; /* number of states to be processed */ 453 bool strict_alignment; /* perform strict pointer alignment checks */ 454 bool test_state_freq; /* test verifier with different pruning frequency */ 455 struct bpf_verifier_state *cur_state; /* current verifier state */ 456 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 457 struct bpf_verifier_state_list *free_list; 458 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 459 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 460 u32 used_map_cnt; /* number of used maps */ 461 u32 used_btf_cnt; /* number of used BTF objects */ 462 u32 id_gen; /* used to generate unique reg IDs */ 463 bool explore_alu_limits; 464 bool allow_ptr_leaks; 465 bool allow_uninit_stack; 466 bool allow_ptr_to_map_access; 467 bool bpf_capable; 468 bool bypass_spec_v1; 469 bool bypass_spec_v4; 470 bool seen_direct_write; 471 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 472 const struct bpf_line_info *prev_linfo; 473 struct bpf_verifier_log log; 474 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 475 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE]; 476 struct { 477 int *insn_state; 478 int *insn_stack; 479 int cur_stack; 480 } cfg; 481 u32 pass_cnt; /* number of times do_check() was called */ 482 u32 subprog_cnt; 483 /* number of instructions analyzed by the verifier */ 484 u32 prev_insn_processed, insn_processed; 485 /* number of jmps, calls, exits analyzed so far */ 486 u32 prev_jmps_processed, jmps_processed; 487 /* total verification time */ 488 u64 verification_time; 489 /* maximum number of verifier states kept in 'branching' instructions */ 490 u32 max_states_per_insn; 491 /* total number of allocated verifier states */ 492 u32 total_states; 493 /* some states are freed during program analysis. 494 * this is peak number of states. this number dominates kernel 495 * memory consumption during verification 496 */ 497 u32 peak_states; 498 /* longest register parentage chain walked for liveness marking */ 499 u32 longest_mark_read_walk; 500 bpfptr_t fd_array; 501 502 /* bit mask to keep track of whether a register has been accessed 503 * since the last time the function state was printed 504 */ 505 u32 scratched_regs; 506 /* Same as scratched_regs but for stack slots */ 507 u64 scratched_stack_slots; 508 u32 prev_log_len, prev_insn_print_len; 509 /* buffer used in reg_type_str() to generate reg_type string */ 510 char type_str_buf[TYPE_STR_BUF_LEN]; 511}; 512 513__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 514 const char *fmt, va_list args); 515__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 516 const char *fmt, ...); 517__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 518 const char *fmt, ...); 519 520static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 521{ 522 struct bpf_verifier_state *cur = env->cur_state; 523 524 return cur->frame[cur->curframe]; 525} 526 527static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 528{ 529 return cur_func(env)->regs; 530} 531 532int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 533int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 534 int insn_idx, int prev_insn_idx); 535int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 536void 537bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 538 struct bpf_insn *insn); 539void 540bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 541 542int check_ptr_off_reg(struct bpf_verifier_env *env, 543 const struct bpf_reg_state *reg, int regno); 544int check_func_arg_reg_off(struct bpf_verifier_env *env, 545 const struct bpf_reg_state *reg, int regno, 546 enum bpf_arg_type arg_type); 547int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 548 u32 regno); 549int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 550 u32 regno, u32 mem_size); 551 552/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 553static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 554 struct btf *btf, u32 btf_id) 555{ 556 if (tgt_prog) 557 return ((u64)tgt_prog->aux->id << 32) | btf_id; 558 else 559 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 560} 561 562/* unpack the IDs from the key as constructed above */ 563static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 564{ 565 if (obj_id) 566 *obj_id = key >> 32; 567 if (btf_id) 568 *btf_id = key & 0x7FFFFFFF; 569} 570 571int bpf_check_attach_target(struct bpf_verifier_log *log, 572 const struct bpf_prog *prog, 573 const struct bpf_prog *tgt_prog, 574 u32 btf_id, 575 struct bpf_attach_target_info *tgt_info); 576void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 577 578#define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 579 580/* extract base type from bpf_{arg, return, reg}_type. */ 581static inline u32 base_type(u32 type) 582{ 583 return type & BPF_BASE_TYPE_MASK; 584} 585 586/* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 587static inline u32 type_flag(u32 type) 588{ 589 return type & ~BPF_BASE_TYPE_MASK; 590} 591 592/* only use after check_attach_btf_id() */ 593static inline enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 594{ 595 return prog->type == BPF_PROG_TYPE_EXT ? 596 prog->aux->dst_prog->type : prog->type; 597} 598 599#endif /* _LINUX_BPF_VERIFIER_H */