cpumask.h (30005B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_CPUMASK_H 3#define __LINUX_CPUMASK_H 4 5/* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPU's in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10#include <linux/kernel.h> 11#include <linux/threads.h> 12#include <linux/bitmap.h> 13#include <linux/atomic.h> 14#include <linux/bug.h> 15 16/* Don't assign or return these: may not be this big! */ 17typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; 18 19/** 20 * cpumask_bits - get the bits in a cpumask 21 * @maskp: the struct cpumask * 22 * 23 * You should only assume nr_cpu_ids bits of this mask are valid. This is 24 * a macro so it's const-correct. 25 */ 26#define cpumask_bits(maskp) ((maskp)->bits) 27 28/** 29 * cpumask_pr_args - printf args to output a cpumask 30 * @maskp: cpumask to be printed 31 * 32 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 33 */ 34#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 35 36#if NR_CPUS == 1 37#define nr_cpu_ids 1U 38#else 39extern unsigned int nr_cpu_ids; 40#endif 41 42#ifdef CONFIG_CPUMASK_OFFSTACK 43/* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also, 44 * not all bits may be allocated. */ 45#define nr_cpumask_bits nr_cpu_ids 46#else 47#define nr_cpumask_bits ((unsigned int)NR_CPUS) 48#endif 49 50/* 51 * The following particular system cpumasks and operations manage 52 * possible, present, active and online cpus. 53 * 54 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 55 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 56 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 57 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 58 * 59 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 60 * 61 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's 62 * that it is possible might ever be plugged in at anytime during the 63 * life of that system boot. The cpu_present_mask is dynamic(*), 64 * representing which CPUs are currently plugged in. And 65 * cpu_online_mask is the dynamic subset of cpu_present_mask, 66 * indicating those CPUs available for scheduling. 67 * 68 * If HOTPLUG is enabled, then cpu_possible_mask is forced to have 69 * all NR_CPUS bits set, otherwise it is just the set of CPUs that 70 * ACPI reports present at boot. 71 * 72 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 73 * depending on what ACPI reports as currently plugged in, otherwise 74 * cpu_present_mask is just a copy of cpu_possible_mask. 75 * 76 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 77 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 78 * 79 * Subtleties: 80 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 81 * assumption that their single CPU is online. The UP 82 * cpu_{online,possible,present}_masks are placebos. Changing them 83 * will have no useful affect on the following num_*_cpus() 84 * and cpu_*() macros in the UP case. This ugliness is a UP 85 * optimization - don't waste any instructions or memory references 86 * asking if you're online or how many CPUs there are if there is 87 * only one CPU. 88 */ 89 90extern struct cpumask __cpu_possible_mask; 91extern struct cpumask __cpu_online_mask; 92extern struct cpumask __cpu_present_mask; 93extern struct cpumask __cpu_active_mask; 94extern struct cpumask __cpu_dying_mask; 95#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 96#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 97#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 98#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 99#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 100 101extern atomic_t __num_online_cpus; 102 103extern cpumask_t cpus_booted_once_mask; 104 105static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 106{ 107#ifdef CONFIG_DEBUG_PER_CPU_MAPS 108 WARN_ON_ONCE(cpu >= bits); 109#endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 110} 111 112/* verify cpu argument to cpumask_* operators */ 113static __always_inline unsigned int cpumask_check(unsigned int cpu) 114{ 115 cpu_max_bits_warn(cpu, nr_cpumask_bits); 116 return cpu; 117} 118 119#if NR_CPUS == 1 120/* Uniprocessor. Assume all masks are "1". */ 121static inline unsigned int cpumask_first(const struct cpumask *srcp) 122{ 123 return 0; 124} 125 126static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 127{ 128 return 0; 129} 130 131static inline unsigned int cpumask_first_and(const struct cpumask *srcp1, 132 const struct cpumask *srcp2) 133{ 134 return 0; 135} 136 137static inline unsigned int cpumask_last(const struct cpumask *srcp) 138{ 139 return 0; 140} 141 142/* Valid inputs for n are -1 and 0. */ 143static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) 144{ 145 return n+1; 146} 147 148static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 149{ 150 return n+1; 151} 152 153static inline unsigned int cpumask_next_and(int n, 154 const struct cpumask *srcp, 155 const struct cpumask *andp) 156{ 157 return n+1; 158} 159 160static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, 161 int start, bool wrap) 162{ 163 /* cpu0 unless stop condition, wrap and at cpu0, then nr_cpumask_bits */ 164 return (wrap && n == 0); 165} 166 167/* cpu must be a valid cpu, ie 0, so there's no other choice. */ 168static inline unsigned int cpumask_any_but(const struct cpumask *mask, 169 unsigned int cpu) 170{ 171 return 1; 172} 173 174static inline unsigned int cpumask_local_spread(unsigned int i, int node) 175{ 176 return 0; 177} 178 179static inline int cpumask_any_and_distribute(const struct cpumask *src1p, 180 const struct cpumask *src2p) { 181 return cpumask_first_and(src1p, src2p); 182} 183 184static inline int cpumask_any_distribute(const struct cpumask *srcp) 185{ 186 return cpumask_first(srcp); 187} 188 189#define for_each_cpu(cpu, mask) \ 190 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) 191#define for_each_cpu_not(cpu, mask) \ 192 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) 193#define for_each_cpu_wrap(cpu, mask, start) \ 194 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)(start)) 195#define for_each_cpu_and(cpu, mask1, mask2) \ 196 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask1, (void)mask2) 197#else 198/** 199 * cpumask_first - get the first cpu in a cpumask 200 * @srcp: the cpumask pointer 201 * 202 * Returns >= nr_cpu_ids if no cpus set. 203 */ 204static inline unsigned int cpumask_first(const struct cpumask *srcp) 205{ 206 return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits); 207} 208 209/** 210 * cpumask_first_zero - get the first unset cpu in a cpumask 211 * @srcp: the cpumask pointer 212 * 213 * Returns >= nr_cpu_ids if all cpus are set. 214 */ 215static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 216{ 217 return find_first_zero_bit(cpumask_bits(srcp), nr_cpumask_bits); 218} 219 220/** 221 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 222 * @src1p: the first input 223 * @src2p: the second input 224 * 225 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 226 */ 227static inline 228unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 229{ 230 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), nr_cpumask_bits); 231} 232 233/** 234 * cpumask_last - get the last CPU in a cpumask 235 * @srcp: - the cpumask pointer 236 * 237 * Returns >= nr_cpumask_bits if no CPUs set. 238 */ 239static inline unsigned int cpumask_last(const struct cpumask *srcp) 240{ 241 return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits); 242} 243 244unsigned int __pure cpumask_next(int n, const struct cpumask *srcp); 245 246/** 247 * cpumask_next_zero - get the next unset cpu in a cpumask 248 * @n: the cpu prior to the place to search (ie. return will be > @n) 249 * @srcp: the cpumask pointer 250 * 251 * Returns >= nr_cpu_ids if no further cpus unset. 252 */ 253static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 254{ 255 /* -1 is a legal arg here. */ 256 if (n != -1) 257 cpumask_check(n); 258 return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); 259} 260 261int __pure cpumask_next_and(int n, const struct cpumask *, const struct cpumask *); 262int __pure cpumask_any_but(const struct cpumask *mask, unsigned int cpu); 263unsigned int cpumask_local_spread(unsigned int i, int node); 264int cpumask_any_and_distribute(const struct cpumask *src1p, 265 const struct cpumask *src2p); 266int cpumask_any_distribute(const struct cpumask *srcp); 267 268/** 269 * for_each_cpu - iterate over every cpu in a mask 270 * @cpu: the (optionally unsigned) integer iterator 271 * @mask: the cpumask pointer 272 * 273 * After the loop, cpu is >= nr_cpu_ids. 274 */ 275#define for_each_cpu(cpu, mask) \ 276 for ((cpu) = -1; \ 277 (cpu) = cpumask_next((cpu), (mask)), \ 278 (cpu) < nr_cpu_ids;) 279 280/** 281 * for_each_cpu_not - iterate over every cpu in a complemented mask 282 * @cpu: the (optionally unsigned) integer iterator 283 * @mask: the cpumask pointer 284 * 285 * After the loop, cpu is >= nr_cpu_ids. 286 */ 287#define for_each_cpu_not(cpu, mask) \ 288 for ((cpu) = -1; \ 289 (cpu) = cpumask_next_zero((cpu), (mask)), \ 290 (cpu) < nr_cpu_ids;) 291 292extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); 293 294/** 295 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 296 * @cpu: the (optionally unsigned) integer iterator 297 * @mask: the cpumask pointer 298 * @start: the start location 299 * 300 * The implementation does not assume any bit in @mask is set (including @start). 301 * 302 * After the loop, cpu is >= nr_cpu_ids. 303 */ 304#define for_each_cpu_wrap(cpu, mask, start) \ 305 for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \ 306 (cpu) < nr_cpumask_bits; \ 307 (cpu) = cpumask_next_wrap((cpu), (mask), (start), true)) 308 309/** 310 * for_each_cpu_and - iterate over every cpu in both masks 311 * @cpu: the (optionally unsigned) integer iterator 312 * @mask1: the first cpumask pointer 313 * @mask2: the second cpumask pointer 314 * 315 * This saves a temporary CPU mask in many places. It is equivalent to: 316 * struct cpumask tmp; 317 * cpumask_and(&tmp, &mask1, &mask2); 318 * for_each_cpu(cpu, &tmp) 319 * ... 320 * 321 * After the loop, cpu is >= nr_cpu_ids. 322 */ 323#define for_each_cpu_and(cpu, mask1, mask2) \ 324 for ((cpu) = -1; \ 325 (cpu) = cpumask_next_and((cpu), (mask1), (mask2)), \ 326 (cpu) < nr_cpu_ids;) 327#endif /* SMP */ 328 329#define CPU_BITS_NONE \ 330{ \ 331 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 332} 333 334#define CPU_BITS_CPU0 \ 335{ \ 336 [0] = 1UL \ 337} 338 339/** 340 * cpumask_set_cpu - set a cpu in a cpumask 341 * @cpu: cpu number (< nr_cpu_ids) 342 * @dstp: the cpumask pointer 343 */ 344static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 345{ 346 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 347} 348 349static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 350{ 351 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 352} 353 354 355/** 356 * cpumask_clear_cpu - clear a cpu in a cpumask 357 * @cpu: cpu number (< nr_cpu_ids) 358 * @dstp: the cpumask pointer 359 */ 360static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 361{ 362 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 363} 364 365static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 366{ 367 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 368} 369 370/** 371 * cpumask_test_cpu - test for a cpu in a cpumask 372 * @cpu: cpu number (< nr_cpu_ids) 373 * @cpumask: the cpumask pointer 374 * 375 * Returns 1 if @cpu is set in @cpumask, else returns 0 376 */ 377static __always_inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 378{ 379 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 380} 381 382/** 383 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 384 * @cpu: cpu number (< nr_cpu_ids) 385 * @cpumask: the cpumask pointer 386 * 387 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 388 * 389 * test_and_set_bit wrapper for cpumasks. 390 */ 391static __always_inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 392{ 393 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 394} 395 396/** 397 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 398 * @cpu: cpu number (< nr_cpu_ids) 399 * @cpumask: the cpumask pointer 400 * 401 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 402 * 403 * test_and_clear_bit wrapper for cpumasks. 404 */ 405static __always_inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 406{ 407 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 408} 409 410/** 411 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 412 * @dstp: the cpumask pointer 413 */ 414static inline void cpumask_setall(struct cpumask *dstp) 415{ 416 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 417} 418 419/** 420 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 421 * @dstp: the cpumask pointer 422 */ 423static inline void cpumask_clear(struct cpumask *dstp) 424{ 425 bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits); 426} 427 428/** 429 * cpumask_and - *dstp = *src1p & *src2p 430 * @dstp: the cpumask result 431 * @src1p: the first input 432 * @src2p: the second input 433 * 434 * If *@dstp is empty, returns 0, else returns 1 435 */ 436static inline int cpumask_and(struct cpumask *dstp, 437 const struct cpumask *src1p, 438 const struct cpumask *src2p) 439{ 440 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 441 cpumask_bits(src2p), nr_cpumask_bits); 442} 443 444/** 445 * cpumask_or - *dstp = *src1p | *src2p 446 * @dstp: the cpumask result 447 * @src1p: the first input 448 * @src2p: the second input 449 */ 450static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 451 const struct cpumask *src2p) 452{ 453 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 454 cpumask_bits(src2p), nr_cpumask_bits); 455} 456 457/** 458 * cpumask_xor - *dstp = *src1p ^ *src2p 459 * @dstp: the cpumask result 460 * @src1p: the first input 461 * @src2p: the second input 462 */ 463static inline void cpumask_xor(struct cpumask *dstp, 464 const struct cpumask *src1p, 465 const struct cpumask *src2p) 466{ 467 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 468 cpumask_bits(src2p), nr_cpumask_bits); 469} 470 471/** 472 * cpumask_andnot - *dstp = *src1p & ~*src2p 473 * @dstp: the cpumask result 474 * @src1p: the first input 475 * @src2p: the second input 476 * 477 * If *@dstp is empty, returns 0, else returns 1 478 */ 479static inline int cpumask_andnot(struct cpumask *dstp, 480 const struct cpumask *src1p, 481 const struct cpumask *src2p) 482{ 483 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 484 cpumask_bits(src2p), nr_cpumask_bits); 485} 486 487/** 488 * cpumask_complement - *dstp = ~*srcp 489 * @dstp: the cpumask result 490 * @srcp: the input to invert 491 */ 492static inline void cpumask_complement(struct cpumask *dstp, 493 const struct cpumask *srcp) 494{ 495 bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp), 496 nr_cpumask_bits); 497} 498 499/** 500 * cpumask_equal - *src1p == *src2p 501 * @src1p: the first input 502 * @src2p: the second input 503 */ 504static inline bool cpumask_equal(const struct cpumask *src1p, 505 const struct cpumask *src2p) 506{ 507 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 508 nr_cpumask_bits); 509} 510 511/** 512 * cpumask_or_equal - *src1p | *src2p == *src3p 513 * @src1p: the first input 514 * @src2p: the second input 515 * @src3p: the third input 516 */ 517static inline bool cpumask_or_equal(const struct cpumask *src1p, 518 const struct cpumask *src2p, 519 const struct cpumask *src3p) 520{ 521 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 522 cpumask_bits(src3p), nr_cpumask_bits); 523} 524 525/** 526 * cpumask_intersects - (*src1p & *src2p) != 0 527 * @src1p: the first input 528 * @src2p: the second input 529 */ 530static inline bool cpumask_intersects(const struct cpumask *src1p, 531 const struct cpumask *src2p) 532{ 533 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 534 nr_cpumask_bits); 535} 536 537/** 538 * cpumask_subset - (*src1p & ~*src2p) == 0 539 * @src1p: the first input 540 * @src2p: the second input 541 * 542 * Returns 1 if *@src1p is a subset of *@src2p, else returns 0 543 */ 544static inline int cpumask_subset(const struct cpumask *src1p, 545 const struct cpumask *src2p) 546{ 547 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 548 nr_cpumask_bits); 549} 550 551/** 552 * cpumask_empty - *srcp == 0 553 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 554 */ 555static inline bool cpumask_empty(const struct cpumask *srcp) 556{ 557 return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits); 558} 559 560/** 561 * cpumask_full - *srcp == 0xFFFFFFFF... 562 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 563 */ 564static inline bool cpumask_full(const struct cpumask *srcp) 565{ 566 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 567} 568 569/** 570 * cpumask_weight - Count of bits in *srcp 571 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 572 */ 573static inline unsigned int cpumask_weight(const struct cpumask *srcp) 574{ 575 return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits); 576} 577 578/** 579 * cpumask_shift_right - *dstp = *srcp >> n 580 * @dstp: the cpumask result 581 * @srcp: the input to shift 582 * @n: the number of bits to shift by 583 */ 584static inline void cpumask_shift_right(struct cpumask *dstp, 585 const struct cpumask *srcp, int n) 586{ 587 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 588 nr_cpumask_bits); 589} 590 591/** 592 * cpumask_shift_left - *dstp = *srcp << n 593 * @dstp: the cpumask result 594 * @srcp: the input to shift 595 * @n: the number of bits to shift by 596 */ 597static inline void cpumask_shift_left(struct cpumask *dstp, 598 const struct cpumask *srcp, int n) 599{ 600 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 601 nr_cpumask_bits); 602} 603 604/** 605 * cpumask_copy - *dstp = *srcp 606 * @dstp: the result 607 * @srcp: the input cpumask 608 */ 609static inline void cpumask_copy(struct cpumask *dstp, 610 const struct cpumask *srcp) 611{ 612 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); 613} 614 615/** 616 * cpumask_any - pick a "random" cpu from *srcp 617 * @srcp: the input cpumask 618 * 619 * Returns >= nr_cpu_ids if no cpus set. 620 */ 621#define cpumask_any(srcp) cpumask_first(srcp) 622 623/** 624 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 625 * @mask1: the first input cpumask 626 * @mask2: the second input cpumask 627 * 628 * Returns >= nr_cpu_ids if no cpus set. 629 */ 630#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 631 632/** 633 * cpumask_of - the cpumask containing just a given cpu 634 * @cpu: the cpu (<= nr_cpu_ids) 635 */ 636#define cpumask_of(cpu) (get_cpu_mask(cpu)) 637 638/** 639 * cpumask_parse_user - extract a cpumask from a user string 640 * @buf: the buffer to extract from 641 * @len: the length of the buffer 642 * @dstp: the cpumask to set. 643 * 644 * Returns -errno, or 0 for success. 645 */ 646static inline int cpumask_parse_user(const char __user *buf, int len, 647 struct cpumask *dstp) 648{ 649 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 650} 651 652/** 653 * cpumask_parselist_user - extract a cpumask from a user string 654 * @buf: the buffer to extract from 655 * @len: the length of the buffer 656 * @dstp: the cpumask to set. 657 * 658 * Returns -errno, or 0 for success. 659 */ 660static inline int cpumask_parselist_user(const char __user *buf, int len, 661 struct cpumask *dstp) 662{ 663 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 664 nr_cpumask_bits); 665} 666 667/** 668 * cpumask_parse - extract a cpumask from a string 669 * @buf: the buffer to extract from 670 * @dstp: the cpumask to set. 671 * 672 * Returns -errno, or 0 for success. 673 */ 674static inline int cpumask_parse(const char *buf, struct cpumask *dstp) 675{ 676 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 677} 678 679/** 680 * cpulist_parse - extract a cpumask from a user string of ranges 681 * @buf: the buffer to extract from 682 * @dstp: the cpumask to set. 683 * 684 * Returns -errno, or 0 for success. 685 */ 686static inline int cpulist_parse(const char *buf, struct cpumask *dstp) 687{ 688 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 689} 690 691/** 692 * cpumask_size - size to allocate for a 'struct cpumask' in bytes 693 */ 694static inline unsigned int cpumask_size(void) 695{ 696 return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long); 697} 698 699/* 700 * cpumask_var_t: struct cpumask for stack usage. 701 * 702 * Oh, the wicked games we play! In order to make kernel coding a 703 * little more difficult, we typedef cpumask_var_t to an array or a 704 * pointer: doing &mask on an array is a noop, so it still works. 705 * 706 * ie. 707 * cpumask_var_t tmpmask; 708 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 709 * return -ENOMEM; 710 * 711 * ... use 'tmpmask' like a normal struct cpumask * ... 712 * 713 * free_cpumask_var(tmpmask); 714 * 715 * 716 * However, one notable exception is there. alloc_cpumask_var() allocates 717 * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has 718 * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. 719 * 720 * cpumask_var_t tmpmask; 721 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 722 * return -ENOMEM; 723 * 724 * var = *tmpmask; 725 * 726 * This code makes NR_CPUS length memcopy and brings to a memory corruption. 727 * cpumask_copy() provide safe copy functionality. 728 * 729 * Note that there is another evil here: If you define a cpumask_var_t 730 * as a percpu variable then the way to obtain the address of the cpumask 731 * structure differently influences what this_cpu_* operation needs to be 732 * used. Please use this_cpu_cpumask_var_t in those cases. The direct use 733 * of this_cpu_ptr() or this_cpu_read() will lead to failures when the 734 * other type of cpumask_var_t implementation is configured. 735 * 736 * Please also note that __cpumask_var_read_mostly can be used to declare 737 * a cpumask_var_t variable itself (not its content) as read mostly. 738 */ 739#ifdef CONFIG_CPUMASK_OFFSTACK 740typedef struct cpumask *cpumask_var_t; 741 742#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 743#define __cpumask_var_read_mostly __read_mostly 744 745bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 746bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); 747bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 748bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); 749void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 750void free_cpumask_var(cpumask_var_t mask); 751void free_bootmem_cpumask_var(cpumask_var_t mask); 752 753static inline bool cpumask_available(cpumask_var_t mask) 754{ 755 return mask != NULL; 756} 757 758#else 759typedef struct cpumask cpumask_var_t[1]; 760 761#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 762#define __cpumask_var_read_mostly 763 764static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 765{ 766 return true; 767} 768 769static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 770 int node) 771{ 772 return true; 773} 774 775static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 776{ 777 cpumask_clear(*mask); 778 return true; 779} 780 781static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 782 int node) 783{ 784 cpumask_clear(*mask); 785 return true; 786} 787 788static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 789{ 790} 791 792static inline void free_cpumask_var(cpumask_var_t mask) 793{ 794} 795 796static inline void free_bootmem_cpumask_var(cpumask_var_t mask) 797{ 798} 799 800static inline bool cpumask_available(cpumask_var_t mask) 801{ 802 return true; 803} 804#endif /* CONFIG_CPUMASK_OFFSTACK */ 805 806/* It's common to want to use cpu_all_mask in struct member initializers, 807 * so it has to refer to an address rather than a pointer. */ 808extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 809#define cpu_all_mask to_cpumask(cpu_all_bits) 810 811/* First bits of cpu_bit_bitmap are in fact unset. */ 812#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 813 814#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 815#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 816#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 817 818/* Wrappers for arch boot code to manipulate normally-constant masks */ 819void init_cpu_present(const struct cpumask *src); 820void init_cpu_possible(const struct cpumask *src); 821void init_cpu_online(const struct cpumask *src); 822 823static inline void reset_cpu_possible_mask(void) 824{ 825 bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); 826} 827 828static inline void 829set_cpu_possible(unsigned int cpu, bool possible) 830{ 831 if (possible) 832 cpumask_set_cpu(cpu, &__cpu_possible_mask); 833 else 834 cpumask_clear_cpu(cpu, &__cpu_possible_mask); 835} 836 837static inline void 838set_cpu_present(unsigned int cpu, bool present) 839{ 840 if (present) 841 cpumask_set_cpu(cpu, &__cpu_present_mask); 842 else 843 cpumask_clear_cpu(cpu, &__cpu_present_mask); 844} 845 846void set_cpu_online(unsigned int cpu, bool online); 847 848static inline void 849set_cpu_active(unsigned int cpu, bool active) 850{ 851 if (active) 852 cpumask_set_cpu(cpu, &__cpu_active_mask); 853 else 854 cpumask_clear_cpu(cpu, &__cpu_active_mask); 855} 856 857static inline void 858set_cpu_dying(unsigned int cpu, bool dying) 859{ 860 if (dying) 861 cpumask_set_cpu(cpu, &__cpu_dying_mask); 862 else 863 cpumask_clear_cpu(cpu, &__cpu_dying_mask); 864} 865 866/** 867 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * 868 * @bitmap: the bitmap 869 * 870 * There are a few places where cpumask_var_t isn't appropriate and 871 * static cpumasks must be used (eg. very early boot), yet we don't 872 * expose the definition of 'struct cpumask'. 873 * 874 * This does the conversion, and can be used as a constant initializer. 875 */ 876#define to_cpumask(bitmap) \ 877 ((struct cpumask *)(1 ? (bitmap) \ 878 : (void *)sizeof(__check_is_bitmap(bitmap)))) 879 880static inline int __check_is_bitmap(const unsigned long *bitmap) 881{ 882 return 1; 883} 884 885/* 886 * Special-case data structure for "single bit set only" constant CPU masks. 887 * 888 * We pre-generate all the 64 (or 32) possible bit positions, with enough 889 * padding to the left and the right, and return the constant pointer 890 * appropriately offset. 891 */ 892extern const unsigned long 893 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 894 895static inline const struct cpumask *get_cpu_mask(unsigned int cpu) 896{ 897 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 898 p -= cpu / BITS_PER_LONG; 899 return to_cpumask(p); 900} 901 902#if NR_CPUS > 1 903/** 904 * num_online_cpus() - Read the number of online CPUs 905 * 906 * Despite the fact that __num_online_cpus is of type atomic_t, this 907 * interface gives only a momentary snapshot and is not protected against 908 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 909 * region. 910 */ 911static inline unsigned int num_online_cpus(void) 912{ 913 return atomic_read(&__num_online_cpus); 914} 915#define num_possible_cpus() cpumask_weight(cpu_possible_mask) 916#define num_present_cpus() cpumask_weight(cpu_present_mask) 917#define num_active_cpus() cpumask_weight(cpu_active_mask) 918 919static inline bool cpu_online(unsigned int cpu) 920{ 921 return cpumask_test_cpu(cpu, cpu_online_mask); 922} 923 924static inline bool cpu_possible(unsigned int cpu) 925{ 926 return cpumask_test_cpu(cpu, cpu_possible_mask); 927} 928 929static inline bool cpu_present(unsigned int cpu) 930{ 931 return cpumask_test_cpu(cpu, cpu_present_mask); 932} 933 934static inline bool cpu_active(unsigned int cpu) 935{ 936 return cpumask_test_cpu(cpu, cpu_active_mask); 937} 938 939static inline bool cpu_dying(unsigned int cpu) 940{ 941 return cpumask_test_cpu(cpu, cpu_dying_mask); 942} 943 944#else 945 946#define num_online_cpus() 1U 947#define num_possible_cpus() 1U 948#define num_present_cpus() 1U 949#define num_active_cpus() 1U 950 951static inline bool cpu_online(unsigned int cpu) 952{ 953 return cpu == 0; 954} 955 956static inline bool cpu_possible(unsigned int cpu) 957{ 958 return cpu == 0; 959} 960 961static inline bool cpu_present(unsigned int cpu) 962{ 963 return cpu == 0; 964} 965 966static inline bool cpu_active(unsigned int cpu) 967{ 968 return cpu == 0; 969} 970 971static inline bool cpu_dying(unsigned int cpu) 972{ 973 return false; 974} 975 976#endif /* NR_CPUS > 1 */ 977 978#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 979 980#if NR_CPUS <= BITS_PER_LONG 981#define CPU_BITS_ALL \ 982{ \ 983 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 984} 985 986#else /* NR_CPUS > BITS_PER_LONG */ 987 988#define CPU_BITS_ALL \ 989{ \ 990 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 991 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 992} 993#endif /* NR_CPUS > BITS_PER_LONG */ 994 995/** 996 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 997 * as comma-separated list of cpus or hex values of cpumask 998 * @list: indicates whether the cpumap must be list 999 * @mask: the cpumask to copy 1000 * @buf: the buffer to copy into 1001 * 1002 * Returns the length of the (null-terminated) @buf string, zero if 1003 * nothing is copied. 1004 */ 1005static inline ssize_t 1006cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1007{ 1008 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1009 nr_cpu_ids); 1010} 1011 1012/** 1013 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1014 * hex values of cpumask 1015 * 1016 * @buf: the buffer to copy into 1017 * @mask: the cpumask to copy 1018 * @off: in the string from which we are copying, we copy to @buf 1019 * @count: the maximum number of bytes to print 1020 * 1021 * The function prints the cpumask into the buffer as hex values of 1022 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1023 * ABI. 1024 * 1025 * Returns the length of how many bytes have been copied, excluding 1026 * terminating '\0'. 1027 */ 1028static inline ssize_t 1029cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1030 loff_t off, size_t count) 1031{ 1032 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1033 nr_cpu_ids, off, count) - 1; 1034} 1035 1036/** 1037 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1038 * comma-separated list of cpus 1039 * 1040 * Everything is same with the above cpumap_print_bitmask_to_buf() 1041 * except the print format. 1042 */ 1043static inline ssize_t 1044cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1045 loff_t off, size_t count) 1046{ 1047 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1048 nr_cpu_ids, off, count) - 1; 1049} 1050 1051#if NR_CPUS <= BITS_PER_LONG 1052#define CPU_MASK_ALL \ 1053(cpumask_t) { { \ 1054 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1055} } 1056#else 1057#define CPU_MASK_ALL \ 1058(cpumask_t) { { \ 1059 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1060 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1061} } 1062#endif /* NR_CPUS > BITS_PER_LONG */ 1063 1064#define CPU_MASK_NONE \ 1065(cpumask_t) { { \ 1066 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1067} } 1068 1069#define CPU_MASK_CPU0 \ 1070(cpumask_t) { { \ 1071 [0] = 1UL \ 1072} } 1073 1074#endif /* __LINUX_CPUMASK_H */