crypto.h (28100B)
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 6 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 10 * and Nettle, by Niels Möller. 11 */ 12#ifndef _LINUX_CRYPTO_H 13#define _LINUX_CRYPTO_H 14 15#include <linux/atomic.h> 16#include <linux/kernel.h> 17#include <linux/list.h> 18#include <linux/bug.h> 19#include <linux/refcount.h> 20#include <linux/slab.h> 21#include <linux/completion.h> 22 23/* 24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 25 * arbitrary modules to be loaded. Loading from userspace may still need the 26 * unprefixed names, so retains those aliases as well. 27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 29 * expands twice on the same line. Instead, use a separate base name for the 30 * alias. 31 */ 32#define MODULE_ALIAS_CRYPTO(name) \ 33 __MODULE_INFO(alias, alias_userspace, name); \ 34 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 35 36/* 37 * Algorithm masks and types. 38 */ 39#define CRYPTO_ALG_TYPE_MASK 0x0000000f 40#define CRYPTO_ALG_TYPE_CIPHER 0x00000001 41#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 42#define CRYPTO_ALG_TYPE_AEAD 0x00000003 43#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 44#define CRYPTO_ALG_TYPE_KPP 0x00000008 45#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 46#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 47#define CRYPTO_ALG_TYPE_RNG 0x0000000c 48#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 49#define CRYPTO_ALG_TYPE_HASH 0x0000000e 50#define CRYPTO_ALG_TYPE_SHASH 0x0000000e 51#define CRYPTO_ALG_TYPE_AHASH 0x0000000f 52 53#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 54#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 55#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 56 57#define CRYPTO_ALG_LARVAL 0x00000010 58#define CRYPTO_ALG_DEAD 0x00000020 59#define CRYPTO_ALG_DYING 0x00000040 60#define CRYPTO_ALG_ASYNC 0x00000080 61 62/* 63 * Set if the algorithm (or an algorithm which it uses) requires another 64 * algorithm of the same type to handle corner cases. 65 */ 66#define CRYPTO_ALG_NEED_FALLBACK 0x00000100 67 68/* 69 * Set if the algorithm has passed automated run-time testing. Note that 70 * if there is no run-time testing for a given algorithm it is considered 71 * to have passed. 72 */ 73 74#define CRYPTO_ALG_TESTED 0x00000400 75 76/* 77 * Set if the algorithm is an instance that is built from templates. 78 */ 79#define CRYPTO_ALG_INSTANCE 0x00000800 80 81/* Set this bit if the algorithm provided is hardware accelerated but 82 * not available to userspace via instruction set or so. 83 */ 84#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 85 86/* 87 * Mark a cipher as a service implementation only usable by another 88 * cipher and never by a normal user of the kernel crypto API 89 */ 90#define CRYPTO_ALG_INTERNAL 0x00002000 91 92/* 93 * Set if the algorithm has a ->setkey() method but can be used without 94 * calling it first, i.e. there is a default key. 95 */ 96#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 97 98/* 99 * Don't trigger module loading 100 */ 101#define CRYPTO_NOLOAD 0x00008000 102 103/* 104 * The algorithm may allocate memory during request processing, i.e. during 105 * encryption, decryption, or hashing. Users can request an algorithm with this 106 * flag unset if they can't handle memory allocation failures. 107 * 108 * This flag is currently only implemented for algorithms of type "skcipher", 109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not 110 * have this flag set even if they allocate memory. 111 * 112 * In some edge cases, algorithms can allocate memory regardless of this flag. 113 * To avoid these cases, users must obey the following usage constraints: 114 * skcipher: 115 * - The IV buffer and all scatterlist elements must be aligned to the 116 * algorithm's alignmask. 117 * - If the data were to be divided into chunks of size 118 * crypto_skcipher_walksize() (with any remainder going at the end), no 119 * chunk can cross a page boundary or a scatterlist element boundary. 120 * aead: 121 * - The IV buffer and all scatterlist elements must be aligned to the 122 * algorithm's alignmask. 123 * - The first scatterlist element must contain all the associated data, 124 * and its pages must be !PageHighMem. 125 * - If the plaintext/ciphertext were to be divided into chunks of size 126 * crypto_aead_walksize() (with the remainder going at the end), no chunk 127 * can cross a page boundary or a scatterlist element boundary. 128 * ahash: 129 * - The result buffer must be aligned to the algorithm's alignmask. 130 * - crypto_ahash_finup() must not be used unless the algorithm implements 131 * ->finup() natively. 132 */ 133#define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 134 135/* 136 * Mark an algorithm as a service implementation only usable by a 137 * template and never by a normal user of the kernel crypto API. 138 * This is intended to be used by algorithms that are themselves 139 * not FIPS-approved but may instead be used to implement parts of 140 * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)). 141 */ 142#define CRYPTO_ALG_FIPS_INTERNAL 0x00020000 143 144/* 145 * Transform masks and values (for crt_flags). 146 */ 147#define CRYPTO_TFM_NEED_KEY 0x00000001 148 149#define CRYPTO_TFM_REQ_MASK 0x000fff00 150#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 151#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 152#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 153 154/* 155 * Miscellaneous stuff. 156 */ 157#define CRYPTO_MAX_ALG_NAME 128 158 159/* 160 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 161 * declaration) is used to ensure that the crypto_tfm context structure is 162 * aligned correctly for the given architecture so that there are no alignment 163 * faults for C data types. On architectures that support non-cache coherent 164 * DMA, such as ARM or arm64, it also takes into account the minimal alignment 165 * that is required to ensure that the context struct member does not share any 166 * cachelines with the rest of the struct. This is needed to ensure that cache 167 * maintenance for non-coherent DMA (cache invalidation in particular) does not 168 * affect data that may be accessed by the CPU concurrently. 169 */ 170#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 171 172#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 173 174struct scatterlist; 175struct crypto_async_request; 176struct crypto_tfm; 177struct crypto_type; 178 179typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 180 181/** 182 * DOC: Block Cipher Context Data Structures 183 * 184 * These data structures define the operating context for each block cipher 185 * type. 186 */ 187 188struct crypto_async_request { 189 struct list_head list; 190 crypto_completion_t complete; 191 void *data; 192 struct crypto_tfm *tfm; 193 194 u32 flags; 195}; 196 197/** 198 * DOC: Block Cipher Algorithm Definitions 199 * 200 * These data structures define modular crypto algorithm implementations, 201 * managed via crypto_register_alg() and crypto_unregister_alg(). 202 */ 203 204/** 205 * struct cipher_alg - single-block symmetric ciphers definition 206 * @cia_min_keysize: Minimum key size supported by the transformation. This is 207 * the smallest key length supported by this transformation 208 * algorithm. This must be set to one of the pre-defined 209 * values as this is not hardware specific. Possible values 210 * for this field can be found via git grep "_MIN_KEY_SIZE" 211 * include/crypto/ 212 * @cia_max_keysize: Maximum key size supported by the transformation. This is 213 * the largest key length supported by this transformation 214 * algorithm. This must be set to one of the pre-defined values 215 * as this is not hardware specific. Possible values for this 216 * field can be found via git grep "_MAX_KEY_SIZE" 217 * include/crypto/ 218 * @cia_setkey: Set key for the transformation. This function is used to either 219 * program a supplied key into the hardware or store the key in the 220 * transformation context for programming it later. Note that this 221 * function does modify the transformation context. This function 222 * can be called multiple times during the existence of the 223 * transformation object, so one must make sure the key is properly 224 * reprogrammed into the hardware. This function is also 225 * responsible for checking the key length for validity. 226 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 227 * single block of data, which must be @cra_blocksize big. This 228 * always operates on a full @cra_blocksize and it is not possible 229 * to encrypt a block of smaller size. The supplied buffers must 230 * therefore also be at least of @cra_blocksize size. Both the 231 * input and output buffers are always aligned to @cra_alignmask. 232 * In case either of the input or output buffer supplied by user 233 * of the crypto API is not aligned to @cra_alignmask, the crypto 234 * API will re-align the buffers. The re-alignment means that a 235 * new buffer will be allocated, the data will be copied into the 236 * new buffer, then the processing will happen on the new buffer, 237 * then the data will be copied back into the original buffer and 238 * finally the new buffer will be freed. In case a software 239 * fallback was put in place in the @cra_init call, this function 240 * might need to use the fallback if the algorithm doesn't support 241 * all of the key sizes. In case the key was stored in 242 * transformation context, the key might need to be re-programmed 243 * into the hardware in this function. This function shall not 244 * modify the transformation context, as this function may be 245 * called in parallel with the same transformation object. 246 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 247 * @cia_encrypt, and the conditions are exactly the same. 248 * 249 * All fields are mandatory and must be filled. 250 */ 251struct cipher_alg { 252 unsigned int cia_min_keysize; 253 unsigned int cia_max_keysize; 254 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 255 unsigned int keylen); 256 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 257 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 258}; 259 260/** 261 * struct compress_alg - compression/decompression algorithm 262 * @coa_compress: Compress a buffer of specified length, storing the resulting 263 * data in the specified buffer. Return the length of the 264 * compressed data in dlen. 265 * @coa_decompress: Decompress the source buffer, storing the uncompressed 266 * data in the specified buffer. The length of the data is 267 * returned in dlen. 268 * 269 * All fields are mandatory. 270 */ 271struct compress_alg { 272 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 273 unsigned int slen, u8 *dst, unsigned int *dlen); 274 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 275 unsigned int slen, u8 *dst, unsigned int *dlen); 276}; 277 278#ifdef CONFIG_CRYPTO_STATS 279/* 280 * struct crypto_istat_aead - statistics for AEAD algorithm 281 * @encrypt_cnt: number of encrypt requests 282 * @encrypt_tlen: total data size handled by encrypt requests 283 * @decrypt_cnt: number of decrypt requests 284 * @decrypt_tlen: total data size handled by decrypt requests 285 * @err_cnt: number of error for AEAD requests 286 */ 287struct crypto_istat_aead { 288 atomic64_t encrypt_cnt; 289 atomic64_t encrypt_tlen; 290 atomic64_t decrypt_cnt; 291 atomic64_t decrypt_tlen; 292 atomic64_t err_cnt; 293}; 294 295/* 296 * struct crypto_istat_akcipher - statistics for akcipher algorithm 297 * @encrypt_cnt: number of encrypt requests 298 * @encrypt_tlen: total data size handled by encrypt requests 299 * @decrypt_cnt: number of decrypt requests 300 * @decrypt_tlen: total data size handled by decrypt requests 301 * @verify_cnt: number of verify operation 302 * @sign_cnt: number of sign requests 303 * @err_cnt: number of error for akcipher requests 304 */ 305struct crypto_istat_akcipher { 306 atomic64_t encrypt_cnt; 307 atomic64_t encrypt_tlen; 308 atomic64_t decrypt_cnt; 309 atomic64_t decrypt_tlen; 310 atomic64_t verify_cnt; 311 atomic64_t sign_cnt; 312 atomic64_t err_cnt; 313}; 314 315/* 316 * struct crypto_istat_cipher - statistics for cipher algorithm 317 * @encrypt_cnt: number of encrypt requests 318 * @encrypt_tlen: total data size handled by encrypt requests 319 * @decrypt_cnt: number of decrypt requests 320 * @decrypt_tlen: total data size handled by decrypt requests 321 * @err_cnt: number of error for cipher requests 322 */ 323struct crypto_istat_cipher { 324 atomic64_t encrypt_cnt; 325 atomic64_t encrypt_tlen; 326 atomic64_t decrypt_cnt; 327 atomic64_t decrypt_tlen; 328 atomic64_t err_cnt; 329}; 330 331/* 332 * struct crypto_istat_compress - statistics for compress algorithm 333 * @compress_cnt: number of compress requests 334 * @compress_tlen: total data size handled by compress requests 335 * @decompress_cnt: number of decompress requests 336 * @decompress_tlen: total data size handled by decompress requests 337 * @err_cnt: number of error for compress requests 338 */ 339struct crypto_istat_compress { 340 atomic64_t compress_cnt; 341 atomic64_t compress_tlen; 342 atomic64_t decompress_cnt; 343 atomic64_t decompress_tlen; 344 atomic64_t err_cnt; 345}; 346 347/* 348 * struct crypto_istat_hash - statistics for has algorithm 349 * @hash_cnt: number of hash requests 350 * @hash_tlen: total data size hashed 351 * @err_cnt: number of error for hash requests 352 */ 353struct crypto_istat_hash { 354 atomic64_t hash_cnt; 355 atomic64_t hash_tlen; 356 atomic64_t err_cnt; 357}; 358 359/* 360 * struct crypto_istat_kpp - statistics for KPP algorithm 361 * @setsecret_cnt: number of setsecrey operation 362 * @generate_public_key_cnt: number of generate_public_key operation 363 * @compute_shared_secret_cnt: number of compute_shared_secret operation 364 * @err_cnt: number of error for KPP requests 365 */ 366struct crypto_istat_kpp { 367 atomic64_t setsecret_cnt; 368 atomic64_t generate_public_key_cnt; 369 atomic64_t compute_shared_secret_cnt; 370 atomic64_t err_cnt; 371}; 372 373/* 374 * struct crypto_istat_rng: statistics for RNG algorithm 375 * @generate_cnt: number of RNG generate requests 376 * @generate_tlen: total data size of generated data by the RNG 377 * @seed_cnt: number of times the RNG was seeded 378 * @err_cnt: number of error for RNG requests 379 */ 380struct crypto_istat_rng { 381 atomic64_t generate_cnt; 382 atomic64_t generate_tlen; 383 atomic64_t seed_cnt; 384 atomic64_t err_cnt; 385}; 386#endif /* CONFIG_CRYPTO_STATS */ 387 388#define cra_cipher cra_u.cipher 389#define cra_compress cra_u.compress 390 391/** 392 * struct crypto_alg - definition of a cryptograpic cipher algorithm 393 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 394 * CRYPTO_ALG_* flags for the flags which go in here. Those are 395 * used for fine-tuning the description of the transformation 396 * algorithm. 397 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 398 * of the smallest possible unit which can be transformed with 399 * this algorithm. The users must respect this value. 400 * In case of HASH transformation, it is possible for a smaller 401 * block than @cra_blocksize to be passed to the crypto API for 402 * transformation, in case of any other transformation type, an 403 * error will be returned upon any attempt to transform smaller 404 * than @cra_blocksize chunks. 405 * @cra_ctxsize: Size of the operational context of the transformation. This 406 * value informs the kernel crypto API about the memory size 407 * needed to be allocated for the transformation context. 408 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 409 * buffer containing the input data for the algorithm must be 410 * aligned to this alignment mask. The data buffer for the 411 * output data must be aligned to this alignment mask. Note that 412 * the Crypto API will do the re-alignment in software, but 413 * only under special conditions and there is a performance hit. 414 * The re-alignment happens at these occasions for different 415 * @cra_u types: cipher -- For both input data and output data 416 * buffer; ahash -- For output hash destination buf; shash -- 417 * For output hash destination buf. 418 * This is needed on hardware which is flawed by design and 419 * cannot pick data from arbitrary addresses. 420 * @cra_priority: Priority of this transformation implementation. In case 421 * multiple transformations with same @cra_name are available to 422 * the Crypto API, the kernel will use the one with highest 423 * @cra_priority. 424 * @cra_name: Generic name (usable by multiple implementations) of the 425 * transformation algorithm. This is the name of the transformation 426 * itself. This field is used by the kernel when looking up the 427 * providers of particular transformation. 428 * @cra_driver_name: Unique name of the transformation provider. This is the 429 * name of the provider of the transformation. This can be any 430 * arbitrary value, but in the usual case, this contains the 431 * name of the chip or provider and the name of the 432 * transformation algorithm. 433 * @cra_type: Type of the cryptographic transformation. This is a pointer to 434 * struct crypto_type, which implements callbacks common for all 435 * transformation types. There are multiple options, such as 436 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. 437 * This field might be empty. In that case, there are no common 438 * callbacks. This is the case for: cipher, compress, shash. 439 * @cra_u: Callbacks implementing the transformation. This is a union of 440 * multiple structures. Depending on the type of transformation selected 441 * by @cra_type and @cra_flags above, the associated structure must be 442 * filled with callbacks. This field might be empty. This is the case 443 * for ahash, shash. 444 * @cra_init: Initialize the cryptographic transformation object. This function 445 * is used to initialize the cryptographic transformation object. 446 * This function is called only once at the instantiation time, right 447 * after the transformation context was allocated. In case the 448 * cryptographic hardware has some special requirements which need to 449 * be handled by software, this function shall check for the precise 450 * requirement of the transformation and put any software fallbacks 451 * in place. 452 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 453 * counterpart to @cra_init, used to remove various changes set in 454 * @cra_init. 455 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 456 * definition. See @struct @cipher_alg. 457 * @cra_u.compress: Union member which contains a (de)compression algorithm. 458 * See @struct @compress_alg. 459 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 460 * @cra_list: internally used 461 * @cra_users: internally used 462 * @cra_refcnt: internally used 463 * @cra_destroy: internally used 464 * 465 * @stats: union of all possible crypto_istat_xxx structures 466 * @stats.aead: statistics for AEAD algorithm 467 * @stats.akcipher: statistics for akcipher algorithm 468 * @stats.cipher: statistics for cipher algorithm 469 * @stats.compress: statistics for compress algorithm 470 * @stats.hash: statistics for hash algorithm 471 * @stats.rng: statistics for rng algorithm 472 * @stats.kpp: statistics for KPP algorithm 473 * 474 * The struct crypto_alg describes a generic Crypto API algorithm and is common 475 * for all of the transformations. Any variable not documented here shall not 476 * be used by a cipher implementation as it is internal to the Crypto API. 477 */ 478struct crypto_alg { 479 struct list_head cra_list; 480 struct list_head cra_users; 481 482 u32 cra_flags; 483 unsigned int cra_blocksize; 484 unsigned int cra_ctxsize; 485 unsigned int cra_alignmask; 486 487 int cra_priority; 488 refcount_t cra_refcnt; 489 490 char cra_name[CRYPTO_MAX_ALG_NAME]; 491 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 492 493 const struct crypto_type *cra_type; 494 495 union { 496 struct cipher_alg cipher; 497 struct compress_alg compress; 498 } cra_u; 499 500 int (*cra_init)(struct crypto_tfm *tfm); 501 void (*cra_exit)(struct crypto_tfm *tfm); 502 void (*cra_destroy)(struct crypto_alg *alg); 503 504 struct module *cra_module; 505 506#ifdef CONFIG_CRYPTO_STATS 507 union { 508 struct crypto_istat_aead aead; 509 struct crypto_istat_akcipher akcipher; 510 struct crypto_istat_cipher cipher; 511 struct crypto_istat_compress compress; 512 struct crypto_istat_hash hash; 513 struct crypto_istat_rng rng; 514 struct crypto_istat_kpp kpp; 515 } stats; 516#endif /* CONFIG_CRYPTO_STATS */ 517 518} CRYPTO_MINALIGN_ATTR; 519 520#ifdef CONFIG_CRYPTO_STATS 521void crypto_stats_init(struct crypto_alg *alg); 522void crypto_stats_get(struct crypto_alg *alg); 523void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 524void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 525void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 526void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 527void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 528void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 529void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 530void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 531void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 532void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 533void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 534void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 535void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 536void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 537void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 538void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 539void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 540#else 541static inline void crypto_stats_init(struct crypto_alg *alg) 542{} 543static inline void crypto_stats_get(struct crypto_alg *alg) 544{} 545static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 546{} 547static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 548{} 549static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 550{} 551static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 552{} 553static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 554{} 555static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 556{} 557static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 558{} 559static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 560{} 561static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 562{} 563static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 564{} 565static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 566{} 567static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 568{} 569static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 570{} 571static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 572{} 573static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 574{} 575static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 576{} 577static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 578{} 579#endif 580/* 581 * A helper struct for waiting for completion of async crypto ops 582 */ 583struct crypto_wait { 584 struct completion completion; 585 int err; 586}; 587 588/* 589 * Macro for declaring a crypto op async wait object on stack 590 */ 591#define DECLARE_CRYPTO_WAIT(_wait) \ 592 struct crypto_wait _wait = { \ 593 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 594 595/* 596 * Async ops completion helper functioons 597 */ 598void crypto_req_done(struct crypto_async_request *req, int err); 599 600static inline int crypto_wait_req(int err, struct crypto_wait *wait) 601{ 602 switch (err) { 603 case -EINPROGRESS: 604 case -EBUSY: 605 wait_for_completion(&wait->completion); 606 reinit_completion(&wait->completion); 607 err = wait->err; 608 break; 609 } 610 611 return err; 612} 613 614static inline void crypto_init_wait(struct crypto_wait *wait) 615{ 616 init_completion(&wait->completion); 617} 618 619/* 620 * Algorithm registration interface. 621 */ 622int crypto_register_alg(struct crypto_alg *alg); 623void crypto_unregister_alg(struct crypto_alg *alg); 624int crypto_register_algs(struct crypto_alg *algs, int count); 625void crypto_unregister_algs(struct crypto_alg *algs, int count); 626 627/* 628 * Algorithm query interface. 629 */ 630int crypto_has_alg(const char *name, u32 type, u32 mask); 631 632/* 633 * Transforms: user-instantiated objects which encapsulate algorithms 634 * and core processing logic. Managed via crypto_alloc_*() and 635 * crypto_free_*(), as well as the various helpers below. 636 */ 637 638struct crypto_tfm { 639 640 u32 crt_flags; 641 642 int node; 643 644 void (*exit)(struct crypto_tfm *tfm); 645 646 struct crypto_alg *__crt_alg; 647 648 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 649}; 650 651struct crypto_comp { 652 struct crypto_tfm base; 653}; 654 655/* 656 * Transform user interface. 657 */ 658 659struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 660void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 661 662static inline void crypto_free_tfm(struct crypto_tfm *tfm) 663{ 664 return crypto_destroy_tfm(tfm, tfm); 665} 666 667int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 668 669/* 670 * Transform helpers which query the underlying algorithm. 671 */ 672static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 673{ 674 return tfm->__crt_alg->cra_name; 675} 676 677static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 678{ 679 return tfm->__crt_alg->cra_driver_name; 680} 681 682static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 683{ 684 return tfm->__crt_alg->cra_priority; 685} 686 687static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 688{ 689 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 690} 691 692static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 693{ 694 return tfm->__crt_alg->cra_blocksize; 695} 696 697static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 698{ 699 return tfm->__crt_alg->cra_alignmask; 700} 701 702static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 703{ 704 return tfm->crt_flags; 705} 706 707static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 708{ 709 tfm->crt_flags |= flags; 710} 711 712static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 713{ 714 tfm->crt_flags &= ~flags; 715} 716 717static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 718{ 719 return tfm->__crt_ctx; 720} 721 722static inline unsigned int crypto_tfm_ctx_alignment(void) 723{ 724 struct crypto_tfm *tfm; 725 return __alignof__(tfm->__crt_ctx); 726} 727 728static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 729{ 730 return (struct crypto_comp *)tfm; 731} 732 733static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 734 u32 type, u32 mask) 735{ 736 type &= ~CRYPTO_ALG_TYPE_MASK; 737 type |= CRYPTO_ALG_TYPE_COMPRESS; 738 mask |= CRYPTO_ALG_TYPE_MASK; 739 740 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 741} 742 743static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 744{ 745 return &tfm->base; 746} 747 748static inline void crypto_free_comp(struct crypto_comp *tfm) 749{ 750 crypto_free_tfm(crypto_comp_tfm(tfm)); 751} 752 753static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 754{ 755 type &= ~CRYPTO_ALG_TYPE_MASK; 756 type |= CRYPTO_ALG_TYPE_COMPRESS; 757 mask |= CRYPTO_ALG_TYPE_MASK; 758 759 return crypto_has_alg(alg_name, type, mask); 760} 761 762static inline const char *crypto_comp_name(struct crypto_comp *tfm) 763{ 764 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 765} 766 767int crypto_comp_compress(struct crypto_comp *tfm, 768 const u8 *src, unsigned int slen, 769 u8 *dst, unsigned int *dlen); 770 771int crypto_comp_decompress(struct crypto_comp *tfm, 772 const u8 *src, unsigned int slen, 773 u8 *dst, unsigned int *dlen); 774 775#endif /* _LINUX_CRYPTO_H */ 776