dma-mapping.h (20289B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_DMA_MAPPING_H 3#define _LINUX_DMA_MAPPING_H 4 5#include <linux/sizes.h> 6#include <linux/string.h> 7#include <linux/device.h> 8#include <linux/err.h> 9#include <linux/dma-direction.h> 10#include <linux/scatterlist.h> 11#include <linux/bug.h> 12#include <linux/mem_encrypt.h> 13 14/** 15 * List of possible attributes associated with a DMA mapping. The semantics 16 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst. 17 */ 18 19/* 20 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping 21 * may be weakly ordered, that is that reads and writes may pass each other. 22 */ 23#define DMA_ATTR_WEAK_ORDERING (1UL << 1) 24/* 25 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be 26 * buffered to improve performance. 27 */ 28#define DMA_ATTR_WRITE_COMBINE (1UL << 2) 29/* 30 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel 31 * virtual mapping for the allocated buffer. 32 */ 33#define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) 34/* 35 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of 36 * the CPU cache for the given buffer assuming that it has been already 37 * transferred to 'device' domain. 38 */ 39#define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) 40/* 41 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer 42 * in physical memory. 43 */ 44#define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) 45/* 46 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem 47 * that it's probably not worth the time to try to allocate memory to in a way 48 * that gives better TLB efficiency. 49 */ 50#define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) 51/* 52 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress 53 * allocation failure reports (similarly to __GFP_NOWARN). 54 */ 55#define DMA_ATTR_NO_WARN (1UL << 8) 56 57/* 58 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully 59 * accessible at an elevated privilege level (and ideally inaccessible or 60 * at least read-only at lesser-privileged levels). 61 */ 62#define DMA_ATTR_PRIVILEGED (1UL << 9) 63 64/* 65 * A dma_addr_t can hold any valid DMA or bus address for the platform. It can 66 * be given to a device to use as a DMA source or target. It is specific to a 67 * given device and there may be a translation between the CPU physical address 68 * space and the bus address space. 69 * 70 * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not 71 * be used directly in drivers, but checked for using dma_mapping_error() 72 * instead. 73 */ 74#define DMA_MAPPING_ERROR (~(dma_addr_t)0) 75 76#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 77 78#ifdef CONFIG_DMA_API_DEBUG 79void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr); 80void debug_dma_map_single(struct device *dev, const void *addr, 81 unsigned long len); 82#else 83static inline void debug_dma_mapping_error(struct device *dev, 84 dma_addr_t dma_addr) 85{ 86} 87static inline void debug_dma_map_single(struct device *dev, const void *addr, 88 unsigned long len) 89{ 90} 91#endif /* CONFIG_DMA_API_DEBUG */ 92 93#ifdef CONFIG_HAS_DMA 94static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 95{ 96 debug_dma_mapping_error(dev, dma_addr); 97 98 if (unlikely(dma_addr == DMA_MAPPING_ERROR)) 99 return -ENOMEM; 100 return 0; 101} 102 103dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 104 size_t offset, size_t size, enum dma_data_direction dir, 105 unsigned long attrs); 106void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 107 enum dma_data_direction dir, unsigned long attrs); 108unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 109 int nents, enum dma_data_direction dir, unsigned long attrs); 110void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 111 int nents, enum dma_data_direction dir, 112 unsigned long attrs); 113int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 114 enum dma_data_direction dir, unsigned long attrs); 115dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 116 size_t size, enum dma_data_direction dir, unsigned long attrs); 117void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 118 enum dma_data_direction dir, unsigned long attrs); 119void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 120 enum dma_data_direction dir); 121void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 122 size_t size, enum dma_data_direction dir); 123void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 124 int nelems, enum dma_data_direction dir); 125void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 126 int nelems, enum dma_data_direction dir); 127void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 128 gfp_t flag, unsigned long attrs); 129void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 130 dma_addr_t dma_handle, unsigned long attrs); 131void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 132 gfp_t gfp, unsigned long attrs); 133void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 134 dma_addr_t dma_handle); 135int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 136 void *cpu_addr, dma_addr_t dma_addr, size_t size, 137 unsigned long attrs); 138int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 139 void *cpu_addr, dma_addr_t dma_addr, size_t size, 140 unsigned long attrs); 141bool dma_can_mmap(struct device *dev); 142int dma_supported(struct device *dev, u64 mask); 143int dma_set_mask(struct device *dev, u64 mask); 144int dma_set_coherent_mask(struct device *dev, u64 mask); 145u64 dma_get_required_mask(struct device *dev); 146size_t dma_max_mapping_size(struct device *dev); 147bool dma_need_sync(struct device *dev, dma_addr_t dma_addr); 148unsigned long dma_get_merge_boundary(struct device *dev); 149struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 150 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs); 151void dma_free_noncontiguous(struct device *dev, size_t size, 152 struct sg_table *sgt, enum dma_data_direction dir); 153void *dma_vmap_noncontiguous(struct device *dev, size_t size, 154 struct sg_table *sgt); 155void dma_vunmap_noncontiguous(struct device *dev, void *vaddr); 156int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 157 size_t size, struct sg_table *sgt); 158#else /* CONFIG_HAS_DMA */ 159static inline dma_addr_t dma_map_page_attrs(struct device *dev, 160 struct page *page, size_t offset, size_t size, 161 enum dma_data_direction dir, unsigned long attrs) 162{ 163 return DMA_MAPPING_ERROR; 164} 165static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, 166 size_t size, enum dma_data_direction dir, unsigned long attrs) 167{ 168} 169static inline unsigned int dma_map_sg_attrs(struct device *dev, 170 struct scatterlist *sg, int nents, enum dma_data_direction dir, 171 unsigned long attrs) 172{ 173 return 0; 174} 175static inline void dma_unmap_sg_attrs(struct device *dev, 176 struct scatterlist *sg, int nents, enum dma_data_direction dir, 177 unsigned long attrs) 178{ 179} 180static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 181 enum dma_data_direction dir, unsigned long attrs) 182{ 183 return -EOPNOTSUPP; 184} 185static inline dma_addr_t dma_map_resource(struct device *dev, 186 phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, 187 unsigned long attrs) 188{ 189 return DMA_MAPPING_ERROR; 190} 191static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, 192 size_t size, enum dma_data_direction dir, unsigned long attrs) 193{ 194} 195static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 196 size_t size, enum dma_data_direction dir) 197{ 198} 199static inline void dma_sync_single_for_device(struct device *dev, 200 dma_addr_t addr, size_t size, enum dma_data_direction dir) 201{ 202} 203static inline void dma_sync_sg_for_cpu(struct device *dev, 204 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 205{ 206} 207static inline void dma_sync_sg_for_device(struct device *dev, 208 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 209{ 210} 211static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 212{ 213 return -ENOMEM; 214} 215static inline void *dma_alloc_attrs(struct device *dev, size_t size, 216 dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) 217{ 218 return NULL; 219} 220static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 221 dma_addr_t dma_handle, unsigned long attrs) 222{ 223} 224static inline void *dmam_alloc_attrs(struct device *dev, size_t size, 225 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 226{ 227 return NULL; 228} 229static inline void dmam_free_coherent(struct device *dev, size_t size, 230 void *vaddr, dma_addr_t dma_handle) 231{ 232} 233static inline int dma_get_sgtable_attrs(struct device *dev, 234 struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, 235 size_t size, unsigned long attrs) 236{ 237 return -ENXIO; 238} 239static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 240 void *cpu_addr, dma_addr_t dma_addr, size_t size, 241 unsigned long attrs) 242{ 243 return -ENXIO; 244} 245static inline bool dma_can_mmap(struct device *dev) 246{ 247 return false; 248} 249static inline int dma_supported(struct device *dev, u64 mask) 250{ 251 return 0; 252} 253static inline int dma_set_mask(struct device *dev, u64 mask) 254{ 255 return -EIO; 256} 257static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 258{ 259 return -EIO; 260} 261static inline u64 dma_get_required_mask(struct device *dev) 262{ 263 return 0; 264} 265static inline size_t dma_max_mapping_size(struct device *dev) 266{ 267 return 0; 268} 269static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 270{ 271 return false; 272} 273static inline unsigned long dma_get_merge_boundary(struct device *dev) 274{ 275 return 0; 276} 277static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev, 278 size_t size, enum dma_data_direction dir, gfp_t gfp, 279 unsigned long attrs) 280{ 281 return NULL; 282} 283static inline void dma_free_noncontiguous(struct device *dev, size_t size, 284 struct sg_table *sgt, enum dma_data_direction dir) 285{ 286} 287static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size, 288 struct sg_table *sgt) 289{ 290 return NULL; 291} 292static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 293{ 294} 295static inline int dma_mmap_noncontiguous(struct device *dev, 296 struct vm_area_struct *vma, size_t size, struct sg_table *sgt) 297{ 298 return -EINVAL; 299} 300#endif /* CONFIG_HAS_DMA */ 301 302struct page *dma_alloc_pages(struct device *dev, size_t size, 303 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); 304void dma_free_pages(struct device *dev, size_t size, struct page *page, 305 dma_addr_t dma_handle, enum dma_data_direction dir); 306int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 307 size_t size, struct page *page); 308 309static inline void *dma_alloc_noncoherent(struct device *dev, size_t size, 310 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 311{ 312 struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp); 313 return page ? page_address(page) : NULL; 314} 315 316static inline void dma_free_noncoherent(struct device *dev, size_t size, 317 void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir) 318{ 319 dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir); 320} 321 322static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 323 size_t size, enum dma_data_direction dir, unsigned long attrs) 324{ 325 /* DMA must never operate on areas that might be remapped. */ 326 if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr), 327 "rejecting DMA map of vmalloc memory\n")) 328 return DMA_MAPPING_ERROR; 329 debug_dma_map_single(dev, ptr, size); 330 return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr), 331 size, dir, attrs); 332} 333 334static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 335 size_t size, enum dma_data_direction dir, unsigned long attrs) 336{ 337 return dma_unmap_page_attrs(dev, addr, size, dir, attrs); 338} 339 340static inline void dma_sync_single_range_for_cpu(struct device *dev, 341 dma_addr_t addr, unsigned long offset, size_t size, 342 enum dma_data_direction dir) 343{ 344 return dma_sync_single_for_cpu(dev, addr + offset, size, dir); 345} 346 347static inline void dma_sync_single_range_for_device(struct device *dev, 348 dma_addr_t addr, unsigned long offset, size_t size, 349 enum dma_data_direction dir) 350{ 351 return dma_sync_single_for_device(dev, addr + offset, size, dir); 352} 353 354/** 355 * dma_unmap_sgtable - Unmap the given buffer for DMA 356 * @dev: The device for which to perform the DMA operation 357 * @sgt: The sg_table object describing the buffer 358 * @dir: DMA direction 359 * @attrs: Optional DMA attributes for the unmap operation 360 * 361 * Unmaps a buffer described by a scatterlist stored in the given sg_table 362 * object for the @dir DMA operation by the @dev device. After this function 363 * the ownership of the buffer is transferred back to the CPU domain. 364 */ 365static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt, 366 enum dma_data_direction dir, unsigned long attrs) 367{ 368 dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 369} 370 371/** 372 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access 373 * @dev: The device for which to perform the DMA operation 374 * @sgt: The sg_table object describing the buffer 375 * @dir: DMA direction 376 * 377 * Performs the needed cache synchronization and moves the ownership of the 378 * buffer back to the CPU domain, so it is safe to perform any access to it 379 * by the CPU. Before doing any further DMA operations, one has to transfer 380 * the ownership of the buffer back to the DMA domain by calling the 381 * dma_sync_sgtable_for_device(). 382 */ 383static inline void dma_sync_sgtable_for_cpu(struct device *dev, 384 struct sg_table *sgt, enum dma_data_direction dir) 385{ 386 dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir); 387} 388 389/** 390 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA 391 * @dev: The device for which to perform the DMA operation 392 * @sgt: The sg_table object describing the buffer 393 * @dir: DMA direction 394 * 395 * Performs the needed cache synchronization and moves the ownership of the 396 * buffer back to the DMA domain, so it is safe to perform the DMA operation. 397 * Once finished, one has to call dma_sync_sgtable_for_cpu() or 398 * dma_unmap_sgtable(). 399 */ 400static inline void dma_sync_sgtable_for_device(struct device *dev, 401 struct sg_table *sgt, enum dma_data_direction dir) 402{ 403 dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir); 404} 405 406#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) 407#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) 408#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) 409#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) 410#define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0) 411#define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0) 412#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) 413#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) 414 415static inline void *dma_alloc_coherent(struct device *dev, size_t size, 416 dma_addr_t *dma_handle, gfp_t gfp) 417{ 418 return dma_alloc_attrs(dev, size, dma_handle, gfp, 419 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 420} 421 422static inline void dma_free_coherent(struct device *dev, size_t size, 423 void *cpu_addr, dma_addr_t dma_handle) 424{ 425 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); 426} 427 428 429static inline u64 dma_get_mask(struct device *dev) 430{ 431 if (dev->dma_mask && *dev->dma_mask) 432 return *dev->dma_mask; 433 return DMA_BIT_MASK(32); 434} 435 436/* 437 * Set both the DMA mask and the coherent DMA mask to the same thing. 438 * Note that we don't check the return value from dma_set_coherent_mask() 439 * as the DMA API guarantees that the coherent DMA mask can be set to 440 * the same or smaller than the streaming DMA mask. 441 */ 442static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 443{ 444 int rc = dma_set_mask(dev, mask); 445 if (rc == 0) 446 dma_set_coherent_mask(dev, mask); 447 return rc; 448} 449 450/* 451 * Similar to the above, except it deals with the case where the device 452 * does not have dev->dma_mask appropriately setup. 453 */ 454static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 455{ 456 dev->dma_mask = &dev->coherent_dma_mask; 457 return dma_set_mask_and_coherent(dev, mask); 458} 459 460/** 461 * dma_addressing_limited - return if the device is addressing limited 462 * @dev: device to check 463 * 464 * Return %true if the devices DMA mask is too small to address all memory in 465 * the system, else %false. Lack of addressing bits is the prime reason for 466 * bounce buffering, but might not be the only one. 467 */ 468static inline bool dma_addressing_limited(struct device *dev) 469{ 470 return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < 471 dma_get_required_mask(dev); 472} 473 474static inline unsigned int dma_get_max_seg_size(struct device *dev) 475{ 476 if (dev->dma_parms && dev->dma_parms->max_segment_size) 477 return dev->dma_parms->max_segment_size; 478 return SZ_64K; 479} 480 481static inline int dma_set_max_seg_size(struct device *dev, unsigned int size) 482{ 483 if (dev->dma_parms) { 484 dev->dma_parms->max_segment_size = size; 485 return 0; 486 } 487 return -EIO; 488} 489 490static inline unsigned long dma_get_seg_boundary(struct device *dev) 491{ 492 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 493 return dev->dma_parms->segment_boundary_mask; 494 return ULONG_MAX; 495} 496 497/** 498 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units 499 * @dev: device to guery the boundary for 500 * @page_shift: ilog() of the IOMMU page size 501 * 502 * Return the segment boundary in IOMMU page units (which may be different from 503 * the CPU page size) for the passed in device. 504 * 505 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for 506 * non-DMA API callers. 507 */ 508static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev, 509 unsigned int page_shift) 510{ 511 if (!dev) 512 return (U32_MAX >> page_shift) + 1; 513 return (dma_get_seg_boundary(dev) >> page_shift) + 1; 514} 515 516static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 517{ 518 if (dev->dma_parms) { 519 dev->dma_parms->segment_boundary_mask = mask; 520 return 0; 521 } 522 return -EIO; 523} 524 525static inline unsigned int dma_get_min_align_mask(struct device *dev) 526{ 527 if (dev->dma_parms) 528 return dev->dma_parms->min_align_mask; 529 return 0; 530} 531 532static inline int dma_set_min_align_mask(struct device *dev, 533 unsigned int min_align_mask) 534{ 535 if (WARN_ON_ONCE(!dev->dma_parms)) 536 return -EIO; 537 dev->dma_parms->min_align_mask = min_align_mask; 538 return 0; 539} 540 541static inline int dma_get_cache_alignment(void) 542{ 543#ifdef ARCH_DMA_MINALIGN 544 return ARCH_DMA_MINALIGN; 545#endif 546 return 1; 547} 548 549static inline void *dmam_alloc_coherent(struct device *dev, size_t size, 550 dma_addr_t *dma_handle, gfp_t gfp) 551{ 552 return dmam_alloc_attrs(dev, size, dma_handle, gfp, 553 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 554} 555 556static inline void *dma_alloc_wc(struct device *dev, size_t size, 557 dma_addr_t *dma_addr, gfp_t gfp) 558{ 559 unsigned long attrs = DMA_ATTR_WRITE_COMBINE; 560 561 if (gfp & __GFP_NOWARN) 562 attrs |= DMA_ATTR_NO_WARN; 563 564 return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs); 565} 566 567static inline void dma_free_wc(struct device *dev, size_t size, 568 void *cpu_addr, dma_addr_t dma_addr) 569{ 570 return dma_free_attrs(dev, size, cpu_addr, dma_addr, 571 DMA_ATTR_WRITE_COMBINE); 572} 573 574static inline int dma_mmap_wc(struct device *dev, 575 struct vm_area_struct *vma, 576 void *cpu_addr, dma_addr_t dma_addr, 577 size_t size) 578{ 579 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, 580 DMA_ATTR_WRITE_COMBINE); 581} 582 583#ifdef CONFIG_NEED_DMA_MAP_STATE 584#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 585#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 586#define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 587#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 588#define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 589#define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 590#else 591#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 592#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 593#define dma_unmap_addr(PTR, ADDR_NAME) (0) 594#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 595#define dma_unmap_len(PTR, LEN_NAME) (0) 596#define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 597#endif 598 599#endif /* _LINUX_DMA_MAPPING_H */