cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dmaengine.h (55551B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
      4 */
      5#ifndef LINUX_DMAENGINE_H
      6#define LINUX_DMAENGINE_H
      7
      8#include <linux/device.h>
      9#include <linux/err.h>
     10#include <linux/uio.h>
     11#include <linux/bug.h>
     12#include <linux/scatterlist.h>
     13#include <linux/bitmap.h>
     14#include <linux/types.h>
     15#include <asm/page.h>
     16
     17/**
     18 * typedef dma_cookie_t - an opaque DMA cookie
     19 *
     20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
     21 */
     22typedef s32 dma_cookie_t;
     23#define DMA_MIN_COOKIE	1
     24
     25static inline int dma_submit_error(dma_cookie_t cookie)
     26{
     27	return cookie < 0 ? cookie : 0;
     28}
     29
     30/**
     31 * enum dma_status - DMA transaction status
     32 * @DMA_COMPLETE: transaction completed
     33 * @DMA_IN_PROGRESS: transaction not yet processed
     34 * @DMA_PAUSED: transaction is paused
     35 * @DMA_ERROR: transaction failed
     36 */
     37enum dma_status {
     38	DMA_COMPLETE,
     39	DMA_IN_PROGRESS,
     40	DMA_PAUSED,
     41	DMA_ERROR,
     42	DMA_OUT_OF_ORDER,
     43};
     44
     45/**
     46 * enum dma_transaction_type - DMA transaction types/indexes
     47 *
     48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
     49 * automatically set as dma devices are registered.
     50 */
     51enum dma_transaction_type {
     52	DMA_MEMCPY,
     53	DMA_MEMCPY_SG,
     54	DMA_XOR,
     55	DMA_PQ,
     56	DMA_XOR_VAL,
     57	DMA_PQ_VAL,
     58	DMA_MEMSET,
     59	DMA_MEMSET_SG,
     60	DMA_INTERRUPT,
     61	DMA_PRIVATE,
     62	DMA_ASYNC_TX,
     63	DMA_SLAVE,
     64	DMA_CYCLIC,
     65	DMA_INTERLEAVE,
     66	DMA_COMPLETION_NO_ORDER,
     67	DMA_REPEAT,
     68	DMA_LOAD_EOT,
     69/* last transaction type for creation of the capabilities mask */
     70	DMA_TX_TYPE_END,
     71};
     72
     73/**
     74 * enum dma_transfer_direction - dma transfer mode and direction indicator
     75 * @DMA_MEM_TO_MEM: Async/Memcpy mode
     76 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
     77 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
     78 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
     79 */
     80enum dma_transfer_direction {
     81	DMA_MEM_TO_MEM,
     82	DMA_MEM_TO_DEV,
     83	DMA_DEV_TO_MEM,
     84	DMA_DEV_TO_DEV,
     85	DMA_TRANS_NONE,
     86};
     87
     88/**
     89 * Interleaved Transfer Request
     90 * ----------------------------
     91 * A chunk is collection of contiguous bytes to be transferred.
     92 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
     93 * ICGs may or may not change between chunks.
     94 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
     95 *  that when repeated an integral number of times, specifies the transfer.
     96 * A transfer template is specification of a Frame, the number of times
     97 *  it is to be repeated and other per-transfer attributes.
     98 *
     99 * Practically, a client driver would have ready a template for each
    100 *  type of transfer it is going to need during its lifetime and
    101 *  set only 'src_start' and 'dst_start' before submitting the requests.
    102 *
    103 *
    104 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
    105 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
    106 *
    107 *    ==  Chunk size
    108 *    ... ICG
    109 */
    110
    111/**
    112 * struct data_chunk - Element of scatter-gather list that makes a frame.
    113 * @size: Number of bytes to read from source.
    114 *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
    115 * @icg: Number of bytes to jump after last src/dst address of this
    116 *	 chunk and before first src/dst address for next chunk.
    117 *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
    118 *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
    119 * @dst_icg: Number of bytes to jump after last dst address of this
    120 *	 chunk and before the first dst address for next chunk.
    121 *	 Ignored if dst_inc is true and dst_sgl is false.
    122 * @src_icg: Number of bytes to jump after last src address of this
    123 *	 chunk and before the first src address for next chunk.
    124 *	 Ignored if src_inc is true and src_sgl is false.
    125 */
    126struct data_chunk {
    127	size_t size;
    128	size_t icg;
    129	size_t dst_icg;
    130	size_t src_icg;
    131};
    132
    133/**
    134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
    135 *	 and attributes.
    136 * @src_start: Bus address of source for the first chunk.
    137 * @dst_start: Bus address of destination for the first chunk.
    138 * @dir: Specifies the type of Source and Destination.
    139 * @src_inc: If the source address increments after reading from it.
    140 * @dst_inc: If the destination address increments after writing to it.
    141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
    142 *		Otherwise, source is read contiguously (icg ignored).
    143 *		Ignored if src_inc is false.
    144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
    145 *		Otherwise, destination is filled contiguously (icg ignored).
    146 *		Ignored if dst_inc is false.
    147 * @numf: Number of frames in this template.
    148 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
    149 * @sgl: Array of {chunk,icg} pairs that make up a frame.
    150 */
    151struct dma_interleaved_template {
    152	dma_addr_t src_start;
    153	dma_addr_t dst_start;
    154	enum dma_transfer_direction dir;
    155	bool src_inc;
    156	bool dst_inc;
    157	bool src_sgl;
    158	bool dst_sgl;
    159	size_t numf;
    160	size_t frame_size;
    161	struct data_chunk sgl[];
    162};
    163
    164/**
    165 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
    166 *  control completion, and communicate status.
    167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
    168 *  this transaction
    169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
    170 *  acknowledges receipt, i.e. has a chance to establish any dependency
    171 *  chains
    172 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
    173 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
    174 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
    175 *  sources that were the result of a previous operation, in the case of a PQ
    176 *  operation it continues the calculation with new sources
    177 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
    178 *  on the result of this operation
    179 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
    180 *  cleared or freed
    181 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
    182 *  data and the descriptor should be in different format from normal
    183 *  data descriptors.
    184 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
    185 *  repeated when it ends until a transaction is issued on the same channel
    186 *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
    187 *  interleaved transactions and is ignored for all other transaction types.
    188 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
    189 *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
    190 *  repeated transaction ends. Not setting this flag when the previously queued
    191 *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
    192 *  to never be processed and stay in the issued queue forever. The flag is
    193 *  ignored if the previous transaction is not a repeated transaction.
    194 */
    195enum dma_ctrl_flags {
    196	DMA_PREP_INTERRUPT = (1 << 0),
    197	DMA_CTRL_ACK = (1 << 1),
    198	DMA_PREP_PQ_DISABLE_P = (1 << 2),
    199	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
    200	DMA_PREP_CONTINUE = (1 << 4),
    201	DMA_PREP_FENCE = (1 << 5),
    202	DMA_CTRL_REUSE = (1 << 6),
    203	DMA_PREP_CMD = (1 << 7),
    204	DMA_PREP_REPEAT = (1 << 8),
    205	DMA_PREP_LOAD_EOT = (1 << 9),
    206};
    207
    208/**
    209 * enum sum_check_bits - bit position of pq_check_flags
    210 */
    211enum sum_check_bits {
    212	SUM_CHECK_P = 0,
    213	SUM_CHECK_Q = 1,
    214};
    215
    216/**
    217 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
    218 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
    219 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
    220 */
    221enum sum_check_flags {
    222	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
    223	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
    224};
    225
    226
    227/**
    228 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
    229 * See linux/cpumask.h
    230 */
    231typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
    232
    233/**
    234 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
    235 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
    236 *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
    237 *  helper) to the descriptor.
    238 *
    239 * Client drivers interested to use this mode can follow:
    240 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
    241 *   1. prepare the descriptor (dmaengine_prep_*)
    242 *	construct the metadata in the client's buffer
    243 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
    244 *	descriptor
    245 *   3. submit the transfer
    246 * - DMA_DEV_TO_MEM:
    247 *   1. prepare the descriptor (dmaengine_prep_*)
    248 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
    249 *	descriptor
    250 *   3. submit the transfer
    251 *   4. when the transfer is completed, the metadata should be available in the
    252 *	attached buffer
    253 *
    254 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
    255 *  driver. The client driver can ask for the pointer, maximum size and the
    256 *  currently used size of the metadata and can directly update or read it.
    257 *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
    258 *  provided as helper functions.
    259 *
    260 *  Note: the metadata area for the descriptor is no longer valid after the
    261 *  transfer has been completed (valid up to the point when the completion
    262 *  callback returns if used).
    263 *
    264 * Client drivers interested to use this mode can follow:
    265 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
    266 *   1. prepare the descriptor (dmaengine_prep_*)
    267 *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
    268 *	metadata area
    269 *   3. update the metadata at the pointer
    270 *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
    271 *	of data the client has placed into the metadata buffer
    272 *   5. submit the transfer
    273 * - DMA_DEV_TO_MEM:
    274 *   1. prepare the descriptor (dmaengine_prep_*)
    275 *   2. submit the transfer
    276 *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
    277 *	pointer to the engine's metadata area
    278 *   4. Read out the metadata from the pointer
    279 *
    280 * Note: the two mode is not compatible and clients must use one mode for a
    281 * descriptor.
    282 */
    283enum dma_desc_metadata_mode {
    284	DESC_METADATA_NONE = 0,
    285	DESC_METADATA_CLIENT = BIT(0),
    286	DESC_METADATA_ENGINE = BIT(1),
    287};
    288
    289/**
    290 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
    291 * @memcpy_count: transaction counter
    292 * @bytes_transferred: byte counter
    293 */
    294struct dma_chan_percpu {
    295	/* stats */
    296	unsigned long memcpy_count;
    297	unsigned long bytes_transferred;
    298};
    299
    300/**
    301 * struct dma_router - DMA router structure
    302 * @dev: pointer to the DMA router device
    303 * @route_free: function to be called when the route can be disconnected
    304 */
    305struct dma_router {
    306	struct device *dev;
    307	void (*route_free)(struct device *dev, void *route_data);
    308};
    309
    310/**
    311 * struct dma_chan - devices supply DMA channels, clients use them
    312 * @device: ptr to the dma device who supplies this channel, always !%NULL
    313 * @slave: ptr to the device using this channel
    314 * @cookie: last cookie value returned to client
    315 * @completed_cookie: last completed cookie for this channel
    316 * @chan_id: channel ID for sysfs
    317 * @dev: class device for sysfs
    318 * @name: backlink name for sysfs
    319 * @dbg_client_name: slave name for debugfs in format:
    320 *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
    321 * @device_node: used to add this to the device chan list
    322 * @local: per-cpu pointer to a struct dma_chan_percpu
    323 * @client_count: how many clients are using this channel
    324 * @table_count: number of appearances in the mem-to-mem allocation table
    325 * @router: pointer to the DMA router structure
    326 * @route_data: channel specific data for the router
    327 * @private: private data for certain client-channel associations
    328 */
    329struct dma_chan {
    330	struct dma_device *device;
    331	struct device *slave;
    332	dma_cookie_t cookie;
    333	dma_cookie_t completed_cookie;
    334
    335	/* sysfs */
    336	int chan_id;
    337	struct dma_chan_dev *dev;
    338	const char *name;
    339#ifdef CONFIG_DEBUG_FS
    340	char *dbg_client_name;
    341#endif
    342
    343	struct list_head device_node;
    344	struct dma_chan_percpu __percpu *local;
    345	int client_count;
    346	int table_count;
    347
    348	/* DMA router */
    349	struct dma_router *router;
    350	void *route_data;
    351
    352	void *private;
    353};
    354
    355/**
    356 * struct dma_chan_dev - relate sysfs device node to backing channel device
    357 * @chan: driver channel device
    358 * @device: sysfs device
    359 * @dev_id: parent dma_device dev_id
    360 * @chan_dma_dev: The channel is using custom/different dma-mapping
    361 * compared to the parent dma_device
    362 */
    363struct dma_chan_dev {
    364	struct dma_chan *chan;
    365	struct device device;
    366	int dev_id;
    367	bool chan_dma_dev;
    368};
    369
    370/**
    371 * enum dma_slave_buswidth - defines bus width of the DMA slave
    372 * device, source or target buses
    373 */
    374enum dma_slave_buswidth {
    375	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
    376	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
    377	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
    378	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
    379	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
    380	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
    381	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
    382	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
    383	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
    384	DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
    385};
    386
    387/**
    388 * struct dma_slave_config - dma slave channel runtime config
    389 * @direction: whether the data shall go in or out on this slave
    390 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
    391 * legal values. DEPRECATED, drivers should use the direction argument
    392 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
    393 * the dir field in the dma_interleaved_template structure.
    394 * @src_addr: this is the physical address where DMA slave data
    395 * should be read (RX), if the source is memory this argument is
    396 * ignored.
    397 * @dst_addr: this is the physical address where DMA slave data
    398 * should be written (TX), if the source is memory this argument
    399 * is ignored.
    400 * @src_addr_width: this is the width in bytes of the source (RX)
    401 * register where DMA data shall be read. If the source
    402 * is memory this may be ignored depending on architecture.
    403 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
    404 * @dst_addr_width: same as src_addr_width but for destination
    405 * target (TX) mutatis mutandis.
    406 * @src_maxburst: the maximum number of words (note: words, as in
    407 * units of the src_addr_width member, not bytes) that can be sent
    408 * in one burst to the device. Typically something like half the
    409 * FIFO depth on I/O peripherals so you don't overflow it. This
    410 * may or may not be applicable on memory sources.
    411 * @dst_maxburst: same as src_maxburst but for destination target
    412 * mutatis mutandis.
    413 * @src_port_window_size: The length of the register area in words the data need
    414 * to be accessed on the device side. It is only used for devices which is using
    415 * an area instead of a single register to receive the data. Typically the DMA
    416 * loops in this area in order to transfer the data.
    417 * @dst_port_window_size: same as src_port_window_size but for the destination
    418 * port.
    419 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
    420 * with 'true' if peripheral should be flow controller. Direction will be
    421 * selected at Runtime.
    422 * @peripheral_config: peripheral configuration for programming peripheral
    423 * for dmaengine transfer
    424 * @peripheral_size: peripheral configuration buffer size
    425 *
    426 * This struct is passed in as configuration data to a DMA engine
    427 * in order to set up a certain channel for DMA transport at runtime.
    428 * The DMA device/engine has to provide support for an additional
    429 * callback in the dma_device structure, device_config and this struct
    430 * will then be passed in as an argument to the function.
    431 *
    432 * The rationale for adding configuration information to this struct is as
    433 * follows: if it is likely that more than one DMA slave controllers in
    434 * the world will support the configuration option, then make it generic.
    435 * If not: if it is fixed so that it be sent in static from the platform
    436 * data, then prefer to do that.
    437 */
    438struct dma_slave_config {
    439	enum dma_transfer_direction direction;
    440	phys_addr_t src_addr;
    441	phys_addr_t dst_addr;
    442	enum dma_slave_buswidth src_addr_width;
    443	enum dma_slave_buswidth dst_addr_width;
    444	u32 src_maxburst;
    445	u32 dst_maxburst;
    446	u32 src_port_window_size;
    447	u32 dst_port_window_size;
    448	bool device_fc;
    449	void *peripheral_config;
    450	size_t peripheral_size;
    451};
    452
    453/**
    454 * enum dma_residue_granularity - Granularity of the reported transfer residue
    455 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
    456 *  DMA channel is only able to tell whether a descriptor has been completed or
    457 *  not, which means residue reporting is not supported by this channel. The
    458 *  residue field of the dma_tx_state field will always be 0.
    459 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
    460 *  completed segment of the transfer (For cyclic transfers this is after each
    461 *  period). This is typically implemented by having the hardware generate an
    462 *  interrupt after each transferred segment and then the drivers updates the
    463 *  outstanding residue by the size of the segment. Another possibility is if
    464 *  the hardware supports scatter-gather and the segment descriptor has a field
    465 *  which gets set after the segment has been completed. The driver then counts
    466 *  the number of segments without the flag set to compute the residue.
    467 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
    468 *  burst. This is typically only supported if the hardware has a progress
    469 *  register of some sort (E.g. a register with the current read/write address
    470 *  or a register with the amount of bursts/beats/bytes that have been
    471 *  transferred or still need to be transferred).
    472 */
    473enum dma_residue_granularity {
    474	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
    475	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
    476	DMA_RESIDUE_GRANULARITY_BURST = 2,
    477};
    478
    479/**
    480 * struct dma_slave_caps - expose capabilities of a slave channel only
    481 * @src_addr_widths: bit mask of src addr widths the channel supports.
    482 *	Width is specified in bytes, e.g. for a channel supporting
    483 *	a width of 4 the mask should have BIT(4) set.
    484 * @dst_addr_widths: bit mask of dst addr widths the channel supports
    485 * @directions: bit mask of slave directions the channel supports.
    486 *	Since the enum dma_transfer_direction is not defined as bit flag for
    487 *	each type, the dma controller should set BIT(<TYPE>) and same
    488 *	should be checked by controller as well
    489 * @min_burst: min burst capability per-transfer
    490 * @max_burst: max burst capability per-transfer
    491 * @max_sg_burst: max number of SG list entries executed in a single burst
    492 *	DMA tansaction with no software intervention for reinitialization.
    493 *	Zero value means unlimited number of entries.
    494 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
    495 *	       for resume later)
    496 * @cmd_resume: true, if resume is supported
    497 * @cmd_terminate: true, if terminate cmd is supported
    498 * @residue_granularity: granularity of the reported transfer residue
    499 * @descriptor_reuse: if a descriptor can be reused by client and
    500 * resubmitted multiple times
    501 */
    502struct dma_slave_caps {
    503	u32 src_addr_widths;
    504	u32 dst_addr_widths;
    505	u32 directions;
    506	u32 min_burst;
    507	u32 max_burst;
    508	u32 max_sg_burst;
    509	bool cmd_pause;
    510	bool cmd_resume;
    511	bool cmd_terminate;
    512	enum dma_residue_granularity residue_granularity;
    513	bool descriptor_reuse;
    514};
    515
    516static inline const char *dma_chan_name(struct dma_chan *chan)
    517{
    518	return dev_name(&chan->dev->device);
    519}
    520
    521void dma_chan_cleanup(struct kref *kref);
    522
    523/**
    524 * typedef dma_filter_fn - callback filter for dma_request_channel
    525 * @chan: channel to be reviewed
    526 * @filter_param: opaque parameter passed through dma_request_channel
    527 *
    528 * When this optional parameter is specified in a call to dma_request_channel a
    529 * suitable channel is passed to this routine for further dispositioning before
    530 * being returned.  Where 'suitable' indicates a non-busy channel that
    531 * satisfies the given capability mask.  It returns 'true' to indicate that the
    532 * channel is suitable.
    533 */
    534typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
    535
    536typedef void (*dma_async_tx_callback)(void *dma_async_param);
    537
    538enum dmaengine_tx_result {
    539	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
    540	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
    541	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
    542	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
    543};
    544
    545struct dmaengine_result {
    546	enum dmaengine_tx_result result;
    547	u32 residue;
    548};
    549
    550typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
    551				const struct dmaengine_result *result);
    552
    553struct dmaengine_unmap_data {
    554#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
    555	u16 map_cnt;
    556#else
    557	u8 map_cnt;
    558#endif
    559	u8 to_cnt;
    560	u8 from_cnt;
    561	u8 bidi_cnt;
    562	struct device *dev;
    563	struct kref kref;
    564	size_t len;
    565	dma_addr_t addr[];
    566};
    567
    568struct dma_async_tx_descriptor;
    569
    570struct dma_descriptor_metadata_ops {
    571	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
    572		      size_t len);
    573
    574	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
    575			 size_t *payload_len, size_t *max_len);
    576	int (*set_len)(struct dma_async_tx_descriptor *desc,
    577		       size_t payload_len);
    578};
    579
    580/**
    581 * struct dma_async_tx_descriptor - async transaction descriptor
    582 * ---dma generic offload fields---
    583 * @cookie: tracking cookie for this transaction, set to -EBUSY if
    584 *	this tx is sitting on a dependency list
    585 * @flags: flags to augment operation preparation, control completion, and
    586 *	communicate status
    587 * @phys: physical address of the descriptor
    588 * @chan: target channel for this operation
    589 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
    590 * descriptor pending. To be pushed on .issue_pending() call
    591 * @callback: routine to call after this operation is complete
    592 * @callback_param: general parameter to pass to the callback routine
    593 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
    594 *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
    595 *	DESC_METADATA_NONE
    596 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
    597 *	DMA driver if metadata mode is supported with the descriptor
    598 * ---async_tx api specific fields---
    599 * @next: at completion submit this descriptor
    600 * @parent: pointer to the next level up in the dependency chain
    601 * @lock: protect the parent and next pointers
    602 */
    603struct dma_async_tx_descriptor {
    604	dma_cookie_t cookie;
    605	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
    606	dma_addr_t phys;
    607	struct dma_chan *chan;
    608	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
    609	int (*desc_free)(struct dma_async_tx_descriptor *tx);
    610	dma_async_tx_callback callback;
    611	dma_async_tx_callback_result callback_result;
    612	void *callback_param;
    613	struct dmaengine_unmap_data *unmap;
    614	enum dma_desc_metadata_mode desc_metadata_mode;
    615	struct dma_descriptor_metadata_ops *metadata_ops;
    616#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
    617	struct dma_async_tx_descriptor *next;
    618	struct dma_async_tx_descriptor *parent;
    619	spinlock_t lock;
    620#endif
    621};
    622
    623#ifdef CONFIG_DMA_ENGINE
    624static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
    625				 struct dmaengine_unmap_data *unmap)
    626{
    627	kref_get(&unmap->kref);
    628	tx->unmap = unmap;
    629}
    630
    631struct dmaengine_unmap_data *
    632dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
    633void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
    634#else
    635static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
    636				 struct dmaengine_unmap_data *unmap)
    637{
    638}
    639static inline struct dmaengine_unmap_data *
    640dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
    641{
    642	return NULL;
    643}
    644static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
    645{
    646}
    647#endif
    648
    649static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
    650{
    651	if (!tx->unmap)
    652		return;
    653
    654	dmaengine_unmap_put(tx->unmap);
    655	tx->unmap = NULL;
    656}
    657
    658#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
    659static inline void txd_lock(struct dma_async_tx_descriptor *txd)
    660{
    661}
    662static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
    663{
    664}
    665static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
    666{
    667	BUG();
    668}
    669static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
    670{
    671}
    672static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
    673{
    674}
    675static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
    676{
    677	return NULL;
    678}
    679static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
    680{
    681	return NULL;
    682}
    683
    684#else
    685static inline void txd_lock(struct dma_async_tx_descriptor *txd)
    686{
    687	spin_lock_bh(&txd->lock);
    688}
    689static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
    690{
    691	spin_unlock_bh(&txd->lock);
    692}
    693static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
    694{
    695	txd->next = next;
    696	next->parent = txd;
    697}
    698static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
    699{
    700	txd->parent = NULL;
    701}
    702static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
    703{
    704	txd->next = NULL;
    705}
    706static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
    707{
    708	return txd->parent;
    709}
    710static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
    711{
    712	return txd->next;
    713}
    714#endif
    715
    716/**
    717 * struct dma_tx_state - filled in to report the status of
    718 * a transfer.
    719 * @last: last completed DMA cookie
    720 * @used: last issued DMA cookie (i.e. the one in progress)
    721 * @residue: the remaining number of bytes left to transmit
    722 *	on the selected transfer for states DMA_IN_PROGRESS and
    723 *	DMA_PAUSED if this is implemented in the driver, else 0
    724 * @in_flight_bytes: amount of data in bytes cached by the DMA.
    725 */
    726struct dma_tx_state {
    727	dma_cookie_t last;
    728	dma_cookie_t used;
    729	u32 residue;
    730	u32 in_flight_bytes;
    731};
    732
    733/**
    734 * enum dmaengine_alignment - defines alignment of the DMA async tx
    735 * buffers
    736 */
    737enum dmaengine_alignment {
    738	DMAENGINE_ALIGN_1_BYTE = 0,
    739	DMAENGINE_ALIGN_2_BYTES = 1,
    740	DMAENGINE_ALIGN_4_BYTES = 2,
    741	DMAENGINE_ALIGN_8_BYTES = 3,
    742	DMAENGINE_ALIGN_16_BYTES = 4,
    743	DMAENGINE_ALIGN_32_BYTES = 5,
    744	DMAENGINE_ALIGN_64_BYTES = 6,
    745	DMAENGINE_ALIGN_128_BYTES = 7,
    746	DMAENGINE_ALIGN_256_BYTES = 8,
    747};
    748
    749/**
    750 * struct dma_slave_map - associates slave device and it's slave channel with
    751 * parameter to be used by a filter function
    752 * @devname: name of the device
    753 * @slave: slave channel name
    754 * @param: opaque parameter to pass to struct dma_filter.fn
    755 */
    756struct dma_slave_map {
    757	const char *devname;
    758	const char *slave;
    759	void *param;
    760};
    761
    762/**
    763 * struct dma_filter - information for slave device/channel to filter_fn/param
    764 * mapping
    765 * @fn: filter function callback
    766 * @mapcnt: number of slave device/channel in the map
    767 * @map: array of channel to filter mapping data
    768 */
    769struct dma_filter {
    770	dma_filter_fn fn;
    771	int mapcnt;
    772	const struct dma_slave_map *map;
    773};
    774
    775/**
    776 * struct dma_device - info on the entity supplying DMA services
    777 * @chancnt: how many DMA channels are supported
    778 * @privatecnt: how many DMA channels are requested by dma_request_channel
    779 * @channels: the list of struct dma_chan
    780 * @global_node: list_head for global dma_device_list
    781 * @filter: information for device/slave to filter function/param mapping
    782 * @cap_mask: one or more dma_capability flags
    783 * @desc_metadata_modes: supported metadata modes by the DMA device
    784 * @max_xor: maximum number of xor sources, 0 if no capability
    785 * @max_pq: maximum number of PQ sources and PQ-continue capability
    786 * @copy_align: alignment shift for memcpy operations
    787 * @xor_align: alignment shift for xor operations
    788 * @pq_align: alignment shift for pq operations
    789 * @fill_align: alignment shift for memset operations
    790 * @dev_id: unique device ID
    791 * @dev: struct device reference for dma mapping api
    792 * @owner: owner module (automatically set based on the provided dev)
    793 * @src_addr_widths: bit mask of src addr widths the device supports
    794 *	Width is specified in bytes, e.g. for a device supporting
    795 *	a width of 4 the mask should have BIT(4) set.
    796 * @dst_addr_widths: bit mask of dst addr widths the device supports
    797 * @directions: bit mask of slave directions the device supports.
    798 *	Since the enum dma_transfer_direction is not defined as bit flag for
    799 *	each type, the dma controller should set BIT(<TYPE>) and same
    800 *	should be checked by controller as well
    801 * @min_burst: min burst capability per-transfer
    802 * @max_burst: max burst capability per-transfer
    803 * @max_sg_burst: max number of SG list entries executed in a single burst
    804 *	DMA tansaction with no software intervention for reinitialization.
    805 *	Zero value means unlimited number of entries.
    806 * @residue_granularity: granularity of the transfer residue reported
    807 *	by tx_status
    808 * @device_alloc_chan_resources: allocate resources and return the
    809 *	number of allocated descriptors
    810 * @device_router_config: optional callback for DMA router configuration
    811 * @device_free_chan_resources: release DMA channel's resources
    812 * @device_prep_dma_memcpy: prepares a memcpy operation
    813 * @device_prep_dma_xor: prepares a xor operation
    814 * @device_prep_dma_xor_val: prepares a xor validation operation
    815 * @device_prep_dma_pq: prepares a pq operation
    816 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
    817 * @device_prep_dma_memset: prepares a memset operation
    818 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
    819 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
    820 * @device_prep_slave_sg: prepares a slave dma operation
    821 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
    822 *	The function takes a buffer of size buf_len. The callback function will
    823 *	be called after period_len bytes have been transferred.
    824 * @device_prep_interleaved_dma: Transfer expression in a generic way.
    825 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
    826 * @device_caps: May be used to override the generic DMA slave capabilities
    827 *	with per-channel specific ones
    828 * @device_config: Pushes a new configuration to a channel, return 0 or an error
    829 *	code
    830 * @device_pause: Pauses any transfer happening on a channel. Returns
    831 *	0 or an error code
    832 * @device_resume: Resumes any transfer on a channel previously
    833 *	paused. Returns 0 or an error code
    834 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
    835 *	or an error code
    836 * @device_synchronize: Synchronizes the termination of a transfers to the
    837 *  current context.
    838 * @device_tx_status: poll for transaction completion, the optional
    839 *	txstate parameter can be supplied with a pointer to get a
    840 *	struct with auxiliary transfer status information, otherwise the call
    841 *	will just return a simple status code
    842 * @device_issue_pending: push pending transactions to hardware
    843 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
    844 * @device_release: called sometime atfer dma_async_device_unregister() is
    845 *     called and there are no further references to this structure. This
    846 *     must be implemented to free resources however many existing drivers
    847 *     do not and are therefore not safe to unbind while in use.
    848 * @dbg_summary_show: optional routine to show contents in debugfs; default code
    849 *     will be used when this is omitted, but custom code can show extra,
    850 *     controller specific information.
    851 */
    852struct dma_device {
    853	struct kref ref;
    854	unsigned int chancnt;
    855	unsigned int privatecnt;
    856	struct list_head channels;
    857	struct list_head global_node;
    858	struct dma_filter filter;
    859	dma_cap_mask_t  cap_mask;
    860	enum dma_desc_metadata_mode desc_metadata_modes;
    861	unsigned short max_xor;
    862	unsigned short max_pq;
    863	enum dmaengine_alignment copy_align;
    864	enum dmaengine_alignment xor_align;
    865	enum dmaengine_alignment pq_align;
    866	enum dmaengine_alignment fill_align;
    867	#define DMA_HAS_PQ_CONTINUE (1 << 15)
    868
    869	int dev_id;
    870	struct device *dev;
    871	struct module *owner;
    872	struct ida chan_ida;
    873
    874	u32 src_addr_widths;
    875	u32 dst_addr_widths;
    876	u32 directions;
    877	u32 min_burst;
    878	u32 max_burst;
    879	u32 max_sg_burst;
    880	bool descriptor_reuse;
    881	enum dma_residue_granularity residue_granularity;
    882
    883	int (*device_alloc_chan_resources)(struct dma_chan *chan);
    884	int (*device_router_config)(struct dma_chan *chan);
    885	void (*device_free_chan_resources)(struct dma_chan *chan);
    886
    887	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
    888		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
    889		size_t len, unsigned long flags);
    890	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy_sg)(
    891		struct dma_chan *chan,
    892		struct scatterlist *dst_sg, unsigned int dst_nents,
    893		struct scatterlist *src_sg, unsigned int src_nents,
    894		unsigned long flags);
    895	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
    896		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
    897		unsigned int src_cnt, size_t len, unsigned long flags);
    898	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
    899		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
    900		size_t len, enum sum_check_flags *result, unsigned long flags);
    901	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
    902		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
    903		unsigned int src_cnt, const unsigned char *scf,
    904		size_t len, unsigned long flags);
    905	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
    906		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
    907		unsigned int src_cnt, const unsigned char *scf, size_t len,
    908		enum sum_check_flags *pqres, unsigned long flags);
    909	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
    910		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
    911		unsigned long flags);
    912	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
    913		struct dma_chan *chan, struct scatterlist *sg,
    914		unsigned int nents, int value, unsigned long flags);
    915	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
    916		struct dma_chan *chan, unsigned long flags);
    917
    918	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
    919		struct dma_chan *chan, struct scatterlist *sgl,
    920		unsigned int sg_len, enum dma_transfer_direction direction,
    921		unsigned long flags, void *context);
    922	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
    923		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
    924		size_t period_len, enum dma_transfer_direction direction,
    925		unsigned long flags);
    926	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
    927		struct dma_chan *chan, struct dma_interleaved_template *xt,
    928		unsigned long flags);
    929	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
    930		struct dma_chan *chan, dma_addr_t dst, u64 data,
    931		unsigned long flags);
    932
    933	void (*device_caps)(struct dma_chan *chan,
    934			    struct dma_slave_caps *caps);
    935	int (*device_config)(struct dma_chan *chan,
    936			     struct dma_slave_config *config);
    937	int (*device_pause)(struct dma_chan *chan);
    938	int (*device_resume)(struct dma_chan *chan);
    939	int (*device_terminate_all)(struct dma_chan *chan);
    940	void (*device_synchronize)(struct dma_chan *chan);
    941
    942	enum dma_status (*device_tx_status)(struct dma_chan *chan,
    943					    dma_cookie_t cookie,
    944					    struct dma_tx_state *txstate);
    945	void (*device_issue_pending)(struct dma_chan *chan);
    946	void (*device_release)(struct dma_device *dev);
    947	/* debugfs support */
    948	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
    949	struct dentry *dbg_dev_root;
    950};
    951
    952static inline int dmaengine_slave_config(struct dma_chan *chan,
    953					  struct dma_slave_config *config)
    954{
    955	if (chan->device->device_config)
    956		return chan->device->device_config(chan, config);
    957
    958	return -ENOSYS;
    959}
    960
    961static inline bool is_slave_direction(enum dma_transfer_direction direction)
    962{
    963	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
    964}
    965
    966static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
    967	struct dma_chan *chan, dma_addr_t buf, size_t len,
    968	enum dma_transfer_direction dir, unsigned long flags)
    969{
    970	struct scatterlist sg;
    971	sg_init_table(&sg, 1);
    972	sg_dma_address(&sg) = buf;
    973	sg_dma_len(&sg) = len;
    974
    975	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
    976		return NULL;
    977
    978	return chan->device->device_prep_slave_sg(chan, &sg, 1,
    979						  dir, flags, NULL);
    980}
    981
    982static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
    983	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
    984	enum dma_transfer_direction dir, unsigned long flags)
    985{
    986	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
    987		return NULL;
    988
    989	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
    990						  dir, flags, NULL);
    991}
    992
    993#ifdef CONFIG_RAPIDIO_DMA_ENGINE
    994struct rio_dma_ext;
    995static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
    996	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
    997	enum dma_transfer_direction dir, unsigned long flags,
    998	struct rio_dma_ext *rio_ext)
    999{
   1000	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
   1001		return NULL;
   1002
   1003	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
   1004						  dir, flags, rio_ext);
   1005}
   1006#endif
   1007
   1008static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
   1009		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
   1010		size_t period_len, enum dma_transfer_direction dir,
   1011		unsigned long flags)
   1012{
   1013	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
   1014		return NULL;
   1015
   1016	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
   1017						period_len, dir, flags);
   1018}
   1019
   1020static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
   1021		struct dma_chan *chan, struct dma_interleaved_template *xt,
   1022		unsigned long flags)
   1023{
   1024	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
   1025		return NULL;
   1026	if (flags & DMA_PREP_REPEAT &&
   1027	    !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
   1028		return NULL;
   1029
   1030	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
   1031}
   1032
   1033/**
   1034 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor.
   1035 * @chan: The channel to be used for this descriptor
   1036 * @dest: Address of buffer to be set
   1037 * @value: Treated as a single byte value that fills the destination buffer
   1038 * @len: The total size of dest
   1039 * @flags: DMA engine flags
   1040 */
   1041static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
   1042		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
   1043		unsigned long flags)
   1044{
   1045	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
   1046		return NULL;
   1047
   1048	return chan->device->device_prep_dma_memset(chan, dest, value,
   1049						    len, flags);
   1050}
   1051
   1052static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
   1053		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
   1054		size_t len, unsigned long flags)
   1055{
   1056	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
   1057		return NULL;
   1058
   1059	return chan->device->device_prep_dma_memcpy(chan, dest, src,
   1060						    len, flags);
   1061}
   1062
   1063static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy_sg(
   1064		struct dma_chan *chan,
   1065		struct scatterlist *dst_sg, unsigned int dst_nents,
   1066		struct scatterlist *src_sg, unsigned int src_nents,
   1067		unsigned long flags)
   1068{
   1069	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy_sg)
   1070		return NULL;
   1071
   1072	return chan->device->device_prep_dma_memcpy_sg(chan, dst_sg, dst_nents,
   1073						       src_sg, src_nents,
   1074						       flags);
   1075}
   1076
   1077static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
   1078		enum dma_desc_metadata_mode mode)
   1079{
   1080	if (!chan)
   1081		return false;
   1082
   1083	return !!(chan->device->desc_metadata_modes & mode);
   1084}
   1085
   1086#ifdef CONFIG_DMA_ENGINE
   1087int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
   1088				   void *data, size_t len);
   1089void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
   1090				      size_t *payload_len, size_t *max_len);
   1091int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
   1092				    size_t payload_len);
   1093#else /* CONFIG_DMA_ENGINE */
   1094static inline int dmaengine_desc_attach_metadata(
   1095		struct dma_async_tx_descriptor *desc, void *data, size_t len)
   1096{
   1097	return -EINVAL;
   1098}
   1099static inline void *dmaengine_desc_get_metadata_ptr(
   1100		struct dma_async_tx_descriptor *desc, size_t *payload_len,
   1101		size_t *max_len)
   1102{
   1103	return NULL;
   1104}
   1105static inline int dmaengine_desc_set_metadata_len(
   1106		struct dma_async_tx_descriptor *desc, size_t payload_len)
   1107{
   1108	return -EINVAL;
   1109}
   1110#endif /* CONFIG_DMA_ENGINE */
   1111
   1112/**
   1113 * dmaengine_terminate_all() - Terminate all active DMA transfers
   1114 * @chan: The channel for which to terminate the transfers
   1115 *
   1116 * This function is DEPRECATED use either dmaengine_terminate_sync() or
   1117 * dmaengine_terminate_async() instead.
   1118 */
   1119static inline int dmaengine_terminate_all(struct dma_chan *chan)
   1120{
   1121	if (chan->device->device_terminate_all)
   1122		return chan->device->device_terminate_all(chan);
   1123
   1124	return -ENOSYS;
   1125}
   1126
   1127/**
   1128 * dmaengine_terminate_async() - Terminate all active DMA transfers
   1129 * @chan: The channel for which to terminate the transfers
   1130 *
   1131 * Calling this function will terminate all active and pending descriptors
   1132 * that have previously been submitted to the channel. It is not guaranteed
   1133 * though that the transfer for the active descriptor has stopped when the
   1134 * function returns. Furthermore it is possible the complete callback of a
   1135 * submitted transfer is still running when this function returns.
   1136 *
   1137 * dmaengine_synchronize() needs to be called before it is safe to free
   1138 * any memory that is accessed by previously submitted descriptors or before
   1139 * freeing any resources accessed from within the completion callback of any
   1140 * previously submitted descriptors.
   1141 *
   1142 * This function can be called from atomic context as well as from within a
   1143 * complete callback of a descriptor submitted on the same channel.
   1144 *
   1145 * If none of the two conditions above apply consider using
   1146 * dmaengine_terminate_sync() instead.
   1147 */
   1148static inline int dmaengine_terminate_async(struct dma_chan *chan)
   1149{
   1150	if (chan->device->device_terminate_all)
   1151		return chan->device->device_terminate_all(chan);
   1152
   1153	return -EINVAL;
   1154}
   1155
   1156/**
   1157 * dmaengine_synchronize() - Synchronize DMA channel termination
   1158 * @chan: The channel to synchronize
   1159 *
   1160 * Synchronizes to the DMA channel termination to the current context. When this
   1161 * function returns it is guaranteed that all transfers for previously issued
   1162 * descriptors have stopped and it is safe to free the memory associated
   1163 * with them. Furthermore it is guaranteed that all complete callback functions
   1164 * for a previously submitted descriptor have finished running and it is safe to
   1165 * free resources accessed from within the complete callbacks.
   1166 *
   1167 * The behavior of this function is undefined if dma_async_issue_pending() has
   1168 * been called between dmaengine_terminate_async() and this function.
   1169 *
   1170 * This function must only be called from non-atomic context and must not be
   1171 * called from within a complete callback of a descriptor submitted on the same
   1172 * channel.
   1173 */
   1174static inline void dmaengine_synchronize(struct dma_chan *chan)
   1175{
   1176	might_sleep();
   1177
   1178	if (chan->device->device_synchronize)
   1179		chan->device->device_synchronize(chan);
   1180}
   1181
   1182/**
   1183 * dmaengine_terminate_sync() - Terminate all active DMA transfers
   1184 * @chan: The channel for which to terminate the transfers
   1185 *
   1186 * Calling this function will terminate all active and pending transfers
   1187 * that have previously been submitted to the channel. It is similar to
   1188 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
   1189 * stopped and that all complete callbacks have finished running when the
   1190 * function returns.
   1191 *
   1192 * This function must only be called from non-atomic context and must not be
   1193 * called from within a complete callback of a descriptor submitted on the same
   1194 * channel.
   1195 */
   1196static inline int dmaengine_terminate_sync(struct dma_chan *chan)
   1197{
   1198	int ret;
   1199
   1200	ret = dmaengine_terminate_async(chan);
   1201	if (ret)
   1202		return ret;
   1203
   1204	dmaengine_synchronize(chan);
   1205
   1206	return 0;
   1207}
   1208
   1209static inline int dmaengine_pause(struct dma_chan *chan)
   1210{
   1211	if (chan->device->device_pause)
   1212		return chan->device->device_pause(chan);
   1213
   1214	return -ENOSYS;
   1215}
   1216
   1217static inline int dmaengine_resume(struct dma_chan *chan)
   1218{
   1219	if (chan->device->device_resume)
   1220		return chan->device->device_resume(chan);
   1221
   1222	return -ENOSYS;
   1223}
   1224
   1225static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
   1226	dma_cookie_t cookie, struct dma_tx_state *state)
   1227{
   1228	return chan->device->device_tx_status(chan, cookie, state);
   1229}
   1230
   1231static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
   1232{
   1233	return desc->tx_submit(desc);
   1234}
   1235
   1236static inline bool dmaengine_check_align(enum dmaengine_alignment align,
   1237					 size_t off1, size_t off2, size_t len)
   1238{
   1239	return !(((1 << align) - 1) & (off1 | off2 | len));
   1240}
   1241
   1242static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
   1243				       size_t off2, size_t len)
   1244{
   1245	return dmaengine_check_align(dev->copy_align, off1, off2, len);
   1246}
   1247
   1248static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
   1249				      size_t off2, size_t len)
   1250{
   1251	return dmaengine_check_align(dev->xor_align, off1, off2, len);
   1252}
   1253
   1254static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
   1255				     size_t off2, size_t len)
   1256{
   1257	return dmaengine_check_align(dev->pq_align, off1, off2, len);
   1258}
   1259
   1260static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
   1261				       size_t off2, size_t len)
   1262{
   1263	return dmaengine_check_align(dev->fill_align, off1, off2, len);
   1264}
   1265
   1266static inline void
   1267dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
   1268{
   1269	dma->max_pq = maxpq;
   1270	if (has_pq_continue)
   1271		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
   1272}
   1273
   1274static inline bool dmaf_continue(enum dma_ctrl_flags flags)
   1275{
   1276	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
   1277}
   1278
   1279static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
   1280{
   1281	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
   1282
   1283	return (flags & mask) == mask;
   1284}
   1285
   1286static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
   1287{
   1288	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
   1289}
   1290
   1291static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
   1292{
   1293	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
   1294}
   1295
   1296/* dma_maxpq - reduce maxpq in the face of continued operations
   1297 * @dma - dma device with PQ capability
   1298 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
   1299 *
   1300 * When an engine does not support native continuation we need 3 extra
   1301 * source slots to reuse P and Q with the following coefficients:
   1302 * 1/ {00} * P : remove P from Q', but use it as a source for P'
   1303 * 2/ {01} * Q : use Q to continue Q' calculation
   1304 * 3/ {00} * Q : subtract Q from P' to cancel (2)
   1305 *
   1306 * In the case where P is disabled we only need 1 extra source:
   1307 * 1/ {01} * Q : use Q to continue Q' calculation
   1308 */
   1309static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
   1310{
   1311	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
   1312		return dma_dev_to_maxpq(dma);
   1313	if (dmaf_p_disabled_continue(flags))
   1314		return dma_dev_to_maxpq(dma) - 1;
   1315	if (dmaf_continue(flags))
   1316		return dma_dev_to_maxpq(dma) - 3;
   1317	BUG();
   1318}
   1319
   1320static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
   1321				      size_t dir_icg)
   1322{
   1323	if (inc) {
   1324		if (dir_icg)
   1325			return dir_icg;
   1326		if (sgl)
   1327			return icg;
   1328	}
   1329
   1330	return 0;
   1331}
   1332
   1333static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
   1334					   struct data_chunk *chunk)
   1335{
   1336	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
   1337				 chunk->icg, chunk->dst_icg);
   1338}
   1339
   1340static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
   1341					   struct data_chunk *chunk)
   1342{
   1343	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
   1344				 chunk->icg, chunk->src_icg);
   1345}
   1346
   1347/* --- public DMA engine API --- */
   1348
   1349#ifdef CONFIG_DMA_ENGINE
   1350void dmaengine_get(void);
   1351void dmaengine_put(void);
   1352#else
   1353static inline void dmaengine_get(void)
   1354{
   1355}
   1356static inline void dmaengine_put(void)
   1357{
   1358}
   1359#endif
   1360
   1361#ifdef CONFIG_ASYNC_TX_DMA
   1362#define async_dmaengine_get()	dmaengine_get()
   1363#define async_dmaengine_put()	dmaengine_put()
   1364#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
   1365#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
   1366#else
   1367#define async_dma_find_channel(type) dma_find_channel(type)
   1368#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
   1369#else
   1370static inline void async_dmaengine_get(void)
   1371{
   1372}
   1373static inline void async_dmaengine_put(void)
   1374{
   1375}
   1376static inline struct dma_chan *
   1377async_dma_find_channel(enum dma_transaction_type type)
   1378{
   1379	return NULL;
   1380}
   1381#endif /* CONFIG_ASYNC_TX_DMA */
   1382void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
   1383				  struct dma_chan *chan);
   1384
   1385static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
   1386{
   1387	tx->flags |= DMA_CTRL_ACK;
   1388}
   1389
   1390static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
   1391{
   1392	tx->flags &= ~DMA_CTRL_ACK;
   1393}
   1394
   1395static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
   1396{
   1397	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
   1398}
   1399
   1400#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
   1401static inline void
   1402__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
   1403{
   1404	set_bit(tx_type, dstp->bits);
   1405}
   1406
   1407#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
   1408static inline void
   1409__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
   1410{
   1411	clear_bit(tx_type, dstp->bits);
   1412}
   1413
   1414#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
   1415static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
   1416{
   1417	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
   1418}
   1419
   1420#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
   1421static inline int
   1422__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
   1423{
   1424	return test_bit(tx_type, srcp->bits);
   1425}
   1426
   1427#define for_each_dma_cap_mask(cap, mask) \
   1428	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
   1429
   1430/**
   1431 * dma_async_issue_pending - flush pending transactions to HW
   1432 * @chan: target DMA channel
   1433 *
   1434 * This allows drivers to push copies to HW in batches,
   1435 * reducing MMIO writes where possible.
   1436 */
   1437static inline void dma_async_issue_pending(struct dma_chan *chan)
   1438{
   1439	chan->device->device_issue_pending(chan);
   1440}
   1441
   1442/**
   1443 * dma_async_is_tx_complete - poll for transaction completion
   1444 * @chan: DMA channel
   1445 * @cookie: transaction identifier to check status of
   1446 * @last: returns last completed cookie, can be NULL
   1447 * @used: returns last issued cookie, can be NULL
   1448 *
   1449 * If @last and @used are passed in, upon return they reflect the driver
   1450 * internal state and can be used with dma_async_is_complete() to check
   1451 * the status of multiple cookies without re-checking hardware state.
   1452 */
   1453static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
   1454	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
   1455{
   1456	struct dma_tx_state state;
   1457	enum dma_status status;
   1458
   1459	status = chan->device->device_tx_status(chan, cookie, &state);
   1460	if (last)
   1461		*last = state.last;
   1462	if (used)
   1463		*used = state.used;
   1464	return status;
   1465}
   1466
   1467/**
   1468 * dma_async_is_complete - test a cookie against chan state
   1469 * @cookie: transaction identifier to test status of
   1470 * @last_complete: last know completed transaction
   1471 * @last_used: last cookie value handed out
   1472 *
   1473 * dma_async_is_complete() is used in dma_async_is_tx_complete()
   1474 * the test logic is separated for lightweight testing of multiple cookies
   1475 */
   1476static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
   1477			dma_cookie_t last_complete, dma_cookie_t last_used)
   1478{
   1479	if (last_complete <= last_used) {
   1480		if ((cookie <= last_complete) || (cookie > last_used))
   1481			return DMA_COMPLETE;
   1482	} else {
   1483		if ((cookie <= last_complete) && (cookie > last_used))
   1484			return DMA_COMPLETE;
   1485	}
   1486	return DMA_IN_PROGRESS;
   1487}
   1488
   1489static inline void
   1490dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
   1491{
   1492	if (!st)
   1493		return;
   1494
   1495	st->last = last;
   1496	st->used = used;
   1497	st->residue = residue;
   1498}
   1499
   1500#ifdef CONFIG_DMA_ENGINE
   1501struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
   1502enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
   1503enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
   1504void dma_issue_pending_all(void);
   1505struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
   1506				       dma_filter_fn fn, void *fn_param,
   1507				       struct device_node *np);
   1508
   1509struct dma_chan *dma_request_chan(struct device *dev, const char *name);
   1510struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
   1511
   1512void dma_release_channel(struct dma_chan *chan);
   1513int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
   1514#else
   1515static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
   1516{
   1517	return NULL;
   1518}
   1519static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
   1520{
   1521	return DMA_COMPLETE;
   1522}
   1523static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
   1524{
   1525	return DMA_COMPLETE;
   1526}
   1527static inline void dma_issue_pending_all(void)
   1528{
   1529}
   1530static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
   1531						     dma_filter_fn fn,
   1532						     void *fn_param,
   1533						     struct device_node *np)
   1534{
   1535	return NULL;
   1536}
   1537static inline struct dma_chan *dma_request_chan(struct device *dev,
   1538						const char *name)
   1539{
   1540	return ERR_PTR(-ENODEV);
   1541}
   1542static inline struct dma_chan *dma_request_chan_by_mask(
   1543						const dma_cap_mask_t *mask)
   1544{
   1545	return ERR_PTR(-ENODEV);
   1546}
   1547static inline void dma_release_channel(struct dma_chan *chan)
   1548{
   1549}
   1550static inline int dma_get_slave_caps(struct dma_chan *chan,
   1551				     struct dma_slave_caps *caps)
   1552{
   1553	return -ENXIO;
   1554}
   1555#endif
   1556
   1557static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
   1558{
   1559	struct dma_slave_caps caps;
   1560	int ret;
   1561
   1562	ret = dma_get_slave_caps(tx->chan, &caps);
   1563	if (ret)
   1564		return ret;
   1565
   1566	if (!caps.descriptor_reuse)
   1567		return -EPERM;
   1568
   1569	tx->flags |= DMA_CTRL_REUSE;
   1570	return 0;
   1571}
   1572
   1573static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
   1574{
   1575	tx->flags &= ~DMA_CTRL_REUSE;
   1576}
   1577
   1578static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
   1579{
   1580	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
   1581}
   1582
   1583static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
   1584{
   1585	/* this is supported for reusable desc, so check that */
   1586	if (!dmaengine_desc_test_reuse(desc))
   1587		return -EPERM;
   1588
   1589	return desc->desc_free(desc);
   1590}
   1591
   1592/* --- DMA device --- */
   1593
   1594int dma_async_device_register(struct dma_device *device);
   1595int dmaenginem_async_device_register(struct dma_device *device);
   1596void dma_async_device_unregister(struct dma_device *device);
   1597int dma_async_device_channel_register(struct dma_device *device,
   1598				      struct dma_chan *chan);
   1599void dma_async_device_channel_unregister(struct dma_device *device,
   1600					 struct dma_chan *chan);
   1601void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
   1602#define dma_request_channel(mask, x, y) \
   1603	__dma_request_channel(&(mask), x, y, NULL)
   1604
   1605/* Deprecated, please use dma_request_chan() directly */
   1606static inline struct dma_chan * __deprecated
   1607dma_request_slave_channel(struct device *dev, const char *name)
   1608{
   1609	struct dma_chan *ch = dma_request_chan(dev, name);
   1610
   1611	return IS_ERR(ch) ? NULL : ch;
   1612}
   1613
   1614static inline struct dma_chan
   1615*dma_request_slave_channel_compat(const dma_cap_mask_t mask,
   1616				  dma_filter_fn fn, void *fn_param,
   1617				  struct device *dev, const char *name)
   1618{
   1619	struct dma_chan *chan;
   1620
   1621	chan = dma_request_slave_channel(dev, name);
   1622	if (chan)
   1623		return chan;
   1624
   1625	if (!fn || !fn_param)
   1626		return NULL;
   1627
   1628	return __dma_request_channel(&mask, fn, fn_param, NULL);
   1629}
   1630
   1631static inline char *
   1632dmaengine_get_direction_text(enum dma_transfer_direction dir)
   1633{
   1634	switch (dir) {
   1635	case DMA_DEV_TO_MEM:
   1636		return "DEV_TO_MEM";
   1637	case DMA_MEM_TO_DEV:
   1638		return "MEM_TO_DEV";
   1639	case DMA_MEM_TO_MEM:
   1640		return "MEM_TO_MEM";
   1641	case DMA_DEV_TO_DEV:
   1642		return "DEV_TO_DEV";
   1643	default:
   1644		return "invalid";
   1645	}
   1646}
   1647
   1648static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
   1649{
   1650	if (chan->dev->chan_dma_dev)
   1651		return &chan->dev->device;
   1652
   1653	return chan->device->dev;
   1654}
   1655
   1656#endif /* DMAENGINE_H */