edac.h (19924B)
1/* 2 * Generic EDAC defs 3 * 4 * Author: Dave Jiang <djiang@mvista.com> 5 * 6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under 7 * the terms of the GNU General Public License version 2. This program 8 * is licensed "as is" without any warranty of any kind, whether express 9 * or implied. 10 * 11 */ 12#ifndef _LINUX_EDAC_H_ 13#define _LINUX_EDAC_H_ 14 15#include <linux/atomic.h> 16#include <linux/device.h> 17#include <linux/completion.h> 18#include <linux/workqueue.h> 19#include <linux/debugfs.h> 20#include <linux/numa.h> 21 22#define EDAC_DEVICE_NAME_LEN 31 23 24struct device; 25 26#define EDAC_OPSTATE_INVAL -1 27#define EDAC_OPSTATE_POLL 0 28#define EDAC_OPSTATE_NMI 1 29#define EDAC_OPSTATE_INT 2 30 31extern int edac_op_state; 32 33struct bus_type *edac_get_sysfs_subsys(void); 34 35static inline void opstate_init(void) 36{ 37 switch (edac_op_state) { 38 case EDAC_OPSTATE_POLL: 39 case EDAC_OPSTATE_NMI: 40 break; 41 default: 42 edac_op_state = EDAC_OPSTATE_POLL; 43 } 44 return; 45} 46 47/* Max length of a DIMM label*/ 48#define EDAC_MC_LABEL_LEN 31 49 50/* Maximum size of the location string */ 51#define LOCATION_SIZE 256 52 53/* Defines the maximum number of labels that can be reported */ 54#define EDAC_MAX_LABELS 8 55 56/* String used to join two or more labels */ 57#define OTHER_LABEL " or " 58 59/** 60 * enum dev_type - describe the type of memory DRAM chips used at the stick 61 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it 62 * @DEV_X1: 1 bit for data 63 * @DEV_X2: 2 bits for data 64 * @DEV_X4: 4 bits for data 65 * @DEV_X8: 8 bits for data 66 * @DEV_X16: 16 bits for data 67 * @DEV_X32: 32 bits for data 68 * @DEV_X64: 64 bits for data 69 * 70 * Typical values are x4 and x8. 71 */ 72enum dev_type { 73 DEV_UNKNOWN = 0, 74 DEV_X1, 75 DEV_X2, 76 DEV_X4, 77 DEV_X8, 78 DEV_X16, 79 DEV_X32, /* Do these parts exist? */ 80 DEV_X64 /* Do these parts exist? */ 81}; 82 83#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) 84#define DEV_FLAG_X1 BIT(DEV_X1) 85#define DEV_FLAG_X2 BIT(DEV_X2) 86#define DEV_FLAG_X4 BIT(DEV_X4) 87#define DEV_FLAG_X8 BIT(DEV_X8) 88#define DEV_FLAG_X16 BIT(DEV_X16) 89#define DEV_FLAG_X32 BIT(DEV_X32) 90#define DEV_FLAG_X64 BIT(DEV_X64) 91 92/** 93 * enum hw_event_mc_err_type - type of the detected error 94 * 95 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC 96 * corrected error was detected 97 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that 98 * can't be corrected by ECC, but it is not 99 * fatal (maybe it is on an unused memory area, 100 * or the memory controller could recover from 101 * it for example, by re-trying the operation). 102 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable 103 * error whose handling is not urgent. This could 104 * be due to hardware data poisoning where the 105 * system can continue operation until the poisoned 106 * data is consumed. Preemptive measures may also 107 * be taken, e.g. offlining pages, etc. 108 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not 109 * be recovered. 110 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth 111 * type of error: informational logs. 112 */ 113enum hw_event_mc_err_type { 114 HW_EVENT_ERR_CORRECTED, 115 HW_EVENT_ERR_UNCORRECTED, 116 HW_EVENT_ERR_DEFERRED, 117 HW_EVENT_ERR_FATAL, 118 HW_EVENT_ERR_INFO, 119}; 120 121static inline char *mc_event_error_type(const unsigned int err_type) 122{ 123 switch (err_type) { 124 case HW_EVENT_ERR_CORRECTED: 125 return "Corrected"; 126 case HW_EVENT_ERR_UNCORRECTED: 127 return "Uncorrected"; 128 case HW_EVENT_ERR_DEFERRED: 129 return "Deferred"; 130 case HW_EVENT_ERR_FATAL: 131 return "Fatal"; 132 default: 133 case HW_EVENT_ERR_INFO: 134 return "Info"; 135 } 136} 137 138/** 139 * enum mem_type - memory types. For a more detailed reference, please see 140 * http://en.wikipedia.org/wiki/DRAM 141 * 142 * @MEM_EMPTY: Empty csrow 143 * @MEM_RESERVED: Reserved csrow type 144 * @MEM_UNKNOWN: Unknown csrow type 145 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. 146 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998. 147 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant. 148 * @MEM_SDR: SDR - Single data rate SDRAM 149 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory 150 * They use 3 pins for chip select: Pins 0 and 2 are 151 * for rank 0; pins 1 and 3 are for rank 1, if the memory 152 * is dual-rank. 153 * @MEM_RDR: Registered SDR SDRAM 154 * @MEM_DDR: Double data rate SDRAM 155 * http://en.wikipedia.org/wiki/DDR_SDRAM 156 * @MEM_RDDR: Registered Double data rate SDRAM 157 * This is a variant of the DDR memories. 158 * A registered memory has a buffer inside it, hiding 159 * part of the memory details to the memory controller. 160 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers. 161 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F. 162 * Those memories are labeled as "PC2-" instead of "PC" to 163 * differentiate from DDR. 164 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205 165 * and JESD206. 166 * Those memories are accessed per DIMM slot, and not by 167 * a chip select signal. 168 * @MEM_RDDR2: Registered DDR2 RAM 169 * This is a variant of the DDR2 memories. 170 * @MEM_XDR: Rambus XDR 171 * It is an evolution of the original RAMBUS memories, 172 * created to compete with DDR2. Weren't used on any 173 * x86 arch, but cell_edac PPC memory controller uses it. 174 * @MEM_DDR3: DDR3 RAM 175 * @MEM_RDDR3: Registered DDR3 RAM 176 * This is a variant of the DDR3 memories. 177 * @MEM_LRDDR3: Load-Reduced DDR3 memory. 178 * @MEM_LPDDR3: Low-Power DDR3 memory. 179 * @MEM_DDR4: Unbuffered DDR4 RAM 180 * @MEM_RDDR4: Registered DDR4 RAM 181 * This is a variant of the DDR4 memories. 182 * @MEM_LRDDR4: Load-Reduced DDR4 memory. 183 * @MEM_LPDDR4: Low-Power DDR4 memory. 184 * @MEM_DDR5: Unbuffered DDR5 RAM 185 * @MEM_RDDR5: Registered DDR5 RAM 186 * @MEM_LRDDR5: Load-Reduced DDR5 memory. 187 * @MEM_NVDIMM: Non-volatile RAM 188 * @MEM_WIO2: Wide I/O 2. 189 * @MEM_HBM2: High bandwidth Memory Gen 2. 190 */ 191enum mem_type { 192 MEM_EMPTY = 0, 193 MEM_RESERVED, 194 MEM_UNKNOWN, 195 MEM_FPM, 196 MEM_EDO, 197 MEM_BEDO, 198 MEM_SDR, 199 MEM_RDR, 200 MEM_DDR, 201 MEM_RDDR, 202 MEM_RMBS, 203 MEM_DDR2, 204 MEM_FB_DDR2, 205 MEM_RDDR2, 206 MEM_XDR, 207 MEM_DDR3, 208 MEM_RDDR3, 209 MEM_LRDDR3, 210 MEM_LPDDR3, 211 MEM_DDR4, 212 MEM_RDDR4, 213 MEM_LRDDR4, 214 MEM_LPDDR4, 215 MEM_DDR5, 216 MEM_RDDR5, 217 MEM_LRDDR5, 218 MEM_NVDIMM, 219 MEM_WIO2, 220 MEM_HBM2, 221}; 222 223#define MEM_FLAG_EMPTY BIT(MEM_EMPTY) 224#define MEM_FLAG_RESERVED BIT(MEM_RESERVED) 225#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) 226#define MEM_FLAG_FPM BIT(MEM_FPM) 227#define MEM_FLAG_EDO BIT(MEM_EDO) 228#define MEM_FLAG_BEDO BIT(MEM_BEDO) 229#define MEM_FLAG_SDR BIT(MEM_SDR) 230#define MEM_FLAG_RDR BIT(MEM_RDR) 231#define MEM_FLAG_DDR BIT(MEM_DDR) 232#define MEM_FLAG_RDDR BIT(MEM_RDDR) 233#define MEM_FLAG_RMBS BIT(MEM_RMBS) 234#define MEM_FLAG_DDR2 BIT(MEM_DDR2) 235#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) 236#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) 237#define MEM_FLAG_XDR BIT(MEM_XDR) 238#define MEM_FLAG_DDR3 BIT(MEM_DDR3) 239#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) 240#define MEM_FLAG_LPDDR3 BIT(MEM_LPDDR3) 241#define MEM_FLAG_DDR4 BIT(MEM_DDR4) 242#define MEM_FLAG_RDDR4 BIT(MEM_RDDR4) 243#define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4) 244#define MEM_FLAG_LPDDR4 BIT(MEM_LPDDR4) 245#define MEM_FLAG_DDR5 BIT(MEM_DDR5) 246#define MEM_FLAG_RDDR5 BIT(MEM_RDDR5) 247#define MEM_FLAG_LRDDR5 BIT(MEM_LRDDR5) 248#define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM) 249#define MEM_FLAG_WIO2 BIT(MEM_WIO2) 250#define MEM_FLAG_HBM2 BIT(MEM_HBM2) 251 252/** 253 * enum edac_type - Error Detection and Correction capabilities and mode 254 * @EDAC_UNKNOWN: Unknown if ECC is available 255 * @EDAC_NONE: Doesn't support ECC 256 * @EDAC_RESERVED: Reserved ECC type 257 * @EDAC_PARITY: Detects parity errors 258 * @EDAC_EC: Error Checking - no correction 259 * @EDAC_SECDED: Single bit error correction, Double detection 260 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist? 261 * @EDAC_S4ECD4ED: Chipkill x4 devices 262 * @EDAC_S8ECD8ED: Chipkill x8 devices 263 * @EDAC_S16ECD16ED: Chipkill x16 devices 264 */ 265enum edac_type { 266 EDAC_UNKNOWN = 0, 267 EDAC_NONE, 268 EDAC_RESERVED, 269 EDAC_PARITY, 270 EDAC_EC, 271 EDAC_SECDED, 272 EDAC_S2ECD2ED, 273 EDAC_S4ECD4ED, 274 EDAC_S8ECD8ED, 275 EDAC_S16ECD16ED, 276}; 277 278#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) 279#define EDAC_FLAG_NONE BIT(EDAC_NONE) 280#define EDAC_FLAG_PARITY BIT(EDAC_PARITY) 281#define EDAC_FLAG_EC BIT(EDAC_EC) 282#define EDAC_FLAG_SECDED BIT(EDAC_SECDED) 283#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) 284#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) 285#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) 286#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) 287 288/** 289 * enum scrub_type - scrubbing capabilities 290 * @SCRUB_UNKNOWN: Unknown if scrubber is available 291 * @SCRUB_NONE: No scrubber 292 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing 293 * @SCRUB_SW_SRC: Software scrub only errors 294 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error 295 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable 296 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing 297 * @SCRUB_HW_SRC: Hardware scrub only errors 298 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error 299 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable 300 */ 301enum scrub_type { 302 SCRUB_UNKNOWN = 0, 303 SCRUB_NONE, 304 SCRUB_SW_PROG, 305 SCRUB_SW_SRC, 306 SCRUB_SW_PROG_SRC, 307 SCRUB_SW_TUNABLE, 308 SCRUB_HW_PROG, 309 SCRUB_HW_SRC, 310 SCRUB_HW_PROG_SRC, 311 SCRUB_HW_TUNABLE 312}; 313 314#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) 315#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) 316#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) 317#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) 318#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) 319#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) 320#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) 321#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) 322 323/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ 324 325/* EDAC internal operation states */ 326#define OP_ALLOC 0x100 327#define OP_RUNNING_POLL 0x201 328#define OP_RUNNING_INTERRUPT 0x202 329#define OP_RUNNING_POLL_INTR 0x203 330#define OP_OFFLINE 0x300 331 332/** 333 * enum edac_mc_layer_type - memory controller hierarchy layer 334 * 335 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch" 336 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel" 337 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot" 338 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select" 339 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped 340 * as a single memory area. This is used when 341 * retrieving errors from a firmware driven driver. 342 * 343 * This enum is used by the drivers to tell edac_mc_sysfs what name should 344 * be used when describing a memory stick location. 345 */ 346enum edac_mc_layer_type { 347 EDAC_MC_LAYER_BRANCH, 348 EDAC_MC_LAYER_CHANNEL, 349 EDAC_MC_LAYER_SLOT, 350 EDAC_MC_LAYER_CHIP_SELECT, 351 EDAC_MC_LAYER_ALL_MEM, 352}; 353 354/** 355 * struct edac_mc_layer - describes the memory controller hierarchy 356 * @type: layer type 357 * @size: number of components per layer. For example, 358 * if the channel layer has two channels, size = 2 359 * @is_virt_csrow: This layer is part of the "csrow" when old API 360 * compatibility mode is enabled. Otherwise, it is 361 * a channel 362 */ 363struct edac_mc_layer { 364 enum edac_mc_layer_type type; 365 unsigned size; 366 bool is_virt_csrow; 367}; 368 369/* 370 * Maximum number of layers used by the memory controller to uniquely 371 * identify a single memory stick. 372 * NOTE: Changing this constant requires not only to change the constant 373 * below, but also to change the existing code at the core, as there are 374 * some code there that are optimized for 3 layers. 375 */ 376#define EDAC_MAX_LAYERS 3 377 378struct dimm_info { 379 struct device dev; 380 381 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ 382 383 /* Memory location data */ 384 unsigned int location[EDAC_MAX_LAYERS]; 385 386 struct mem_ctl_info *mci; /* the parent */ 387 unsigned int idx; /* index within the parent dimm array */ 388 389 u32 grain; /* granularity of reported error in bytes */ 390 enum dev_type dtype; /* memory device type */ 391 enum mem_type mtype; /* memory dimm type */ 392 enum edac_type edac_mode; /* EDAC mode for this dimm */ 393 394 u32 nr_pages; /* number of pages on this dimm */ 395 396 unsigned int csrow, cschannel; /* Points to the old API data */ 397 398 u16 smbios_handle; /* Handle for SMBIOS type 17 */ 399 400 u32 ce_count; 401 u32 ue_count; 402}; 403 404/** 405 * struct rank_info - contains the information for one DIMM rank 406 * 407 * @chan_idx: channel number where the rank is (typically, 0 or 1) 408 * @ce_count: number of correctable errors for this rank 409 * @csrow: A pointer to the chip select row structure (the parent 410 * structure). The location of the rank is given by 411 * the (csrow->csrow_idx, chan_idx) vector. 412 * @dimm: A pointer to the DIMM structure, where the DIMM label 413 * information is stored. 414 * 415 * FIXME: Currently, the EDAC core model will assume one DIMM per rank. 416 * This is a bad assumption, but it makes this patch easier. Later 417 * patches in this series will fix this issue. 418 */ 419struct rank_info { 420 int chan_idx; 421 struct csrow_info *csrow; 422 struct dimm_info *dimm; 423 424 u32 ce_count; /* Correctable Errors for this csrow */ 425}; 426 427struct csrow_info { 428 struct device dev; 429 430 /* Used only by edac_mc_find_csrow_by_page() */ 431 unsigned long first_page; /* first page number in csrow */ 432 unsigned long last_page; /* last page number in csrow */ 433 unsigned long page_mask; /* used for interleaving - 434 * 0UL for non intlv */ 435 436 int csrow_idx; /* the chip-select row */ 437 438 u32 ue_count; /* Uncorrectable Errors for this csrow */ 439 u32 ce_count; /* Correctable Errors for this csrow */ 440 441 struct mem_ctl_info *mci; /* the parent */ 442 443 /* channel information for this csrow */ 444 u32 nr_channels; 445 struct rank_info **channels; 446}; 447 448/* 449 * struct errcount_attribute - used to store the several error counts 450 */ 451struct errcount_attribute_data { 452 int n_layers; 453 int pos[EDAC_MAX_LAYERS]; 454 int layer0, layer1, layer2; 455}; 456 457/** 458 * struct edac_raw_error_desc - Raw error report structure 459 * @grain: minimum granularity for an error report, in bytes 460 * @error_count: number of errors of the same type 461 * @type: severity of the error (CE/UE/Fatal) 462 * @top_layer: top layer of the error (layer[0]) 463 * @mid_layer: middle layer of the error (layer[1]) 464 * @low_layer: low layer of the error (layer[2]) 465 * @page_frame_number: page where the error happened 466 * @offset_in_page: page offset 467 * @syndrome: syndrome of the error (or 0 if unknown or if 468 * the syndrome is not applicable) 469 * @msg: error message 470 * @location: location of the error 471 * @label: label of the affected DIMM(s) 472 * @other_detail: other driver-specific detail about the error 473 */ 474struct edac_raw_error_desc { 475 char location[LOCATION_SIZE]; 476 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS]; 477 long grain; 478 479 u16 error_count; 480 enum hw_event_mc_err_type type; 481 int top_layer; 482 int mid_layer; 483 int low_layer; 484 unsigned long page_frame_number; 485 unsigned long offset_in_page; 486 unsigned long syndrome; 487 const char *msg; 488 const char *other_detail; 489}; 490 491/* MEMORY controller information structure 492 */ 493struct mem_ctl_info { 494 struct device dev; 495 struct bus_type *bus; 496 497 struct list_head link; /* for global list of mem_ctl_info structs */ 498 499 struct module *owner; /* Module owner of this control struct */ 500 501 unsigned long mtype_cap; /* memory types supported by mc */ 502 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ 503 unsigned long edac_cap; /* configuration capabilities - this is 504 * closely related to edac_ctl_cap. The 505 * difference is that the controller may be 506 * capable of s4ecd4ed which would be listed 507 * in edac_ctl_cap, but if channels aren't 508 * capable of s4ecd4ed then the edac_cap would 509 * not have that capability. 510 */ 511 unsigned long scrub_cap; /* chipset scrub capabilities */ 512 enum scrub_type scrub_mode; /* current scrub mode */ 513 514 /* Translates sdram memory scrub rate given in bytes/sec to the 515 internal representation and configures whatever else needs 516 to be configured. 517 */ 518 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); 519 520 /* Get the current sdram memory scrub rate from the internal 521 representation and converts it to the closest matching 522 bandwidth in bytes/sec. 523 */ 524 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); 525 526 527 /* pointer to edac checking routine */ 528 void (*edac_check) (struct mem_ctl_info * mci); 529 530 /* 531 * Remaps memory pages: controller pages to physical pages. 532 * For most MC's, this will be NULL. 533 */ 534 /* FIXME - why not send the phys page to begin with? */ 535 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, 536 unsigned long page); 537 int mc_idx; 538 struct csrow_info **csrows; 539 unsigned int nr_csrows, num_cschannel; 540 541 /* 542 * Memory Controller hierarchy 543 * 544 * There are basically two types of memory controller: the ones that 545 * sees memory sticks ("dimms"), and the ones that sees memory ranks. 546 * All old memory controllers enumerate memories per rank, but most 547 * of the recent drivers enumerate memories per DIMM, instead. 548 * When the memory controller is per rank, csbased is true. 549 */ 550 unsigned int n_layers; 551 struct edac_mc_layer *layers; 552 bool csbased; 553 554 /* 555 * DIMM info. Will eventually remove the entire csrows_info some day 556 */ 557 unsigned int tot_dimms; 558 struct dimm_info **dimms; 559 560 /* 561 * FIXME - what about controllers on other busses? - IDs must be 562 * unique. dev pointer should be sufficiently unique, but 563 * BUS:SLOT.FUNC numbers may not be unique. 564 */ 565 struct device *pdev; 566 const char *mod_name; 567 const char *ctl_name; 568 const char *dev_name; 569 void *pvt_info; 570 unsigned long start_time; /* mci load start time (in jiffies) */ 571 572 /* 573 * drivers shouldn't access those fields directly, as the core 574 * already handles that. 575 */ 576 u32 ce_noinfo_count, ue_noinfo_count; 577 u32 ue_mc, ce_mc; 578 579 struct completion complete; 580 581 /* Additional top controller level attributes, but specified 582 * by the low level driver. 583 * 584 * Set by the low level driver to provide attributes at the 585 * controller level. 586 * An array of structures, NULL terminated 587 * 588 * If attributes are desired, then set to array of attributes 589 * If no attributes are desired, leave NULL 590 */ 591 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; 592 593 /* work struct for this MC */ 594 struct delayed_work work; 595 596 /* 597 * Used to report an error - by being at the global struct 598 * makes the memory allocated by the EDAC core 599 */ 600 struct edac_raw_error_desc error_desc; 601 602 /* the internal state of this controller instance */ 603 int op_state; 604 605 struct dentry *debugfs; 606 u8 fake_inject_layer[EDAC_MAX_LAYERS]; 607 bool fake_inject_ue; 608 u16 fake_inject_count; 609}; 610 611#define mci_for_each_dimm(mci, dimm) \ 612 for ((dimm) = (mci)->dimms[0]; \ 613 (dimm); \ 614 (dimm) = (dimm)->idx + 1 < (mci)->tot_dimms \ 615 ? (mci)->dimms[(dimm)->idx + 1] \ 616 : NULL) 617 618/** 619 * edac_get_dimm - Get DIMM info from a memory controller given by 620 * [layer0,layer1,layer2] position 621 * 622 * @mci: MC descriptor struct mem_ctl_info 623 * @layer0: layer0 position 624 * @layer1: layer1 position. Unused if n_layers < 2 625 * @layer2: layer2 position. Unused if n_layers < 3 626 * 627 * For 1 layer, this function returns "dimms[layer0]"; 628 * 629 * For 2 layers, this function is similar to allocating a two-dimensional 630 * array and returning "dimms[layer0][layer1]"; 631 * 632 * For 3 layers, this function is similar to allocating a tri-dimensional 633 * array and returning "dimms[layer0][layer1][layer2]"; 634 */ 635static inline struct dimm_info *edac_get_dimm(struct mem_ctl_info *mci, 636 int layer0, int layer1, int layer2) 637{ 638 int index; 639 640 if (layer0 < 0 641 || (mci->n_layers > 1 && layer1 < 0) 642 || (mci->n_layers > 2 && layer2 < 0)) 643 return NULL; 644 645 index = layer0; 646 647 if (mci->n_layers > 1) 648 index = index * mci->layers[1].size + layer1; 649 650 if (mci->n_layers > 2) 651 index = index * mci->layers[2].size + layer2; 652 653 if (index < 0 || index >= mci->tot_dimms) 654 return NULL; 655 656 if (WARN_ON_ONCE(mci->dimms[index]->idx != index)) 657 return NULL; 658 659 return mci->dimms[index]; 660} 661#endif /* _LINUX_EDAC_H_ */