filter.h (43995B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <linux/atomic.h> 9#include <linux/bpf.h> 10#include <linux/refcount.h> 11#include <linux/compat.h> 12#include <linux/skbuff.h> 13#include <linux/linkage.h> 14#include <linux/printk.h> 15#include <linux/workqueue.h> 16#include <linux/sched.h> 17#include <linux/capability.h> 18#include <linux/set_memory.h> 19#include <linux/kallsyms.h> 20#include <linux/if_vlan.h> 21#include <linux/vmalloc.h> 22#include <linux/sockptr.h> 23#include <crypto/sha1.h> 24#include <linux/u64_stats_sync.h> 25 26#include <net/sch_generic.h> 27 28#include <asm/byteorder.h> 29#include <uapi/linux/filter.h> 30 31struct sk_buff; 32struct sock; 33struct seccomp_data; 34struct bpf_prog_aux; 35struct xdp_rxq_info; 36struct xdp_buff; 37struct sock_reuseport; 38struct ctl_table; 39struct ctl_table_header; 40 41/* ArgX, context and stack frame pointer register positions. Note, 42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 43 * calls in BPF_CALL instruction. 44 */ 45#define BPF_REG_ARG1 BPF_REG_1 46#define BPF_REG_ARG2 BPF_REG_2 47#define BPF_REG_ARG3 BPF_REG_3 48#define BPF_REG_ARG4 BPF_REG_4 49#define BPF_REG_ARG5 BPF_REG_5 50#define BPF_REG_CTX BPF_REG_6 51#define BPF_REG_FP BPF_REG_10 52 53/* Additional register mappings for converted user programs. */ 54#define BPF_REG_A BPF_REG_0 55#define BPF_REG_X BPF_REG_7 56#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 57#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 58#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 59 60/* Kernel hidden auxiliary/helper register. */ 61#define BPF_REG_AX MAX_BPF_REG 62#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 63#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 64 65/* unused opcode to mark special call to bpf_tail_call() helper */ 66#define BPF_TAIL_CALL 0xf0 67 68/* unused opcode to mark special load instruction. Same as BPF_ABS */ 69#define BPF_PROBE_MEM 0x20 70 71/* unused opcode to mark call to interpreter with arguments */ 72#define BPF_CALL_ARGS 0xe0 73 74/* unused opcode to mark speculation barrier for mitigating 75 * Speculative Store Bypass 76 */ 77#define BPF_NOSPEC 0xc0 78 79/* As per nm, we expose JITed images as text (code) section for 80 * kallsyms. That way, tools like perf can find it to match 81 * addresses. 82 */ 83#define BPF_SYM_ELF_TYPE 't' 84 85/* BPF program can access up to 512 bytes of stack space. */ 86#define MAX_BPF_STACK 512 87 88/* Helper macros for filter block array initializers. */ 89 90/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 91 92#define BPF_ALU64_REG(OP, DST, SRC) \ 93 ((struct bpf_insn) { \ 94 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 95 .dst_reg = DST, \ 96 .src_reg = SRC, \ 97 .off = 0, \ 98 .imm = 0 }) 99 100#define BPF_ALU32_REG(OP, DST, SRC) \ 101 ((struct bpf_insn) { \ 102 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 103 .dst_reg = DST, \ 104 .src_reg = SRC, \ 105 .off = 0, \ 106 .imm = 0 }) 107 108/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 109 110#define BPF_ALU64_IMM(OP, DST, IMM) \ 111 ((struct bpf_insn) { \ 112 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 113 .dst_reg = DST, \ 114 .src_reg = 0, \ 115 .off = 0, \ 116 .imm = IMM }) 117 118#define BPF_ALU32_IMM(OP, DST, IMM) \ 119 ((struct bpf_insn) { \ 120 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 121 .dst_reg = DST, \ 122 .src_reg = 0, \ 123 .off = 0, \ 124 .imm = IMM }) 125 126/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 127 128#define BPF_ENDIAN(TYPE, DST, LEN) \ 129 ((struct bpf_insn) { \ 130 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 131 .dst_reg = DST, \ 132 .src_reg = 0, \ 133 .off = 0, \ 134 .imm = LEN }) 135 136/* Short form of mov, dst_reg = src_reg */ 137 138#define BPF_MOV64_REG(DST, SRC) \ 139 ((struct bpf_insn) { \ 140 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 141 .dst_reg = DST, \ 142 .src_reg = SRC, \ 143 .off = 0, \ 144 .imm = 0 }) 145 146#define BPF_MOV32_REG(DST, SRC) \ 147 ((struct bpf_insn) { \ 148 .code = BPF_ALU | BPF_MOV | BPF_X, \ 149 .dst_reg = DST, \ 150 .src_reg = SRC, \ 151 .off = 0, \ 152 .imm = 0 }) 153 154/* Short form of mov, dst_reg = imm32 */ 155 156#define BPF_MOV64_IMM(DST, IMM) \ 157 ((struct bpf_insn) { \ 158 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 159 .dst_reg = DST, \ 160 .src_reg = 0, \ 161 .off = 0, \ 162 .imm = IMM }) 163 164#define BPF_MOV32_IMM(DST, IMM) \ 165 ((struct bpf_insn) { \ 166 .code = BPF_ALU | BPF_MOV | BPF_K, \ 167 .dst_reg = DST, \ 168 .src_reg = 0, \ 169 .off = 0, \ 170 .imm = IMM }) 171 172/* Special form of mov32, used for doing explicit zero extension on dst. */ 173#define BPF_ZEXT_REG(DST) \ 174 ((struct bpf_insn) { \ 175 .code = BPF_ALU | BPF_MOV | BPF_X, \ 176 .dst_reg = DST, \ 177 .src_reg = DST, \ 178 .off = 0, \ 179 .imm = 1 }) 180 181static inline bool insn_is_zext(const struct bpf_insn *insn) 182{ 183 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 184} 185 186/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 187#define BPF_LD_IMM64(DST, IMM) \ 188 BPF_LD_IMM64_RAW(DST, 0, IMM) 189 190#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 191 ((struct bpf_insn) { \ 192 .code = BPF_LD | BPF_DW | BPF_IMM, \ 193 .dst_reg = DST, \ 194 .src_reg = SRC, \ 195 .off = 0, \ 196 .imm = (__u32) (IMM) }), \ 197 ((struct bpf_insn) { \ 198 .code = 0, /* zero is reserved opcode */ \ 199 .dst_reg = 0, \ 200 .src_reg = 0, \ 201 .off = 0, \ 202 .imm = ((__u64) (IMM)) >> 32 }) 203 204/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 205#define BPF_LD_MAP_FD(DST, MAP_FD) \ 206 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 207 208/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 209 210#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 211 ((struct bpf_insn) { \ 212 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 213 .dst_reg = DST, \ 214 .src_reg = SRC, \ 215 .off = 0, \ 216 .imm = IMM }) 217 218#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 219 ((struct bpf_insn) { \ 220 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 221 .dst_reg = DST, \ 222 .src_reg = SRC, \ 223 .off = 0, \ 224 .imm = IMM }) 225 226/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 227 228#define BPF_LD_ABS(SIZE, IMM) \ 229 ((struct bpf_insn) { \ 230 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 231 .dst_reg = 0, \ 232 .src_reg = 0, \ 233 .off = 0, \ 234 .imm = IMM }) 235 236/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 237 238#define BPF_LD_IND(SIZE, SRC, IMM) \ 239 ((struct bpf_insn) { \ 240 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 241 .dst_reg = 0, \ 242 .src_reg = SRC, \ 243 .off = 0, \ 244 .imm = IMM }) 245 246/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 247 248#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 249 ((struct bpf_insn) { \ 250 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 251 .dst_reg = DST, \ 252 .src_reg = SRC, \ 253 .off = OFF, \ 254 .imm = 0 }) 255 256/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 257 258#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 259 ((struct bpf_insn) { \ 260 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 261 .dst_reg = DST, \ 262 .src_reg = SRC, \ 263 .off = OFF, \ 264 .imm = 0 }) 265 266 267/* 268 * Atomic operations: 269 * 270 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 271 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 272 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 273 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 274 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 275 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 276 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 277 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 278 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 279 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 280 */ 281 282#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 283 ((struct bpf_insn) { \ 284 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 285 .dst_reg = DST, \ 286 .src_reg = SRC, \ 287 .off = OFF, \ 288 .imm = OP }) 289 290/* Legacy alias */ 291#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 292 293/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 294 295#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 298 .dst_reg = DST, \ 299 .src_reg = 0, \ 300 .off = OFF, \ 301 .imm = IMM }) 302 303/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 304 305#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 308 .dst_reg = DST, \ 309 .src_reg = SRC, \ 310 .off = OFF, \ 311 .imm = 0 }) 312 313/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 314 315#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 318 .dst_reg = DST, \ 319 .src_reg = 0, \ 320 .off = OFF, \ 321 .imm = IMM }) 322 323/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 324 325#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 328 .dst_reg = DST, \ 329 .src_reg = SRC, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 334 335#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 338 .dst_reg = DST, \ 339 .src_reg = 0, \ 340 .off = OFF, \ 341 .imm = IMM }) 342 343/* Unconditional jumps, goto pc + off16 */ 344 345#define BPF_JMP_A(OFF) \ 346 ((struct bpf_insn) { \ 347 .code = BPF_JMP | BPF_JA, \ 348 .dst_reg = 0, \ 349 .src_reg = 0, \ 350 .off = OFF, \ 351 .imm = 0 }) 352 353/* Relative call */ 354 355#define BPF_CALL_REL(TGT) \ 356 ((struct bpf_insn) { \ 357 .code = BPF_JMP | BPF_CALL, \ 358 .dst_reg = 0, \ 359 .src_reg = BPF_PSEUDO_CALL, \ 360 .off = 0, \ 361 .imm = TGT }) 362 363/* Convert function address to BPF immediate */ 364 365#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 366 367#define BPF_EMIT_CALL(FUNC) \ 368 ((struct bpf_insn) { \ 369 .code = BPF_JMP | BPF_CALL, \ 370 .dst_reg = 0, \ 371 .src_reg = 0, \ 372 .off = 0, \ 373 .imm = BPF_CALL_IMM(FUNC) }) 374 375/* Raw code statement block */ 376 377#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 378 ((struct bpf_insn) { \ 379 .code = CODE, \ 380 .dst_reg = DST, \ 381 .src_reg = SRC, \ 382 .off = OFF, \ 383 .imm = IMM }) 384 385/* Program exit */ 386 387#define BPF_EXIT_INSN() \ 388 ((struct bpf_insn) { \ 389 .code = BPF_JMP | BPF_EXIT, \ 390 .dst_reg = 0, \ 391 .src_reg = 0, \ 392 .off = 0, \ 393 .imm = 0 }) 394 395/* Speculation barrier */ 396 397#define BPF_ST_NOSPEC() \ 398 ((struct bpf_insn) { \ 399 .code = BPF_ST | BPF_NOSPEC, \ 400 .dst_reg = 0, \ 401 .src_reg = 0, \ 402 .off = 0, \ 403 .imm = 0 }) 404 405/* Internal classic blocks for direct assignment */ 406 407#define __BPF_STMT(CODE, K) \ 408 ((struct sock_filter) BPF_STMT(CODE, K)) 409 410#define __BPF_JUMP(CODE, K, JT, JF) \ 411 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 412 413#define bytes_to_bpf_size(bytes) \ 414({ \ 415 int bpf_size = -EINVAL; \ 416 \ 417 if (bytes == sizeof(u8)) \ 418 bpf_size = BPF_B; \ 419 else if (bytes == sizeof(u16)) \ 420 bpf_size = BPF_H; \ 421 else if (bytes == sizeof(u32)) \ 422 bpf_size = BPF_W; \ 423 else if (bytes == sizeof(u64)) \ 424 bpf_size = BPF_DW; \ 425 \ 426 bpf_size; \ 427}) 428 429#define bpf_size_to_bytes(bpf_size) \ 430({ \ 431 int bytes = -EINVAL; \ 432 \ 433 if (bpf_size == BPF_B) \ 434 bytes = sizeof(u8); \ 435 else if (bpf_size == BPF_H) \ 436 bytes = sizeof(u16); \ 437 else if (bpf_size == BPF_W) \ 438 bytes = sizeof(u32); \ 439 else if (bpf_size == BPF_DW) \ 440 bytes = sizeof(u64); \ 441 \ 442 bytes; \ 443}) 444 445#define BPF_SIZEOF(type) \ 446 ({ \ 447 const int __size = bytes_to_bpf_size(sizeof(type)); \ 448 BUILD_BUG_ON(__size < 0); \ 449 __size; \ 450 }) 451 452#define BPF_FIELD_SIZEOF(type, field) \ 453 ({ \ 454 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 455 BUILD_BUG_ON(__size < 0); \ 456 __size; \ 457 }) 458 459#define BPF_LDST_BYTES(insn) \ 460 ({ \ 461 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 462 WARN_ON(__size < 0); \ 463 __size; \ 464 }) 465 466#define __BPF_MAP_0(m, v, ...) v 467#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 468#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 469#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 470#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 471#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 472 473#define __BPF_REG_0(...) __BPF_PAD(5) 474#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 475#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 476#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 477#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 478#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 479 480#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 481#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 482 483#define __BPF_CAST(t, a) \ 484 (__force t) \ 485 (__force \ 486 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 487 (unsigned long)0, (t)0))) a 488#define __BPF_V void 489#define __BPF_N 490 491#define __BPF_DECL_ARGS(t, a) t a 492#define __BPF_DECL_REGS(t, a) u64 a 493 494#define __BPF_PAD(n) \ 495 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 496 u64, __ur_3, u64, __ur_4, u64, __ur_5) 497 498#define BPF_CALL_x(x, name, ...) \ 499 static __always_inline \ 500 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 501 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 502 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 503 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 504 { \ 505 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 506 } \ 507 static __always_inline \ 508 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 509 510#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 511#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 512#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 513#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 514#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 515#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 516 517#define bpf_ctx_range(TYPE, MEMBER) \ 518 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 519#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 520 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 521#if BITS_PER_LONG == 64 522# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 523 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 524#else 525# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 526 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 527#endif /* BITS_PER_LONG == 64 */ 528 529#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 530 ({ \ 531 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 532 *(PTR_SIZE) = (SIZE); \ 533 offsetof(TYPE, MEMBER); \ 534 }) 535 536/* A struct sock_filter is architecture independent. */ 537struct compat_sock_fprog { 538 u16 len; 539 compat_uptr_t filter; /* struct sock_filter * */ 540}; 541 542struct sock_fprog_kern { 543 u16 len; 544 struct sock_filter *filter; 545}; 546 547/* Some arches need doubleword alignment for their instructions and/or data */ 548#define BPF_IMAGE_ALIGNMENT 8 549 550struct bpf_binary_header { 551 u32 size; 552 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 553}; 554 555struct bpf_prog_stats { 556 u64_stats_t cnt; 557 u64_stats_t nsecs; 558 u64_stats_t misses; 559 struct u64_stats_sync syncp; 560} __aligned(2 * sizeof(u64)); 561 562struct bpf_prog { 563 u16 pages; /* Number of allocated pages */ 564 u16 jited:1, /* Is our filter JIT'ed? */ 565 jit_requested:1,/* archs need to JIT the prog */ 566 gpl_compatible:1, /* Is filter GPL compatible? */ 567 cb_access:1, /* Is control block accessed? */ 568 dst_needed:1, /* Do we need dst entry? */ 569 blinding_requested:1, /* needs constant blinding */ 570 blinded:1, /* Was blinded */ 571 is_func:1, /* program is a bpf function */ 572 kprobe_override:1, /* Do we override a kprobe? */ 573 has_callchain_buf:1, /* callchain buffer allocated? */ 574 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 575 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 576 call_get_func_ip:1, /* Do we call get_func_ip() */ 577 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 578 enum bpf_prog_type type; /* Type of BPF program */ 579 enum bpf_attach_type expected_attach_type; /* For some prog types */ 580 u32 len; /* Number of filter blocks */ 581 u32 jited_len; /* Size of jited insns in bytes */ 582 u8 tag[BPF_TAG_SIZE]; 583 struct bpf_prog_stats __percpu *stats; 584 int __percpu *active; 585 unsigned int (*bpf_func)(const void *ctx, 586 const struct bpf_insn *insn); 587 struct bpf_prog_aux *aux; /* Auxiliary fields */ 588 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 589 /* Instructions for interpreter */ 590 union { 591 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 592 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 593 }; 594}; 595 596struct sk_filter { 597 refcount_t refcnt; 598 struct rcu_head rcu; 599 struct bpf_prog *prog; 600}; 601 602DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 603 604typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 605 const struct bpf_insn *insnsi, 606 unsigned int (*bpf_func)(const void *, 607 const struct bpf_insn *)); 608 609static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 610 const void *ctx, 611 bpf_dispatcher_fn dfunc) 612{ 613 u32 ret; 614 615 cant_migrate(); 616 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 617 struct bpf_prog_stats *stats; 618 u64 start = sched_clock(); 619 unsigned long flags; 620 621 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 622 stats = this_cpu_ptr(prog->stats); 623 flags = u64_stats_update_begin_irqsave(&stats->syncp); 624 u64_stats_inc(&stats->cnt); 625 u64_stats_add(&stats->nsecs, sched_clock() - start); 626 u64_stats_update_end_irqrestore(&stats->syncp, flags); 627 } else { 628 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 629 } 630 return ret; 631} 632 633static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 634{ 635 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 636} 637 638/* 639 * Use in preemptible and therefore migratable context to make sure that 640 * the execution of the BPF program runs on one CPU. 641 * 642 * This uses migrate_disable/enable() explicitly to document that the 643 * invocation of a BPF program does not require reentrancy protection 644 * against a BPF program which is invoked from a preempting task. 645 */ 646static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 647 const void *ctx) 648{ 649 u32 ret; 650 651 migrate_disable(); 652 ret = bpf_prog_run(prog, ctx); 653 migrate_enable(); 654 return ret; 655} 656 657#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 658 659struct bpf_skb_data_end { 660 struct qdisc_skb_cb qdisc_cb; 661 void *data_meta; 662 void *data_end; 663}; 664 665struct bpf_nh_params { 666 u32 nh_family; 667 union { 668 u32 ipv4_nh; 669 struct in6_addr ipv6_nh; 670 }; 671}; 672 673struct bpf_redirect_info { 674 u32 flags; 675 u32 tgt_index; 676 void *tgt_value; 677 struct bpf_map *map; 678 u32 map_id; 679 enum bpf_map_type map_type; 680 u32 kern_flags; 681 struct bpf_nh_params nh; 682}; 683 684DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 685 686/* flags for bpf_redirect_info kern_flags */ 687#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 688 689/* Compute the linear packet data range [data, data_end) which 690 * will be accessed by various program types (cls_bpf, act_bpf, 691 * lwt, ...). Subsystems allowing direct data access must (!) 692 * ensure that cb[] area can be written to when BPF program is 693 * invoked (otherwise cb[] save/restore is necessary). 694 */ 695static inline void bpf_compute_data_pointers(struct sk_buff *skb) 696{ 697 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 698 699 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 700 cb->data_meta = skb->data - skb_metadata_len(skb); 701 cb->data_end = skb->data + skb_headlen(skb); 702} 703 704/* Similar to bpf_compute_data_pointers(), except that save orginal 705 * data in cb->data and cb->meta_data for restore. 706 */ 707static inline void bpf_compute_and_save_data_end( 708 struct sk_buff *skb, void **saved_data_end) 709{ 710 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 711 712 *saved_data_end = cb->data_end; 713 cb->data_end = skb->data + skb_headlen(skb); 714} 715 716/* Restore data saved by bpf_compute_data_pointers(). */ 717static inline void bpf_restore_data_end( 718 struct sk_buff *skb, void *saved_data_end) 719{ 720 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 721 722 cb->data_end = saved_data_end; 723} 724 725static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 726{ 727 /* eBPF programs may read/write skb->cb[] area to transfer meta 728 * data between tail calls. Since this also needs to work with 729 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 730 * 731 * In some socket filter cases, the cb unfortunately needs to be 732 * saved/restored so that protocol specific skb->cb[] data won't 733 * be lost. In any case, due to unpriviledged eBPF programs 734 * attached to sockets, we need to clear the bpf_skb_cb() area 735 * to not leak previous contents to user space. 736 */ 737 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 738 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 739 sizeof_field(struct qdisc_skb_cb, data)); 740 741 return qdisc_skb_cb(skb)->data; 742} 743 744/* Must be invoked with migration disabled */ 745static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 746 const void *ctx) 747{ 748 const struct sk_buff *skb = ctx; 749 u8 *cb_data = bpf_skb_cb(skb); 750 u8 cb_saved[BPF_SKB_CB_LEN]; 751 u32 res; 752 753 if (unlikely(prog->cb_access)) { 754 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 755 memset(cb_data, 0, sizeof(cb_saved)); 756 } 757 758 res = bpf_prog_run(prog, skb); 759 760 if (unlikely(prog->cb_access)) 761 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 762 763 return res; 764} 765 766static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 767 struct sk_buff *skb) 768{ 769 u32 res; 770 771 migrate_disable(); 772 res = __bpf_prog_run_save_cb(prog, skb); 773 migrate_enable(); 774 return res; 775} 776 777static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 778 struct sk_buff *skb) 779{ 780 u8 *cb_data = bpf_skb_cb(skb); 781 u32 res; 782 783 if (unlikely(prog->cb_access)) 784 memset(cb_data, 0, BPF_SKB_CB_LEN); 785 786 res = bpf_prog_run_pin_on_cpu(prog, skb); 787 return res; 788} 789 790DECLARE_BPF_DISPATCHER(xdp) 791 792DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 793 794u32 xdp_master_redirect(struct xdp_buff *xdp); 795 796static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 797 struct xdp_buff *xdp) 798{ 799 /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus 800 * under local_bh_disable(), which provides the needed RCU protection 801 * for accessing map entries. 802 */ 803 u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); 804 805 if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) { 806 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev)) 807 act = xdp_master_redirect(xdp); 808 } 809 810 return act; 811} 812 813void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 814 815static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 816{ 817 return prog->len * sizeof(struct bpf_insn); 818} 819 820static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 821{ 822 return round_up(bpf_prog_insn_size(prog) + 823 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 824} 825 826static inline unsigned int bpf_prog_size(unsigned int proglen) 827{ 828 return max(sizeof(struct bpf_prog), 829 offsetof(struct bpf_prog, insns[proglen])); 830} 831 832static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 833{ 834 /* When classic BPF programs have been loaded and the arch 835 * does not have a classic BPF JIT (anymore), they have been 836 * converted via bpf_migrate_filter() to eBPF and thus always 837 * have an unspec program type. 838 */ 839 return prog->type == BPF_PROG_TYPE_UNSPEC; 840} 841 842static inline u32 bpf_ctx_off_adjust_machine(u32 size) 843{ 844 const u32 size_machine = sizeof(unsigned long); 845 846 if (size > size_machine && size % size_machine == 0) 847 size = size_machine; 848 849 return size; 850} 851 852static inline bool 853bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 854{ 855 return size <= size_default && (size & (size - 1)) == 0; 856} 857 858static inline u8 859bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 860{ 861 u8 access_off = off & (size_default - 1); 862 863#ifdef __LITTLE_ENDIAN 864 return access_off; 865#else 866 return size_default - (access_off + size); 867#endif 868} 869 870#define bpf_ctx_wide_access_ok(off, size, type, field) \ 871 (size == sizeof(__u64) && \ 872 off >= offsetof(type, field) && \ 873 off + sizeof(__u64) <= offsetofend(type, field) && \ 874 off % sizeof(__u64) == 0) 875 876#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 877 878static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 879{ 880#ifndef CONFIG_BPF_JIT_ALWAYS_ON 881 if (!fp->jited) { 882 set_vm_flush_reset_perms(fp); 883 set_memory_ro((unsigned long)fp, fp->pages); 884 } 885#endif 886} 887 888static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 889{ 890 set_vm_flush_reset_perms(hdr); 891 set_memory_ro((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 892 set_memory_x((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 893} 894 895int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 896static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 897{ 898 return sk_filter_trim_cap(sk, skb, 1); 899} 900 901struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 902void bpf_prog_free(struct bpf_prog *fp); 903 904bool bpf_opcode_in_insntable(u8 code); 905 906void bpf_prog_free_linfo(struct bpf_prog *prog); 907void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 908 const u32 *insn_to_jit_off); 909int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 910void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 911 912struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 913struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 914struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 915 gfp_t gfp_extra_flags); 916void __bpf_prog_free(struct bpf_prog *fp); 917 918static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 919{ 920 __bpf_prog_free(fp); 921} 922 923typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 924 unsigned int flen); 925 926int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 927int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 928 bpf_aux_classic_check_t trans, bool save_orig); 929void bpf_prog_destroy(struct bpf_prog *fp); 930 931int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 932int sk_attach_bpf(u32 ufd, struct sock *sk); 933int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 934int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 935void sk_reuseport_prog_free(struct bpf_prog *prog); 936int sk_detach_filter(struct sock *sk); 937int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 938 unsigned int len); 939 940bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 941void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 942 943u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 944#define __bpf_call_base_args \ 945 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 946 (void *)__bpf_call_base) 947 948struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 949void bpf_jit_compile(struct bpf_prog *prog); 950bool bpf_jit_needs_zext(void); 951bool bpf_jit_supports_kfunc_call(void); 952bool bpf_helper_changes_pkt_data(void *func); 953 954static inline bool bpf_dump_raw_ok(const struct cred *cred) 955{ 956 /* Reconstruction of call-sites is dependent on kallsyms, 957 * thus make dump the same restriction. 958 */ 959 return kallsyms_show_value(cred); 960} 961 962struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 963 const struct bpf_insn *patch, u32 len); 964int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 965 966void bpf_clear_redirect_map(struct bpf_map *map); 967 968static inline bool xdp_return_frame_no_direct(void) 969{ 970 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 971 972 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 973} 974 975static inline void xdp_set_return_frame_no_direct(void) 976{ 977 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 978 979 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 980} 981 982static inline void xdp_clear_return_frame_no_direct(void) 983{ 984 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 985 986 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 987} 988 989static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 990 unsigned int pktlen) 991{ 992 unsigned int len; 993 994 if (unlikely(!(fwd->flags & IFF_UP))) 995 return -ENETDOWN; 996 997 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 998 if (pktlen > len) 999 return -EMSGSIZE; 1000 1001 return 0; 1002} 1003 1004/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1005 * same cpu context. Further for best results no more than a single map 1006 * for the do_redirect/do_flush pair should be used. This limitation is 1007 * because we only track one map and force a flush when the map changes. 1008 * This does not appear to be a real limitation for existing software. 1009 */ 1010int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1011 struct xdp_buff *xdp, struct bpf_prog *prog); 1012int xdp_do_redirect(struct net_device *dev, 1013 struct xdp_buff *xdp, 1014 struct bpf_prog *prog); 1015int xdp_do_redirect_frame(struct net_device *dev, 1016 struct xdp_buff *xdp, 1017 struct xdp_frame *xdpf, 1018 struct bpf_prog *prog); 1019void xdp_do_flush(void); 1020 1021/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as 1022 * it is no longer only flushing maps. Keep this define for compatibility 1023 * until all drivers are updated - do not use xdp_do_flush_map() in new code! 1024 */ 1025#define xdp_do_flush_map xdp_do_flush 1026 1027void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act); 1028 1029#ifdef CONFIG_INET 1030struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1031 struct bpf_prog *prog, struct sk_buff *skb, 1032 struct sock *migrating_sk, 1033 u32 hash); 1034#else 1035static inline struct sock * 1036bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1037 struct bpf_prog *prog, struct sk_buff *skb, 1038 struct sock *migrating_sk, 1039 u32 hash) 1040{ 1041 return NULL; 1042} 1043#endif 1044 1045#ifdef CONFIG_BPF_JIT 1046extern int bpf_jit_enable; 1047extern int bpf_jit_harden; 1048extern int bpf_jit_kallsyms; 1049extern long bpf_jit_limit; 1050extern long bpf_jit_limit_max; 1051 1052typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1053 1054struct bpf_binary_header * 1055bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1056 unsigned int alignment, 1057 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1058void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1059u64 bpf_jit_alloc_exec_limit(void); 1060void *bpf_jit_alloc_exec(unsigned long size); 1061void bpf_jit_free_exec(void *addr); 1062void bpf_jit_free(struct bpf_prog *fp); 1063 1064struct bpf_binary_header * 1065bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1066 unsigned int alignment, 1067 struct bpf_binary_header **rw_hdr, 1068 u8 **rw_image, 1069 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1070int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, 1071 struct bpf_binary_header *ro_header, 1072 struct bpf_binary_header *rw_header); 1073void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1074 struct bpf_binary_header *rw_header); 1075 1076int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1077 struct bpf_jit_poke_descriptor *poke); 1078 1079int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1080 const struct bpf_insn *insn, bool extra_pass, 1081 u64 *func_addr, bool *func_addr_fixed); 1082 1083struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1084void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1085 1086static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1087 u32 pass, void *image) 1088{ 1089 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1090 proglen, pass, image, current->comm, task_pid_nr(current)); 1091 1092 if (image) 1093 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1094 16, 1, image, proglen, false); 1095} 1096 1097static inline bool bpf_jit_is_ebpf(void) 1098{ 1099# ifdef CONFIG_HAVE_EBPF_JIT 1100 return true; 1101# else 1102 return false; 1103# endif 1104} 1105 1106static inline bool ebpf_jit_enabled(void) 1107{ 1108 return bpf_jit_enable && bpf_jit_is_ebpf(); 1109} 1110 1111static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1112{ 1113 return fp->jited && bpf_jit_is_ebpf(); 1114} 1115 1116static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1117{ 1118 /* These are the prerequisites, should someone ever have the 1119 * idea to call blinding outside of them, we make sure to 1120 * bail out. 1121 */ 1122 if (!bpf_jit_is_ebpf()) 1123 return false; 1124 if (!prog->jit_requested) 1125 return false; 1126 if (!bpf_jit_harden) 1127 return false; 1128 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 1129 return false; 1130 1131 return true; 1132} 1133 1134static inline bool bpf_jit_kallsyms_enabled(void) 1135{ 1136 /* There are a couple of corner cases where kallsyms should 1137 * not be enabled f.e. on hardening. 1138 */ 1139 if (bpf_jit_harden) 1140 return false; 1141 if (!bpf_jit_kallsyms) 1142 return false; 1143 if (bpf_jit_kallsyms == 1) 1144 return true; 1145 1146 return false; 1147} 1148 1149const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1150 unsigned long *off, char *sym); 1151bool is_bpf_text_address(unsigned long addr); 1152int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1153 char *sym); 1154 1155static inline const char * 1156bpf_address_lookup(unsigned long addr, unsigned long *size, 1157 unsigned long *off, char **modname, char *sym) 1158{ 1159 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1160 1161 if (ret && modname) 1162 *modname = NULL; 1163 return ret; 1164} 1165 1166void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1167void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1168 1169#else /* CONFIG_BPF_JIT */ 1170 1171static inline bool ebpf_jit_enabled(void) 1172{ 1173 return false; 1174} 1175 1176static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1177{ 1178 return false; 1179} 1180 1181static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1182{ 1183 return false; 1184} 1185 1186static inline int 1187bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1188 struct bpf_jit_poke_descriptor *poke) 1189{ 1190 return -ENOTSUPP; 1191} 1192 1193static inline void bpf_jit_free(struct bpf_prog *fp) 1194{ 1195 bpf_prog_unlock_free(fp); 1196} 1197 1198static inline bool bpf_jit_kallsyms_enabled(void) 1199{ 1200 return false; 1201} 1202 1203static inline const char * 1204__bpf_address_lookup(unsigned long addr, unsigned long *size, 1205 unsigned long *off, char *sym) 1206{ 1207 return NULL; 1208} 1209 1210static inline bool is_bpf_text_address(unsigned long addr) 1211{ 1212 return false; 1213} 1214 1215static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1216 char *type, char *sym) 1217{ 1218 return -ERANGE; 1219} 1220 1221static inline const char * 1222bpf_address_lookup(unsigned long addr, unsigned long *size, 1223 unsigned long *off, char **modname, char *sym) 1224{ 1225 return NULL; 1226} 1227 1228static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1229{ 1230} 1231 1232static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1233{ 1234} 1235 1236#endif /* CONFIG_BPF_JIT */ 1237 1238void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1239 1240#define BPF_ANC BIT(15) 1241 1242static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1243{ 1244 switch (first->code) { 1245 case BPF_RET | BPF_K: 1246 case BPF_LD | BPF_W | BPF_LEN: 1247 return false; 1248 1249 case BPF_LD | BPF_W | BPF_ABS: 1250 case BPF_LD | BPF_H | BPF_ABS: 1251 case BPF_LD | BPF_B | BPF_ABS: 1252 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1253 return true; 1254 return false; 1255 1256 default: 1257 return true; 1258 } 1259} 1260 1261static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1262{ 1263 BUG_ON(ftest->code & BPF_ANC); 1264 1265 switch (ftest->code) { 1266 case BPF_LD | BPF_W | BPF_ABS: 1267 case BPF_LD | BPF_H | BPF_ABS: 1268 case BPF_LD | BPF_B | BPF_ABS: 1269#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1270 return BPF_ANC | SKF_AD_##CODE 1271 switch (ftest->k) { 1272 BPF_ANCILLARY(PROTOCOL); 1273 BPF_ANCILLARY(PKTTYPE); 1274 BPF_ANCILLARY(IFINDEX); 1275 BPF_ANCILLARY(NLATTR); 1276 BPF_ANCILLARY(NLATTR_NEST); 1277 BPF_ANCILLARY(MARK); 1278 BPF_ANCILLARY(QUEUE); 1279 BPF_ANCILLARY(HATYPE); 1280 BPF_ANCILLARY(RXHASH); 1281 BPF_ANCILLARY(CPU); 1282 BPF_ANCILLARY(ALU_XOR_X); 1283 BPF_ANCILLARY(VLAN_TAG); 1284 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1285 BPF_ANCILLARY(PAY_OFFSET); 1286 BPF_ANCILLARY(RANDOM); 1287 BPF_ANCILLARY(VLAN_TPID); 1288 } 1289 fallthrough; 1290 default: 1291 return ftest->code; 1292 } 1293} 1294 1295void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1296 int k, unsigned int size); 1297 1298static inline int bpf_tell_extensions(void) 1299{ 1300 return SKF_AD_MAX; 1301} 1302 1303struct bpf_sock_addr_kern { 1304 struct sock *sk; 1305 struct sockaddr *uaddr; 1306 /* Temporary "register" to make indirect stores to nested structures 1307 * defined above. We need three registers to make such a store, but 1308 * only two (src and dst) are available at convert_ctx_access time 1309 */ 1310 u64 tmp_reg; 1311 void *t_ctx; /* Attach type specific context. */ 1312}; 1313 1314struct bpf_sock_ops_kern { 1315 struct sock *sk; 1316 union { 1317 u32 args[4]; 1318 u32 reply; 1319 u32 replylong[4]; 1320 }; 1321 struct sk_buff *syn_skb; 1322 struct sk_buff *skb; 1323 void *skb_data_end; 1324 u8 op; 1325 u8 is_fullsock; 1326 u8 remaining_opt_len; 1327 u64 temp; /* temp and everything after is not 1328 * initialized to 0 before calling 1329 * the BPF program. New fields that 1330 * should be initialized to 0 should 1331 * be inserted before temp. 1332 * temp is scratch storage used by 1333 * sock_ops_convert_ctx_access 1334 * as temporary storage of a register. 1335 */ 1336}; 1337 1338struct bpf_sysctl_kern { 1339 struct ctl_table_header *head; 1340 struct ctl_table *table; 1341 void *cur_val; 1342 size_t cur_len; 1343 void *new_val; 1344 size_t new_len; 1345 int new_updated; 1346 int write; 1347 loff_t *ppos; 1348 /* Temporary "register" for indirect stores to ppos. */ 1349 u64 tmp_reg; 1350}; 1351 1352#define BPF_SOCKOPT_KERN_BUF_SIZE 32 1353struct bpf_sockopt_buf { 1354 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1355}; 1356 1357struct bpf_sockopt_kern { 1358 struct sock *sk; 1359 u8 *optval; 1360 u8 *optval_end; 1361 s32 level; 1362 s32 optname; 1363 s32 optlen; 1364 /* for retval in struct bpf_cg_run_ctx */ 1365 struct task_struct *current_task; 1366 /* Temporary "register" for indirect stores to ppos. */ 1367 u64 tmp_reg; 1368}; 1369 1370int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1371 1372struct bpf_sk_lookup_kern { 1373 u16 family; 1374 u16 protocol; 1375 __be16 sport; 1376 u16 dport; 1377 struct { 1378 __be32 saddr; 1379 __be32 daddr; 1380 } v4; 1381 struct { 1382 const struct in6_addr *saddr; 1383 const struct in6_addr *daddr; 1384 } v6; 1385 struct sock *selected_sk; 1386 u32 ingress_ifindex; 1387 bool no_reuseport; 1388}; 1389 1390extern struct static_key_false bpf_sk_lookup_enabled; 1391 1392/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1393 * 1394 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1395 * SK_DROP. Their meaning is as follows: 1396 * 1397 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1398 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1399 * SK_DROP : terminate lookup with -ECONNREFUSED 1400 * 1401 * This macro aggregates return values and selected sockets from 1402 * multiple BPF programs according to following rules in order: 1403 * 1404 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1405 * macro result is SK_PASS and last ctx.selected_sk is used. 1406 * 2. If any program returned SK_DROP return value, 1407 * macro result is SK_DROP. 1408 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1409 * 1410 * Caller must ensure that the prog array is non-NULL, and that the 1411 * array as well as the programs it contains remain valid. 1412 */ 1413#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1414 ({ \ 1415 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1416 struct bpf_prog_array_item *_item; \ 1417 struct sock *_selected_sk = NULL; \ 1418 bool _no_reuseport = false; \ 1419 struct bpf_prog *_prog; \ 1420 bool _all_pass = true; \ 1421 u32 _ret; \ 1422 \ 1423 migrate_disable(); \ 1424 _item = &(array)->items[0]; \ 1425 while ((_prog = READ_ONCE(_item->prog))) { \ 1426 /* restore most recent selection */ \ 1427 _ctx->selected_sk = _selected_sk; \ 1428 _ctx->no_reuseport = _no_reuseport; \ 1429 \ 1430 _ret = func(_prog, _ctx); \ 1431 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1432 /* remember last non-NULL socket */ \ 1433 _selected_sk = _ctx->selected_sk; \ 1434 _no_reuseport = _ctx->no_reuseport; \ 1435 } else if (_ret == SK_DROP && _all_pass) { \ 1436 _all_pass = false; \ 1437 } \ 1438 _item++; \ 1439 } \ 1440 _ctx->selected_sk = _selected_sk; \ 1441 _ctx->no_reuseport = _no_reuseport; \ 1442 migrate_enable(); \ 1443 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1444 }) 1445 1446static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1447 const __be32 saddr, const __be16 sport, 1448 const __be32 daddr, const u16 dport, 1449 const int ifindex, struct sock **psk) 1450{ 1451 struct bpf_prog_array *run_array; 1452 struct sock *selected_sk = NULL; 1453 bool no_reuseport = false; 1454 1455 rcu_read_lock(); 1456 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1457 if (run_array) { 1458 struct bpf_sk_lookup_kern ctx = { 1459 .family = AF_INET, 1460 .protocol = protocol, 1461 .v4.saddr = saddr, 1462 .v4.daddr = daddr, 1463 .sport = sport, 1464 .dport = dport, 1465 .ingress_ifindex = ifindex, 1466 }; 1467 u32 act; 1468 1469 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1470 if (act == SK_PASS) { 1471 selected_sk = ctx.selected_sk; 1472 no_reuseport = ctx.no_reuseport; 1473 } else { 1474 selected_sk = ERR_PTR(-ECONNREFUSED); 1475 } 1476 } 1477 rcu_read_unlock(); 1478 *psk = selected_sk; 1479 return no_reuseport; 1480} 1481 1482#if IS_ENABLED(CONFIG_IPV6) 1483static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1484 const struct in6_addr *saddr, 1485 const __be16 sport, 1486 const struct in6_addr *daddr, 1487 const u16 dport, 1488 const int ifindex, struct sock **psk) 1489{ 1490 struct bpf_prog_array *run_array; 1491 struct sock *selected_sk = NULL; 1492 bool no_reuseport = false; 1493 1494 rcu_read_lock(); 1495 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1496 if (run_array) { 1497 struct bpf_sk_lookup_kern ctx = { 1498 .family = AF_INET6, 1499 .protocol = protocol, 1500 .v6.saddr = saddr, 1501 .v6.daddr = daddr, 1502 .sport = sport, 1503 .dport = dport, 1504 .ingress_ifindex = ifindex, 1505 }; 1506 u32 act; 1507 1508 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1509 if (act == SK_PASS) { 1510 selected_sk = ctx.selected_sk; 1511 no_reuseport = ctx.no_reuseport; 1512 } else { 1513 selected_sk = ERR_PTR(-ECONNREFUSED); 1514 } 1515 } 1516 rcu_read_unlock(); 1517 *psk = selected_sk; 1518 return no_reuseport; 1519} 1520#endif /* IS_ENABLED(CONFIG_IPV6) */ 1521 1522static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex, 1523 u64 flags, const u64 flag_mask, 1524 void *lookup_elem(struct bpf_map *map, u32 key)) 1525{ 1526 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1527 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1528 1529 /* Lower bits of the flags are used as return code on lookup failure */ 1530 if (unlikely(flags & ~(action_mask | flag_mask))) 1531 return XDP_ABORTED; 1532 1533 ri->tgt_value = lookup_elem(map, ifindex); 1534 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1535 /* If the lookup fails we want to clear out the state in the 1536 * redirect_info struct completely, so that if an eBPF program 1537 * performs multiple lookups, the last one always takes 1538 * precedence. 1539 */ 1540 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1541 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1542 return flags & action_mask; 1543 } 1544 1545 ri->tgt_index = ifindex; 1546 ri->map_id = map->id; 1547 ri->map_type = map->map_type; 1548 1549 if (flags & BPF_F_BROADCAST) { 1550 WRITE_ONCE(ri->map, map); 1551 ri->flags = flags; 1552 } else { 1553 WRITE_ONCE(ri->map, NULL); 1554 ri->flags = 0; 1555 } 1556 1557 return XDP_REDIRECT; 1558} 1559 1560#endif /* __LINUX_FILTER_H__ */