cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

filter.h (43995B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Linux Socket Filter Data Structures
      4 */
      5#ifndef __LINUX_FILTER_H__
      6#define __LINUX_FILTER_H__
      7
      8#include <linux/atomic.h>
      9#include <linux/bpf.h>
     10#include <linux/refcount.h>
     11#include <linux/compat.h>
     12#include <linux/skbuff.h>
     13#include <linux/linkage.h>
     14#include <linux/printk.h>
     15#include <linux/workqueue.h>
     16#include <linux/sched.h>
     17#include <linux/capability.h>
     18#include <linux/set_memory.h>
     19#include <linux/kallsyms.h>
     20#include <linux/if_vlan.h>
     21#include <linux/vmalloc.h>
     22#include <linux/sockptr.h>
     23#include <crypto/sha1.h>
     24#include <linux/u64_stats_sync.h>
     25
     26#include <net/sch_generic.h>
     27
     28#include <asm/byteorder.h>
     29#include <uapi/linux/filter.h>
     30
     31struct sk_buff;
     32struct sock;
     33struct seccomp_data;
     34struct bpf_prog_aux;
     35struct xdp_rxq_info;
     36struct xdp_buff;
     37struct sock_reuseport;
     38struct ctl_table;
     39struct ctl_table_header;
     40
     41/* ArgX, context and stack frame pointer register positions. Note,
     42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
     43 * calls in BPF_CALL instruction.
     44 */
     45#define BPF_REG_ARG1	BPF_REG_1
     46#define BPF_REG_ARG2	BPF_REG_2
     47#define BPF_REG_ARG3	BPF_REG_3
     48#define BPF_REG_ARG4	BPF_REG_4
     49#define BPF_REG_ARG5	BPF_REG_5
     50#define BPF_REG_CTX	BPF_REG_6
     51#define BPF_REG_FP	BPF_REG_10
     52
     53/* Additional register mappings for converted user programs. */
     54#define BPF_REG_A	BPF_REG_0
     55#define BPF_REG_X	BPF_REG_7
     56#define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
     57#define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
     58#define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
     59
     60/* Kernel hidden auxiliary/helper register. */
     61#define BPF_REG_AX		MAX_BPF_REG
     62#define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
     63#define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
     64
     65/* unused opcode to mark special call to bpf_tail_call() helper */
     66#define BPF_TAIL_CALL	0xf0
     67
     68/* unused opcode to mark special load instruction. Same as BPF_ABS */
     69#define BPF_PROBE_MEM	0x20
     70
     71/* unused opcode to mark call to interpreter with arguments */
     72#define BPF_CALL_ARGS	0xe0
     73
     74/* unused opcode to mark speculation barrier for mitigating
     75 * Speculative Store Bypass
     76 */
     77#define BPF_NOSPEC	0xc0
     78
     79/* As per nm, we expose JITed images as text (code) section for
     80 * kallsyms. That way, tools like perf can find it to match
     81 * addresses.
     82 */
     83#define BPF_SYM_ELF_TYPE	't'
     84
     85/* BPF program can access up to 512 bytes of stack space. */
     86#define MAX_BPF_STACK	512
     87
     88/* Helper macros for filter block array initializers. */
     89
     90/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
     91
     92#define BPF_ALU64_REG(OP, DST, SRC)				\
     93	((struct bpf_insn) {					\
     94		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
     95		.dst_reg = DST,					\
     96		.src_reg = SRC,					\
     97		.off   = 0,					\
     98		.imm   = 0 })
     99
    100#define BPF_ALU32_REG(OP, DST, SRC)				\
    101	((struct bpf_insn) {					\
    102		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
    103		.dst_reg = DST,					\
    104		.src_reg = SRC,					\
    105		.off   = 0,					\
    106		.imm   = 0 })
    107
    108/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
    109
    110#define BPF_ALU64_IMM(OP, DST, IMM)				\
    111	((struct bpf_insn) {					\
    112		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
    113		.dst_reg = DST,					\
    114		.src_reg = 0,					\
    115		.off   = 0,					\
    116		.imm   = IMM })
    117
    118#define BPF_ALU32_IMM(OP, DST, IMM)				\
    119	((struct bpf_insn) {					\
    120		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
    121		.dst_reg = DST,					\
    122		.src_reg = 0,					\
    123		.off   = 0,					\
    124		.imm   = IMM })
    125
    126/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
    127
    128#define BPF_ENDIAN(TYPE, DST, LEN)				\
    129	((struct bpf_insn) {					\
    130		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
    131		.dst_reg = DST,					\
    132		.src_reg = 0,					\
    133		.off   = 0,					\
    134		.imm   = LEN })
    135
    136/* Short form of mov, dst_reg = src_reg */
    137
    138#define BPF_MOV64_REG(DST, SRC)					\
    139	((struct bpf_insn) {					\
    140		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
    141		.dst_reg = DST,					\
    142		.src_reg = SRC,					\
    143		.off   = 0,					\
    144		.imm   = 0 })
    145
    146#define BPF_MOV32_REG(DST, SRC)					\
    147	((struct bpf_insn) {					\
    148		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
    149		.dst_reg = DST,					\
    150		.src_reg = SRC,					\
    151		.off   = 0,					\
    152		.imm   = 0 })
    153
    154/* Short form of mov, dst_reg = imm32 */
    155
    156#define BPF_MOV64_IMM(DST, IMM)					\
    157	((struct bpf_insn) {					\
    158		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
    159		.dst_reg = DST,					\
    160		.src_reg = 0,					\
    161		.off   = 0,					\
    162		.imm   = IMM })
    163
    164#define BPF_MOV32_IMM(DST, IMM)					\
    165	((struct bpf_insn) {					\
    166		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
    167		.dst_reg = DST,					\
    168		.src_reg = 0,					\
    169		.off   = 0,					\
    170		.imm   = IMM })
    171
    172/* Special form of mov32, used for doing explicit zero extension on dst. */
    173#define BPF_ZEXT_REG(DST)					\
    174	((struct bpf_insn) {					\
    175		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
    176		.dst_reg = DST,					\
    177		.src_reg = DST,					\
    178		.off   = 0,					\
    179		.imm   = 1 })
    180
    181static inline bool insn_is_zext(const struct bpf_insn *insn)
    182{
    183	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
    184}
    185
    186/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
    187#define BPF_LD_IMM64(DST, IMM)					\
    188	BPF_LD_IMM64_RAW(DST, 0, IMM)
    189
    190#define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
    191	((struct bpf_insn) {					\
    192		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
    193		.dst_reg = DST,					\
    194		.src_reg = SRC,					\
    195		.off   = 0,					\
    196		.imm   = (__u32) (IMM) }),			\
    197	((struct bpf_insn) {					\
    198		.code  = 0, /* zero is reserved opcode */	\
    199		.dst_reg = 0,					\
    200		.src_reg = 0,					\
    201		.off   = 0,					\
    202		.imm   = ((__u64) (IMM)) >> 32 })
    203
    204/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
    205#define BPF_LD_MAP_FD(DST, MAP_FD)				\
    206	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
    207
    208/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
    209
    210#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
    211	((struct bpf_insn) {					\
    212		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
    213		.dst_reg = DST,					\
    214		.src_reg = SRC,					\
    215		.off   = 0,					\
    216		.imm   = IMM })
    217
    218#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
    219	((struct bpf_insn) {					\
    220		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
    221		.dst_reg = DST,					\
    222		.src_reg = SRC,					\
    223		.off   = 0,					\
    224		.imm   = IMM })
    225
    226/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
    227
    228#define BPF_LD_ABS(SIZE, IMM)					\
    229	((struct bpf_insn) {					\
    230		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
    231		.dst_reg = 0,					\
    232		.src_reg = 0,					\
    233		.off   = 0,					\
    234		.imm   = IMM })
    235
    236/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
    237
    238#define BPF_LD_IND(SIZE, SRC, IMM)				\
    239	((struct bpf_insn) {					\
    240		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
    241		.dst_reg = 0,					\
    242		.src_reg = SRC,					\
    243		.off   = 0,					\
    244		.imm   = IMM })
    245
    246/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
    247
    248#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
    249	((struct bpf_insn) {					\
    250		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
    251		.dst_reg = DST,					\
    252		.src_reg = SRC,					\
    253		.off   = OFF,					\
    254		.imm   = 0 })
    255
    256/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
    257
    258#define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
    259	((struct bpf_insn) {					\
    260		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
    261		.dst_reg = DST,					\
    262		.src_reg = SRC,					\
    263		.off   = OFF,					\
    264		.imm   = 0 })
    265
    266
    267/*
    268 * Atomic operations:
    269 *
    270 *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
    271 *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
    272 *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
    273 *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
    274 *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
    275 *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
    276 *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
    277 *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
    278 *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
    279 *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
    280 */
    281
    282#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
    283	((struct bpf_insn) {					\
    284		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
    285		.dst_reg = DST,					\
    286		.src_reg = SRC,					\
    287		.off   = OFF,					\
    288		.imm   = OP })
    289
    290/* Legacy alias */
    291#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
    292
    293/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
    294
    295#define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
    296	((struct bpf_insn) {					\
    297		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
    298		.dst_reg = DST,					\
    299		.src_reg = 0,					\
    300		.off   = OFF,					\
    301		.imm   = IMM })
    302
    303/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
    304
    305#define BPF_JMP_REG(OP, DST, SRC, OFF)				\
    306	((struct bpf_insn) {					\
    307		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
    308		.dst_reg = DST,					\
    309		.src_reg = SRC,					\
    310		.off   = OFF,					\
    311		.imm   = 0 })
    312
    313/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
    314
    315#define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
    316	((struct bpf_insn) {					\
    317		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
    318		.dst_reg = DST,					\
    319		.src_reg = 0,					\
    320		.off   = OFF,					\
    321		.imm   = IMM })
    322
    323/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
    324
    325#define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
    326	((struct bpf_insn) {					\
    327		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
    328		.dst_reg = DST,					\
    329		.src_reg = SRC,					\
    330		.off   = OFF,					\
    331		.imm   = 0 })
    332
    333/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
    334
    335#define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
    336	((struct bpf_insn) {					\
    337		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
    338		.dst_reg = DST,					\
    339		.src_reg = 0,					\
    340		.off   = OFF,					\
    341		.imm   = IMM })
    342
    343/* Unconditional jumps, goto pc + off16 */
    344
    345#define BPF_JMP_A(OFF)						\
    346	((struct bpf_insn) {					\
    347		.code  = BPF_JMP | BPF_JA,			\
    348		.dst_reg = 0,					\
    349		.src_reg = 0,					\
    350		.off   = OFF,					\
    351		.imm   = 0 })
    352
    353/* Relative call */
    354
    355#define BPF_CALL_REL(TGT)					\
    356	((struct bpf_insn) {					\
    357		.code  = BPF_JMP | BPF_CALL,			\
    358		.dst_reg = 0,					\
    359		.src_reg = BPF_PSEUDO_CALL,			\
    360		.off   = 0,					\
    361		.imm   = TGT })
    362
    363/* Convert function address to BPF immediate */
    364
    365#define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
    366
    367#define BPF_EMIT_CALL(FUNC)					\
    368	((struct bpf_insn) {					\
    369		.code  = BPF_JMP | BPF_CALL,			\
    370		.dst_reg = 0,					\
    371		.src_reg = 0,					\
    372		.off   = 0,					\
    373		.imm   = BPF_CALL_IMM(FUNC) })
    374
    375/* Raw code statement block */
    376
    377#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
    378	((struct bpf_insn) {					\
    379		.code  = CODE,					\
    380		.dst_reg = DST,					\
    381		.src_reg = SRC,					\
    382		.off   = OFF,					\
    383		.imm   = IMM })
    384
    385/* Program exit */
    386
    387#define BPF_EXIT_INSN()						\
    388	((struct bpf_insn) {					\
    389		.code  = BPF_JMP | BPF_EXIT,			\
    390		.dst_reg = 0,					\
    391		.src_reg = 0,					\
    392		.off   = 0,					\
    393		.imm   = 0 })
    394
    395/* Speculation barrier */
    396
    397#define BPF_ST_NOSPEC()						\
    398	((struct bpf_insn) {					\
    399		.code  = BPF_ST | BPF_NOSPEC,			\
    400		.dst_reg = 0,					\
    401		.src_reg = 0,					\
    402		.off   = 0,					\
    403		.imm   = 0 })
    404
    405/* Internal classic blocks for direct assignment */
    406
    407#define __BPF_STMT(CODE, K)					\
    408	((struct sock_filter) BPF_STMT(CODE, K))
    409
    410#define __BPF_JUMP(CODE, K, JT, JF)				\
    411	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
    412
    413#define bytes_to_bpf_size(bytes)				\
    414({								\
    415	int bpf_size = -EINVAL;					\
    416								\
    417	if (bytes == sizeof(u8))				\
    418		bpf_size = BPF_B;				\
    419	else if (bytes == sizeof(u16))				\
    420		bpf_size = BPF_H;				\
    421	else if (bytes == sizeof(u32))				\
    422		bpf_size = BPF_W;				\
    423	else if (bytes == sizeof(u64))				\
    424		bpf_size = BPF_DW;				\
    425								\
    426	bpf_size;						\
    427})
    428
    429#define bpf_size_to_bytes(bpf_size)				\
    430({								\
    431	int bytes = -EINVAL;					\
    432								\
    433	if (bpf_size == BPF_B)					\
    434		bytes = sizeof(u8);				\
    435	else if (bpf_size == BPF_H)				\
    436		bytes = sizeof(u16);				\
    437	else if (bpf_size == BPF_W)				\
    438		bytes = sizeof(u32);				\
    439	else if (bpf_size == BPF_DW)				\
    440		bytes = sizeof(u64);				\
    441								\
    442	bytes;							\
    443})
    444
    445#define BPF_SIZEOF(type)					\
    446	({							\
    447		const int __size = bytes_to_bpf_size(sizeof(type)); \
    448		BUILD_BUG_ON(__size < 0);			\
    449		__size;						\
    450	})
    451
    452#define BPF_FIELD_SIZEOF(type, field)				\
    453	({							\
    454		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
    455		BUILD_BUG_ON(__size < 0);			\
    456		__size;						\
    457	})
    458
    459#define BPF_LDST_BYTES(insn)					\
    460	({							\
    461		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
    462		WARN_ON(__size < 0);				\
    463		__size;						\
    464	})
    465
    466#define __BPF_MAP_0(m, v, ...) v
    467#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
    468#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
    469#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
    470#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
    471#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
    472
    473#define __BPF_REG_0(...) __BPF_PAD(5)
    474#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
    475#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
    476#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
    477#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
    478#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
    479
    480#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
    481#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
    482
    483#define __BPF_CAST(t, a)						       \
    484	(__force t)							       \
    485	(__force							       \
    486	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
    487				      (unsigned long)0, (t)0))) a
    488#define __BPF_V void
    489#define __BPF_N
    490
    491#define __BPF_DECL_ARGS(t, a) t   a
    492#define __BPF_DECL_REGS(t, a) u64 a
    493
    494#define __BPF_PAD(n)							       \
    495	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
    496		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
    497
    498#define BPF_CALL_x(x, name, ...)					       \
    499	static __always_inline						       \
    500	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
    501	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
    502	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
    503	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
    504	{								       \
    505		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
    506	}								       \
    507	static __always_inline						       \
    508	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
    509
    510#define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
    511#define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
    512#define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
    513#define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
    514#define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
    515#define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
    516
    517#define bpf_ctx_range(TYPE, MEMBER)						\
    518	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
    519#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
    520	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
    521#if BITS_PER_LONG == 64
    522# define bpf_ctx_range_ptr(TYPE, MEMBER)					\
    523	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
    524#else
    525# define bpf_ctx_range_ptr(TYPE, MEMBER)					\
    526	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
    527#endif /* BITS_PER_LONG == 64 */
    528
    529#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
    530	({									\
    531		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
    532		*(PTR_SIZE) = (SIZE);						\
    533		offsetof(TYPE, MEMBER);						\
    534	})
    535
    536/* A struct sock_filter is architecture independent. */
    537struct compat_sock_fprog {
    538	u16		len;
    539	compat_uptr_t	filter;	/* struct sock_filter * */
    540};
    541
    542struct sock_fprog_kern {
    543	u16			len;
    544	struct sock_filter	*filter;
    545};
    546
    547/* Some arches need doubleword alignment for their instructions and/or data */
    548#define BPF_IMAGE_ALIGNMENT 8
    549
    550struct bpf_binary_header {
    551	u32 size;
    552	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
    553};
    554
    555struct bpf_prog_stats {
    556	u64_stats_t cnt;
    557	u64_stats_t nsecs;
    558	u64_stats_t misses;
    559	struct u64_stats_sync syncp;
    560} __aligned(2 * sizeof(u64));
    561
    562struct bpf_prog {
    563	u16			pages;		/* Number of allocated pages */
    564	u16			jited:1,	/* Is our filter JIT'ed? */
    565				jit_requested:1,/* archs need to JIT the prog */
    566				gpl_compatible:1, /* Is filter GPL compatible? */
    567				cb_access:1,	/* Is control block accessed? */
    568				dst_needed:1,	/* Do we need dst entry? */
    569				blinding_requested:1, /* needs constant blinding */
    570				blinded:1,	/* Was blinded */
    571				is_func:1,	/* program is a bpf function */
    572				kprobe_override:1, /* Do we override a kprobe? */
    573				has_callchain_buf:1, /* callchain buffer allocated? */
    574				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
    575				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
    576				call_get_func_ip:1, /* Do we call get_func_ip() */
    577				tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
    578	enum bpf_prog_type	type;		/* Type of BPF program */
    579	enum bpf_attach_type	expected_attach_type; /* For some prog types */
    580	u32			len;		/* Number of filter blocks */
    581	u32			jited_len;	/* Size of jited insns in bytes */
    582	u8			tag[BPF_TAG_SIZE];
    583	struct bpf_prog_stats __percpu *stats;
    584	int __percpu		*active;
    585	unsigned int		(*bpf_func)(const void *ctx,
    586					    const struct bpf_insn *insn);
    587	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
    588	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
    589	/* Instructions for interpreter */
    590	union {
    591		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
    592		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
    593	};
    594};
    595
    596struct sk_filter {
    597	refcount_t	refcnt;
    598	struct rcu_head	rcu;
    599	struct bpf_prog	*prog;
    600};
    601
    602DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
    603
    604typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
    605					  const struct bpf_insn *insnsi,
    606					  unsigned int (*bpf_func)(const void *,
    607								   const struct bpf_insn *));
    608
    609static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
    610					  const void *ctx,
    611					  bpf_dispatcher_fn dfunc)
    612{
    613	u32 ret;
    614
    615	cant_migrate();
    616	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
    617		struct bpf_prog_stats *stats;
    618		u64 start = sched_clock();
    619		unsigned long flags;
    620
    621		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
    622		stats = this_cpu_ptr(prog->stats);
    623		flags = u64_stats_update_begin_irqsave(&stats->syncp);
    624		u64_stats_inc(&stats->cnt);
    625		u64_stats_add(&stats->nsecs, sched_clock() - start);
    626		u64_stats_update_end_irqrestore(&stats->syncp, flags);
    627	} else {
    628		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
    629	}
    630	return ret;
    631}
    632
    633static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
    634{
    635	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
    636}
    637
    638/*
    639 * Use in preemptible and therefore migratable context to make sure that
    640 * the execution of the BPF program runs on one CPU.
    641 *
    642 * This uses migrate_disable/enable() explicitly to document that the
    643 * invocation of a BPF program does not require reentrancy protection
    644 * against a BPF program which is invoked from a preempting task.
    645 */
    646static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
    647					  const void *ctx)
    648{
    649	u32 ret;
    650
    651	migrate_disable();
    652	ret = bpf_prog_run(prog, ctx);
    653	migrate_enable();
    654	return ret;
    655}
    656
    657#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
    658
    659struct bpf_skb_data_end {
    660	struct qdisc_skb_cb qdisc_cb;
    661	void *data_meta;
    662	void *data_end;
    663};
    664
    665struct bpf_nh_params {
    666	u32 nh_family;
    667	union {
    668		u32 ipv4_nh;
    669		struct in6_addr ipv6_nh;
    670	};
    671};
    672
    673struct bpf_redirect_info {
    674	u32 flags;
    675	u32 tgt_index;
    676	void *tgt_value;
    677	struct bpf_map *map;
    678	u32 map_id;
    679	enum bpf_map_type map_type;
    680	u32 kern_flags;
    681	struct bpf_nh_params nh;
    682};
    683
    684DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
    685
    686/* flags for bpf_redirect_info kern_flags */
    687#define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
    688
    689/* Compute the linear packet data range [data, data_end) which
    690 * will be accessed by various program types (cls_bpf, act_bpf,
    691 * lwt, ...). Subsystems allowing direct data access must (!)
    692 * ensure that cb[] area can be written to when BPF program is
    693 * invoked (otherwise cb[] save/restore is necessary).
    694 */
    695static inline void bpf_compute_data_pointers(struct sk_buff *skb)
    696{
    697	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
    698
    699	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
    700	cb->data_meta = skb->data - skb_metadata_len(skb);
    701	cb->data_end  = skb->data + skb_headlen(skb);
    702}
    703
    704/* Similar to bpf_compute_data_pointers(), except that save orginal
    705 * data in cb->data and cb->meta_data for restore.
    706 */
    707static inline void bpf_compute_and_save_data_end(
    708	struct sk_buff *skb, void **saved_data_end)
    709{
    710	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
    711
    712	*saved_data_end = cb->data_end;
    713	cb->data_end  = skb->data + skb_headlen(skb);
    714}
    715
    716/* Restore data saved by bpf_compute_data_pointers(). */
    717static inline void bpf_restore_data_end(
    718	struct sk_buff *skb, void *saved_data_end)
    719{
    720	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
    721
    722	cb->data_end = saved_data_end;
    723}
    724
    725static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
    726{
    727	/* eBPF programs may read/write skb->cb[] area to transfer meta
    728	 * data between tail calls. Since this also needs to work with
    729	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
    730	 *
    731	 * In some socket filter cases, the cb unfortunately needs to be
    732	 * saved/restored so that protocol specific skb->cb[] data won't
    733	 * be lost. In any case, due to unpriviledged eBPF programs
    734	 * attached to sockets, we need to clear the bpf_skb_cb() area
    735	 * to not leak previous contents to user space.
    736	 */
    737	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
    738	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
    739		     sizeof_field(struct qdisc_skb_cb, data));
    740
    741	return qdisc_skb_cb(skb)->data;
    742}
    743
    744/* Must be invoked with migration disabled */
    745static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
    746					 const void *ctx)
    747{
    748	const struct sk_buff *skb = ctx;
    749	u8 *cb_data = bpf_skb_cb(skb);
    750	u8 cb_saved[BPF_SKB_CB_LEN];
    751	u32 res;
    752
    753	if (unlikely(prog->cb_access)) {
    754		memcpy(cb_saved, cb_data, sizeof(cb_saved));
    755		memset(cb_data, 0, sizeof(cb_saved));
    756	}
    757
    758	res = bpf_prog_run(prog, skb);
    759
    760	if (unlikely(prog->cb_access))
    761		memcpy(cb_data, cb_saved, sizeof(cb_saved));
    762
    763	return res;
    764}
    765
    766static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
    767				       struct sk_buff *skb)
    768{
    769	u32 res;
    770
    771	migrate_disable();
    772	res = __bpf_prog_run_save_cb(prog, skb);
    773	migrate_enable();
    774	return res;
    775}
    776
    777static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
    778					struct sk_buff *skb)
    779{
    780	u8 *cb_data = bpf_skb_cb(skb);
    781	u32 res;
    782
    783	if (unlikely(prog->cb_access))
    784		memset(cb_data, 0, BPF_SKB_CB_LEN);
    785
    786	res = bpf_prog_run_pin_on_cpu(prog, skb);
    787	return res;
    788}
    789
    790DECLARE_BPF_DISPATCHER(xdp)
    791
    792DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
    793
    794u32 xdp_master_redirect(struct xdp_buff *xdp);
    795
    796static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
    797					    struct xdp_buff *xdp)
    798{
    799	/* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
    800	 * under local_bh_disable(), which provides the needed RCU protection
    801	 * for accessing map entries.
    802	 */
    803	u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
    804
    805	if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
    806		if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
    807			act = xdp_master_redirect(xdp);
    808	}
    809
    810	return act;
    811}
    812
    813void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
    814
    815static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
    816{
    817	return prog->len * sizeof(struct bpf_insn);
    818}
    819
    820static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
    821{
    822	return round_up(bpf_prog_insn_size(prog) +
    823			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
    824}
    825
    826static inline unsigned int bpf_prog_size(unsigned int proglen)
    827{
    828	return max(sizeof(struct bpf_prog),
    829		   offsetof(struct bpf_prog, insns[proglen]));
    830}
    831
    832static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
    833{
    834	/* When classic BPF programs have been loaded and the arch
    835	 * does not have a classic BPF JIT (anymore), they have been
    836	 * converted via bpf_migrate_filter() to eBPF and thus always
    837	 * have an unspec program type.
    838	 */
    839	return prog->type == BPF_PROG_TYPE_UNSPEC;
    840}
    841
    842static inline u32 bpf_ctx_off_adjust_machine(u32 size)
    843{
    844	const u32 size_machine = sizeof(unsigned long);
    845
    846	if (size > size_machine && size % size_machine == 0)
    847		size = size_machine;
    848
    849	return size;
    850}
    851
    852static inline bool
    853bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
    854{
    855	return size <= size_default && (size & (size - 1)) == 0;
    856}
    857
    858static inline u8
    859bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
    860{
    861	u8 access_off = off & (size_default - 1);
    862
    863#ifdef __LITTLE_ENDIAN
    864	return access_off;
    865#else
    866	return size_default - (access_off + size);
    867#endif
    868}
    869
    870#define bpf_ctx_wide_access_ok(off, size, type, field)			\
    871	(size == sizeof(__u64) &&					\
    872	off >= offsetof(type, field) &&					\
    873	off + sizeof(__u64) <= offsetofend(type, field) &&		\
    874	off % sizeof(__u64) == 0)
    875
    876#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
    877
    878static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
    879{
    880#ifndef CONFIG_BPF_JIT_ALWAYS_ON
    881	if (!fp->jited) {
    882		set_vm_flush_reset_perms(fp);
    883		set_memory_ro((unsigned long)fp, fp->pages);
    884	}
    885#endif
    886}
    887
    888static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
    889{
    890	set_vm_flush_reset_perms(hdr);
    891	set_memory_ro((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
    892	set_memory_x((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
    893}
    894
    895int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
    896static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
    897{
    898	return sk_filter_trim_cap(sk, skb, 1);
    899}
    900
    901struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
    902void bpf_prog_free(struct bpf_prog *fp);
    903
    904bool bpf_opcode_in_insntable(u8 code);
    905
    906void bpf_prog_free_linfo(struct bpf_prog *prog);
    907void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
    908			       const u32 *insn_to_jit_off);
    909int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
    910void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
    911
    912struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
    913struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
    914struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
    915				  gfp_t gfp_extra_flags);
    916void __bpf_prog_free(struct bpf_prog *fp);
    917
    918static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
    919{
    920	__bpf_prog_free(fp);
    921}
    922
    923typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
    924				       unsigned int flen);
    925
    926int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
    927int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
    928			      bpf_aux_classic_check_t trans, bool save_orig);
    929void bpf_prog_destroy(struct bpf_prog *fp);
    930
    931int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
    932int sk_attach_bpf(u32 ufd, struct sock *sk);
    933int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
    934int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
    935void sk_reuseport_prog_free(struct bpf_prog *prog);
    936int sk_detach_filter(struct sock *sk);
    937int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
    938		  unsigned int len);
    939
    940bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
    941void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
    942
    943u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
    944#define __bpf_call_base_args \
    945	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
    946	 (void *)__bpf_call_base)
    947
    948struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
    949void bpf_jit_compile(struct bpf_prog *prog);
    950bool bpf_jit_needs_zext(void);
    951bool bpf_jit_supports_kfunc_call(void);
    952bool bpf_helper_changes_pkt_data(void *func);
    953
    954static inline bool bpf_dump_raw_ok(const struct cred *cred)
    955{
    956	/* Reconstruction of call-sites is dependent on kallsyms,
    957	 * thus make dump the same restriction.
    958	 */
    959	return kallsyms_show_value(cred);
    960}
    961
    962struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
    963				       const struct bpf_insn *patch, u32 len);
    964int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
    965
    966void bpf_clear_redirect_map(struct bpf_map *map);
    967
    968static inline bool xdp_return_frame_no_direct(void)
    969{
    970	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
    971
    972	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
    973}
    974
    975static inline void xdp_set_return_frame_no_direct(void)
    976{
    977	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
    978
    979	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
    980}
    981
    982static inline void xdp_clear_return_frame_no_direct(void)
    983{
    984	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
    985
    986	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
    987}
    988
    989static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
    990				 unsigned int pktlen)
    991{
    992	unsigned int len;
    993
    994	if (unlikely(!(fwd->flags & IFF_UP)))
    995		return -ENETDOWN;
    996
    997	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
    998	if (pktlen > len)
    999		return -EMSGSIZE;
   1000
   1001	return 0;
   1002}
   1003
   1004/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
   1005 * same cpu context. Further for best results no more than a single map
   1006 * for the do_redirect/do_flush pair should be used. This limitation is
   1007 * because we only track one map and force a flush when the map changes.
   1008 * This does not appear to be a real limitation for existing software.
   1009 */
   1010int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
   1011			    struct xdp_buff *xdp, struct bpf_prog *prog);
   1012int xdp_do_redirect(struct net_device *dev,
   1013		    struct xdp_buff *xdp,
   1014		    struct bpf_prog *prog);
   1015int xdp_do_redirect_frame(struct net_device *dev,
   1016			  struct xdp_buff *xdp,
   1017			  struct xdp_frame *xdpf,
   1018			  struct bpf_prog *prog);
   1019void xdp_do_flush(void);
   1020
   1021/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
   1022 * it is no longer only flushing maps. Keep this define for compatibility
   1023 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
   1024 */
   1025#define xdp_do_flush_map xdp_do_flush
   1026
   1027void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
   1028
   1029#ifdef CONFIG_INET
   1030struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
   1031				  struct bpf_prog *prog, struct sk_buff *skb,
   1032				  struct sock *migrating_sk,
   1033				  u32 hash);
   1034#else
   1035static inline struct sock *
   1036bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
   1037		     struct bpf_prog *prog, struct sk_buff *skb,
   1038		     struct sock *migrating_sk,
   1039		     u32 hash)
   1040{
   1041	return NULL;
   1042}
   1043#endif
   1044
   1045#ifdef CONFIG_BPF_JIT
   1046extern int bpf_jit_enable;
   1047extern int bpf_jit_harden;
   1048extern int bpf_jit_kallsyms;
   1049extern long bpf_jit_limit;
   1050extern long bpf_jit_limit_max;
   1051
   1052typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
   1053
   1054struct bpf_binary_header *
   1055bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
   1056		     unsigned int alignment,
   1057		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
   1058void bpf_jit_binary_free(struct bpf_binary_header *hdr);
   1059u64 bpf_jit_alloc_exec_limit(void);
   1060void *bpf_jit_alloc_exec(unsigned long size);
   1061void bpf_jit_free_exec(void *addr);
   1062void bpf_jit_free(struct bpf_prog *fp);
   1063
   1064struct bpf_binary_header *
   1065bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
   1066			  unsigned int alignment,
   1067			  struct bpf_binary_header **rw_hdr,
   1068			  u8 **rw_image,
   1069			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
   1070int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
   1071				 struct bpf_binary_header *ro_header,
   1072				 struct bpf_binary_header *rw_header);
   1073void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
   1074			      struct bpf_binary_header *rw_header);
   1075
   1076int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
   1077				struct bpf_jit_poke_descriptor *poke);
   1078
   1079int bpf_jit_get_func_addr(const struct bpf_prog *prog,
   1080			  const struct bpf_insn *insn, bool extra_pass,
   1081			  u64 *func_addr, bool *func_addr_fixed);
   1082
   1083struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
   1084void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
   1085
   1086static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
   1087				u32 pass, void *image)
   1088{
   1089	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
   1090	       proglen, pass, image, current->comm, task_pid_nr(current));
   1091
   1092	if (image)
   1093		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
   1094			       16, 1, image, proglen, false);
   1095}
   1096
   1097static inline bool bpf_jit_is_ebpf(void)
   1098{
   1099# ifdef CONFIG_HAVE_EBPF_JIT
   1100	return true;
   1101# else
   1102	return false;
   1103# endif
   1104}
   1105
   1106static inline bool ebpf_jit_enabled(void)
   1107{
   1108	return bpf_jit_enable && bpf_jit_is_ebpf();
   1109}
   1110
   1111static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
   1112{
   1113	return fp->jited && bpf_jit_is_ebpf();
   1114}
   1115
   1116static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
   1117{
   1118	/* These are the prerequisites, should someone ever have the
   1119	 * idea to call blinding outside of them, we make sure to
   1120	 * bail out.
   1121	 */
   1122	if (!bpf_jit_is_ebpf())
   1123		return false;
   1124	if (!prog->jit_requested)
   1125		return false;
   1126	if (!bpf_jit_harden)
   1127		return false;
   1128	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
   1129		return false;
   1130
   1131	return true;
   1132}
   1133
   1134static inline bool bpf_jit_kallsyms_enabled(void)
   1135{
   1136	/* There are a couple of corner cases where kallsyms should
   1137	 * not be enabled f.e. on hardening.
   1138	 */
   1139	if (bpf_jit_harden)
   1140		return false;
   1141	if (!bpf_jit_kallsyms)
   1142		return false;
   1143	if (bpf_jit_kallsyms == 1)
   1144		return true;
   1145
   1146	return false;
   1147}
   1148
   1149const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
   1150				 unsigned long *off, char *sym);
   1151bool is_bpf_text_address(unsigned long addr);
   1152int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
   1153		    char *sym);
   1154
   1155static inline const char *
   1156bpf_address_lookup(unsigned long addr, unsigned long *size,
   1157		   unsigned long *off, char **modname, char *sym)
   1158{
   1159	const char *ret = __bpf_address_lookup(addr, size, off, sym);
   1160
   1161	if (ret && modname)
   1162		*modname = NULL;
   1163	return ret;
   1164}
   1165
   1166void bpf_prog_kallsyms_add(struct bpf_prog *fp);
   1167void bpf_prog_kallsyms_del(struct bpf_prog *fp);
   1168
   1169#else /* CONFIG_BPF_JIT */
   1170
   1171static inline bool ebpf_jit_enabled(void)
   1172{
   1173	return false;
   1174}
   1175
   1176static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
   1177{
   1178	return false;
   1179}
   1180
   1181static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
   1182{
   1183	return false;
   1184}
   1185
   1186static inline int
   1187bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
   1188			    struct bpf_jit_poke_descriptor *poke)
   1189{
   1190	return -ENOTSUPP;
   1191}
   1192
   1193static inline void bpf_jit_free(struct bpf_prog *fp)
   1194{
   1195	bpf_prog_unlock_free(fp);
   1196}
   1197
   1198static inline bool bpf_jit_kallsyms_enabled(void)
   1199{
   1200	return false;
   1201}
   1202
   1203static inline const char *
   1204__bpf_address_lookup(unsigned long addr, unsigned long *size,
   1205		     unsigned long *off, char *sym)
   1206{
   1207	return NULL;
   1208}
   1209
   1210static inline bool is_bpf_text_address(unsigned long addr)
   1211{
   1212	return false;
   1213}
   1214
   1215static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
   1216				  char *type, char *sym)
   1217{
   1218	return -ERANGE;
   1219}
   1220
   1221static inline const char *
   1222bpf_address_lookup(unsigned long addr, unsigned long *size,
   1223		   unsigned long *off, char **modname, char *sym)
   1224{
   1225	return NULL;
   1226}
   1227
   1228static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
   1229{
   1230}
   1231
   1232static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
   1233{
   1234}
   1235
   1236#endif /* CONFIG_BPF_JIT */
   1237
   1238void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
   1239
   1240#define BPF_ANC		BIT(15)
   1241
   1242static inline bool bpf_needs_clear_a(const struct sock_filter *first)
   1243{
   1244	switch (first->code) {
   1245	case BPF_RET | BPF_K:
   1246	case BPF_LD | BPF_W | BPF_LEN:
   1247		return false;
   1248
   1249	case BPF_LD | BPF_W | BPF_ABS:
   1250	case BPF_LD | BPF_H | BPF_ABS:
   1251	case BPF_LD | BPF_B | BPF_ABS:
   1252		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
   1253			return true;
   1254		return false;
   1255
   1256	default:
   1257		return true;
   1258	}
   1259}
   1260
   1261static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
   1262{
   1263	BUG_ON(ftest->code & BPF_ANC);
   1264
   1265	switch (ftest->code) {
   1266	case BPF_LD | BPF_W | BPF_ABS:
   1267	case BPF_LD | BPF_H | BPF_ABS:
   1268	case BPF_LD | BPF_B | BPF_ABS:
   1269#define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
   1270				return BPF_ANC | SKF_AD_##CODE
   1271		switch (ftest->k) {
   1272		BPF_ANCILLARY(PROTOCOL);
   1273		BPF_ANCILLARY(PKTTYPE);
   1274		BPF_ANCILLARY(IFINDEX);
   1275		BPF_ANCILLARY(NLATTR);
   1276		BPF_ANCILLARY(NLATTR_NEST);
   1277		BPF_ANCILLARY(MARK);
   1278		BPF_ANCILLARY(QUEUE);
   1279		BPF_ANCILLARY(HATYPE);
   1280		BPF_ANCILLARY(RXHASH);
   1281		BPF_ANCILLARY(CPU);
   1282		BPF_ANCILLARY(ALU_XOR_X);
   1283		BPF_ANCILLARY(VLAN_TAG);
   1284		BPF_ANCILLARY(VLAN_TAG_PRESENT);
   1285		BPF_ANCILLARY(PAY_OFFSET);
   1286		BPF_ANCILLARY(RANDOM);
   1287		BPF_ANCILLARY(VLAN_TPID);
   1288		}
   1289		fallthrough;
   1290	default:
   1291		return ftest->code;
   1292	}
   1293}
   1294
   1295void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
   1296					   int k, unsigned int size);
   1297
   1298static inline int bpf_tell_extensions(void)
   1299{
   1300	return SKF_AD_MAX;
   1301}
   1302
   1303struct bpf_sock_addr_kern {
   1304	struct sock *sk;
   1305	struct sockaddr *uaddr;
   1306	/* Temporary "register" to make indirect stores to nested structures
   1307	 * defined above. We need three registers to make such a store, but
   1308	 * only two (src and dst) are available at convert_ctx_access time
   1309	 */
   1310	u64 tmp_reg;
   1311	void *t_ctx;	/* Attach type specific context. */
   1312};
   1313
   1314struct bpf_sock_ops_kern {
   1315	struct	sock *sk;
   1316	union {
   1317		u32 args[4];
   1318		u32 reply;
   1319		u32 replylong[4];
   1320	};
   1321	struct sk_buff	*syn_skb;
   1322	struct sk_buff	*skb;
   1323	void	*skb_data_end;
   1324	u8	op;
   1325	u8	is_fullsock;
   1326	u8	remaining_opt_len;
   1327	u64	temp;			/* temp and everything after is not
   1328					 * initialized to 0 before calling
   1329					 * the BPF program. New fields that
   1330					 * should be initialized to 0 should
   1331					 * be inserted before temp.
   1332					 * temp is scratch storage used by
   1333					 * sock_ops_convert_ctx_access
   1334					 * as temporary storage of a register.
   1335					 */
   1336};
   1337
   1338struct bpf_sysctl_kern {
   1339	struct ctl_table_header *head;
   1340	struct ctl_table *table;
   1341	void *cur_val;
   1342	size_t cur_len;
   1343	void *new_val;
   1344	size_t new_len;
   1345	int new_updated;
   1346	int write;
   1347	loff_t *ppos;
   1348	/* Temporary "register" for indirect stores to ppos. */
   1349	u64 tmp_reg;
   1350};
   1351
   1352#define BPF_SOCKOPT_KERN_BUF_SIZE	32
   1353struct bpf_sockopt_buf {
   1354	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
   1355};
   1356
   1357struct bpf_sockopt_kern {
   1358	struct sock	*sk;
   1359	u8		*optval;
   1360	u8		*optval_end;
   1361	s32		level;
   1362	s32		optname;
   1363	s32		optlen;
   1364	/* for retval in struct bpf_cg_run_ctx */
   1365	struct task_struct *current_task;
   1366	/* Temporary "register" for indirect stores to ppos. */
   1367	u64		tmp_reg;
   1368};
   1369
   1370int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
   1371
   1372struct bpf_sk_lookup_kern {
   1373	u16		family;
   1374	u16		protocol;
   1375	__be16		sport;
   1376	u16		dport;
   1377	struct {
   1378		__be32 saddr;
   1379		__be32 daddr;
   1380	} v4;
   1381	struct {
   1382		const struct in6_addr *saddr;
   1383		const struct in6_addr *daddr;
   1384	} v6;
   1385	struct sock	*selected_sk;
   1386	u32		ingress_ifindex;
   1387	bool		no_reuseport;
   1388};
   1389
   1390extern struct static_key_false bpf_sk_lookup_enabled;
   1391
   1392/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
   1393 *
   1394 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
   1395 * SK_DROP. Their meaning is as follows:
   1396 *
   1397 *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
   1398 *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
   1399 *  SK_DROP                           : terminate lookup with -ECONNREFUSED
   1400 *
   1401 * This macro aggregates return values and selected sockets from
   1402 * multiple BPF programs according to following rules in order:
   1403 *
   1404 *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
   1405 *     macro result is SK_PASS and last ctx.selected_sk is used.
   1406 *  2. If any program returned SK_DROP return value,
   1407 *     macro result is SK_DROP.
   1408 *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
   1409 *
   1410 * Caller must ensure that the prog array is non-NULL, and that the
   1411 * array as well as the programs it contains remain valid.
   1412 */
   1413#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
   1414	({								\
   1415		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
   1416		struct bpf_prog_array_item *_item;			\
   1417		struct sock *_selected_sk = NULL;			\
   1418		bool _no_reuseport = false;				\
   1419		struct bpf_prog *_prog;					\
   1420		bool _all_pass = true;					\
   1421		u32 _ret;						\
   1422									\
   1423		migrate_disable();					\
   1424		_item = &(array)->items[0];				\
   1425		while ((_prog = READ_ONCE(_item->prog))) {		\
   1426			/* restore most recent selection */		\
   1427			_ctx->selected_sk = _selected_sk;		\
   1428			_ctx->no_reuseport = _no_reuseport;		\
   1429									\
   1430			_ret = func(_prog, _ctx);			\
   1431			if (_ret == SK_PASS && _ctx->selected_sk) {	\
   1432				/* remember last non-NULL socket */	\
   1433				_selected_sk = _ctx->selected_sk;	\
   1434				_no_reuseport = _ctx->no_reuseport;	\
   1435			} else if (_ret == SK_DROP && _all_pass) {	\
   1436				_all_pass = false;			\
   1437			}						\
   1438			_item++;					\
   1439		}							\
   1440		_ctx->selected_sk = _selected_sk;			\
   1441		_ctx->no_reuseport = _no_reuseport;			\
   1442		migrate_enable();					\
   1443		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
   1444	 })
   1445
   1446static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
   1447					const __be32 saddr, const __be16 sport,
   1448					const __be32 daddr, const u16 dport,
   1449					const int ifindex, struct sock **psk)
   1450{
   1451	struct bpf_prog_array *run_array;
   1452	struct sock *selected_sk = NULL;
   1453	bool no_reuseport = false;
   1454
   1455	rcu_read_lock();
   1456	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
   1457	if (run_array) {
   1458		struct bpf_sk_lookup_kern ctx = {
   1459			.family		= AF_INET,
   1460			.protocol	= protocol,
   1461			.v4.saddr	= saddr,
   1462			.v4.daddr	= daddr,
   1463			.sport		= sport,
   1464			.dport		= dport,
   1465			.ingress_ifindex	= ifindex,
   1466		};
   1467		u32 act;
   1468
   1469		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
   1470		if (act == SK_PASS) {
   1471			selected_sk = ctx.selected_sk;
   1472			no_reuseport = ctx.no_reuseport;
   1473		} else {
   1474			selected_sk = ERR_PTR(-ECONNREFUSED);
   1475		}
   1476	}
   1477	rcu_read_unlock();
   1478	*psk = selected_sk;
   1479	return no_reuseport;
   1480}
   1481
   1482#if IS_ENABLED(CONFIG_IPV6)
   1483static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
   1484					const struct in6_addr *saddr,
   1485					const __be16 sport,
   1486					const struct in6_addr *daddr,
   1487					const u16 dport,
   1488					const int ifindex, struct sock **psk)
   1489{
   1490	struct bpf_prog_array *run_array;
   1491	struct sock *selected_sk = NULL;
   1492	bool no_reuseport = false;
   1493
   1494	rcu_read_lock();
   1495	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
   1496	if (run_array) {
   1497		struct bpf_sk_lookup_kern ctx = {
   1498			.family		= AF_INET6,
   1499			.protocol	= protocol,
   1500			.v6.saddr	= saddr,
   1501			.v6.daddr	= daddr,
   1502			.sport		= sport,
   1503			.dport		= dport,
   1504			.ingress_ifindex	= ifindex,
   1505		};
   1506		u32 act;
   1507
   1508		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
   1509		if (act == SK_PASS) {
   1510			selected_sk = ctx.selected_sk;
   1511			no_reuseport = ctx.no_reuseport;
   1512		} else {
   1513			selected_sk = ERR_PTR(-ECONNREFUSED);
   1514		}
   1515	}
   1516	rcu_read_unlock();
   1517	*psk = selected_sk;
   1518	return no_reuseport;
   1519}
   1520#endif /* IS_ENABLED(CONFIG_IPV6) */
   1521
   1522static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
   1523						  u64 flags, const u64 flag_mask,
   1524						  void *lookup_elem(struct bpf_map *map, u32 key))
   1525{
   1526	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
   1527	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
   1528
   1529	/* Lower bits of the flags are used as return code on lookup failure */
   1530	if (unlikely(flags & ~(action_mask | flag_mask)))
   1531		return XDP_ABORTED;
   1532
   1533	ri->tgt_value = lookup_elem(map, ifindex);
   1534	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
   1535		/* If the lookup fails we want to clear out the state in the
   1536		 * redirect_info struct completely, so that if an eBPF program
   1537		 * performs multiple lookups, the last one always takes
   1538		 * precedence.
   1539		 */
   1540		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
   1541		ri->map_type = BPF_MAP_TYPE_UNSPEC;
   1542		return flags & action_mask;
   1543	}
   1544
   1545	ri->tgt_index = ifindex;
   1546	ri->map_id = map->id;
   1547	ri->map_type = map->map_type;
   1548
   1549	if (flags & BPF_F_BROADCAST) {
   1550		WRITE_ONCE(ri->map, map);
   1551		ri->flags = flags;
   1552	} else {
   1553		WRITE_ONCE(ri->map, NULL);
   1554		ri->flags = 0;
   1555	}
   1556
   1557	return XDP_REDIRECT;
   1558}
   1559
   1560#endif /* __LINUX_FILTER_H__ */