cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

highmem.h (12684B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_HIGHMEM_H
      3#define _LINUX_HIGHMEM_H
      4
      5#include <linux/fs.h>
      6#include <linux/kernel.h>
      7#include <linux/bug.h>
      8#include <linux/cacheflush.h>
      9#include <linux/mm.h>
     10#include <linux/uaccess.h>
     11#include <linux/hardirq.h>
     12
     13#include "highmem-internal.h"
     14
     15/**
     16 * kmap - Map a page for long term usage
     17 * @page:	Pointer to the page to be mapped
     18 *
     19 * Returns: The virtual address of the mapping
     20 *
     21 * Can only be invoked from preemptible task context because on 32bit
     22 * systems with CONFIG_HIGHMEM enabled this function might sleep.
     23 *
     24 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
     25 * this returns the virtual address of the direct kernel mapping.
     26 *
     27 * The returned virtual address is globally visible and valid up to the
     28 * point where it is unmapped via kunmap(). The pointer can be handed to
     29 * other contexts.
     30 *
     31 * For highmem pages on 32bit systems this can be slow as the mapping space
     32 * is limited and protected by a global lock. In case that there is no
     33 * mapping slot available the function blocks until a slot is released via
     34 * kunmap().
     35 */
     36static inline void *kmap(struct page *page);
     37
     38/**
     39 * kunmap - Unmap the virtual address mapped by kmap()
     40 * @page:	Pointer to the page which was mapped by kmap()
     41 *
     42 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
     43 * pages in the low memory area.
     44 */
     45static inline void kunmap(struct page *page);
     46
     47/**
     48 * kmap_to_page - Get the page for a kmap'ed address
     49 * @addr:	The address to look up
     50 *
     51 * Returns: The page which is mapped to @addr.
     52 */
     53static inline struct page *kmap_to_page(void *addr);
     54
     55/**
     56 * kmap_flush_unused - Flush all unused kmap mappings in order to
     57 *		       remove stray mappings
     58 */
     59static inline void kmap_flush_unused(void);
     60
     61/**
     62 * kmap_local_page - Map a page for temporary usage
     63 * @page:	Pointer to the page to be mapped
     64 *
     65 * Returns: The virtual address of the mapping
     66 *
     67 * Can be invoked from any context.
     68 *
     69 * Requires careful handling when nesting multiple mappings because the map
     70 * management is stack based. The unmap has to be in the reverse order of
     71 * the map operation:
     72 *
     73 * addr1 = kmap_local_page(page1);
     74 * addr2 = kmap_local_page(page2);
     75 * ...
     76 * kunmap_local(addr2);
     77 * kunmap_local(addr1);
     78 *
     79 * Unmapping addr1 before addr2 is invalid and causes malfunction.
     80 *
     81 * Contrary to kmap() mappings the mapping is only valid in the context of
     82 * the caller and cannot be handed to other contexts.
     83 *
     84 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
     85 * virtual address of the direct mapping. Only real highmem pages are
     86 * temporarily mapped.
     87 *
     88 * While it is significantly faster than kmap() for the higmem case it
     89 * comes with restrictions about the pointer validity. Only use when really
     90 * necessary.
     91 *
     92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
     93 * disabling migration in order to keep the virtual address stable across
     94 * preemption. No caller of kmap_local_page() can rely on this side effect.
     95 */
     96static inline void *kmap_local_page(struct page *page);
     97
     98/**
     99 * kmap_local_folio - Map a page in this folio for temporary usage
    100 * @folio: The folio containing the page.
    101 * @offset: The byte offset within the folio which identifies the page.
    102 *
    103 * Requires careful handling when nesting multiple mappings because the map
    104 * management is stack based. The unmap has to be in the reverse order of
    105 * the map operation::
    106 *
    107 *   addr1 = kmap_local_folio(folio1, offset1);
    108 *   addr2 = kmap_local_folio(folio2, offset2);
    109 *   ...
    110 *   kunmap_local(addr2);
    111 *   kunmap_local(addr1);
    112 *
    113 * Unmapping addr1 before addr2 is invalid and causes malfunction.
    114 *
    115 * Contrary to kmap() mappings the mapping is only valid in the context of
    116 * the caller and cannot be handed to other contexts.
    117 *
    118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
    119 * virtual address of the direct mapping. Only real highmem pages are
    120 * temporarily mapped.
    121 *
    122 * While it is significantly faster than kmap() for the higmem case it
    123 * comes with restrictions about the pointer validity. Only use when really
    124 * necessary.
    125 *
    126 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
    127 * disabling migration in order to keep the virtual address stable across
    128 * preemption. No caller of kmap_local_folio() can rely on this side effect.
    129 *
    130 * Context: Can be invoked from any context.
    131 * Return: The virtual address of @offset.
    132 */
    133static inline void *kmap_local_folio(struct folio *folio, size_t offset);
    134
    135/**
    136 * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
    137 * @page:	Pointer to the page to be mapped
    138 *
    139 * Returns: The virtual address of the mapping
    140 *
    141 * In fact a wrapper around kmap_local_page() which also disables pagefaults
    142 * and, depending on PREEMPT_RT configuration, also CPU migration and
    143 * preemption. Therefore users should not count on the latter two side effects.
    144 *
    145 * Mappings should always be released by kunmap_atomic().
    146 *
    147 * Do not use in new code. Use kmap_local_page() instead.
    148 *
    149 * It is used in atomic context when code wants to access the contents of a
    150 * page that might be allocated from high memory (see __GFP_HIGHMEM), for
    151 * example a page in the pagecache.  The API has two functions, and they
    152 * can be used in a manner similar to the following:
    153 *
    154 * -- Find the page of interest. --
    155 * struct page *page = find_get_page(mapping, offset);
    156 *
    157 * -- Gain access to the contents of that page. --
    158 * void *vaddr = kmap_atomic(page);
    159 *
    160 * -- Do something to the contents of that page. --
    161 * memset(vaddr, 0, PAGE_SIZE);
    162 *
    163 * -- Unmap that page. --
    164 * kunmap_atomic(vaddr);
    165 *
    166 * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
    167 * call, not the argument.
    168 *
    169 * If you need to map two pages because you want to copy from one page to
    170 * another you need to keep the kmap_atomic calls strictly nested, like:
    171 *
    172 * vaddr1 = kmap_atomic(page1);
    173 * vaddr2 = kmap_atomic(page2);
    174 *
    175 * memcpy(vaddr1, vaddr2, PAGE_SIZE);
    176 *
    177 * kunmap_atomic(vaddr2);
    178 * kunmap_atomic(vaddr1);
    179 */
    180static inline void *kmap_atomic(struct page *page);
    181
    182/* Highmem related interfaces for management code */
    183static inline unsigned int nr_free_highpages(void);
    184static inline unsigned long totalhigh_pages(void);
    185
    186#ifndef ARCH_HAS_FLUSH_ANON_PAGE
    187static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
    188{
    189}
    190#endif
    191
    192#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
    193static inline void flush_kernel_vmap_range(void *vaddr, int size)
    194{
    195}
    196static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
    197{
    198}
    199#endif
    200
    201/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
    202#ifndef clear_user_highpage
    203static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
    204{
    205	void *addr = kmap_local_page(page);
    206	clear_user_page(addr, vaddr, page);
    207	kunmap_local(addr);
    208}
    209#endif
    210
    211#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
    212/**
    213 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
    214 * @vma: The VMA the page is to be allocated for
    215 * @vaddr: The virtual address the page will be inserted into
    216 *
    217 * Returns: The allocated and zeroed HIGHMEM page
    218 *
    219 * This function will allocate a page for a VMA that the caller knows will
    220 * be able to migrate in the future using move_pages() or reclaimed
    221 *
    222 * An architecture may override this function by defining
    223 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own
    224 * implementation.
    225 */
    226static inline struct page *
    227alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
    228				   unsigned long vaddr)
    229{
    230	struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
    231
    232	if (page)
    233		clear_user_highpage(page, vaddr);
    234
    235	return page;
    236}
    237#endif
    238
    239static inline void clear_highpage(struct page *page)
    240{
    241	void *kaddr = kmap_local_page(page);
    242	clear_page(kaddr);
    243	kunmap_local(kaddr);
    244}
    245
    246#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
    247
    248static inline void tag_clear_highpage(struct page *page)
    249{
    250}
    251
    252#endif
    253
    254/*
    255 * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
    256 * If we pass in a head page, we can zero up to the size of the compound page.
    257 */
    258#ifdef CONFIG_HIGHMEM
    259void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
    260		unsigned start2, unsigned end2);
    261#else
    262static inline void zero_user_segments(struct page *page,
    263		unsigned start1, unsigned end1,
    264		unsigned start2, unsigned end2)
    265{
    266	void *kaddr = kmap_local_page(page);
    267	unsigned int i;
    268
    269	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
    270
    271	if (end1 > start1)
    272		memset(kaddr + start1, 0, end1 - start1);
    273
    274	if (end2 > start2)
    275		memset(kaddr + start2, 0, end2 - start2);
    276
    277	kunmap_local(kaddr);
    278	for (i = 0; i < compound_nr(page); i++)
    279		flush_dcache_page(page + i);
    280}
    281#endif
    282
    283static inline void zero_user_segment(struct page *page,
    284	unsigned start, unsigned end)
    285{
    286	zero_user_segments(page, start, end, 0, 0);
    287}
    288
    289static inline void zero_user(struct page *page,
    290	unsigned start, unsigned size)
    291{
    292	zero_user_segments(page, start, start + size, 0, 0);
    293}
    294
    295#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
    296
    297static inline void copy_user_highpage(struct page *to, struct page *from,
    298	unsigned long vaddr, struct vm_area_struct *vma)
    299{
    300	char *vfrom, *vto;
    301
    302	vfrom = kmap_local_page(from);
    303	vto = kmap_local_page(to);
    304	copy_user_page(vto, vfrom, vaddr, to);
    305	kunmap_local(vto);
    306	kunmap_local(vfrom);
    307}
    308
    309#endif
    310
    311#ifndef __HAVE_ARCH_COPY_HIGHPAGE
    312
    313static inline void copy_highpage(struct page *to, struct page *from)
    314{
    315	char *vfrom, *vto;
    316
    317	vfrom = kmap_local_page(from);
    318	vto = kmap_local_page(to);
    319	copy_page(vto, vfrom);
    320	kunmap_local(vto);
    321	kunmap_local(vfrom);
    322}
    323
    324#endif
    325
    326static inline void memcpy_page(struct page *dst_page, size_t dst_off,
    327			       struct page *src_page, size_t src_off,
    328			       size_t len)
    329{
    330	char *dst = kmap_local_page(dst_page);
    331	char *src = kmap_local_page(src_page);
    332
    333	VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
    334	memcpy(dst + dst_off, src + src_off, len);
    335	kunmap_local(src);
    336	kunmap_local(dst);
    337}
    338
    339static inline void memmove_page(struct page *dst_page, size_t dst_off,
    340			       struct page *src_page, size_t src_off,
    341			       size_t len)
    342{
    343	char *dst = kmap_local_page(dst_page);
    344	char *src = kmap_local_page(src_page);
    345
    346	VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
    347	memmove(dst + dst_off, src + src_off, len);
    348	kunmap_local(src);
    349	kunmap_local(dst);
    350}
    351
    352static inline void memset_page(struct page *page, size_t offset, int val,
    353			       size_t len)
    354{
    355	char *addr = kmap_local_page(page);
    356
    357	VM_BUG_ON(offset + len > PAGE_SIZE);
    358	memset(addr + offset, val, len);
    359	kunmap_local(addr);
    360}
    361
    362static inline void memcpy_from_page(char *to, struct page *page,
    363				    size_t offset, size_t len)
    364{
    365	char *from = kmap_local_page(page);
    366
    367	VM_BUG_ON(offset + len > PAGE_SIZE);
    368	memcpy(to, from + offset, len);
    369	kunmap_local(from);
    370}
    371
    372static inline void memcpy_to_page(struct page *page, size_t offset,
    373				  const char *from, size_t len)
    374{
    375	char *to = kmap_local_page(page);
    376
    377	VM_BUG_ON(offset + len > PAGE_SIZE);
    378	memcpy(to + offset, from, len);
    379	flush_dcache_page(page);
    380	kunmap_local(to);
    381}
    382
    383static inline void memzero_page(struct page *page, size_t offset, size_t len)
    384{
    385	char *addr = kmap_local_page(page);
    386
    387	VM_BUG_ON(offset + len > PAGE_SIZE);
    388	memset(addr + offset, 0, len);
    389	flush_dcache_page(page);
    390	kunmap_local(addr);
    391}
    392
    393/**
    394 * folio_zero_segments() - Zero two byte ranges in a folio.
    395 * @folio: The folio to write to.
    396 * @start1: The first byte to zero.
    397 * @xend1: One more than the last byte in the first range.
    398 * @start2: The first byte to zero in the second range.
    399 * @xend2: One more than the last byte in the second range.
    400 */
    401static inline void folio_zero_segments(struct folio *folio,
    402		size_t start1, size_t xend1, size_t start2, size_t xend2)
    403{
    404	zero_user_segments(&folio->page, start1, xend1, start2, xend2);
    405}
    406
    407/**
    408 * folio_zero_segment() - Zero a byte range in a folio.
    409 * @folio: The folio to write to.
    410 * @start: The first byte to zero.
    411 * @xend: One more than the last byte to zero.
    412 */
    413static inline void folio_zero_segment(struct folio *folio,
    414		size_t start, size_t xend)
    415{
    416	zero_user_segments(&folio->page, start, xend, 0, 0);
    417}
    418
    419/**
    420 * folio_zero_range() - Zero a byte range in a folio.
    421 * @folio: The folio to write to.
    422 * @start: The first byte to zero.
    423 * @length: The number of bytes to zero.
    424 */
    425static inline void folio_zero_range(struct folio *folio,
    426		size_t start, size_t length)
    427{
    428	zero_user_segments(&folio->page, start, start + length, 0, 0);
    429}
    430
    431#endif /* _LINUX_HIGHMEM_H */