highmem.h (12684B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_HIGHMEM_H 3#define _LINUX_HIGHMEM_H 4 5#include <linux/fs.h> 6#include <linux/kernel.h> 7#include <linux/bug.h> 8#include <linux/cacheflush.h> 9#include <linux/mm.h> 10#include <linux/uaccess.h> 11#include <linux/hardirq.h> 12 13#include "highmem-internal.h" 14 15/** 16 * kmap - Map a page for long term usage 17 * @page: Pointer to the page to be mapped 18 * 19 * Returns: The virtual address of the mapping 20 * 21 * Can only be invoked from preemptible task context because on 32bit 22 * systems with CONFIG_HIGHMEM enabled this function might sleep. 23 * 24 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area 25 * this returns the virtual address of the direct kernel mapping. 26 * 27 * The returned virtual address is globally visible and valid up to the 28 * point where it is unmapped via kunmap(). The pointer can be handed to 29 * other contexts. 30 * 31 * For highmem pages on 32bit systems this can be slow as the mapping space 32 * is limited and protected by a global lock. In case that there is no 33 * mapping slot available the function blocks until a slot is released via 34 * kunmap(). 35 */ 36static inline void *kmap(struct page *page); 37 38/** 39 * kunmap - Unmap the virtual address mapped by kmap() 40 * @page: Pointer to the page which was mapped by kmap() 41 * 42 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of 43 * pages in the low memory area. 44 */ 45static inline void kunmap(struct page *page); 46 47/** 48 * kmap_to_page - Get the page for a kmap'ed address 49 * @addr: The address to look up 50 * 51 * Returns: The page which is mapped to @addr. 52 */ 53static inline struct page *kmap_to_page(void *addr); 54 55/** 56 * kmap_flush_unused - Flush all unused kmap mappings in order to 57 * remove stray mappings 58 */ 59static inline void kmap_flush_unused(void); 60 61/** 62 * kmap_local_page - Map a page for temporary usage 63 * @page: Pointer to the page to be mapped 64 * 65 * Returns: The virtual address of the mapping 66 * 67 * Can be invoked from any context. 68 * 69 * Requires careful handling when nesting multiple mappings because the map 70 * management is stack based. The unmap has to be in the reverse order of 71 * the map operation: 72 * 73 * addr1 = kmap_local_page(page1); 74 * addr2 = kmap_local_page(page2); 75 * ... 76 * kunmap_local(addr2); 77 * kunmap_local(addr1); 78 * 79 * Unmapping addr1 before addr2 is invalid and causes malfunction. 80 * 81 * Contrary to kmap() mappings the mapping is only valid in the context of 82 * the caller and cannot be handed to other contexts. 83 * 84 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 85 * virtual address of the direct mapping. Only real highmem pages are 86 * temporarily mapped. 87 * 88 * While it is significantly faster than kmap() for the higmem case it 89 * comes with restrictions about the pointer validity. Only use when really 90 * necessary. 91 * 92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 93 * disabling migration in order to keep the virtual address stable across 94 * preemption. No caller of kmap_local_page() can rely on this side effect. 95 */ 96static inline void *kmap_local_page(struct page *page); 97 98/** 99 * kmap_local_folio - Map a page in this folio for temporary usage 100 * @folio: The folio containing the page. 101 * @offset: The byte offset within the folio which identifies the page. 102 * 103 * Requires careful handling when nesting multiple mappings because the map 104 * management is stack based. The unmap has to be in the reverse order of 105 * the map operation:: 106 * 107 * addr1 = kmap_local_folio(folio1, offset1); 108 * addr2 = kmap_local_folio(folio2, offset2); 109 * ... 110 * kunmap_local(addr2); 111 * kunmap_local(addr1); 112 * 113 * Unmapping addr1 before addr2 is invalid and causes malfunction. 114 * 115 * Contrary to kmap() mappings the mapping is only valid in the context of 116 * the caller and cannot be handed to other contexts. 117 * 118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 119 * virtual address of the direct mapping. Only real highmem pages are 120 * temporarily mapped. 121 * 122 * While it is significantly faster than kmap() for the higmem case it 123 * comes with restrictions about the pointer validity. Only use when really 124 * necessary. 125 * 126 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 127 * disabling migration in order to keep the virtual address stable across 128 * preemption. No caller of kmap_local_folio() can rely on this side effect. 129 * 130 * Context: Can be invoked from any context. 131 * Return: The virtual address of @offset. 132 */ 133static inline void *kmap_local_folio(struct folio *folio, size_t offset); 134 135/** 136 * kmap_atomic - Atomically map a page for temporary usage - Deprecated! 137 * @page: Pointer to the page to be mapped 138 * 139 * Returns: The virtual address of the mapping 140 * 141 * In fact a wrapper around kmap_local_page() which also disables pagefaults 142 * and, depending on PREEMPT_RT configuration, also CPU migration and 143 * preemption. Therefore users should not count on the latter two side effects. 144 * 145 * Mappings should always be released by kunmap_atomic(). 146 * 147 * Do not use in new code. Use kmap_local_page() instead. 148 * 149 * It is used in atomic context when code wants to access the contents of a 150 * page that might be allocated from high memory (see __GFP_HIGHMEM), for 151 * example a page in the pagecache. The API has two functions, and they 152 * can be used in a manner similar to the following: 153 * 154 * -- Find the page of interest. -- 155 * struct page *page = find_get_page(mapping, offset); 156 * 157 * -- Gain access to the contents of that page. -- 158 * void *vaddr = kmap_atomic(page); 159 * 160 * -- Do something to the contents of that page. -- 161 * memset(vaddr, 0, PAGE_SIZE); 162 * 163 * -- Unmap that page. -- 164 * kunmap_atomic(vaddr); 165 * 166 * Note that the kunmap_atomic() call takes the result of the kmap_atomic() 167 * call, not the argument. 168 * 169 * If you need to map two pages because you want to copy from one page to 170 * another you need to keep the kmap_atomic calls strictly nested, like: 171 * 172 * vaddr1 = kmap_atomic(page1); 173 * vaddr2 = kmap_atomic(page2); 174 * 175 * memcpy(vaddr1, vaddr2, PAGE_SIZE); 176 * 177 * kunmap_atomic(vaddr2); 178 * kunmap_atomic(vaddr1); 179 */ 180static inline void *kmap_atomic(struct page *page); 181 182/* Highmem related interfaces for management code */ 183static inline unsigned int nr_free_highpages(void); 184static inline unsigned long totalhigh_pages(void); 185 186#ifndef ARCH_HAS_FLUSH_ANON_PAGE 187static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) 188{ 189} 190#endif 191 192#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 193static inline void flush_kernel_vmap_range(void *vaddr, int size) 194{ 195} 196static inline void invalidate_kernel_vmap_range(void *vaddr, int size) 197{ 198} 199#endif 200 201/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ 202#ifndef clear_user_highpage 203static inline void clear_user_highpage(struct page *page, unsigned long vaddr) 204{ 205 void *addr = kmap_local_page(page); 206 clear_user_page(addr, vaddr, page); 207 kunmap_local(addr); 208} 209#endif 210 211#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE 212/** 213 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move 214 * @vma: The VMA the page is to be allocated for 215 * @vaddr: The virtual address the page will be inserted into 216 * 217 * Returns: The allocated and zeroed HIGHMEM page 218 * 219 * This function will allocate a page for a VMA that the caller knows will 220 * be able to migrate in the future using move_pages() or reclaimed 221 * 222 * An architecture may override this function by defining 223 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own 224 * implementation. 225 */ 226static inline struct page * 227alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, 228 unsigned long vaddr) 229{ 230 struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 231 232 if (page) 233 clear_user_highpage(page, vaddr); 234 235 return page; 236} 237#endif 238 239static inline void clear_highpage(struct page *page) 240{ 241 void *kaddr = kmap_local_page(page); 242 clear_page(kaddr); 243 kunmap_local(kaddr); 244} 245 246#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE 247 248static inline void tag_clear_highpage(struct page *page) 249{ 250} 251 252#endif 253 254/* 255 * If we pass in a base or tail page, we can zero up to PAGE_SIZE. 256 * If we pass in a head page, we can zero up to the size of the compound page. 257 */ 258#ifdef CONFIG_HIGHMEM 259void zero_user_segments(struct page *page, unsigned start1, unsigned end1, 260 unsigned start2, unsigned end2); 261#else 262static inline void zero_user_segments(struct page *page, 263 unsigned start1, unsigned end1, 264 unsigned start2, unsigned end2) 265{ 266 void *kaddr = kmap_local_page(page); 267 unsigned int i; 268 269 BUG_ON(end1 > page_size(page) || end2 > page_size(page)); 270 271 if (end1 > start1) 272 memset(kaddr + start1, 0, end1 - start1); 273 274 if (end2 > start2) 275 memset(kaddr + start2, 0, end2 - start2); 276 277 kunmap_local(kaddr); 278 for (i = 0; i < compound_nr(page); i++) 279 flush_dcache_page(page + i); 280} 281#endif 282 283static inline void zero_user_segment(struct page *page, 284 unsigned start, unsigned end) 285{ 286 zero_user_segments(page, start, end, 0, 0); 287} 288 289static inline void zero_user(struct page *page, 290 unsigned start, unsigned size) 291{ 292 zero_user_segments(page, start, start + size, 0, 0); 293} 294 295#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE 296 297static inline void copy_user_highpage(struct page *to, struct page *from, 298 unsigned long vaddr, struct vm_area_struct *vma) 299{ 300 char *vfrom, *vto; 301 302 vfrom = kmap_local_page(from); 303 vto = kmap_local_page(to); 304 copy_user_page(vto, vfrom, vaddr, to); 305 kunmap_local(vto); 306 kunmap_local(vfrom); 307} 308 309#endif 310 311#ifndef __HAVE_ARCH_COPY_HIGHPAGE 312 313static inline void copy_highpage(struct page *to, struct page *from) 314{ 315 char *vfrom, *vto; 316 317 vfrom = kmap_local_page(from); 318 vto = kmap_local_page(to); 319 copy_page(vto, vfrom); 320 kunmap_local(vto); 321 kunmap_local(vfrom); 322} 323 324#endif 325 326static inline void memcpy_page(struct page *dst_page, size_t dst_off, 327 struct page *src_page, size_t src_off, 328 size_t len) 329{ 330 char *dst = kmap_local_page(dst_page); 331 char *src = kmap_local_page(src_page); 332 333 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); 334 memcpy(dst + dst_off, src + src_off, len); 335 kunmap_local(src); 336 kunmap_local(dst); 337} 338 339static inline void memmove_page(struct page *dst_page, size_t dst_off, 340 struct page *src_page, size_t src_off, 341 size_t len) 342{ 343 char *dst = kmap_local_page(dst_page); 344 char *src = kmap_local_page(src_page); 345 346 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); 347 memmove(dst + dst_off, src + src_off, len); 348 kunmap_local(src); 349 kunmap_local(dst); 350} 351 352static inline void memset_page(struct page *page, size_t offset, int val, 353 size_t len) 354{ 355 char *addr = kmap_local_page(page); 356 357 VM_BUG_ON(offset + len > PAGE_SIZE); 358 memset(addr + offset, val, len); 359 kunmap_local(addr); 360} 361 362static inline void memcpy_from_page(char *to, struct page *page, 363 size_t offset, size_t len) 364{ 365 char *from = kmap_local_page(page); 366 367 VM_BUG_ON(offset + len > PAGE_SIZE); 368 memcpy(to, from + offset, len); 369 kunmap_local(from); 370} 371 372static inline void memcpy_to_page(struct page *page, size_t offset, 373 const char *from, size_t len) 374{ 375 char *to = kmap_local_page(page); 376 377 VM_BUG_ON(offset + len > PAGE_SIZE); 378 memcpy(to + offset, from, len); 379 flush_dcache_page(page); 380 kunmap_local(to); 381} 382 383static inline void memzero_page(struct page *page, size_t offset, size_t len) 384{ 385 char *addr = kmap_local_page(page); 386 387 VM_BUG_ON(offset + len > PAGE_SIZE); 388 memset(addr + offset, 0, len); 389 flush_dcache_page(page); 390 kunmap_local(addr); 391} 392 393/** 394 * folio_zero_segments() - Zero two byte ranges in a folio. 395 * @folio: The folio to write to. 396 * @start1: The first byte to zero. 397 * @xend1: One more than the last byte in the first range. 398 * @start2: The first byte to zero in the second range. 399 * @xend2: One more than the last byte in the second range. 400 */ 401static inline void folio_zero_segments(struct folio *folio, 402 size_t start1, size_t xend1, size_t start2, size_t xend2) 403{ 404 zero_user_segments(&folio->page, start1, xend1, start2, xend2); 405} 406 407/** 408 * folio_zero_segment() - Zero a byte range in a folio. 409 * @folio: The folio to write to. 410 * @start: The first byte to zero. 411 * @xend: One more than the last byte to zero. 412 */ 413static inline void folio_zero_segment(struct folio *folio, 414 size_t start, size_t xend) 415{ 416 zero_user_segments(&folio->page, start, xend, 0, 0); 417} 418 419/** 420 * folio_zero_range() - Zero a byte range in a folio. 421 * @folio: The folio to write to. 422 * @start: The first byte to zero. 423 * @length: The number of bytes to zero. 424 */ 425static inline void folio_zero_range(struct folio *folio, 426 size_t start, size_t length) 427{ 428 zero_user_segments(&folio->page, start, start + length, 0, 0); 429} 430 431#endif /* _LINUX_HIGHMEM_H */