hyperv.h (49575B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/mm.h> 18#include <linux/types.h> 19#include <linux/scatterlist.h> 20#include <linux/list.h> 21#include <linux/timer.h> 22#include <linux/completion.h> 23#include <linux/device.h> 24#include <linux/mod_devicetable.h> 25#include <linux/interrupt.h> 26#include <linux/reciprocal_div.h> 27#include <asm/hyperv-tlfs.h> 28 29#define MAX_PAGE_BUFFER_COUNT 32 30#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 31 32#pragma pack(push, 1) 33 34/* 35 * Types for GPADL, decides is how GPADL header is created. 36 * 37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the 38 * same as HV_HYP_PAGE_SIZE. 39 * 40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers 41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put 42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each 43 * HV_HYP_PAGE will be different between different types of GPADL, for example 44 * if PAGE_SIZE is 64K: 45 * 46 * BUFFER: 47 * 48 * gva: |-- 64k --|-- 64k --| ... | 49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | 50 * index: 0 1 2 15 16 17 18 .. 31 32 ... 51 * | | ... | | | ... | ... 52 * v V V V V V 53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... | 54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ... 55 * 56 * RING: 57 * 58 * | header | data | header | data | 59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... | 60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... | 61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n 62 * | / / / | / / 63 * | / / / | / / 64 * | / / ... / ... | / ... / 65 * | / / / | / / 66 * | / / / | / / 67 * V V V V V V v 68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... | 69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30 70 */ 71enum hv_gpadl_type { 72 HV_GPADL_BUFFER, 73 HV_GPADL_RING 74}; 75 76/* Single-page buffer */ 77struct hv_page_buffer { 78 u32 len; 79 u32 offset; 80 u64 pfn; 81}; 82 83/* Multiple-page buffer */ 84struct hv_multipage_buffer { 85 /* Length and Offset determines the # of pfns in the array */ 86 u32 len; 87 u32 offset; 88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 89}; 90 91/* 92 * Multiple-page buffer array; the pfn array is variable size: 93 * The number of entries in the PFN array is determined by 94 * "len" and "offset". 95 */ 96struct hv_mpb_array { 97 /* Length and Offset determines the # of pfns in the array */ 98 u32 len; 99 u32 offset; 100 u64 pfn_array[]; 101}; 102 103/* 0x18 includes the proprietary packet header */ 104#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 105 (sizeof(struct hv_page_buffer) * \ 106 MAX_PAGE_BUFFER_COUNT)) 107#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 108 sizeof(struct hv_multipage_buffer)) 109 110 111#pragma pack(pop) 112 113struct hv_ring_buffer { 114 /* Offset in bytes from the start of ring data below */ 115 u32 write_index; 116 117 /* Offset in bytes from the start of ring data below */ 118 u32 read_index; 119 120 u32 interrupt_mask; 121 122 /* 123 * WS2012/Win8 and later versions of Hyper-V implement interrupt 124 * driven flow management. The feature bit feat_pending_send_sz 125 * is set by the host on the host->guest ring buffer, and by the 126 * guest on the guest->host ring buffer. 127 * 128 * The meaning of the feature bit is a bit complex in that it has 129 * semantics that apply to both ring buffers. If the guest sets 130 * the feature bit in the guest->host ring buffer, the guest is 131 * telling the host that: 132 * 1) It will set the pending_send_sz field in the guest->host ring 133 * buffer when it is waiting for space to become available, and 134 * 2) It will read the pending_send_sz field in the host->guest 135 * ring buffer and interrupt the host when it frees enough space 136 * 137 * Similarly, if the host sets the feature bit in the host->guest 138 * ring buffer, the host is telling the guest that: 139 * 1) It will set the pending_send_sz field in the host->guest ring 140 * buffer when it is waiting for space to become available, and 141 * 2) It will read the pending_send_sz field in the guest->host 142 * ring buffer and interrupt the guest when it frees enough space 143 * 144 * If either the guest or host does not set the feature bit that it 145 * owns, that guest or host must do polling if it encounters a full 146 * ring buffer, and not signal the other end with an interrupt. 147 */ 148 u32 pending_send_sz; 149 u32 reserved1[12]; 150 union { 151 struct { 152 u32 feat_pending_send_sz:1; 153 }; 154 u32 value; 155 } feature_bits; 156 157 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 158 u8 reserved2[PAGE_SIZE - 68]; 159 160 /* 161 * Ring data starts here + RingDataStartOffset 162 * !!! DO NOT place any fields below this !!! 163 */ 164 u8 buffer[]; 165} __packed; 166 167/* Calculate the proper size of a ringbuffer, it must be page-aligned */ 168#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \ 169 (payload_sz)) 170 171struct hv_ring_buffer_info { 172 struct hv_ring_buffer *ring_buffer; 173 u32 ring_size; /* Include the shared header */ 174 struct reciprocal_value ring_size_div10_reciprocal; 175 spinlock_t ring_lock; 176 177 u32 ring_datasize; /* < ring_size */ 178 u32 priv_read_index; 179 /* 180 * The ring buffer mutex lock. This lock prevents the ring buffer from 181 * being freed while the ring buffer is being accessed. 182 */ 183 struct mutex ring_buffer_mutex; 184 185 /* Buffer that holds a copy of an incoming host packet */ 186 void *pkt_buffer; 187 u32 pkt_buffer_size; 188}; 189 190 191static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 192{ 193 u32 read_loc, write_loc, dsize, read; 194 195 dsize = rbi->ring_datasize; 196 read_loc = rbi->ring_buffer->read_index; 197 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 198 199 read = write_loc >= read_loc ? (write_loc - read_loc) : 200 (dsize - read_loc) + write_loc; 201 202 return read; 203} 204 205static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 206{ 207 u32 read_loc, write_loc, dsize, write; 208 209 dsize = rbi->ring_datasize; 210 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 211 write_loc = rbi->ring_buffer->write_index; 212 213 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 214 read_loc - write_loc; 215 return write; 216} 217 218static inline u32 hv_get_avail_to_write_percent( 219 const struct hv_ring_buffer_info *rbi) 220{ 221 u32 avail_write = hv_get_bytes_to_write(rbi); 222 223 return reciprocal_divide( 224 (avail_write << 3) + (avail_write << 1), 225 rbi->ring_size_div10_reciprocal); 226} 227 228/* 229 * VMBUS version is 32 bit entity broken up into 230 * two 16 bit quantities: major_number. minor_number. 231 * 232 * 0 . 13 (Windows Server 2008) 233 * 1 . 1 (Windows 7, WS2008 R2) 234 * 2 . 4 (Windows 8, WS2012) 235 * 3 . 0 (Windows 8.1, WS2012 R2) 236 * 4 . 0 (Windows 10) 237 * 4 . 1 (Windows 10 RS3) 238 * 5 . 0 (Newer Windows 10) 239 * 5 . 1 (Windows 10 RS4) 240 * 5 . 2 (Windows Server 2019, RS5) 241 * 5 . 3 (Windows Server 2022) 242 * 243 * The WS2008 and WIN7 versions are listed here for 244 * completeness but are no longer supported in the 245 * Linux kernel. 246 */ 247 248#define VERSION_WS2008 ((0 << 16) | (13)) 249#define VERSION_WIN7 ((1 << 16) | (1)) 250#define VERSION_WIN8 ((2 << 16) | (4)) 251#define VERSION_WIN8_1 ((3 << 16) | (0)) 252#define VERSION_WIN10 ((4 << 16) | (0)) 253#define VERSION_WIN10_V4_1 ((4 << 16) | (1)) 254#define VERSION_WIN10_V5 ((5 << 16) | (0)) 255#define VERSION_WIN10_V5_1 ((5 << 16) | (1)) 256#define VERSION_WIN10_V5_2 ((5 << 16) | (2)) 257#define VERSION_WIN10_V5_3 ((5 << 16) | (3)) 258 259/* Make maximum size of pipe payload of 16K */ 260#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 261 262/* Define PipeMode values. */ 263#define VMBUS_PIPE_TYPE_BYTE 0x00000000 264#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 265 266/* The size of the user defined data buffer for non-pipe offers. */ 267#define MAX_USER_DEFINED_BYTES 120 268 269/* The size of the user defined data buffer for pipe offers. */ 270#define MAX_PIPE_USER_DEFINED_BYTES 116 271 272/* 273 * At the center of the Channel Management library is the Channel Offer. This 274 * struct contains the fundamental information about an offer. 275 */ 276struct vmbus_channel_offer { 277 guid_t if_type; 278 guid_t if_instance; 279 280 /* 281 * These two fields are not currently used. 282 */ 283 u64 reserved1; 284 u64 reserved2; 285 286 u16 chn_flags; 287 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 288 289 union { 290 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 291 struct { 292 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 293 } std; 294 295 /* 296 * Pipes: 297 * The following structure is an integrated pipe protocol, which 298 * is implemented on top of standard user-defined data. Pipe 299 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 300 * use. 301 */ 302 struct { 303 u32 pipe_mode; 304 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 305 } pipe; 306 } u; 307 /* 308 * The sub_channel_index is defined in Win8: a value of zero means a 309 * primary channel and a value of non-zero means a sub-channel. 310 * 311 * Before Win8, the field is reserved, meaning it's always zero. 312 */ 313 u16 sub_channel_index; 314 u16 reserved3; 315} __packed; 316 317/* Server Flags */ 318#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 319#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 320#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 321#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 322#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 323#define VMBUS_CHANNEL_PARENT_OFFER 0x200 324#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 325#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 326 327struct vmpacket_descriptor { 328 u16 type; 329 u16 offset8; 330 u16 len8; 331 u16 flags; 332 u64 trans_id; 333} __packed; 334 335struct vmpacket_header { 336 u32 prev_pkt_start_offset; 337 struct vmpacket_descriptor descriptor; 338} __packed; 339 340struct vmtransfer_page_range { 341 u32 byte_count; 342 u32 byte_offset; 343} __packed; 344 345struct vmtransfer_page_packet_header { 346 struct vmpacket_descriptor d; 347 u16 xfer_pageset_id; 348 u8 sender_owns_set; 349 u8 reserved; 350 u32 range_cnt; 351 struct vmtransfer_page_range ranges[1]; 352} __packed; 353 354struct vmgpadl_packet_header { 355 struct vmpacket_descriptor d; 356 u32 gpadl; 357 u32 reserved; 358} __packed; 359 360struct vmadd_remove_transfer_page_set { 361 struct vmpacket_descriptor d; 362 u32 gpadl; 363 u16 xfer_pageset_id; 364 u16 reserved; 365} __packed; 366 367/* 368 * This structure defines a range in guest physical space that can be made to 369 * look virtually contiguous. 370 */ 371struct gpa_range { 372 u32 byte_count; 373 u32 byte_offset; 374 u64 pfn_array[]; 375}; 376 377/* 378 * This is the format for an Establish Gpadl packet, which contains a handle by 379 * which this GPADL will be known and a set of GPA ranges associated with it. 380 * This can be converted to a MDL by the guest OS. If there are multiple GPA 381 * ranges, then the resulting MDL will be "chained," representing multiple VA 382 * ranges. 383 */ 384struct vmestablish_gpadl { 385 struct vmpacket_descriptor d; 386 u32 gpadl; 387 u32 range_cnt; 388 struct gpa_range range[1]; 389} __packed; 390 391/* 392 * This is the format for a Teardown Gpadl packet, which indicates that the 393 * GPADL handle in the Establish Gpadl packet will never be referenced again. 394 */ 395struct vmteardown_gpadl { 396 struct vmpacket_descriptor d; 397 u32 gpadl; 398 u32 reserved; /* for alignment to a 8-byte boundary */ 399} __packed; 400 401/* 402 * This is the format for a GPA-Direct packet, which contains a set of GPA 403 * ranges, in addition to commands and/or data. 404 */ 405struct vmdata_gpa_direct { 406 struct vmpacket_descriptor d; 407 u32 reserved; 408 u32 range_cnt; 409 struct gpa_range range[1]; 410} __packed; 411 412/* This is the format for a Additional Data Packet. */ 413struct vmadditional_data { 414 struct vmpacket_descriptor d; 415 u64 total_bytes; 416 u32 offset; 417 u32 byte_cnt; 418 unsigned char data[1]; 419} __packed; 420 421union vmpacket_largest_possible_header { 422 struct vmpacket_descriptor simple_hdr; 423 struct vmtransfer_page_packet_header xfer_page_hdr; 424 struct vmgpadl_packet_header gpadl_hdr; 425 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 426 struct vmestablish_gpadl establish_gpadl_hdr; 427 struct vmteardown_gpadl teardown_gpadl_hdr; 428 struct vmdata_gpa_direct data_gpa_direct_hdr; 429}; 430 431#define VMPACKET_DATA_START_ADDRESS(__packet) \ 432 (void *)(((unsigned char *)__packet) + \ 433 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 434 435#define VMPACKET_DATA_LENGTH(__packet) \ 436 ((((struct vmpacket_descriptor)__packet)->len8 - \ 437 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 438 439#define VMPACKET_TRANSFER_MODE(__packet) \ 440 (((struct IMPACT)__packet)->type) 441 442enum vmbus_packet_type { 443 VM_PKT_INVALID = 0x0, 444 VM_PKT_SYNCH = 0x1, 445 VM_PKT_ADD_XFER_PAGESET = 0x2, 446 VM_PKT_RM_XFER_PAGESET = 0x3, 447 VM_PKT_ESTABLISH_GPADL = 0x4, 448 VM_PKT_TEARDOWN_GPADL = 0x5, 449 VM_PKT_DATA_INBAND = 0x6, 450 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 451 VM_PKT_DATA_USING_GPADL = 0x8, 452 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 453 VM_PKT_CANCEL_REQUEST = 0xa, 454 VM_PKT_COMP = 0xb, 455 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 456 VM_PKT_ADDITIONAL_DATA = 0xd 457}; 458 459#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 460 461 462/* Version 1 messages */ 463enum vmbus_channel_message_type { 464 CHANNELMSG_INVALID = 0, 465 CHANNELMSG_OFFERCHANNEL = 1, 466 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 467 CHANNELMSG_REQUESTOFFERS = 3, 468 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 469 CHANNELMSG_OPENCHANNEL = 5, 470 CHANNELMSG_OPENCHANNEL_RESULT = 6, 471 CHANNELMSG_CLOSECHANNEL = 7, 472 CHANNELMSG_GPADL_HEADER = 8, 473 CHANNELMSG_GPADL_BODY = 9, 474 CHANNELMSG_GPADL_CREATED = 10, 475 CHANNELMSG_GPADL_TEARDOWN = 11, 476 CHANNELMSG_GPADL_TORNDOWN = 12, 477 CHANNELMSG_RELID_RELEASED = 13, 478 CHANNELMSG_INITIATE_CONTACT = 14, 479 CHANNELMSG_VERSION_RESPONSE = 15, 480 CHANNELMSG_UNLOAD = 16, 481 CHANNELMSG_UNLOAD_RESPONSE = 17, 482 CHANNELMSG_18 = 18, 483 CHANNELMSG_19 = 19, 484 CHANNELMSG_20 = 20, 485 CHANNELMSG_TL_CONNECT_REQUEST = 21, 486 CHANNELMSG_MODIFYCHANNEL = 22, 487 CHANNELMSG_TL_CONNECT_RESULT = 23, 488 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24, 489 CHANNELMSG_COUNT 490}; 491 492/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 493#define INVALID_RELID U32_MAX 494 495struct vmbus_channel_message_header { 496 enum vmbus_channel_message_type msgtype; 497 u32 padding; 498} __packed; 499 500/* Query VMBus Version parameters */ 501struct vmbus_channel_query_vmbus_version { 502 struct vmbus_channel_message_header header; 503 u32 version; 504} __packed; 505 506/* VMBus Version Supported parameters */ 507struct vmbus_channel_version_supported { 508 struct vmbus_channel_message_header header; 509 u8 version_supported; 510} __packed; 511 512/* Offer Channel parameters */ 513struct vmbus_channel_offer_channel { 514 struct vmbus_channel_message_header header; 515 struct vmbus_channel_offer offer; 516 u32 child_relid; 517 u8 monitorid; 518 /* 519 * win7 and beyond splits this field into a bit field. 520 */ 521 u8 monitor_allocated:1; 522 u8 reserved:7; 523 /* 524 * These are new fields added in win7 and later. 525 * Do not access these fields without checking the 526 * negotiated protocol. 527 * 528 * If "is_dedicated_interrupt" is set, we must not set the 529 * associated bit in the channel bitmap while sending the 530 * interrupt to the host. 531 * 532 * connection_id is to be used in signaling the host. 533 */ 534 u16 is_dedicated_interrupt:1; 535 u16 reserved1:15; 536 u32 connection_id; 537} __packed; 538 539/* Rescind Offer parameters */ 540struct vmbus_channel_rescind_offer { 541 struct vmbus_channel_message_header header; 542 u32 child_relid; 543} __packed; 544 545/* 546 * Request Offer -- no parameters, SynIC message contains the partition ID 547 * Set Snoop -- no parameters, SynIC message contains the partition ID 548 * Clear Snoop -- no parameters, SynIC message contains the partition ID 549 * All Offers Delivered -- no parameters, SynIC message contains the partition 550 * ID 551 * Flush Client -- no parameters, SynIC message contains the partition ID 552 */ 553 554/* Open Channel parameters */ 555struct vmbus_channel_open_channel { 556 struct vmbus_channel_message_header header; 557 558 /* Identifies the specific VMBus channel that is being opened. */ 559 u32 child_relid; 560 561 /* ID making a particular open request at a channel offer unique. */ 562 u32 openid; 563 564 /* GPADL for the channel's ring buffer. */ 565 u32 ringbuffer_gpadlhandle; 566 567 /* 568 * Starting with win8, this field will be used to specify 569 * the target virtual processor on which to deliver the interrupt for 570 * the host to guest communication. 571 * Prior to win8, incoming channel interrupts would only 572 * be delivered on cpu 0. Setting this value to 0 would 573 * preserve the earlier behavior. 574 */ 575 u32 target_vp; 576 577 /* 578 * The upstream ring buffer begins at offset zero in the memory 579 * described by RingBufferGpadlHandle. The downstream ring buffer 580 * follows it at this offset (in pages). 581 */ 582 u32 downstream_ringbuffer_pageoffset; 583 584 /* User-specific data to be passed along to the server endpoint. */ 585 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 586} __packed; 587 588/* Open Channel Result parameters */ 589struct vmbus_channel_open_result { 590 struct vmbus_channel_message_header header; 591 u32 child_relid; 592 u32 openid; 593 u32 status; 594} __packed; 595 596/* Modify Channel Result parameters */ 597struct vmbus_channel_modifychannel_response { 598 struct vmbus_channel_message_header header; 599 u32 child_relid; 600 u32 status; 601} __packed; 602 603/* Close channel parameters; */ 604struct vmbus_channel_close_channel { 605 struct vmbus_channel_message_header header; 606 u32 child_relid; 607} __packed; 608 609/* Channel Message GPADL */ 610#define GPADL_TYPE_RING_BUFFER 1 611#define GPADL_TYPE_SERVER_SAVE_AREA 2 612#define GPADL_TYPE_TRANSACTION 8 613 614/* 615 * The number of PFNs in a GPADL message is defined by the number of 616 * pages that would be spanned by ByteCount and ByteOffset. If the 617 * implied number of PFNs won't fit in this packet, there will be a 618 * follow-up packet that contains more. 619 */ 620struct vmbus_channel_gpadl_header { 621 struct vmbus_channel_message_header header; 622 u32 child_relid; 623 u32 gpadl; 624 u16 range_buflen; 625 u16 rangecount; 626 struct gpa_range range[]; 627} __packed; 628 629/* This is the followup packet that contains more PFNs. */ 630struct vmbus_channel_gpadl_body { 631 struct vmbus_channel_message_header header; 632 u32 msgnumber; 633 u32 gpadl; 634 u64 pfn[]; 635} __packed; 636 637struct vmbus_channel_gpadl_created { 638 struct vmbus_channel_message_header header; 639 u32 child_relid; 640 u32 gpadl; 641 u32 creation_status; 642} __packed; 643 644struct vmbus_channel_gpadl_teardown { 645 struct vmbus_channel_message_header header; 646 u32 child_relid; 647 u32 gpadl; 648} __packed; 649 650struct vmbus_channel_gpadl_torndown { 651 struct vmbus_channel_message_header header; 652 u32 gpadl; 653} __packed; 654 655struct vmbus_channel_relid_released { 656 struct vmbus_channel_message_header header; 657 u32 child_relid; 658} __packed; 659 660struct vmbus_channel_initiate_contact { 661 struct vmbus_channel_message_header header; 662 u32 vmbus_version_requested; 663 u32 target_vcpu; /* The VCPU the host should respond to */ 664 union { 665 u64 interrupt_page; 666 struct { 667 u8 msg_sint; 668 u8 padding1[3]; 669 u32 padding2; 670 }; 671 }; 672 u64 monitor_page1; 673 u64 monitor_page2; 674} __packed; 675 676/* Hyper-V socket: guest's connect()-ing to host */ 677struct vmbus_channel_tl_connect_request { 678 struct vmbus_channel_message_header header; 679 guid_t guest_endpoint_id; 680 guid_t host_service_id; 681} __packed; 682 683/* Modify Channel parameters, cf. vmbus_send_modifychannel() */ 684struct vmbus_channel_modifychannel { 685 struct vmbus_channel_message_header header; 686 u32 child_relid; 687 u32 target_vp; 688} __packed; 689 690struct vmbus_channel_version_response { 691 struct vmbus_channel_message_header header; 692 u8 version_supported; 693 694 u8 connection_state; 695 u16 padding; 696 697 /* 698 * On new hosts that support VMBus protocol 5.0, we must use 699 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 700 * and for subsequent messages, we must use the Message Connection ID 701 * field in the host-returned Version Response Message. 702 * 703 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 704 */ 705 u32 msg_conn_id; 706} __packed; 707 708enum vmbus_channel_state { 709 CHANNEL_OFFER_STATE, 710 CHANNEL_OPENING_STATE, 711 CHANNEL_OPEN_STATE, 712 CHANNEL_OPENED_STATE, 713}; 714 715/* 716 * Represents each channel msg on the vmbus connection This is a 717 * variable-size data structure depending on the msg type itself 718 */ 719struct vmbus_channel_msginfo { 720 /* Bookkeeping stuff */ 721 struct list_head msglistentry; 722 723 /* So far, this is only used to handle gpadl body message */ 724 struct list_head submsglist; 725 726 /* Synchronize the request/response if needed */ 727 struct completion waitevent; 728 struct vmbus_channel *waiting_channel; 729 union { 730 struct vmbus_channel_version_supported version_supported; 731 struct vmbus_channel_open_result open_result; 732 struct vmbus_channel_gpadl_torndown gpadl_torndown; 733 struct vmbus_channel_gpadl_created gpadl_created; 734 struct vmbus_channel_version_response version_response; 735 struct vmbus_channel_modifychannel_response modify_response; 736 } response; 737 738 u32 msgsize; 739 /* 740 * The channel message that goes out on the "wire". 741 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 742 */ 743 unsigned char msg[]; 744}; 745 746struct vmbus_close_msg { 747 struct vmbus_channel_msginfo info; 748 struct vmbus_channel_close_channel msg; 749}; 750 751/* Define connection identifier type. */ 752union hv_connection_id { 753 u32 asu32; 754 struct { 755 u32 id:24; 756 u32 reserved:8; 757 } u; 758}; 759 760enum vmbus_device_type { 761 HV_IDE = 0, 762 HV_SCSI, 763 HV_FC, 764 HV_NIC, 765 HV_ND, 766 HV_PCIE, 767 HV_FB, 768 HV_KBD, 769 HV_MOUSE, 770 HV_KVP, 771 HV_TS, 772 HV_HB, 773 HV_SHUTDOWN, 774 HV_FCOPY, 775 HV_BACKUP, 776 HV_DM, 777 HV_UNKNOWN, 778}; 779 780/* 781 * Provides request ids for VMBus. Encapsulates guest memory 782 * addresses and stores the next available slot in req_arr 783 * to generate new ids in constant time. 784 */ 785struct vmbus_requestor { 786 u64 *req_arr; 787 unsigned long *req_bitmap; /* is a given slot available? */ 788 u32 size; 789 u64 next_request_id; 790 spinlock_t req_lock; /* provides atomicity */ 791}; 792 793#define VMBUS_NO_RQSTOR U64_MAX 794#define VMBUS_RQST_ERROR (U64_MAX - 1) 795#define VMBUS_RQST_ADDR_ANY U64_MAX 796/* NetVSC-specific */ 797#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2) 798/* StorVSC-specific */ 799#define VMBUS_RQST_INIT (U64_MAX - 2) 800#define VMBUS_RQST_RESET (U64_MAX - 3) 801 802struct vmbus_device { 803 u16 dev_type; 804 guid_t guid; 805 bool perf_device; 806 bool allowed_in_isolated; 807}; 808 809#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096 810 811struct vmbus_gpadl { 812 u32 gpadl_handle; 813 u32 size; 814 void *buffer; 815}; 816 817struct vmbus_channel { 818 struct list_head listentry; 819 820 struct hv_device *device_obj; 821 822 enum vmbus_channel_state state; 823 824 struct vmbus_channel_offer_channel offermsg; 825 /* 826 * These are based on the OfferMsg.MonitorId. 827 * Save it here for easy access. 828 */ 829 u8 monitor_grp; 830 u8 monitor_bit; 831 832 bool rescind; /* got rescind msg */ 833 bool rescind_ref; /* got rescind msg, got channel reference */ 834 struct completion rescind_event; 835 836 struct vmbus_gpadl ringbuffer_gpadlhandle; 837 838 /* Allocated memory for ring buffer */ 839 struct page *ringbuffer_page; 840 u32 ringbuffer_pagecount; 841 u32 ringbuffer_send_offset; 842 struct hv_ring_buffer_info outbound; /* send to parent */ 843 struct hv_ring_buffer_info inbound; /* receive from parent */ 844 845 struct vmbus_close_msg close_msg; 846 847 /* Statistics */ 848 u64 interrupts; /* Host to Guest interrupts */ 849 u64 sig_events; /* Guest to Host events */ 850 851 /* 852 * Guest to host interrupts caused by the outbound ring buffer changing 853 * from empty to not empty. 854 */ 855 u64 intr_out_empty; 856 857 /* 858 * Indicates that a full outbound ring buffer was encountered. The flag 859 * is set to true when a full outbound ring buffer is encountered and 860 * set to false when a write to the outbound ring buffer is completed. 861 */ 862 bool out_full_flag; 863 864 /* Channel callback's invoked in softirq context */ 865 struct tasklet_struct callback_event; 866 void (*onchannel_callback)(void *context); 867 void *channel_callback_context; 868 869 void (*change_target_cpu_callback)(struct vmbus_channel *channel, 870 u32 old, u32 new); 871 872 /* 873 * Synchronize channel scheduling and channel removal; see the inline 874 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb(). 875 */ 876 spinlock_t sched_lock; 877 878 /* 879 * A channel can be marked for one of three modes of reading: 880 * BATCHED - callback called from taslket and should read 881 * channel until empty. Interrupts from the host 882 * are masked while read is in process (default). 883 * DIRECT - callback called from tasklet (softirq). 884 * ISR - callback called in interrupt context and must 885 * invoke its own deferred processing. 886 * Host interrupts are disabled and must be re-enabled 887 * when ring is empty. 888 */ 889 enum hv_callback_mode { 890 HV_CALL_BATCHED, 891 HV_CALL_DIRECT, 892 HV_CALL_ISR 893 } callback_mode; 894 895 bool is_dedicated_interrupt; 896 u64 sig_event; 897 898 /* 899 * Starting with win8, this field will be used to specify the 900 * target CPU on which to deliver the interrupt for the host 901 * to guest communication. 902 * 903 * Prior to win8, incoming channel interrupts would only be 904 * delivered on CPU 0. Setting this value to 0 would preserve 905 * the earlier behavior. 906 */ 907 u32 target_cpu; 908 /* 909 * Support for sub-channels. For high performance devices, 910 * it will be useful to have multiple sub-channels to support 911 * a scalable communication infrastructure with the host. 912 * The support for sub-channels is implemented as an extension 913 * to the current infrastructure. 914 * The initial offer is considered the primary channel and this 915 * offer message will indicate if the host supports sub-channels. 916 * The guest is free to ask for sub-channels to be offered and can 917 * open these sub-channels as a normal "primary" channel. However, 918 * all sub-channels will have the same type and instance guids as the 919 * primary channel. Requests sent on a given channel will result in a 920 * response on the same channel. 921 */ 922 923 /* 924 * Sub-channel creation callback. This callback will be called in 925 * process context when a sub-channel offer is received from the host. 926 * The guest can open the sub-channel in the context of this callback. 927 */ 928 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 929 930 /* 931 * Channel rescind callback. Some channels (the hvsock ones), need to 932 * register a callback which is invoked in vmbus_onoffer_rescind(). 933 */ 934 void (*chn_rescind_callback)(struct vmbus_channel *channel); 935 936 /* 937 * All Sub-channels of a primary channel are linked here. 938 */ 939 struct list_head sc_list; 940 /* 941 * The primary channel this sub-channel belongs to. 942 * This will be NULL for the primary channel. 943 */ 944 struct vmbus_channel *primary_channel; 945 /* 946 * Support per-channel state for use by vmbus drivers. 947 */ 948 void *per_channel_state; 949 950 /* 951 * Defer freeing channel until after all cpu's have 952 * gone through grace period. 953 */ 954 struct rcu_head rcu; 955 956 /* 957 * For sysfs per-channel properties. 958 */ 959 struct kobject kobj; 960 961 /* 962 * For performance critical channels (storage, networking 963 * etc,), Hyper-V has a mechanism to enhance the throughput 964 * at the expense of latency: 965 * When the host is to be signaled, we just set a bit in a shared page 966 * and this bit will be inspected by the hypervisor within a certain 967 * window and if the bit is set, the host will be signaled. The window 968 * of time is the monitor latency - currently around 100 usecs. This 969 * mechanism improves throughput by: 970 * 971 * A) Making the host more efficient - each time it wakes up, 972 * potentially it will process morev number of packets. The 973 * monitor latency allows a batch to build up. 974 * B) By deferring the hypercall to signal, we will also minimize 975 * the interrupts. 976 * 977 * Clearly, these optimizations improve throughput at the expense of 978 * latency. Furthermore, since the channel is shared for both 979 * control and data messages, control messages currently suffer 980 * unnecessary latency adversely impacting performance and boot 981 * time. To fix this issue, permit tagging the channel as being 982 * in "low latency" mode. In this mode, we will bypass the monitor 983 * mechanism. 984 */ 985 bool low_latency; 986 987 bool probe_done; 988 989 /* 990 * Cache the device ID here for easy access; this is useful, in 991 * particular, in situations where the channel's device_obj has 992 * not been allocated/initialized yet. 993 */ 994 u16 device_id; 995 996 /* 997 * We must offload the handling of the primary/sub channels 998 * from the single-threaded vmbus_connection.work_queue to 999 * two different workqueue, otherwise we can block 1000 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 1001 */ 1002 struct work_struct add_channel_work; 1003 1004 /* 1005 * Guest to host interrupts caused by the inbound ring buffer changing 1006 * from full to not full while a packet is waiting. 1007 */ 1008 u64 intr_in_full; 1009 1010 /* 1011 * The total number of write operations that encountered a full 1012 * outbound ring buffer. 1013 */ 1014 u64 out_full_total; 1015 1016 /* 1017 * The number of write operations that were the first to encounter a 1018 * full outbound ring buffer. 1019 */ 1020 u64 out_full_first; 1021 1022 /* enabling/disabling fuzz testing on the channel (default is false)*/ 1023 bool fuzz_testing_state; 1024 1025 /* 1026 * Interrupt delay will delay the guest from emptying the ring buffer 1027 * for a specific amount of time. The delay is in microseconds and will 1028 * be between 1 to a maximum of 1000, its default is 0 (no delay). 1029 * The Message delay will delay guest reading on a per message basis 1030 * in microseconds between 1 to 1000 with the default being 0 1031 * (no delay). 1032 */ 1033 u32 fuzz_testing_interrupt_delay; 1034 u32 fuzz_testing_message_delay; 1035 1036 /* callback to generate a request ID from a request address */ 1037 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr); 1038 /* callback to retrieve a request address from a request ID */ 1039 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id); 1040 1041 /* request/transaction ids for VMBus */ 1042 struct vmbus_requestor requestor; 1043 u32 rqstor_size; 1044 1045 /* The max size of a packet on this channel */ 1046 u32 max_pkt_size; 1047}; 1048 1049#define lock_requestor(channel, flags) \ 1050do { \ 1051 struct vmbus_requestor *rqstor = &(channel)->requestor; \ 1052 \ 1053 spin_lock_irqsave(&rqstor->req_lock, flags); \ 1054} while (0) 1055 1056static __always_inline void unlock_requestor(struct vmbus_channel *channel, 1057 unsigned long flags) 1058{ 1059 struct vmbus_requestor *rqstor = &channel->requestor; 1060 1061 spin_unlock_irqrestore(&rqstor->req_lock, flags); 1062} 1063 1064u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr); 1065u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1066 u64 rqst_addr); 1067u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1068 u64 rqst_addr); 1069u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id); 1070 1071static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o) 1072{ 1073 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 1074} 1075 1076static inline bool is_hvsock_channel(const struct vmbus_channel *c) 1077{ 1078 return is_hvsock_offer(&c->offermsg); 1079} 1080 1081static inline bool is_sub_channel(const struct vmbus_channel *c) 1082{ 1083 return c->offermsg.offer.sub_channel_index != 0; 1084} 1085 1086static inline void set_channel_read_mode(struct vmbus_channel *c, 1087 enum hv_callback_mode mode) 1088{ 1089 c->callback_mode = mode; 1090} 1091 1092static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 1093{ 1094 c->per_channel_state = s; 1095} 1096 1097static inline void *get_per_channel_state(struct vmbus_channel *c) 1098{ 1099 return c->per_channel_state; 1100} 1101 1102static inline void set_channel_pending_send_size(struct vmbus_channel *c, 1103 u32 size) 1104{ 1105 unsigned long flags; 1106 1107 if (size) { 1108 spin_lock_irqsave(&c->outbound.ring_lock, flags); 1109 ++c->out_full_total; 1110 1111 if (!c->out_full_flag) { 1112 ++c->out_full_first; 1113 c->out_full_flag = true; 1114 } 1115 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1116 } else { 1117 c->out_full_flag = false; 1118 } 1119 1120 c->outbound.ring_buffer->pending_send_sz = size; 1121} 1122 1123void vmbus_onmessage(struct vmbus_channel_message_header *hdr); 1124 1125int vmbus_request_offers(void); 1126 1127/* 1128 * APIs for managing sub-channels. 1129 */ 1130 1131void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1132 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1133 1134void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1135 void (*chn_rescind_cb)(struct vmbus_channel *)); 1136 1137/* The format must be the same as struct vmdata_gpa_direct */ 1138struct vmbus_channel_packet_page_buffer { 1139 u16 type; 1140 u16 dataoffset8; 1141 u16 length8; 1142 u16 flags; 1143 u64 transactionid; 1144 u32 reserved; 1145 u32 rangecount; 1146 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1147} __packed; 1148 1149/* The format must be the same as struct vmdata_gpa_direct */ 1150struct vmbus_channel_packet_multipage_buffer { 1151 u16 type; 1152 u16 dataoffset8; 1153 u16 length8; 1154 u16 flags; 1155 u64 transactionid; 1156 u32 reserved; 1157 u32 rangecount; /* Always 1 in this case */ 1158 struct hv_multipage_buffer range; 1159} __packed; 1160 1161/* The format must be the same as struct vmdata_gpa_direct */ 1162struct vmbus_packet_mpb_array { 1163 u16 type; 1164 u16 dataoffset8; 1165 u16 length8; 1166 u16 flags; 1167 u64 transactionid; 1168 u32 reserved; 1169 u32 rangecount; /* Always 1 in this case */ 1170 struct hv_mpb_array range; 1171} __packed; 1172 1173int vmbus_alloc_ring(struct vmbus_channel *channel, 1174 u32 send_size, u32 recv_size); 1175void vmbus_free_ring(struct vmbus_channel *channel); 1176 1177int vmbus_connect_ring(struct vmbus_channel *channel, 1178 void (*onchannel_callback)(void *context), 1179 void *context); 1180int vmbus_disconnect_ring(struct vmbus_channel *channel); 1181 1182extern int vmbus_open(struct vmbus_channel *channel, 1183 u32 send_ringbuffersize, 1184 u32 recv_ringbuffersize, 1185 void *userdata, 1186 u32 userdatalen, 1187 void (*onchannel_callback)(void *context), 1188 void *context); 1189 1190extern void vmbus_close(struct vmbus_channel *channel); 1191 1192extern int vmbus_sendpacket_getid(struct vmbus_channel *channel, 1193 void *buffer, 1194 u32 bufferLen, 1195 u64 requestid, 1196 u64 *trans_id, 1197 enum vmbus_packet_type type, 1198 u32 flags); 1199extern int vmbus_sendpacket(struct vmbus_channel *channel, 1200 void *buffer, 1201 u32 bufferLen, 1202 u64 requestid, 1203 enum vmbus_packet_type type, 1204 u32 flags); 1205 1206extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1207 struct hv_page_buffer pagebuffers[], 1208 u32 pagecount, 1209 void *buffer, 1210 u32 bufferlen, 1211 u64 requestid); 1212 1213extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1214 struct vmbus_packet_mpb_array *mpb, 1215 u32 desc_size, 1216 void *buffer, 1217 u32 bufferlen, 1218 u64 requestid); 1219 1220extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1221 void *kbuffer, 1222 u32 size, 1223 struct vmbus_gpadl *gpadl); 1224 1225extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1226 struct vmbus_gpadl *gpadl); 1227 1228void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1229 1230extern int vmbus_recvpacket(struct vmbus_channel *channel, 1231 void *buffer, 1232 u32 bufferlen, 1233 u32 *buffer_actual_len, 1234 u64 *requestid); 1235 1236extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1237 void *buffer, 1238 u32 bufferlen, 1239 u32 *buffer_actual_len, 1240 u64 *requestid); 1241 1242 1243extern void vmbus_ontimer(unsigned long data); 1244 1245/* Base driver object */ 1246struct hv_driver { 1247 const char *name; 1248 1249 /* 1250 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1251 * channel flag, actually doesn't mean a synthetic device because the 1252 * offer's if_type/if_instance can change for every new hvsock 1253 * connection. 1254 * 1255 * However, to facilitate the notification of new-offer/rescind-offer 1256 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1257 * a special vmbus device, and hence we need the below flag to 1258 * indicate if the driver is the hvsock driver or not: we need to 1259 * specially treat the hvosck offer & driver in vmbus_match(). 1260 */ 1261 bool hvsock; 1262 1263 /* the device type supported by this driver */ 1264 guid_t dev_type; 1265 const struct hv_vmbus_device_id *id_table; 1266 1267 struct device_driver driver; 1268 1269 /* dynamic device GUID's */ 1270 struct { 1271 spinlock_t lock; 1272 struct list_head list; 1273 } dynids; 1274 1275 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1276 int (*remove)(struct hv_device *); 1277 void (*shutdown)(struct hv_device *); 1278 1279 int (*suspend)(struct hv_device *); 1280 int (*resume)(struct hv_device *); 1281 1282}; 1283 1284/* Base device object */ 1285struct hv_device { 1286 /* the device type id of this device */ 1287 guid_t dev_type; 1288 1289 /* the device instance id of this device */ 1290 guid_t dev_instance; 1291 u16 vendor_id; 1292 u16 device_id; 1293 1294 struct device device; 1295 /* 1296 * Driver name to force a match. Do not set directly, because core 1297 * frees it. Use driver_set_override() to set or clear it. 1298 */ 1299 const char *driver_override; 1300 1301 struct vmbus_channel *channel; 1302 struct kset *channels_kset; 1303 struct device_dma_parameters dma_parms; 1304 u64 dma_mask; 1305 1306 /* place holder to keep track of the dir for hv device in debugfs */ 1307 struct dentry *debug_dir; 1308 1309}; 1310 1311 1312static inline struct hv_device *device_to_hv_device(struct device *d) 1313{ 1314 return container_of(d, struct hv_device, device); 1315} 1316 1317static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1318{ 1319 return container_of(d, struct hv_driver, driver); 1320} 1321 1322static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1323{ 1324 dev_set_drvdata(&dev->device, data); 1325} 1326 1327static inline void *hv_get_drvdata(struct hv_device *dev) 1328{ 1329 return dev_get_drvdata(&dev->device); 1330} 1331 1332struct hv_ring_buffer_debug_info { 1333 u32 current_interrupt_mask; 1334 u32 current_read_index; 1335 u32 current_write_index; 1336 u32 bytes_avail_toread; 1337 u32 bytes_avail_towrite; 1338}; 1339 1340 1341int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1342 struct hv_ring_buffer_debug_info *debug_info); 1343 1344/* Vmbus interface */ 1345#define vmbus_driver_register(driver) \ 1346 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1347int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1348 struct module *owner, 1349 const char *mod_name); 1350void vmbus_driver_unregister(struct hv_driver *hv_driver); 1351 1352void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1353 1354int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1355 resource_size_t min, resource_size_t max, 1356 resource_size_t size, resource_size_t align, 1357 bool fb_overlap_ok); 1358void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1359 1360/* 1361 * GUID definitions of various offer types - services offered to the guest. 1362 */ 1363 1364/* 1365 * Network GUID 1366 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1367 */ 1368#define HV_NIC_GUID \ 1369 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1370 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1371 1372/* 1373 * IDE GUID 1374 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1375 */ 1376#define HV_IDE_GUID \ 1377 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1378 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1379 1380/* 1381 * SCSI GUID 1382 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1383 */ 1384#define HV_SCSI_GUID \ 1385 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1386 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1387 1388/* 1389 * Shutdown GUID 1390 * {0e0b6031-5213-4934-818b-38d90ced39db} 1391 */ 1392#define HV_SHUTDOWN_GUID \ 1393 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1394 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1395 1396/* 1397 * Time Synch GUID 1398 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1399 */ 1400#define HV_TS_GUID \ 1401 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1402 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1403 1404/* 1405 * Heartbeat GUID 1406 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1407 */ 1408#define HV_HEART_BEAT_GUID \ 1409 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1410 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1411 1412/* 1413 * KVP GUID 1414 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1415 */ 1416#define HV_KVP_GUID \ 1417 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1418 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1419 1420/* 1421 * Dynamic memory GUID 1422 * {525074dc-8985-46e2-8057-a307dc18a502} 1423 */ 1424#define HV_DM_GUID \ 1425 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1426 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1427 1428/* 1429 * Mouse GUID 1430 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1431 */ 1432#define HV_MOUSE_GUID \ 1433 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1434 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1435 1436/* 1437 * Keyboard GUID 1438 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1439 */ 1440#define HV_KBD_GUID \ 1441 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1442 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1443 1444/* 1445 * VSS (Backup/Restore) GUID 1446 */ 1447#define HV_VSS_GUID \ 1448 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1449 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1450/* 1451 * Synthetic Video GUID 1452 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1453 */ 1454#define HV_SYNTHVID_GUID \ 1455 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1456 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1457 1458/* 1459 * Synthetic FC GUID 1460 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1461 */ 1462#define HV_SYNTHFC_GUID \ 1463 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1464 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1465 1466/* 1467 * Guest File Copy Service 1468 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1469 */ 1470 1471#define HV_FCOPY_GUID \ 1472 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1473 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1474 1475/* 1476 * NetworkDirect. This is the guest RDMA service. 1477 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1478 */ 1479#define HV_ND_GUID \ 1480 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1481 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1482 1483/* 1484 * PCI Express Pass Through 1485 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1486 */ 1487 1488#define HV_PCIE_GUID \ 1489 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1490 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1491 1492/* 1493 * Linux doesn't support these 4 devices: the first two are for 1494 * Automatic Virtual Machine Activation, the third is for 1495 * Remote Desktop Virtualization, and the fourth is Initial 1496 * Machine Configuration (IMC) used only by Windows guests. 1497 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1498 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1499 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1500 * {c376c1c3-d276-48d2-90a9-c04748072c60} 1501 */ 1502 1503#define HV_AVMA1_GUID \ 1504 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1505 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1506 1507#define HV_AVMA2_GUID \ 1508 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1509 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1510 1511#define HV_RDV_GUID \ 1512 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1513 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1514 1515#define HV_IMC_GUID \ 1516 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \ 1517 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60) 1518 1519/* 1520 * Common header for Hyper-V ICs 1521 */ 1522 1523#define ICMSGTYPE_NEGOTIATE 0 1524#define ICMSGTYPE_HEARTBEAT 1 1525#define ICMSGTYPE_KVPEXCHANGE 2 1526#define ICMSGTYPE_SHUTDOWN 3 1527#define ICMSGTYPE_TIMESYNC 4 1528#define ICMSGTYPE_VSS 5 1529#define ICMSGTYPE_FCOPY 7 1530 1531#define ICMSGHDRFLAG_TRANSACTION 1 1532#define ICMSGHDRFLAG_REQUEST 2 1533#define ICMSGHDRFLAG_RESPONSE 4 1534 1535 1536/* 1537 * While we want to handle util services as regular devices, 1538 * there is only one instance of each of these services; so 1539 * we statically allocate the service specific state. 1540 */ 1541 1542struct hv_util_service { 1543 u8 *recv_buffer; 1544 void *channel; 1545 void (*util_cb)(void *); 1546 int (*util_init)(struct hv_util_service *); 1547 void (*util_deinit)(void); 1548 int (*util_pre_suspend)(void); 1549 int (*util_pre_resume)(void); 1550}; 1551 1552struct vmbuspipe_hdr { 1553 u32 flags; 1554 u32 msgsize; 1555} __packed; 1556 1557struct ic_version { 1558 u16 major; 1559 u16 minor; 1560} __packed; 1561 1562struct icmsg_hdr { 1563 struct ic_version icverframe; 1564 u16 icmsgtype; 1565 struct ic_version icvermsg; 1566 u16 icmsgsize; 1567 u32 status; 1568 u8 ictransaction_id; 1569 u8 icflags; 1570 u8 reserved[2]; 1571} __packed; 1572 1573#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100 1574#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)) 1575#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \ 1576 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \ 1577 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version))) 1578 1579struct icmsg_negotiate { 1580 u16 icframe_vercnt; 1581 u16 icmsg_vercnt; 1582 u32 reserved; 1583 struct ic_version icversion_data[]; /* any size array */ 1584} __packed; 1585 1586struct shutdown_msg_data { 1587 u32 reason_code; 1588 u32 timeout_seconds; 1589 u32 flags; 1590 u8 display_message[2048]; 1591} __packed; 1592 1593struct heartbeat_msg_data { 1594 u64 seq_num; 1595 u32 reserved[8]; 1596} __packed; 1597 1598/* Time Sync IC defs */ 1599#define ICTIMESYNCFLAG_PROBE 0 1600#define ICTIMESYNCFLAG_SYNC 1 1601#define ICTIMESYNCFLAG_SAMPLE 2 1602 1603#ifdef __x86_64__ 1604#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1605#else 1606#define WLTIMEDELTA 116444736000000000LL 1607#endif 1608 1609struct ictimesync_data { 1610 u64 parenttime; 1611 u64 childtime; 1612 u64 roundtriptime; 1613 u8 flags; 1614} __packed; 1615 1616struct ictimesync_ref_data { 1617 u64 parenttime; 1618 u64 vmreferencetime; 1619 u8 flags; 1620 char leapflags; 1621 char stratum; 1622 u8 reserved[3]; 1623} __packed; 1624 1625struct hyperv_service_callback { 1626 u8 msg_type; 1627 char *log_msg; 1628 guid_t data; 1629 struct vmbus_channel *channel; 1630 void (*callback)(void *context); 1631}; 1632 1633struct hv_dma_range { 1634 dma_addr_t dma; 1635 u32 mapping_size; 1636}; 1637 1638#define MAX_SRV_VER 0x7ffffff 1639extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, 1640 const int *fw_version, int fw_vercnt, 1641 const int *srv_version, int srv_vercnt, 1642 int *nego_fw_version, int *nego_srv_version); 1643 1644void hv_process_channel_removal(struct vmbus_channel *channel); 1645 1646void vmbus_setevent(struct vmbus_channel *channel); 1647/* 1648 * Negotiated version with the Host. 1649 */ 1650 1651extern __u32 vmbus_proto_version; 1652 1653int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1654 const guid_t *shv_host_servie_id); 1655int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp); 1656void vmbus_set_event(struct vmbus_channel *channel); 1657 1658/* Get the start of the ring buffer. */ 1659static inline void * 1660hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1661{ 1662 return ring_info->ring_buffer->buffer; 1663} 1664 1665/* 1666 * Mask off host interrupt callback notifications 1667 */ 1668static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1669{ 1670 rbi->ring_buffer->interrupt_mask = 1; 1671 1672 /* make sure mask update is not reordered */ 1673 virt_mb(); 1674} 1675 1676/* 1677 * Re-enable host callback and return number of outstanding bytes 1678 */ 1679static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1680{ 1681 1682 rbi->ring_buffer->interrupt_mask = 0; 1683 1684 /* make sure mask update is not reordered */ 1685 virt_mb(); 1686 1687 /* 1688 * Now check to see if the ring buffer is still empty. 1689 * If it is not, we raced and we need to process new 1690 * incoming messages. 1691 */ 1692 return hv_get_bytes_to_read(rbi); 1693} 1694 1695/* 1696 * An API to support in-place processing of incoming VMBUS packets. 1697 */ 1698 1699/* Get data payload associated with descriptor */ 1700static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1701{ 1702 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1703} 1704 1705/* Get data size associated with descriptor */ 1706static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1707{ 1708 return (desc->len8 << 3) - (desc->offset8 << 3); 1709} 1710 1711/* Get packet length associated with descriptor */ 1712static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc) 1713{ 1714 return desc->len8 << 3; 1715} 1716 1717struct vmpacket_descriptor * 1718hv_pkt_iter_first(struct vmbus_channel *channel); 1719 1720struct vmpacket_descriptor * 1721__hv_pkt_iter_next(struct vmbus_channel *channel, 1722 const struct vmpacket_descriptor *pkt); 1723 1724void hv_pkt_iter_close(struct vmbus_channel *channel); 1725 1726static inline struct vmpacket_descriptor * 1727hv_pkt_iter_next(struct vmbus_channel *channel, 1728 const struct vmpacket_descriptor *pkt) 1729{ 1730 struct vmpacket_descriptor *nxt; 1731 1732 nxt = __hv_pkt_iter_next(channel, pkt); 1733 if (!nxt) 1734 hv_pkt_iter_close(channel); 1735 1736 return nxt; 1737} 1738 1739#define foreach_vmbus_pkt(pkt, channel) \ 1740 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1741 pkt = hv_pkt_iter_next(channel, pkt)) 1742 1743/* 1744 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1745 * sends requests to read and write blocks. Each block must be 128 bytes or 1746 * smaller. Optionally, the VF driver can register a callback function which 1747 * will be invoked when the host says that one or more of the first 64 block 1748 * IDs is "invalid" which means that the VF driver should reread them. 1749 */ 1750#define HV_CONFIG_BLOCK_SIZE_MAX 128 1751 1752int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1753 unsigned int block_id, unsigned int *bytes_returned); 1754int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1755 unsigned int block_id); 1756int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1757 void (*block_invalidate)(void *context, 1758 u64 block_mask)); 1759 1760struct hyperv_pci_block_ops { 1761 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1762 unsigned int block_id, unsigned int *bytes_returned); 1763 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1764 unsigned int block_id); 1765 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1766 void (*block_invalidate)(void *context, 1767 u64 block_mask)); 1768}; 1769 1770extern struct hyperv_pci_block_ops hvpci_block_ops; 1771 1772static inline unsigned long virt_to_hvpfn(void *addr) 1773{ 1774 phys_addr_t paddr; 1775 1776 if (is_vmalloc_addr(addr)) 1777 paddr = page_to_phys(vmalloc_to_page(addr)) + 1778 offset_in_page(addr); 1779 else 1780 paddr = __pa(addr); 1781 1782 return paddr >> HV_HYP_PAGE_SHIFT; 1783} 1784 1785#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE) 1786#define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK) 1787#define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT) 1788#define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT) 1789#define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE) 1790 1791#endif /* _HYPERV_H */