cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kcsan-checks.h (19076B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * KCSAN access checks and modifiers. These can be used to explicitly check
      4 * uninstrumented accesses, or change KCSAN checking behaviour of accesses.
      5 *
      6 * Copyright (C) 2019, Google LLC.
      7 */
      8
      9#ifndef _LINUX_KCSAN_CHECKS_H
     10#define _LINUX_KCSAN_CHECKS_H
     11
     12/* Note: Only include what is already included by compiler.h. */
     13#include <linux/compiler_attributes.h>
     14#include <linux/types.h>
     15
     16/* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
     17#define KCSAN_ACCESS_WRITE	(1 << 0) /* Access is a write. */
     18#define KCSAN_ACCESS_COMPOUND	(1 << 1) /* Compounded read-write instrumentation. */
     19#define KCSAN_ACCESS_ATOMIC	(1 << 2) /* Access is atomic. */
     20/* The following are special, and never due to compiler instrumentation. */
     21#define KCSAN_ACCESS_ASSERT	(1 << 3) /* Access is an assertion. */
     22#define KCSAN_ACCESS_SCOPED	(1 << 4) /* Access is a scoped access. */
     23
     24/*
     25 * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
     26 * even in compilation units that selectively disable KCSAN, but must use KCSAN
     27 * to validate access to an address. Never use these in header files!
     28 */
     29#ifdef CONFIG_KCSAN
     30/**
     31 * __kcsan_check_access - check generic access for races
     32 *
     33 * @ptr: address of access
     34 * @size: size of access
     35 * @type: access type modifier
     36 */
     37void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
     38
     39/*
     40 * See definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c.
     41 * Note: The mappings are arbitrary, and do not reflect any real mappings of C11
     42 * memory orders to the LKMM memory orders and vice-versa!
     43 */
     44#define __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb	__ATOMIC_SEQ_CST
     45#define __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb	__ATOMIC_ACQ_REL
     46#define __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb	__ATOMIC_ACQUIRE
     47#define __KCSAN_BARRIER_TO_SIGNAL_FENCE_release	__ATOMIC_RELEASE
     48
     49/**
     50 * __kcsan_mb - full memory barrier instrumentation
     51 */
     52void __kcsan_mb(void);
     53
     54/**
     55 * __kcsan_wmb - write memory barrier instrumentation
     56 */
     57void __kcsan_wmb(void);
     58
     59/**
     60 * __kcsan_rmb - read memory barrier instrumentation
     61 */
     62void __kcsan_rmb(void);
     63
     64/**
     65 * __kcsan_release - release barrier instrumentation
     66 */
     67void __kcsan_release(void);
     68
     69/**
     70 * kcsan_disable_current - disable KCSAN for the current context
     71 *
     72 * Supports nesting.
     73 */
     74void kcsan_disable_current(void);
     75
     76/**
     77 * kcsan_enable_current - re-enable KCSAN for the current context
     78 *
     79 * Supports nesting.
     80 */
     81void kcsan_enable_current(void);
     82void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
     83
     84/**
     85 * kcsan_nestable_atomic_begin - begin nestable atomic region
     86 *
     87 * Accesses within the atomic region may appear to race with other accesses but
     88 * should be considered atomic.
     89 */
     90void kcsan_nestable_atomic_begin(void);
     91
     92/**
     93 * kcsan_nestable_atomic_end - end nestable atomic region
     94 */
     95void kcsan_nestable_atomic_end(void);
     96
     97/**
     98 * kcsan_flat_atomic_begin - begin flat atomic region
     99 *
    100 * Accesses within the atomic region may appear to race with other accesses but
    101 * should be considered atomic.
    102 */
    103void kcsan_flat_atomic_begin(void);
    104
    105/**
    106 * kcsan_flat_atomic_end - end flat atomic region
    107 */
    108void kcsan_flat_atomic_end(void);
    109
    110/**
    111 * kcsan_atomic_next - consider following accesses as atomic
    112 *
    113 * Force treating the next n memory accesses for the current context as atomic
    114 * operations.
    115 *
    116 * @n: number of following memory accesses to treat as atomic.
    117 */
    118void kcsan_atomic_next(int n);
    119
    120/**
    121 * kcsan_set_access_mask - set access mask
    122 *
    123 * Set the access mask for all accesses for the current context if non-zero.
    124 * Only value changes to bits set in the mask will be reported.
    125 *
    126 * @mask: bitmask
    127 */
    128void kcsan_set_access_mask(unsigned long mask);
    129
    130/* Scoped access information. */
    131struct kcsan_scoped_access {
    132	union {
    133		struct list_head list; /* scoped_accesses list */
    134		/*
    135		 * Not an entry in scoped_accesses list; stack depth from where
    136		 * the access was initialized.
    137		 */
    138		int stack_depth;
    139	};
    140
    141	/* Access information. */
    142	const volatile void *ptr;
    143	size_t size;
    144	int type;
    145	/* Location where scoped access was set up. */
    146	unsigned long ip;
    147};
    148/*
    149 * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
    150 * out of scope; relies on attribute "cleanup", which is supported by all
    151 * compilers that support KCSAN.
    152 */
    153#define __kcsan_cleanup_scoped                                                 \
    154	__maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
    155
    156/**
    157 * kcsan_begin_scoped_access - begin scoped access
    158 *
    159 * Begin scoped access and initialize @sa, which will cause KCSAN to
    160 * continuously check the memory range in the current thread until
    161 * kcsan_end_scoped_access() is called for @sa.
    162 *
    163 * Scoped accesses are implemented by appending @sa to an internal list for the
    164 * current execution context, and then checked on every call into the KCSAN
    165 * runtime.
    166 *
    167 * @ptr: address of access
    168 * @size: size of access
    169 * @type: access type modifier
    170 * @sa: struct kcsan_scoped_access to use for the scope of the access
    171 */
    172struct kcsan_scoped_access *
    173kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
    174			  struct kcsan_scoped_access *sa);
    175
    176/**
    177 * kcsan_end_scoped_access - end scoped access
    178 *
    179 * End a scoped access, which will stop KCSAN checking the memory range.
    180 * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
    181 *
    182 * @sa: a previously initialized struct kcsan_scoped_access
    183 */
    184void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
    185
    186
    187#else /* CONFIG_KCSAN */
    188
    189static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
    190					int type) { }
    191
    192static inline void __kcsan_mb(void)			{ }
    193static inline void __kcsan_wmb(void)			{ }
    194static inline void __kcsan_rmb(void)			{ }
    195static inline void __kcsan_release(void)		{ }
    196static inline void kcsan_disable_current(void)		{ }
    197static inline void kcsan_enable_current(void)		{ }
    198static inline void kcsan_enable_current_nowarn(void)	{ }
    199static inline void kcsan_nestable_atomic_begin(void)	{ }
    200static inline void kcsan_nestable_atomic_end(void)	{ }
    201static inline void kcsan_flat_atomic_begin(void)	{ }
    202static inline void kcsan_flat_atomic_end(void)		{ }
    203static inline void kcsan_atomic_next(int n)		{ }
    204static inline void kcsan_set_access_mask(unsigned long mask) { }
    205
    206struct kcsan_scoped_access { };
    207#define __kcsan_cleanup_scoped __maybe_unused
    208static inline struct kcsan_scoped_access *
    209kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
    210			  struct kcsan_scoped_access *sa) { return sa; }
    211static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
    212
    213#endif /* CONFIG_KCSAN */
    214
    215#ifdef __SANITIZE_THREAD__
    216/*
    217 * Only calls into the runtime when the particular compilation unit has KCSAN
    218 * instrumentation enabled. May be used in header files.
    219 */
    220#define kcsan_check_access __kcsan_check_access
    221
    222/*
    223 * Only use these to disable KCSAN for accesses in the current compilation unit;
    224 * calls into libraries may still perform KCSAN checks.
    225 */
    226#define __kcsan_disable_current kcsan_disable_current
    227#define __kcsan_enable_current kcsan_enable_current_nowarn
    228#else /* __SANITIZE_THREAD__ */
    229static inline void kcsan_check_access(const volatile void *ptr, size_t size,
    230				      int type) { }
    231static inline void __kcsan_enable_current(void)  { }
    232static inline void __kcsan_disable_current(void) { }
    233#endif /* __SANITIZE_THREAD__ */
    234
    235#if defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__SANITIZE_THREAD__)
    236/*
    237 * Normal barrier instrumentation is not done via explicit calls, but by mapping
    238 * to a repurposed __atomic_signal_fence(), which normally does not generate any
    239 * real instructions, but is still intercepted by fsanitize=thread. This means,
    240 * like any other compile-time instrumentation, barrier instrumentation can be
    241 * disabled with the __no_kcsan function attribute.
    242 *
    243 * Also see definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c.
    244 *
    245 * These are all macros, like <asm/barrier.h>, since some architectures use them
    246 * in non-static inline functions.
    247 */
    248#define __KCSAN_BARRIER_TO_SIGNAL_FENCE(name)					\
    249	do {									\
    250		barrier();							\
    251		__atomic_signal_fence(__KCSAN_BARRIER_TO_SIGNAL_FENCE_##name);	\
    252		barrier();							\
    253	} while (0)
    254#define kcsan_mb()	__KCSAN_BARRIER_TO_SIGNAL_FENCE(mb)
    255#define kcsan_wmb()	__KCSAN_BARRIER_TO_SIGNAL_FENCE(wmb)
    256#define kcsan_rmb()	__KCSAN_BARRIER_TO_SIGNAL_FENCE(rmb)
    257#define kcsan_release()	__KCSAN_BARRIER_TO_SIGNAL_FENCE(release)
    258#elif defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__KCSAN_INSTRUMENT_BARRIERS__)
    259#define kcsan_mb	__kcsan_mb
    260#define kcsan_wmb	__kcsan_wmb
    261#define kcsan_rmb	__kcsan_rmb
    262#define kcsan_release	__kcsan_release
    263#else /* CONFIG_KCSAN_WEAK_MEMORY && ... */
    264#define kcsan_mb()	do { } while (0)
    265#define kcsan_wmb()	do { } while (0)
    266#define kcsan_rmb()	do { } while (0)
    267#define kcsan_release()	do { } while (0)
    268#endif /* CONFIG_KCSAN_WEAK_MEMORY && ... */
    269
    270/**
    271 * __kcsan_check_read - check regular read access for races
    272 *
    273 * @ptr: address of access
    274 * @size: size of access
    275 */
    276#define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
    277
    278/**
    279 * __kcsan_check_write - check regular write access for races
    280 *
    281 * @ptr: address of access
    282 * @size: size of access
    283 */
    284#define __kcsan_check_write(ptr, size)                                         \
    285	__kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
    286
    287/**
    288 * __kcsan_check_read_write - check regular read-write access for races
    289 *
    290 * @ptr: address of access
    291 * @size: size of access
    292 */
    293#define __kcsan_check_read_write(ptr, size)                                    \
    294	__kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
    295
    296/**
    297 * kcsan_check_read - check regular read access for races
    298 *
    299 * @ptr: address of access
    300 * @size: size of access
    301 */
    302#define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
    303
    304/**
    305 * kcsan_check_write - check regular write access for races
    306 *
    307 * @ptr: address of access
    308 * @size: size of access
    309 */
    310#define kcsan_check_write(ptr, size)                                           \
    311	kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
    312
    313/**
    314 * kcsan_check_read_write - check regular read-write access for races
    315 *
    316 * @ptr: address of access
    317 * @size: size of access
    318 */
    319#define kcsan_check_read_write(ptr, size)                                      \
    320	kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
    321
    322/*
    323 * Check for atomic accesses: if atomic accesses are not ignored, this simply
    324 * aliases to kcsan_check_access(), otherwise becomes a no-op.
    325 */
    326#ifdef CONFIG_KCSAN_IGNORE_ATOMICS
    327#define kcsan_check_atomic_read(...)		do { } while (0)
    328#define kcsan_check_atomic_write(...)		do { } while (0)
    329#define kcsan_check_atomic_read_write(...)	do { } while (0)
    330#else
    331#define kcsan_check_atomic_read(ptr, size)                                     \
    332	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
    333#define kcsan_check_atomic_write(ptr, size)                                    \
    334	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
    335#define kcsan_check_atomic_read_write(ptr, size)                               \
    336	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
    337#endif
    338
    339/**
    340 * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
    341 *
    342 * Assert that there are no concurrent writes to @var; other readers are
    343 * allowed. This assertion can be used to specify properties of concurrent code,
    344 * where violation cannot be detected as a normal data race.
    345 *
    346 * For example, if we only have a single writer, but multiple concurrent
    347 * readers, to avoid data races, all these accesses must be marked; even
    348 * concurrent marked writes racing with the single writer are bugs.
    349 * Unfortunately, due to being marked, they are no longer data races. For cases
    350 * like these, we can use the macro as follows:
    351 *
    352 * .. code-block:: c
    353 *
    354 *	void writer(void) {
    355 *		spin_lock(&update_foo_lock);
    356 *		ASSERT_EXCLUSIVE_WRITER(shared_foo);
    357 *		WRITE_ONCE(shared_foo, ...);
    358 *		spin_unlock(&update_foo_lock);
    359 *	}
    360 *	void reader(void) {
    361 *		// update_foo_lock does not need to be held!
    362 *		... = READ_ONCE(shared_foo);
    363 *	}
    364 *
    365 * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
    366 * checking if a clear scope where no concurrent writes are expected exists.
    367 *
    368 * @var: variable to assert on
    369 */
    370#define ASSERT_EXCLUSIVE_WRITER(var)                                           \
    371	__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
    372
    373/*
    374 * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
    375 * expected to be unique for the scope in which instances of kcsan_scoped_access
    376 * are declared.
    377 */
    378#define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
    379#define __ASSERT_EXCLUSIVE_SCOPED(var, type, id)                               \
    380	struct kcsan_scoped_access __kcsan_scoped_name(id, _)                  \
    381		__kcsan_cleanup_scoped;                                        \
    382	struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p)          \
    383		__maybe_unused = kcsan_begin_scoped_access(                    \
    384			&(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type),     \
    385			&__kcsan_scoped_name(id, _))
    386
    387/**
    388 * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
    389 *
    390 * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
    391 *
    392 * Assert that there are no concurrent writes to @var for the duration of the
    393 * scope in which it is introduced. This provides a better way to fully cover
    394 * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
    395 * increases the likelihood for KCSAN to detect racing accesses.
    396 *
    397 * For example, it allows finding race-condition bugs that only occur due to
    398 * state changes within the scope itself:
    399 *
    400 * .. code-block:: c
    401 *
    402 *	void writer(void) {
    403 *		spin_lock(&update_foo_lock);
    404 *		{
    405 *			ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
    406 *			WRITE_ONCE(shared_foo, 42);
    407 *			...
    408 *			// shared_foo should still be 42 here!
    409 *		}
    410 *		spin_unlock(&update_foo_lock);
    411 *	}
    412 *	void buggy(void) {
    413 *		if (READ_ONCE(shared_foo) == 42)
    414 *			WRITE_ONCE(shared_foo, 1); // bug!
    415 *	}
    416 *
    417 * @var: variable to assert on
    418 */
    419#define ASSERT_EXCLUSIVE_WRITER_SCOPED(var)                                    \
    420	__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
    421
    422/**
    423 * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
    424 *
    425 * Assert that there are no concurrent accesses to @var (no readers nor
    426 * writers). This assertion can be used to specify properties of concurrent
    427 * code, where violation cannot be detected as a normal data race.
    428 *
    429 * For example, where exclusive access is expected after determining no other
    430 * users of an object are left, but the object is not actually freed. We can
    431 * check that this property actually holds as follows:
    432 *
    433 * .. code-block:: c
    434 *
    435 *	if (refcount_dec_and_test(&obj->refcnt)) {
    436 *		ASSERT_EXCLUSIVE_ACCESS(*obj);
    437 *		do_some_cleanup(obj);
    438 *		release_for_reuse(obj);
    439 *	}
    440 *
    441 * Note:
    442 *
    443 * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
    444 *    checking if a clear scope where no concurrent accesses are expected exists.
    445 *
    446 * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
    447 *    fit to detect use-after-free bugs.
    448 *
    449 * @var: variable to assert on
    450 */
    451#define ASSERT_EXCLUSIVE_ACCESS(var)                                           \
    452	__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
    453
    454/**
    455 * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
    456 *
    457 * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
    458 *
    459 * Assert that there are no concurrent accesses to @var (no readers nor writers)
    460 * for the entire duration of the scope in which it is introduced. This provides
    461 * a better way to fully cover the enclosing scope, compared to multiple
    462 * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
    463 * racing accesses.
    464 *
    465 * @var: variable to assert on
    466 */
    467#define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)                                    \
    468	__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
    469
    470/**
    471 * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
    472 *
    473 * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
    474 *
    475 * Assert that there are no concurrent writes to a subset of bits in @var;
    476 * concurrent readers are permitted. This assertion captures more detailed
    477 * bit-level properties, compared to the other (word granularity) assertions.
    478 * Only the bits set in @mask are checked for concurrent modifications, while
    479 * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
    480 * are ignored.
    481 *
    482 * Use this for variables, where some bits must not be modified concurrently,
    483 * yet other bits are expected to be modified concurrently.
    484 *
    485 * For example, variables where, after initialization, some bits are read-only,
    486 * but other bits may still be modified concurrently. A reader may wish to
    487 * assert that this is true as follows:
    488 *
    489 * .. code-block:: c
    490 *
    491 *	ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
    492 *	foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
    493 *
    494 * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
    495 * to access the masked bits only, and KCSAN optimistically assumes it is
    496 * therefore safe, even in the presence of data races, and marking it with
    497 * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
    498 * it may still be advisable to do so, since we cannot reason about all compiler
    499 * optimizations when it comes to bit manipulations (on the reader and writer
    500 * side). If you are sure nothing can go wrong, we can write the above simply
    501 * as:
    502 *
    503 * .. code-block:: c
    504 *
    505 *	ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
    506 *	foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
    507 *
    508 * Another example, where this may be used, is when certain bits of @var may
    509 * only be modified when holding the appropriate lock, but other bits may still
    510 * be modified concurrently. Writers, where other bits may change concurrently,
    511 * could use the assertion as follows:
    512 *
    513 * .. code-block:: c
    514 *
    515 *	spin_lock(&foo_lock);
    516 *	ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
    517 *	old_flags = flags;
    518 *	new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
    519 *	if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
    520 *	spin_unlock(&foo_lock);
    521 *
    522 * @var: variable to assert on
    523 * @mask: only check for modifications to bits set in @mask
    524 */
    525#define ASSERT_EXCLUSIVE_BITS(var, mask)                                       \
    526	do {                                                                   \
    527		kcsan_set_access_mask(mask);                                   \
    528		__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
    529		kcsan_set_access_mask(0);                                      \
    530		kcsan_atomic_next(1);                                          \
    531	} while (0)
    532
    533#endif /* _LINUX_KCSAN_CHECKS_H */