kvm_host.h (70054B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <linux/ftrace.h> 33#include <linux/hashtable.h> 34#include <linux/instrumentation.h> 35#include <linux/interval_tree.h> 36#include <linux/rbtree.h> 37#include <linux/xarray.h> 38#include <asm/signal.h> 39 40#include <linux/kvm.h> 41#include <linux/kvm_para.h> 42 43#include <linux/kvm_types.h> 44 45#include <asm/kvm_host.h> 46#include <linux/kvm_dirty_ring.h> 47 48#ifndef KVM_MAX_VCPU_IDS 49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50#endif 51 52/* 53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 54 * in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57#define KVM_MEMSLOT_INVALID (1UL << 16) 58 59/* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of install_new_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80/* Two fragments for cross MMIO pages. */ 81#define KVM_MAX_MMIO_FRAGMENTS 2 82 83#ifndef KVM_ADDRESS_SPACE_NUM 84#define KVM_ADDRESS_SPACE_NUM 1 85#endif 86 87/* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94#define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 100/* 101 * error pfns indicate that the gfn is in slot but faild to 102 * translate it to pfn on host. 103 */ 104static inline bool is_error_pfn(kvm_pfn_t pfn) 105{ 106 return !!(pfn & KVM_PFN_ERR_MASK); 107} 108 109/* 110 * error_noslot pfns indicate that the gfn can not be 111 * translated to pfn - it is not in slot or failed to 112 * translate it to pfn. 113 */ 114static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 115{ 116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 117} 118 119/* noslot pfn indicates that the gfn is not in slot. */ 120static inline bool is_noslot_pfn(kvm_pfn_t pfn) 121{ 122 return pfn == KVM_PFN_NOSLOT; 123} 124 125/* 126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 127 * provide own defines and kvm_is_error_hva 128 */ 129#ifndef KVM_HVA_ERR_BAD 130 131#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 132#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 133 134static inline bool kvm_is_error_hva(unsigned long addr) 135{ 136 return addr >= PAGE_OFFSET; 137} 138 139#endif 140 141#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 142 143static inline bool is_error_page(struct page *page) 144{ 145 return IS_ERR(page); 146} 147 148#define KVM_REQUEST_MASK GENMASK(7,0) 149#define KVM_REQUEST_NO_WAKEUP BIT(8) 150#define KVM_REQUEST_WAIT BIT(9) 151#define KVM_REQUEST_NO_ACTION BIT(10) 152/* 153 * Architecture-independent vcpu->requests bit members 154 * Bits 4-7 are reserved for more arch-independent bits. 155 */ 156#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 157#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 158#define KVM_REQ_UNBLOCK 2 159#define KVM_REQ_UNHALT 3 160#define KVM_REQUEST_ARCH_BASE 8 161 162/* 163 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 164 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 165 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 166 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 167 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 168 * guarantee the vCPU received an IPI and has actually exited guest mode. 169 */ 170#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 171 172#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 173 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 174 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 175}) 176#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 177 178bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 179 unsigned long *vcpu_bitmap); 180bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 181bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 182 struct kvm_vcpu *except); 183bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 184 unsigned long *vcpu_bitmap); 185 186#define KVM_USERSPACE_IRQ_SOURCE_ID 0 187#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 188 189extern struct mutex kvm_lock; 190extern struct list_head vm_list; 191 192struct kvm_io_range { 193 gpa_t addr; 194 int len; 195 struct kvm_io_device *dev; 196}; 197 198#define NR_IOBUS_DEVS 1000 199 200struct kvm_io_bus { 201 int dev_count; 202 int ioeventfd_count; 203 struct kvm_io_range range[]; 204}; 205 206enum kvm_bus { 207 KVM_MMIO_BUS, 208 KVM_PIO_BUS, 209 KVM_VIRTIO_CCW_NOTIFY_BUS, 210 KVM_FAST_MMIO_BUS, 211 KVM_NR_BUSES 212}; 213 214int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 215 int len, const void *val); 216int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 217 gpa_t addr, int len, const void *val, long cookie); 218int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 219 int len, void *val); 220int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 221 int len, struct kvm_io_device *dev); 222int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 223 struct kvm_io_device *dev); 224struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 225 gpa_t addr); 226 227#ifdef CONFIG_KVM_ASYNC_PF 228struct kvm_async_pf { 229 struct work_struct work; 230 struct list_head link; 231 struct list_head queue; 232 struct kvm_vcpu *vcpu; 233 struct mm_struct *mm; 234 gpa_t cr2_or_gpa; 235 unsigned long addr; 236 struct kvm_arch_async_pf arch; 237 bool wakeup_all; 238 bool notpresent_injected; 239}; 240 241void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 242void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 243bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 244 unsigned long hva, struct kvm_arch_async_pf *arch); 245int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 246#endif 247 248#ifdef KVM_ARCH_WANT_MMU_NOTIFIER 249struct kvm_gfn_range { 250 struct kvm_memory_slot *slot; 251 gfn_t start; 252 gfn_t end; 253 pte_t pte; 254 bool may_block; 255}; 256bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 257bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 258bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 259bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 260#endif 261 262enum { 263 OUTSIDE_GUEST_MODE, 264 IN_GUEST_MODE, 265 EXITING_GUEST_MODE, 266 READING_SHADOW_PAGE_TABLES, 267}; 268 269#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 270 271struct kvm_host_map { 272 /* 273 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 274 * a 'struct page' for it. When using mem= kernel parameter some memory 275 * can be used as guest memory but they are not managed by host 276 * kernel). 277 * If 'pfn' is not managed by the host kernel, this field is 278 * initialized to KVM_UNMAPPED_PAGE. 279 */ 280 struct page *page; 281 void *hva; 282 kvm_pfn_t pfn; 283 kvm_pfn_t gfn; 284}; 285 286/* 287 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 288 * directly to check for that. 289 */ 290static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 291{ 292 return !!map->hva; 293} 294 295static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 296{ 297 return single_task_running() && !need_resched() && ktime_before(cur, stop); 298} 299 300/* 301 * Sometimes a large or cross-page mmio needs to be broken up into separate 302 * exits for userspace servicing. 303 */ 304struct kvm_mmio_fragment { 305 gpa_t gpa; 306 void *data; 307 unsigned len; 308}; 309 310struct kvm_vcpu { 311 struct kvm *kvm; 312#ifdef CONFIG_PREEMPT_NOTIFIERS 313 struct preempt_notifier preempt_notifier; 314#endif 315 int cpu; 316 int vcpu_id; /* id given by userspace at creation */ 317 int vcpu_idx; /* index in kvm->vcpus array */ 318 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 319#ifdef CONFIG_PROVE_RCU 320 int srcu_depth; 321#endif 322 int mode; 323 u64 requests; 324 unsigned long guest_debug; 325 326 struct mutex mutex; 327 struct kvm_run *run; 328 329#ifndef __KVM_HAVE_ARCH_WQP 330 struct rcuwait wait; 331#endif 332 struct pid __rcu *pid; 333 int sigset_active; 334 sigset_t sigset; 335 unsigned int halt_poll_ns; 336 bool valid_wakeup; 337 338#ifdef CONFIG_HAS_IOMEM 339 int mmio_needed; 340 int mmio_read_completed; 341 int mmio_is_write; 342 int mmio_cur_fragment; 343 int mmio_nr_fragments; 344 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 345#endif 346 347#ifdef CONFIG_KVM_ASYNC_PF 348 struct { 349 u32 queued; 350 struct list_head queue; 351 struct list_head done; 352 spinlock_t lock; 353 } async_pf; 354#endif 355 356#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 357 /* 358 * Cpu relax intercept or pause loop exit optimization 359 * in_spin_loop: set when a vcpu does a pause loop exit 360 * or cpu relax intercepted. 361 * dy_eligible: indicates whether vcpu is eligible for directed yield. 362 */ 363 struct { 364 bool in_spin_loop; 365 bool dy_eligible; 366 } spin_loop; 367#endif 368 bool preempted; 369 bool ready; 370 struct kvm_vcpu_arch arch; 371 struct kvm_vcpu_stat stat; 372 char stats_id[KVM_STATS_NAME_SIZE]; 373 struct kvm_dirty_ring dirty_ring; 374 375 /* 376 * The most recently used memslot by this vCPU and the slots generation 377 * for which it is valid. 378 * No wraparound protection is needed since generations won't overflow in 379 * thousands of years, even assuming 1M memslot operations per second. 380 */ 381 struct kvm_memory_slot *last_used_slot; 382 u64 last_used_slot_gen; 383}; 384 385/* 386 * Start accounting time towards a guest. 387 * Must be called before entering guest context. 388 */ 389static __always_inline void guest_timing_enter_irqoff(void) 390{ 391 /* 392 * This is running in ioctl context so its safe to assume that it's the 393 * stime pending cputime to flush. 394 */ 395 instrumentation_begin(); 396 vtime_account_guest_enter(); 397 instrumentation_end(); 398} 399 400/* 401 * Enter guest context and enter an RCU extended quiescent state. 402 * 403 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 404 * unsafe to use any code which may directly or indirectly use RCU, tracing 405 * (including IRQ flag tracing), or lockdep. All code in this period must be 406 * non-instrumentable. 407 */ 408static __always_inline void guest_context_enter_irqoff(void) 409{ 410 /* 411 * KVM does not hold any references to rcu protected data when it 412 * switches CPU into a guest mode. In fact switching to a guest mode 413 * is very similar to exiting to userspace from rcu point of view. In 414 * addition CPU may stay in a guest mode for quite a long time (up to 415 * one time slice). Lets treat guest mode as quiescent state, just like 416 * we do with user-mode execution. 417 */ 418 if (!context_tracking_guest_enter()) { 419 instrumentation_begin(); 420 rcu_virt_note_context_switch(smp_processor_id()); 421 instrumentation_end(); 422 } 423} 424 425/* 426 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 427 * guest_state_enter_irqoff(). 428 */ 429static __always_inline void guest_enter_irqoff(void) 430{ 431 guest_timing_enter_irqoff(); 432 guest_context_enter_irqoff(); 433} 434 435/** 436 * guest_state_enter_irqoff - Fixup state when entering a guest 437 * 438 * Entry to a guest will enable interrupts, but the kernel state is interrupts 439 * disabled when this is invoked. Also tell RCU about it. 440 * 441 * 1) Trace interrupts on state 442 * 2) Invoke context tracking if enabled to adjust RCU state 443 * 3) Tell lockdep that interrupts are enabled 444 * 445 * Invoked from architecture specific code before entering a guest. 446 * Must be called with interrupts disabled and the caller must be 447 * non-instrumentable. 448 * The caller has to invoke guest_timing_enter_irqoff() before this. 449 * 450 * Note: this is analogous to exit_to_user_mode(). 451 */ 452static __always_inline void guest_state_enter_irqoff(void) 453{ 454 instrumentation_begin(); 455 trace_hardirqs_on_prepare(); 456 lockdep_hardirqs_on_prepare(); 457 instrumentation_end(); 458 459 guest_context_enter_irqoff(); 460 lockdep_hardirqs_on(CALLER_ADDR0); 461} 462 463/* 464 * Exit guest context and exit an RCU extended quiescent state. 465 * 466 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 467 * unsafe to use any code which may directly or indirectly use RCU, tracing 468 * (including IRQ flag tracing), or lockdep. All code in this period must be 469 * non-instrumentable. 470 */ 471static __always_inline void guest_context_exit_irqoff(void) 472{ 473 context_tracking_guest_exit(); 474} 475 476/* 477 * Stop accounting time towards a guest. 478 * Must be called after exiting guest context. 479 */ 480static __always_inline void guest_timing_exit_irqoff(void) 481{ 482 instrumentation_begin(); 483 /* Flush the guest cputime we spent on the guest */ 484 vtime_account_guest_exit(); 485 instrumentation_end(); 486} 487 488/* 489 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 490 * guest_timing_exit_irqoff(). 491 */ 492static __always_inline void guest_exit_irqoff(void) 493{ 494 guest_context_exit_irqoff(); 495 guest_timing_exit_irqoff(); 496} 497 498static inline void guest_exit(void) 499{ 500 unsigned long flags; 501 502 local_irq_save(flags); 503 guest_exit_irqoff(); 504 local_irq_restore(flags); 505} 506 507/** 508 * guest_state_exit_irqoff - Establish state when returning from guest mode 509 * 510 * Entry from a guest disables interrupts, but guest mode is traced as 511 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 512 * 513 * 1) Tell lockdep that interrupts are disabled 514 * 2) Invoke context tracking if enabled to reactivate RCU 515 * 3) Trace interrupts off state 516 * 517 * Invoked from architecture specific code after exiting a guest. 518 * Must be invoked with interrupts disabled and the caller must be 519 * non-instrumentable. 520 * The caller has to invoke guest_timing_exit_irqoff() after this. 521 * 522 * Note: this is analogous to enter_from_user_mode(). 523 */ 524static __always_inline void guest_state_exit_irqoff(void) 525{ 526 lockdep_hardirqs_off(CALLER_ADDR0); 527 guest_context_exit_irqoff(); 528 529 instrumentation_begin(); 530 trace_hardirqs_off_finish(); 531 instrumentation_end(); 532} 533 534static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 535{ 536 /* 537 * The memory barrier ensures a previous write to vcpu->requests cannot 538 * be reordered with the read of vcpu->mode. It pairs with the general 539 * memory barrier following the write of vcpu->mode in VCPU RUN. 540 */ 541 smp_mb__before_atomic(); 542 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 543} 544 545/* 546 * Some of the bitops functions do not support too long bitmaps. 547 * This number must be determined not to exceed such limits. 548 */ 549#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 550 551/* 552 * Since at idle each memslot belongs to two memslot sets it has to contain 553 * two embedded nodes for each data structure that it forms a part of. 554 * 555 * Two memslot sets (one active and one inactive) are necessary so the VM 556 * continues to run on one memslot set while the other is being modified. 557 * 558 * These two memslot sets normally point to the same set of memslots. 559 * They can, however, be desynchronized when performing a memslot management 560 * operation by replacing the memslot to be modified by its copy. 561 * After the operation is complete, both memslot sets once again point to 562 * the same, common set of memslot data. 563 * 564 * The memslots themselves are independent of each other so they can be 565 * individually added or deleted. 566 */ 567struct kvm_memory_slot { 568 struct hlist_node id_node[2]; 569 struct interval_tree_node hva_node[2]; 570 struct rb_node gfn_node[2]; 571 gfn_t base_gfn; 572 unsigned long npages; 573 unsigned long *dirty_bitmap; 574 struct kvm_arch_memory_slot arch; 575 unsigned long userspace_addr; 576 u32 flags; 577 short id; 578 u16 as_id; 579}; 580 581static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 582{ 583 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 584} 585 586static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 587{ 588 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 589} 590 591static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 592{ 593 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 594 595 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 596} 597 598#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 599#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 600#endif 601 602struct kvm_s390_adapter_int { 603 u64 ind_addr; 604 u64 summary_addr; 605 u64 ind_offset; 606 u32 summary_offset; 607 u32 adapter_id; 608}; 609 610struct kvm_hv_sint { 611 u32 vcpu; 612 u32 sint; 613}; 614 615struct kvm_xen_evtchn { 616 u32 port; 617 u32 vcpu_id; 618 int vcpu_idx; 619 u32 priority; 620}; 621 622struct kvm_kernel_irq_routing_entry { 623 u32 gsi; 624 u32 type; 625 int (*set)(struct kvm_kernel_irq_routing_entry *e, 626 struct kvm *kvm, int irq_source_id, int level, 627 bool line_status); 628 union { 629 struct { 630 unsigned irqchip; 631 unsigned pin; 632 } irqchip; 633 struct { 634 u32 address_lo; 635 u32 address_hi; 636 u32 data; 637 u32 flags; 638 u32 devid; 639 } msi; 640 struct kvm_s390_adapter_int adapter; 641 struct kvm_hv_sint hv_sint; 642 struct kvm_xen_evtchn xen_evtchn; 643 }; 644 struct hlist_node link; 645}; 646 647#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 648struct kvm_irq_routing_table { 649 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 650 u32 nr_rt_entries; 651 /* 652 * Array indexed by gsi. Each entry contains list of irq chips 653 * the gsi is connected to. 654 */ 655 struct hlist_head map[]; 656}; 657#endif 658 659#ifndef KVM_PRIVATE_MEM_SLOTS 660#define KVM_PRIVATE_MEM_SLOTS 0 661#endif 662 663#define KVM_MEM_SLOTS_NUM SHRT_MAX 664#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 665 666#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 667static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 668{ 669 return 0; 670} 671#endif 672 673struct kvm_memslots { 674 u64 generation; 675 atomic_long_t last_used_slot; 676 struct rb_root_cached hva_tree; 677 struct rb_root gfn_tree; 678 /* 679 * The mapping table from slot id to memslot. 680 * 681 * 7-bit bucket count matches the size of the old id to index array for 682 * 512 slots, while giving good performance with this slot count. 683 * Higher bucket counts bring only small performance improvements but 684 * always result in higher memory usage (even for lower memslot counts). 685 */ 686 DECLARE_HASHTABLE(id_hash, 7); 687 int node_idx; 688}; 689 690struct kvm { 691#ifdef KVM_HAVE_MMU_RWLOCK 692 rwlock_t mmu_lock; 693#else 694 spinlock_t mmu_lock; 695#endif /* KVM_HAVE_MMU_RWLOCK */ 696 697 struct mutex slots_lock; 698 699 /* 700 * Protects the arch-specific fields of struct kvm_memory_slots in 701 * use by the VM. To be used under the slots_lock (above) or in a 702 * kvm->srcu critical section where acquiring the slots_lock would 703 * lead to deadlock with the synchronize_srcu in 704 * install_new_memslots. 705 */ 706 struct mutex slots_arch_lock; 707 struct mm_struct *mm; /* userspace tied to this vm */ 708 unsigned long nr_memslot_pages; 709 /* The two memslot sets - active and inactive (per address space) */ 710 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 711 /* The current active memslot set for each address space */ 712 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 713 struct xarray vcpu_array; 714 715 /* Used to wait for completion of MMU notifiers. */ 716 spinlock_t mn_invalidate_lock; 717 unsigned long mn_active_invalidate_count; 718 struct rcuwait mn_memslots_update_rcuwait; 719 720 /* For management / invalidation of gfn_to_pfn_caches */ 721 spinlock_t gpc_lock; 722 struct list_head gpc_list; 723 724 /* 725 * created_vcpus is protected by kvm->lock, and is incremented 726 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 727 * incremented after storing the kvm_vcpu pointer in vcpus, 728 * and is accessed atomically. 729 */ 730 atomic_t online_vcpus; 731 int max_vcpus; 732 int created_vcpus; 733 int last_boosted_vcpu; 734 struct list_head vm_list; 735 struct mutex lock; 736 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 737#ifdef CONFIG_HAVE_KVM_EVENTFD 738 struct { 739 spinlock_t lock; 740 struct list_head items; 741 struct list_head resampler_list; 742 struct mutex resampler_lock; 743 } irqfds; 744 struct list_head ioeventfds; 745#endif 746 struct kvm_vm_stat stat; 747 struct kvm_arch arch; 748 refcount_t users_count; 749#ifdef CONFIG_KVM_MMIO 750 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 751 spinlock_t ring_lock; 752 struct list_head coalesced_zones; 753#endif 754 755 struct mutex irq_lock; 756#ifdef CONFIG_HAVE_KVM_IRQCHIP 757 /* 758 * Update side is protected by irq_lock. 759 */ 760 struct kvm_irq_routing_table __rcu *irq_routing; 761#endif 762#ifdef CONFIG_HAVE_KVM_IRQFD 763 struct hlist_head irq_ack_notifier_list; 764#endif 765 766#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 767 struct mmu_notifier mmu_notifier; 768 unsigned long mmu_notifier_seq; 769 long mmu_notifier_count; 770 unsigned long mmu_notifier_range_start; 771 unsigned long mmu_notifier_range_end; 772#endif 773 struct list_head devices; 774 u64 manual_dirty_log_protect; 775 struct dentry *debugfs_dentry; 776 struct kvm_stat_data **debugfs_stat_data; 777 struct srcu_struct srcu; 778 struct srcu_struct irq_srcu; 779 pid_t userspace_pid; 780 unsigned int max_halt_poll_ns; 781 u32 dirty_ring_size; 782 bool vm_bugged; 783 bool vm_dead; 784 785#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 786 struct notifier_block pm_notifier; 787#endif 788 char stats_id[KVM_STATS_NAME_SIZE]; 789}; 790 791#define kvm_err(fmt, ...) \ 792 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 793#define kvm_info(fmt, ...) \ 794 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 795#define kvm_debug(fmt, ...) \ 796 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 797#define kvm_debug_ratelimited(fmt, ...) \ 798 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 799 ## __VA_ARGS__) 800#define kvm_pr_unimpl(fmt, ...) \ 801 pr_err_ratelimited("kvm [%i]: " fmt, \ 802 task_tgid_nr(current), ## __VA_ARGS__) 803 804/* The guest did something we don't support. */ 805#define vcpu_unimpl(vcpu, fmt, ...) \ 806 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 807 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 808 809#define vcpu_debug(vcpu, fmt, ...) \ 810 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 811#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 812 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 813 ## __VA_ARGS__) 814#define vcpu_err(vcpu, fmt, ...) \ 815 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 816 817static inline void kvm_vm_dead(struct kvm *kvm) 818{ 819 kvm->vm_dead = true; 820 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 821} 822 823static inline void kvm_vm_bugged(struct kvm *kvm) 824{ 825 kvm->vm_bugged = true; 826 kvm_vm_dead(kvm); 827} 828 829 830#define KVM_BUG(cond, kvm, fmt...) \ 831({ \ 832 int __ret = (cond); \ 833 \ 834 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 835 kvm_vm_bugged(kvm); \ 836 unlikely(__ret); \ 837}) 838 839#define KVM_BUG_ON(cond, kvm) \ 840({ \ 841 int __ret = (cond); \ 842 \ 843 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 844 kvm_vm_bugged(kvm); \ 845 unlikely(__ret); \ 846}) 847 848static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 849{ 850#ifdef CONFIG_PROVE_RCU 851 WARN_ONCE(vcpu->srcu_depth++, 852 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 853#endif 854 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 855} 856 857static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 858{ 859 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 860 861#ifdef CONFIG_PROVE_RCU 862 WARN_ONCE(--vcpu->srcu_depth, 863 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 864#endif 865} 866 867static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 868{ 869 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 870} 871 872static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 873{ 874 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 875 lockdep_is_held(&kvm->slots_lock) || 876 !refcount_read(&kvm->users_count)); 877} 878 879static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 880{ 881 int num_vcpus = atomic_read(&kvm->online_vcpus); 882 i = array_index_nospec(i, num_vcpus); 883 884 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 885 smp_rmb(); 886 return xa_load(&kvm->vcpu_array, i); 887} 888 889#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 890 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 891 (atomic_read(&kvm->online_vcpus) - 1)) 892 893static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 894{ 895 struct kvm_vcpu *vcpu = NULL; 896 unsigned long i; 897 898 if (id < 0) 899 return NULL; 900 if (id < KVM_MAX_VCPUS) 901 vcpu = kvm_get_vcpu(kvm, id); 902 if (vcpu && vcpu->vcpu_id == id) 903 return vcpu; 904 kvm_for_each_vcpu(i, vcpu, kvm) 905 if (vcpu->vcpu_id == id) 906 return vcpu; 907 return NULL; 908} 909 910static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 911{ 912 return vcpu->vcpu_idx; 913} 914 915void kvm_destroy_vcpus(struct kvm *kvm); 916 917void vcpu_load(struct kvm_vcpu *vcpu); 918void vcpu_put(struct kvm_vcpu *vcpu); 919 920#ifdef __KVM_HAVE_IOAPIC 921void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 922void kvm_arch_post_irq_routing_update(struct kvm *kvm); 923#else 924static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 925{ 926} 927static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 928{ 929} 930#endif 931 932#ifdef CONFIG_HAVE_KVM_IRQFD 933int kvm_irqfd_init(void); 934void kvm_irqfd_exit(void); 935#else 936static inline int kvm_irqfd_init(void) 937{ 938 return 0; 939} 940 941static inline void kvm_irqfd_exit(void) 942{ 943} 944#endif 945int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 946 struct module *module); 947void kvm_exit(void); 948 949void kvm_get_kvm(struct kvm *kvm); 950bool kvm_get_kvm_safe(struct kvm *kvm); 951void kvm_put_kvm(struct kvm *kvm); 952bool file_is_kvm(struct file *file); 953void kvm_put_kvm_no_destroy(struct kvm *kvm); 954 955static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 956{ 957 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 958 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 959 lockdep_is_held(&kvm->slots_lock) || 960 !refcount_read(&kvm->users_count)); 961} 962 963static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 964{ 965 return __kvm_memslots(kvm, 0); 966} 967 968static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 969{ 970 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 971 972 return __kvm_memslots(vcpu->kvm, as_id); 973} 974 975static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 976{ 977 return RB_EMPTY_ROOT(&slots->gfn_tree); 978} 979 980#define kvm_for_each_memslot(memslot, bkt, slots) \ 981 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 982 if (WARN_ON_ONCE(!memslot->npages)) { \ 983 } else 984 985static inline 986struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 987{ 988 struct kvm_memory_slot *slot; 989 int idx = slots->node_idx; 990 991 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 992 if (slot->id == id) 993 return slot; 994 } 995 996 return NULL; 997} 998 999/* Iterator used for walking memslots that overlap a gfn range. */ 1000struct kvm_memslot_iter { 1001 struct kvm_memslots *slots; 1002 struct rb_node *node; 1003 struct kvm_memory_slot *slot; 1004}; 1005 1006static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1007{ 1008 iter->node = rb_next(iter->node); 1009 if (!iter->node) 1010 return; 1011 1012 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1013} 1014 1015static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1016 struct kvm_memslots *slots, 1017 gfn_t start) 1018{ 1019 int idx = slots->node_idx; 1020 struct rb_node *tmp; 1021 struct kvm_memory_slot *slot; 1022 1023 iter->slots = slots; 1024 1025 /* 1026 * Find the so called "upper bound" of a key - the first node that has 1027 * its key strictly greater than the searched one (the start gfn in our case). 1028 */ 1029 iter->node = NULL; 1030 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1031 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1032 if (start < slot->base_gfn) { 1033 iter->node = tmp; 1034 tmp = tmp->rb_left; 1035 } else { 1036 tmp = tmp->rb_right; 1037 } 1038 } 1039 1040 /* 1041 * Find the slot with the lowest gfn that can possibly intersect with 1042 * the range, so we'll ideally have slot start <= range start 1043 */ 1044 if (iter->node) { 1045 /* 1046 * A NULL previous node means that the very first slot 1047 * already has a higher start gfn. 1048 * In this case slot start > range start. 1049 */ 1050 tmp = rb_prev(iter->node); 1051 if (tmp) 1052 iter->node = tmp; 1053 } else { 1054 /* a NULL node below means no slots */ 1055 iter->node = rb_last(&slots->gfn_tree); 1056 } 1057 1058 if (iter->node) { 1059 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1060 1061 /* 1062 * It is possible in the slot start < range start case that the 1063 * found slot ends before or at range start (slot end <= range start) 1064 * and so it does not overlap the requested range. 1065 * 1066 * In such non-overlapping case the next slot (if it exists) will 1067 * already have slot start > range start, otherwise the logic above 1068 * would have found it instead of the current slot. 1069 */ 1070 if (iter->slot->base_gfn + iter->slot->npages <= start) 1071 kvm_memslot_iter_next(iter); 1072 } 1073} 1074 1075static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1076{ 1077 if (!iter->node) 1078 return false; 1079 1080 /* 1081 * If this slot starts beyond or at the end of the range so does 1082 * every next one 1083 */ 1084 return iter->slot->base_gfn < end; 1085} 1086 1087/* Iterate over each memslot at least partially intersecting [start, end) range */ 1088#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1089 for (kvm_memslot_iter_start(iter, slots, start); \ 1090 kvm_memslot_iter_is_valid(iter, end); \ 1091 kvm_memslot_iter_next(iter)) 1092 1093/* 1094 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1095 * - create a new memory slot 1096 * - delete an existing memory slot 1097 * - modify an existing memory slot 1098 * -- move it in the guest physical memory space 1099 * -- just change its flags 1100 * 1101 * Since flags can be changed by some of these operations, the following 1102 * differentiation is the best we can do for __kvm_set_memory_region(): 1103 */ 1104enum kvm_mr_change { 1105 KVM_MR_CREATE, 1106 KVM_MR_DELETE, 1107 KVM_MR_MOVE, 1108 KVM_MR_FLAGS_ONLY, 1109}; 1110 1111int kvm_set_memory_region(struct kvm *kvm, 1112 const struct kvm_userspace_memory_region *mem); 1113int __kvm_set_memory_region(struct kvm *kvm, 1114 const struct kvm_userspace_memory_region *mem); 1115void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1116void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1117int kvm_arch_prepare_memory_region(struct kvm *kvm, 1118 const struct kvm_memory_slot *old, 1119 struct kvm_memory_slot *new, 1120 enum kvm_mr_change change); 1121void kvm_arch_commit_memory_region(struct kvm *kvm, 1122 struct kvm_memory_slot *old, 1123 const struct kvm_memory_slot *new, 1124 enum kvm_mr_change change); 1125/* flush all memory translations */ 1126void kvm_arch_flush_shadow_all(struct kvm *kvm); 1127/* flush memory translations pointing to 'slot' */ 1128void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1129 struct kvm_memory_slot *slot); 1130 1131int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1132 struct page **pages, int nr_pages); 1133 1134struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1135unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1136unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1137unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1138unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1139 bool *writable); 1140void kvm_release_page_clean(struct page *page); 1141void kvm_release_page_dirty(struct page *page); 1142void kvm_set_page_accessed(struct page *page); 1143 1144kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1145kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1146 bool *writable); 1147kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1148kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1149kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1150 bool atomic, bool *async, bool write_fault, 1151 bool *writable, hva_t *hva); 1152 1153void kvm_release_pfn_clean(kvm_pfn_t pfn); 1154void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1155void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1156void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1157 1158void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1159int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1160 int len); 1161int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1162int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1163 void *data, unsigned long len); 1164int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1165 void *data, unsigned int offset, 1166 unsigned long len); 1167int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1168 int offset, int len); 1169int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1170 unsigned long len); 1171int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1172 void *data, unsigned long len); 1173int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1174 void *data, unsigned int offset, 1175 unsigned long len); 1176int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1177 gpa_t gpa, unsigned long len); 1178 1179#define __kvm_get_guest(kvm, gfn, offset, v) \ 1180({ \ 1181 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1182 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1183 int __ret = -EFAULT; \ 1184 \ 1185 if (!kvm_is_error_hva(__addr)) \ 1186 __ret = get_user(v, __uaddr); \ 1187 __ret; \ 1188}) 1189 1190#define kvm_get_guest(kvm, gpa, v) \ 1191({ \ 1192 gpa_t __gpa = gpa; \ 1193 struct kvm *__kvm = kvm; \ 1194 \ 1195 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1196 offset_in_page(__gpa), v); \ 1197}) 1198 1199#define __kvm_put_guest(kvm, gfn, offset, v) \ 1200({ \ 1201 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1202 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1203 int __ret = -EFAULT; \ 1204 \ 1205 if (!kvm_is_error_hva(__addr)) \ 1206 __ret = put_user(v, __uaddr); \ 1207 if (!__ret) \ 1208 mark_page_dirty(kvm, gfn); \ 1209 __ret; \ 1210}) 1211 1212#define kvm_put_guest(kvm, gpa, v) \ 1213({ \ 1214 gpa_t __gpa = gpa; \ 1215 struct kvm *__kvm = kvm; \ 1216 \ 1217 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1218 offset_in_page(__gpa), v); \ 1219}) 1220 1221int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1222struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1223bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1224bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1225unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1226void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1227void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1228 1229struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1230struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1231kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1232kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1233int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1234struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 1235void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1236unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1237unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1238int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1239 int len); 1240int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1241 unsigned long len); 1242int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1243 unsigned long len); 1244int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1245 int offset, int len); 1246int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1247 unsigned long len); 1248void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1249 1250/** 1251 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a 1252 * given guest physical address. 1253 * 1254 * @kvm: pointer to kvm instance. 1255 * @gpc: struct gfn_to_pfn_cache object. 1256 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1257 * invalidation. 1258 * @usage: indicates if the resulting host physical PFN is used while 1259 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1260 * the cache from MMU notifiers---but not for KVM memslot 1261 * changes!---will also force @vcpu to exit the guest and 1262 * refresh the cache); and/or if the PFN used directly 1263 * by KVM (and thus needs a kernel virtual mapping). 1264 * @gpa: guest physical address to map. 1265 * @len: sanity check; the range being access must fit a single page. 1266 * 1267 * @return: 0 for success. 1268 * -EINVAL for a mapping which would cross a page boundary. 1269 * -EFAULT for an untranslatable guest physical address. 1270 * 1271 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for 1272 * invalidations to be processed. Callers are required to use 1273 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before 1274 * accessing the target page. 1275 */ 1276int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1277 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage, 1278 gpa_t gpa, unsigned long len); 1279 1280/** 1281 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache. 1282 * 1283 * @kvm: pointer to kvm instance. 1284 * @gpc: struct gfn_to_pfn_cache object. 1285 * @gpa: current guest physical address to map. 1286 * @len: sanity check; the range being access must fit a single page. 1287 * 1288 * @return: %true if the cache is still valid and the address matches. 1289 * %false if the cache is not valid. 1290 * 1291 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1292 * while calling this function, and then continue to hold the lock until the 1293 * access is complete. 1294 * 1295 * Callers in IN_GUEST_MODE may do so without locking, although they should 1296 * still hold a read lock on kvm->scru for the memslot checks. 1297 */ 1298bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1299 gpa_t gpa, unsigned long len); 1300 1301/** 1302 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache. 1303 * 1304 * @kvm: pointer to kvm instance. 1305 * @gpc: struct gfn_to_pfn_cache object. 1306 * @gpa: updated guest physical address to map. 1307 * @len: sanity check; the range being access must fit a single page. 1308 * 1309 * @return: 0 for success. 1310 * -EINVAL for a mapping which would cross a page boundary. 1311 * -EFAULT for an untranslatable guest physical address. 1312 * 1313 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1314 * returm from this function does not mean the page can be immediately 1315 * accessed because it may have raced with an invalidation. Callers must 1316 * still lock and check the cache status, as this function does not return 1317 * with the lock still held to permit access. 1318 */ 1319int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1320 gpa_t gpa, unsigned long len); 1321 1322/** 1323 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache. 1324 * 1325 * @kvm: pointer to kvm instance. 1326 * @gpc: struct gfn_to_pfn_cache object. 1327 * 1328 * This unmaps the referenced page. The cache is left in the invalid state 1329 * but at least the mapping from GPA to userspace HVA will remain cached 1330 * and can be reused on a subsequent refresh. 1331 */ 1332void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1333 1334/** 1335 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache. 1336 * 1337 * @kvm: pointer to kvm instance. 1338 * @gpc: struct gfn_to_pfn_cache object. 1339 * 1340 * This removes a cache from the @kvm's list to be processed on MMU notifier 1341 * invocation. 1342 */ 1343void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1344 1345void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1346void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1347 1348void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1349bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1350void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1351void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1352bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1353void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1354int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1355void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1356 1357void kvm_flush_remote_tlbs(struct kvm *kvm); 1358 1359#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1360int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1361int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1362void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1363void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1364#endif 1365 1366void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 1367 unsigned long end); 1368void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 1369 unsigned long end); 1370 1371long kvm_arch_dev_ioctl(struct file *filp, 1372 unsigned int ioctl, unsigned long arg); 1373long kvm_arch_vcpu_ioctl(struct file *filp, 1374 unsigned int ioctl, unsigned long arg); 1375vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1376 1377int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1378 1379void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1380 struct kvm_memory_slot *slot, 1381 gfn_t gfn_offset, 1382 unsigned long mask); 1383void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1384 1385#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1386void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1387 const struct kvm_memory_slot *memslot); 1388#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1389int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1390int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1391 int *is_dirty, struct kvm_memory_slot **memslot); 1392#endif 1393 1394int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1395 bool line_status); 1396int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1397 struct kvm_enable_cap *cap); 1398long kvm_arch_vm_ioctl(struct file *filp, 1399 unsigned int ioctl, unsigned long arg); 1400 1401int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1402int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1403 1404int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1405 struct kvm_translation *tr); 1406 1407int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1408int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1409int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1410 struct kvm_sregs *sregs); 1411int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1412 struct kvm_sregs *sregs); 1413int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1414 struct kvm_mp_state *mp_state); 1415int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1416 struct kvm_mp_state *mp_state); 1417int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1418 struct kvm_guest_debug *dbg); 1419int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1420 1421int kvm_arch_init(void *opaque); 1422void kvm_arch_exit(void); 1423 1424void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1425 1426void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1427void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1428int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1429int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1430void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1431void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1432 1433#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1434int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1435#endif 1436 1437#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1438void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1439#endif 1440 1441int kvm_arch_hardware_enable(void); 1442void kvm_arch_hardware_disable(void); 1443int kvm_arch_hardware_setup(void *opaque); 1444void kvm_arch_hardware_unsetup(void); 1445int kvm_arch_check_processor_compat(void *opaque); 1446int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1447bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1448int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1449bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1450bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1451int kvm_arch_post_init_vm(struct kvm *kvm); 1452void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1453int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1454 1455#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1456/* 1457 * All architectures that want to use vzalloc currently also 1458 * need their own kvm_arch_alloc_vm implementation. 1459 */ 1460static inline struct kvm *kvm_arch_alloc_vm(void) 1461{ 1462 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1463} 1464#endif 1465 1466static inline void __kvm_arch_free_vm(struct kvm *kvm) 1467{ 1468 kvfree(kvm); 1469} 1470 1471#ifndef __KVM_HAVE_ARCH_VM_FREE 1472static inline void kvm_arch_free_vm(struct kvm *kvm) 1473{ 1474 __kvm_arch_free_vm(kvm); 1475} 1476#endif 1477 1478#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1479static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1480{ 1481 return -ENOTSUPP; 1482} 1483#endif 1484 1485#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1486void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1487void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1488bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1489#else 1490static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1491{ 1492} 1493 1494static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1495{ 1496} 1497 1498static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1499{ 1500 return false; 1501} 1502#endif 1503#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1504void kvm_arch_start_assignment(struct kvm *kvm); 1505void kvm_arch_end_assignment(struct kvm *kvm); 1506bool kvm_arch_has_assigned_device(struct kvm *kvm); 1507#else 1508static inline void kvm_arch_start_assignment(struct kvm *kvm) 1509{ 1510} 1511 1512static inline void kvm_arch_end_assignment(struct kvm *kvm) 1513{ 1514} 1515 1516static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1517{ 1518 return false; 1519} 1520#endif 1521 1522static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1523{ 1524#ifdef __KVM_HAVE_ARCH_WQP 1525 return vcpu->arch.waitp; 1526#else 1527 return &vcpu->wait; 1528#endif 1529} 1530 1531/* 1532 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1533 * true if the vCPU was blocking and was awakened, false otherwise. 1534 */ 1535static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1536{ 1537 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1538} 1539 1540static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1541{ 1542 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1543} 1544 1545#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1546/* 1547 * returns true if the virtual interrupt controller is initialized and 1548 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1549 * controller is dynamically instantiated and this is not always true. 1550 */ 1551bool kvm_arch_intc_initialized(struct kvm *kvm); 1552#else 1553static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1554{ 1555 return true; 1556} 1557#endif 1558 1559#ifdef CONFIG_GUEST_PERF_EVENTS 1560unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1561 1562void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1563void kvm_unregister_perf_callbacks(void); 1564#else 1565static inline void kvm_register_perf_callbacks(void *ign) {} 1566static inline void kvm_unregister_perf_callbacks(void) {} 1567#endif /* CONFIG_GUEST_PERF_EVENTS */ 1568 1569int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1570void kvm_arch_destroy_vm(struct kvm *kvm); 1571void kvm_arch_sync_events(struct kvm *kvm); 1572 1573int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1574 1575bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1576bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1577 1578struct kvm_irq_ack_notifier { 1579 struct hlist_node link; 1580 unsigned gsi; 1581 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1582}; 1583 1584int kvm_irq_map_gsi(struct kvm *kvm, 1585 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1586int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1587 1588int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1589 bool line_status); 1590int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1591 int irq_source_id, int level, bool line_status); 1592int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1593 struct kvm *kvm, int irq_source_id, 1594 int level, bool line_status); 1595bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1596void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1597void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1598void kvm_register_irq_ack_notifier(struct kvm *kvm, 1599 struct kvm_irq_ack_notifier *kian); 1600void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1601 struct kvm_irq_ack_notifier *kian); 1602int kvm_request_irq_source_id(struct kvm *kvm); 1603void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1604bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1605 1606/* 1607 * Returns a pointer to the memslot if it contains gfn. 1608 * Otherwise returns NULL. 1609 */ 1610static inline struct kvm_memory_slot * 1611try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1612{ 1613 if (!slot) 1614 return NULL; 1615 1616 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1617 return slot; 1618 else 1619 return NULL; 1620} 1621 1622/* 1623 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1624 * 1625 * With "approx" set returns the memslot also when the address falls 1626 * in a hole. In that case one of the memslots bordering the hole is 1627 * returned. 1628 */ 1629static inline struct kvm_memory_slot * 1630search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1631{ 1632 struct kvm_memory_slot *slot; 1633 struct rb_node *node; 1634 int idx = slots->node_idx; 1635 1636 slot = NULL; 1637 for (node = slots->gfn_tree.rb_node; node; ) { 1638 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1639 if (gfn >= slot->base_gfn) { 1640 if (gfn < slot->base_gfn + slot->npages) 1641 return slot; 1642 node = node->rb_right; 1643 } else 1644 node = node->rb_left; 1645 } 1646 1647 return approx ? slot : NULL; 1648} 1649 1650static inline struct kvm_memory_slot * 1651____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1652{ 1653 struct kvm_memory_slot *slot; 1654 1655 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1656 slot = try_get_memslot(slot, gfn); 1657 if (slot) 1658 return slot; 1659 1660 slot = search_memslots(slots, gfn, approx); 1661 if (slot) { 1662 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1663 return slot; 1664 } 1665 1666 return NULL; 1667} 1668 1669/* 1670 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1671 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1672 * because that would bloat other code too much. 1673 */ 1674static inline struct kvm_memory_slot * 1675__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1676{ 1677 return ____gfn_to_memslot(slots, gfn, false); 1678} 1679 1680static inline unsigned long 1681__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1682{ 1683 /* 1684 * The index was checked originally in search_memslots. To avoid 1685 * that a malicious guest builds a Spectre gadget out of e.g. page 1686 * table walks, do not let the processor speculate loads outside 1687 * the guest's registered memslots. 1688 */ 1689 unsigned long offset = gfn - slot->base_gfn; 1690 offset = array_index_nospec(offset, slot->npages); 1691 return slot->userspace_addr + offset * PAGE_SIZE; 1692} 1693 1694static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1695{ 1696 return gfn_to_memslot(kvm, gfn)->id; 1697} 1698 1699static inline gfn_t 1700hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1701{ 1702 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1703 1704 return slot->base_gfn + gfn_offset; 1705} 1706 1707static inline gpa_t gfn_to_gpa(gfn_t gfn) 1708{ 1709 return (gpa_t)gfn << PAGE_SHIFT; 1710} 1711 1712static inline gfn_t gpa_to_gfn(gpa_t gpa) 1713{ 1714 return (gfn_t)(gpa >> PAGE_SHIFT); 1715} 1716 1717static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1718{ 1719 return (hpa_t)pfn << PAGE_SHIFT; 1720} 1721 1722static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1723 gpa_t gpa) 1724{ 1725 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1726} 1727 1728static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1729{ 1730 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1731 1732 return kvm_is_error_hva(hva); 1733} 1734 1735enum kvm_stat_kind { 1736 KVM_STAT_VM, 1737 KVM_STAT_VCPU, 1738}; 1739 1740struct kvm_stat_data { 1741 struct kvm *kvm; 1742 const struct _kvm_stats_desc *desc; 1743 enum kvm_stat_kind kind; 1744}; 1745 1746struct _kvm_stats_desc { 1747 struct kvm_stats_desc desc; 1748 char name[KVM_STATS_NAME_SIZE]; 1749}; 1750 1751#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1752 .flags = type | unit | base | \ 1753 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1754 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1755 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1756 .exponent = exp, \ 1757 .size = sz, \ 1758 .bucket_size = bsz 1759 1760#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1761 { \ 1762 { \ 1763 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1764 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1765 }, \ 1766 .name = #stat, \ 1767 } 1768#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1769 { \ 1770 { \ 1771 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1772 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1773 }, \ 1774 .name = #stat, \ 1775 } 1776#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1777 { \ 1778 { \ 1779 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1780 .offset = offsetof(struct kvm_vm_stat, stat) \ 1781 }, \ 1782 .name = #stat, \ 1783 } 1784#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1785 { \ 1786 { \ 1787 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1788 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1789 }, \ 1790 .name = #stat, \ 1791 } 1792/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1793#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1794 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1795 1796#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1797 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1798 unit, base, exponent, 1, 0) 1799#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1800 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1801 unit, base, exponent, 1, 0) 1802#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1803 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1804 unit, base, exponent, 1, 0) 1805#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1806 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1807 unit, base, exponent, sz, bsz) 1808#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1809 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1810 unit, base, exponent, sz, 0) 1811 1812/* Cumulative counter, read/write */ 1813#define STATS_DESC_COUNTER(SCOPE, name) \ 1814 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1815 KVM_STATS_BASE_POW10, 0) 1816/* Instantaneous counter, read only */ 1817#define STATS_DESC_ICOUNTER(SCOPE, name) \ 1818 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1819 KVM_STATS_BASE_POW10, 0) 1820/* Peak counter, read/write */ 1821#define STATS_DESC_PCOUNTER(SCOPE, name) \ 1822 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1823 KVM_STATS_BASE_POW10, 0) 1824 1825/* Cumulative time in nanosecond */ 1826#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1827 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1828 KVM_STATS_BASE_POW10, -9) 1829/* Linear histogram for time in nanosecond */ 1830#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1831 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1832 KVM_STATS_BASE_POW10, -9, sz, bsz) 1833/* Logarithmic histogram for time in nanosecond */ 1834#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1835 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1836 KVM_STATS_BASE_POW10, -9, sz) 1837 1838#define KVM_GENERIC_VM_STATS() \ 1839 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1840 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1841 1842#define KVM_GENERIC_VCPU_STATS() \ 1843 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1844 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1845 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1846 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1847 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1848 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1849 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1850 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1851 HALT_POLL_HIST_COUNT), \ 1852 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1853 HALT_POLL_HIST_COUNT), \ 1854 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1855 HALT_POLL_HIST_COUNT), \ 1856 STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking) 1857 1858extern struct dentry *kvm_debugfs_dir; 1859 1860ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1861 const struct _kvm_stats_desc *desc, 1862 void *stats, size_t size_stats, 1863 char __user *user_buffer, size_t size, loff_t *offset); 1864 1865/** 1866 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1867 * statistics data. 1868 * 1869 * @data: start address of the stats data 1870 * @size: the number of bucket of the stats data 1871 * @value: the new value used to update the linear histogram's bucket 1872 * @bucket_size: the size (width) of a bucket 1873 */ 1874static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1875 u64 value, size_t bucket_size) 1876{ 1877 size_t index = div64_u64(value, bucket_size); 1878 1879 index = min(index, size - 1); 1880 ++data[index]; 1881} 1882 1883/** 1884 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1885 * statistics data. 1886 * 1887 * @data: start address of the stats data 1888 * @size: the number of bucket of the stats data 1889 * @value: the new value used to update the logarithmic histogram's bucket 1890 */ 1891static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1892{ 1893 size_t index = fls64(value); 1894 1895 index = min(index, size - 1); 1896 ++data[index]; 1897} 1898 1899#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1900 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1901#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1902 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1903 1904 1905extern const struct kvm_stats_header kvm_vm_stats_header; 1906extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1907extern const struct kvm_stats_header kvm_vcpu_stats_header; 1908extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1909 1910#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1911static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1912{ 1913 if (unlikely(kvm->mmu_notifier_count)) 1914 return 1; 1915 /* 1916 * Ensure the read of mmu_notifier_count happens before the read 1917 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1918 * mmu_notifier_invalidate_range_end to make sure that the caller 1919 * either sees the old (non-zero) value of mmu_notifier_count or 1920 * the new (incremented) value of mmu_notifier_seq. 1921 * PowerPC Book3s HV KVM calls this under a per-page lock 1922 * rather than under kvm->mmu_lock, for scalability, so 1923 * can't rely on kvm->mmu_lock to keep things ordered. 1924 */ 1925 smp_rmb(); 1926 if (kvm->mmu_notifier_seq != mmu_seq) 1927 return 1; 1928 return 0; 1929} 1930 1931static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1932 unsigned long mmu_seq, 1933 unsigned long hva) 1934{ 1935 lockdep_assert_held(&kvm->mmu_lock); 1936 /* 1937 * If mmu_notifier_count is non-zero, then the range maintained by 1938 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1939 * might be being invalidated. Note that it may include some false 1940 * positives, due to shortcuts when handing concurrent invalidations. 1941 */ 1942 if (unlikely(kvm->mmu_notifier_count) && 1943 hva >= kvm->mmu_notifier_range_start && 1944 hva < kvm->mmu_notifier_range_end) 1945 return 1; 1946 if (kvm->mmu_notifier_seq != mmu_seq) 1947 return 1; 1948 return 0; 1949} 1950#endif 1951 1952#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1953 1954#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1955 1956bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1957int kvm_set_irq_routing(struct kvm *kvm, 1958 const struct kvm_irq_routing_entry *entries, 1959 unsigned nr, 1960 unsigned flags); 1961int kvm_set_routing_entry(struct kvm *kvm, 1962 struct kvm_kernel_irq_routing_entry *e, 1963 const struct kvm_irq_routing_entry *ue); 1964void kvm_free_irq_routing(struct kvm *kvm); 1965 1966#else 1967 1968static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1969 1970#endif 1971 1972int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1973 1974#ifdef CONFIG_HAVE_KVM_EVENTFD 1975 1976void kvm_eventfd_init(struct kvm *kvm); 1977int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1978 1979#ifdef CONFIG_HAVE_KVM_IRQFD 1980int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1981void kvm_irqfd_release(struct kvm *kvm); 1982void kvm_irq_routing_update(struct kvm *); 1983#else 1984static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1985{ 1986 return -EINVAL; 1987} 1988 1989static inline void kvm_irqfd_release(struct kvm *kvm) {} 1990#endif 1991 1992#else 1993 1994static inline void kvm_eventfd_init(struct kvm *kvm) {} 1995 1996static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1997{ 1998 return -EINVAL; 1999} 2000 2001static inline void kvm_irqfd_release(struct kvm *kvm) {} 2002 2003#ifdef CONFIG_HAVE_KVM_IRQCHIP 2004static inline void kvm_irq_routing_update(struct kvm *kvm) 2005{ 2006} 2007#endif 2008 2009static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 2010{ 2011 return -ENOSYS; 2012} 2013 2014#endif /* CONFIG_HAVE_KVM_EVENTFD */ 2015 2016void kvm_arch_irq_routing_update(struct kvm *kvm); 2017 2018static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2019{ 2020 /* 2021 * Ensure the rest of the request is published to kvm_check_request's 2022 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2023 */ 2024 smp_wmb(); 2025 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2026} 2027 2028static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2029{ 2030 /* 2031 * Request that don't require vCPU action should never be logged in 2032 * vcpu->requests. The vCPU won't clear the request, so it will stay 2033 * logged indefinitely and prevent the vCPU from entering the guest. 2034 */ 2035 BUILD_BUG_ON(!__builtin_constant_p(req) || 2036 (req & KVM_REQUEST_NO_ACTION)); 2037 2038 __kvm_make_request(req, vcpu); 2039} 2040 2041static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2042{ 2043 return READ_ONCE(vcpu->requests); 2044} 2045 2046static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2047{ 2048 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2049} 2050 2051static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2052{ 2053 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2054} 2055 2056static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2057{ 2058 if (kvm_test_request(req, vcpu)) { 2059 kvm_clear_request(req, vcpu); 2060 2061 /* 2062 * Ensure the rest of the request is visible to kvm_check_request's 2063 * caller. Paired with the smp_wmb in kvm_make_request. 2064 */ 2065 smp_mb__after_atomic(); 2066 return true; 2067 } else { 2068 return false; 2069 } 2070} 2071 2072extern bool kvm_rebooting; 2073 2074extern unsigned int halt_poll_ns; 2075extern unsigned int halt_poll_ns_grow; 2076extern unsigned int halt_poll_ns_grow_start; 2077extern unsigned int halt_poll_ns_shrink; 2078 2079struct kvm_device { 2080 const struct kvm_device_ops *ops; 2081 struct kvm *kvm; 2082 void *private; 2083 struct list_head vm_node; 2084}; 2085 2086/* create, destroy, and name are mandatory */ 2087struct kvm_device_ops { 2088 const char *name; 2089 2090 /* 2091 * create is called holding kvm->lock and any operations not suitable 2092 * to do while holding the lock should be deferred to init (see 2093 * below). 2094 */ 2095 int (*create)(struct kvm_device *dev, u32 type); 2096 2097 /* 2098 * init is called after create if create is successful and is called 2099 * outside of holding kvm->lock. 2100 */ 2101 void (*init)(struct kvm_device *dev); 2102 2103 /* 2104 * Destroy is responsible for freeing dev. 2105 * 2106 * Destroy may be called before or after destructors are called 2107 * on emulated I/O regions, depending on whether a reference is 2108 * held by a vcpu or other kvm component that gets destroyed 2109 * after the emulated I/O. 2110 */ 2111 void (*destroy)(struct kvm_device *dev); 2112 2113 /* 2114 * Release is an alternative method to free the device. It is 2115 * called when the device file descriptor is closed. Once 2116 * release is called, the destroy method will not be called 2117 * anymore as the device is removed from the device list of 2118 * the VM. kvm->lock is held. 2119 */ 2120 void (*release)(struct kvm_device *dev); 2121 2122 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2123 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2124 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2125 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2126 unsigned long arg); 2127 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2128}; 2129 2130void kvm_device_get(struct kvm_device *dev); 2131void kvm_device_put(struct kvm_device *dev); 2132struct kvm_device *kvm_device_from_filp(struct file *filp); 2133int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2134void kvm_unregister_device_ops(u32 type); 2135 2136extern struct kvm_device_ops kvm_mpic_ops; 2137extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2138extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2139 2140#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2141 2142static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2143{ 2144 vcpu->spin_loop.in_spin_loop = val; 2145} 2146static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2147{ 2148 vcpu->spin_loop.dy_eligible = val; 2149} 2150 2151#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2152 2153static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2154{ 2155} 2156 2157static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2158{ 2159} 2160#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2161 2162static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2163{ 2164 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2165 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2166} 2167 2168struct kvm_vcpu *kvm_get_running_vcpu(void); 2169struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2170 2171#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2172bool kvm_arch_has_irq_bypass(void); 2173int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2174 struct irq_bypass_producer *); 2175void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2176 struct irq_bypass_producer *); 2177void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2178void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2179int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2180 uint32_t guest_irq, bool set); 2181bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2182 struct kvm_kernel_irq_routing_entry *); 2183#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2184 2185#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2186/* If we wakeup during the poll time, was it a sucessful poll? */ 2187static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2188{ 2189 return vcpu->valid_wakeup; 2190} 2191 2192#else 2193static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2194{ 2195 return true; 2196} 2197#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2198 2199#ifdef CONFIG_HAVE_KVM_NO_POLL 2200/* Callback that tells if we must not poll */ 2201bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2202#else 2203static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2204{ 2205 return false; 2206} 2207#endif /* CONFIG_HAVE_KVM_NO_POLL */ 2208 2209#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2210long kvm_arch_vcpu_async_ioctl(struct file *filp, 2211 unsigned int ioctl, unsigned long arg); 2212#else 2213static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2214 unsigned int ioctl, 2215 unsigned long arg) 2216{ 2217 return -ENOIOCTLCMD; 2218} 2219#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2220 2221void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 2222 unsigned long start, unsigned long end); 2223 2224#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2225int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2226#else 2227static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2228{ 2229 return 0; 2230} 2231#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2232 2233typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2234 2235int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2236 uintptr_t data, const char *name, 2237 struct task_struct **thread_ptr); 2238 2239#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2240static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2241{ 2242 vcpu->run->exit_reason = KVM_EXIT_INTR; 2243 vcpu->stat.signal_exits++; 2244} 2245#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2246 2247/* 2248 * This defines how many reserved entries we want to keep before we 2249 * kick the vcpu to the userspace to avoid dirty ring full. This 2250 * value can be tuned to higher if e.g. PML is enabled on the host. 2251 */ 2252#define KVM_DIRTY_RING_RSVD_ENTRIES 64 2253 2254/* Max number of entries allowed for each kvm dirty ring */ 2255#define KVM_DIRTY_RING_MAX_ENTRIES 65536 2256 2257#endif