cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kvm_host.h (70054B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2#ifndef __KVM_HOST_H
      3#define __KVM_HOST_H
      4
      5
      6#include <linux/types.h>
      7#include <linux/hardirq.h>
      8#include <linux/list.h>
      9#include <linux/mutex.h>
     10#include <linux/spinlock.h>
     11#include <linux/signal.h>
     12#include <linux/sched.h>
     13#include <linux/sched/stat.h>
     14#include <linux/bug.h>
     15#include <linux/minmax.h>
     16#include <linux/mm.h>
     17#include <linux/mmu_notifier.h>
     18#include <linux/preempt.h>
     19#include <linux/msi.h>
     20#include <linux/slab.h>
     21#include <linux/vmalloc.h>
     22#include <linux/rcupdate.h>
     23#include <linux/ratelimit.h>
     24#include <linux/err.h>
     25#include <linux/irqflags.h>
     26#include <linux/context_tracking.h>
     27#include <linux/irqbypass.h>
     28#include <linux/rcuwait.h>
     29#include <linux/refcount.h>
     30#include <linux/nospec.h>
     31#include <linux/notifier.h>
     32#include <linux/ftrace.h>
     33#include <linux/hashtable.h>
     34#include <linux/instrumentation.h>
     35#include <linux/interval_tree.h>
     36#include <linux/rbtree.h>
     37#include <linux/xarray.h>
     38#include <asm/signal.h>
     39
     40#include <linux/kvm.h>
     41#include <linux/kvm_para.h>
     42
     43#include <linux/kvm_types.h>
     44
     45#include <asm/kvm_host.h>
     46#include <linux/kvm_dirty_ring.h>
     47
     48#ifndef KVM_MAX_VCPU_IDS
     49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
     50#endif
     51
     52/*
     53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
     54 * in kvm, other bits are visible for userspace which are defined in
     55 * include/linux/kvm_h.
     56 */
     57#define KVM_MEMSLOT_INVALID	(1UL << 16)
     58
     59/*
     60 * Bit 63 of the memslot generation number is an "update in-progress flag",
     61 * e.g. is temporarily set for the duration of install_new_memslots().
     62 * This flag effectively creates a unique generation number that is used to
     63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
     64 * i.e. may (or may not) have come from the previous memslots generation.
     65 *
     66 * This is necessary because the actual memslots update is not atomic with
     67 * respect to the generation number update.  Updating the generation number
     68 * first would allow a vCPU to cache a spte from the old memslots using the
     69 * new generation number, and updating the generation number after switching
     70 * to the new memslots would allow cache hits using the old generation number
     71 * to reference the defunct memslots.
     72 *
     73 * This mechanism is used to prevent getting hits in KVM's caches while a
     74 * memslot update is in-progress, and to prevent cache hits *after* updating
     75 * the actual generation number against accesses that were inserted into the
     76 * cache *before* the memslots were updated.
     77 */
     78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
     79
     80/* Two fragments for cross MMIO pages. */
     81#define KVM_MAX_MMIO_FRAGMENTS	2
     82
     83#ifndef KVM_ADDRESS_SPACE_NUM
     84#define KVM_ADDRESS_SPACE_NUM	1
     85#endif
     86
     87/*
     88 * For the normal pfn, the highest 12 bits should be zero,
     89 * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
     90 * mask bit 63 to indicate the noslot pfn.
     91 */
     92#define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
     93#define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
     94#define KVM_PFN_NOSLOT		(0x1ULL << 63)
     95
     96#define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
     97#define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
     98#define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
     99
    100/*
    101 * error pfns indicate that the gfn is in slot but faild to
    102 * translate it to pfn on host.
    103 */
    104static inline bool is_error_pfn(kvm_pfn_t pfn)
    105{
    106	return !!(pfn & KVM_PFN_ERR_MASK);
    107}
    108
    109/*
    110 * error_noslot pfns indicate that the gfn can not be
    111 * translated to pfn - it is not in slot or failed to
    112 * translate it to pfn.
    113 */
    114static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
    115{
    116	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
    117}
    118
    119/* noslot pfn indicates that the gfn is not in slot. */
    120static inline bool is_noslot_pfn(kvm_pfn_t pfn)
    121{
    122	return pfn == KVM_PFN_NOSLOT;
    123}
    124
    125/*
    126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
    127 * provide own defines and kvm_is_error_hva
    128 */
    129#ifndef KVM_HVA_ERR_BAD
    130
    131#define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
    132#define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
    133
    134static inline bool kvm_is_error_hva(unsigned long addr)
    135{
    136	return addr >= PAGE_OFFSET;
    137}
    138
    139#endif
    140
    141#define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
    142
    143static inline bool is_error_page(struct page *page)
    144{
    145	return IS_ERR(page);
    146}
    147
    148#define KVM_REQUEST_MASK           GENMASK(7,0)
    149#define KVM_REQUEST_NO_WAKEUP      BIT(8)
    150#define KVM_REQUEST_WAIT           BIT(9)
    151#define KVM_REQUEST_NO_ACTION      BIT(10)
    152/*
    153 * Architecture-independent vcpu->requests bit members
    154 * Bits 4-7 are reserved for more arch-independent bits.
    155 */
    156#define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
    157#define KVM_REQ_VM_DEAD           (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
    158#define KVM_REQ_UNBLOCK           2
    159#define KVM_REQ_UNHALT            3
    160#define KVM_REQUEST_ARCH_BASE     8
    161
    162/*
    163 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
    164 * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
    165 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
    166 * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
    167 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
    168 * guarantee the vCPU received an IPI and has actually exited guest mode.
    169 */
    170#define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
    171
    172#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
    173	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
    174	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
    175})
    176#define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
    177
    178bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
    179				 unsigned long *vcpu_bitmap);
    180bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
    181bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
    182				      struct kvm_vcpu *except);
    183bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
    184				unsigned long *vcpu_bitmap);
    185
    186#define KVM_USERSPACE_IRQ_SOURCE_ID		0
    187#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
    188
    189extern struct mutex kvm_lock;
    190extern struct list_head vm_list;
    191
    192struct kvm_io_range {
    193	gpa_t addr;
    194	int len;
    195	struct kvm_io_device *dev;
    196};
    197
    198#define NR_IOBUS_DEVS 1000
    199
    200struct kvm_io_bus {
    201	int dev_count;
    202	int ioeventfd_count;
    203	struct kvm_io_range range[];
    204};
    205
    206enum kvm_bus {
    207	KVM_MMIO_BUS,
    208	KVM_PIO_BUS,
    209	KVM_VIRTIO_CCW_NOTIFY_BUS,
    210	KVM_FAST_MMIO_BUS,
    211	KVM_NR_BUSES
    212};
    213
    214int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
    215		     int len, const void *val);
    216int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
    217			    gpa_t addr, int len, const void *val, long cookie);
    218int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
    219		    int len, void *val);
    220int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
    221			    int len, struct kvm_io_device *dev);
    222int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
    223			      struct kvm_io_device *dev);
    224struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
    225					 gpa_t addr);
    226
    227#ifdef CONFIG_KVM_ASYNC_PF
    228struct kvm_async_pf {
    229	struct work_struct work;
    230	struct list_head link;
    231	struct list_head queue;
    232	struct kvm_vcpu *vcpu;
    233	struct mm_struct *mm;
    234	gpa_t cr2_or_gpa;
    235	unsigned long addr;
    236	struct kvm_arch_async_pf arch;
    237	bool   wakeup_all;
    238	bool notpresent_injected;
    239};
    240
    241void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
    242void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
    243bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
    244			unsigned long hva, struct kvm_arch_async_pf *arch);
    245int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
    246#endif
    247
    248#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
    249struct kvm_gfn_range {
    250	struct kvm_memory_slot *slot;
    251	gfn_t start;
    252	gfn_t end;
    253	pte_t pte;
    254	bool may_block;
    255};
    256bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
    257bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
    258bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
    259bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
    260#endif
    261
    262enum {
    263	OUTSIDE_GUEST_MODE,
    264	IN_GUEST_MODE,
    265	EXITING_GUEST_MODE,
    266	READING_SHADOW_PAGE_TABLES,
    267};
    268
    269#define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
    270
    271struct kvm_host_map {
    272	/*
    273	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
    274	 * a 'struct page' for it. When using mem= kernel parameter some memory
    275	 * can be used as guest memory but they are not managed by host
    276	 * kernel).
    277	 * If 'pfn' is not managed by the host kernel, this field is
    278	 * initialized to KVM_UNMAPPED_PAGE.
    279	 */
    280	struct page *page;
    281	void *hva;
    282	kvm_pfn_t pfn;
    283	kvm_pfn_t gfn;
    284};
    285
    286/*
    287 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
    288 * directly to check for that.
    289 */
    290static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
    291{
    292	return !!map->hva;
    293}
    294
    295static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
    296{
    297	return single_task_running() && !need_resched() && ktime_before(cur, stop);
    298}
    299
    300/*
    301 * Sometimes a large or cross-page mmio needs to be broken up into separate
    302 * exits for userspace servicing.
    303 */
    304struct kvm_mmio_fragment {
    305	gpa_t gpa;
    306	void *data;
    307	unsigned len;
    308};
    309
    310struct kvm_vcpu {
    311	struct kvm *kvm;
    312#ifdef CONFIG_PREEMPT_NOTIFIERS
    313	struct preempt_notifier preempt_notifier;
    314#endif
    315	int cpu;
    316	int vcpu_id; /* id given by userspace at creation */
    317	int vcpu_idx; /* index in kvm->vcpus array */
    318	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
    319#ifdef CONFIG_PROVE_RCU
    320	int srcu_depth;
    321#endif
    322	int mode;
    323	u64 requests;
    324	unsigned long guest_debug;
    325
    326	struct mutex mutex;
    327	struct kvm_run *run;
    328
    329#ifndef __KVM_HAVE_ARCH_WQP
    330	struct rcuwait wait;
    331#endif
    332	struct pid __rcu *pid;
    333	int sigset_active;
    334	sigset_t sigset;
    335	unsigned int halt_poll_ns;
    336	bool valid_wakeup;
    337
    338#ifdef CONFIG_HAS_IOMEM
    339	int mmio_needed;
    340	int mmio_read_completed;
    341	int mmio_is_write;
    342	int mmio_cur_fragment;
    343	int mmio_nr_fragments;
    344	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
    345#endif
    346
    347#ifdef CONFIG_KVM_ASYNC_PF
    348	struct {
    349		u32 queued;
    350		struct list_head queue;
    351		struct list_head done;
    352		spinlock_t lock;
    353	} async_pf;
    354#endif
    355
    356#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
    357	/*
    358	 * Cpu relax intercept or pause loop exit optimization
    359	 * in_spin_loop: set when a vcpu does a pause loop exit
    360	 *  or cpu relax intercepted.
    361	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
    362	 */
    363	struct {
    364		bool in_spin_loop;
    365		bool dy_eligible;
    366	} spin_loop;
    367#endif
    368	bool preempted;
    369	bool ready;
    370	struct kvm_vcpu_arch arch;
    371	struct kvm_vcpu_stat stat;
    372	char stats_id[KVM_STATS_NAME_SIZE];
    373	struct kvm_dirty_ring dirty_ring;
    374
    375	/*
    376	 * The most recently used memslot by this vCPU and the slots generation
    377	 * for which it is valid.
    378	 * No wraparound protection is needed since generations won't overflow in
    379	 * thousands of years, even assuming 1M memslot operations per second.
    380	 */
    381	struct kvm_memory_slot *last_used_slot;
    382	u64 last_used_slot_gen;
    383};
    384
    385/*
    386 * Start accounting time towards a guest.
    387 * Must be called before entering guest context.
    388 */
    389static __always_inline void guest_timing_enter_irqoff(void)
    390{
    391	/*
    392	 * This is running in ioctl context so its safe to assume that it's the
    393	 * stime pending cputime to flush.
    394	 */
    395	instrumentation_begin();
    396	vtime_account_guest_enter();
    397	instrumentation_end();
    398}
    399
    400/*
    401 * Enter guest context and enter an RCU extended quiescent state.
    402 *
    403 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
    404 * unsafe to use any code which may directly or indirectly use RCU, tracing
    405 * (including IRQ flag tracing), or lockdep. All code in this period must be
    406 * non-instrumentable.
    407 */
    408static __always_inline void guest_context_enter_irqoff(void)
    409{
    410	/*
    411	 * KVM does not hold any references to rcu protected data when it
    412	 * switches CPU into a guest mode. In fact switching to a guest mode
    413	 * is very similar to exiting to userspace from rcu point of view. In
    414	 * addition CPU may stay in a guest mode for quite a long time (up to
    415	 * one time slice). Lets treat guest mode as quiescent state, just like
    416	 * we do with user-mode execution.
    417	 */
    418	if (!context_tracking_guest_enter()) {
    419		instrumentation_begin();
    420		rcu_virt_note_context_switch(smp_processor_id());
    421		instrumentation_end();
    422	}
    423}
    424
    425/*
    426 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
    427 * guest_state_enter_irqoff().
    428 */
    429static __always_inline void guest_enter_irqoff(void)
    430{
    431	guest_timing_enter_irqoff();
    432	guest_context_enter_irqoff();
    433}
    434
    435/**
    436 * guest_state_enter_irqoff - Fixup state when entering a guest
    437 *
    438 * Entry to a guest will enable interrupts, but the kernel state is interrupts
    439 * disabled when this is invoked. Also tell RCU about it.
    440 *
    441 * 1) Trace interrupts on state
    442 * 2) Invoke context tracking if enabled to adjust RCU state
    443 * 3) Tell lockdep that interrupts are enabled
    444 *
    445 * Invoked from architecture specific code before entering a guest.
    446 * Must be called with interrupts disabled and the caller must be
    447 * non-instrumentable.
    448 * The caller has to invoke guest_timing_enter_irqoff() before this.
    449 *
    450 * Note: this is analogous to exit_to_user_mode().
    451 */
    452static __always_inline void guest_state_enter_irqoff(void)
    453{
    454	instrumentation_begin();
    455	trace_hardirqs_on_prepare();
    456	lockdep_hardirqs_on_prepare();
    457	instrumentation_end();
    458
    459	guest_context_enter_irqoff();
    460	lockdep_hardirqs_on(CALLER_ADDR0);
    461}
    462
    463/*
    464 * Exit guest context and exit an RCU extended quiescent state.
    465 *
    466 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
    467 * unsafe to use any code which may directly or indirectly use RCU, tracing
    468 * (including IRQ flag tracing), or lockdep. All code in this period must be
    469 * non-instrumentable.
    470 */
    471static __always_inline void guest_context_exit_irqoff(void)
    472{
    473	context_tracking_guest_exit();
    474}
    475
    476/*
    477 * Stop accounting time towards a guest.
    478 * Must be called after exiting guest context.
    479 */
    480static __always_inline void guest_timing_exit_irqoff(void)
    481{
    482	instrumentation_begin();
    483	/* Flush the guest cputime we spent on the guest */
    484	vtime_account_guest_exit();
    485	instrumentation_end();
    486}
    487
    488/*
    489 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
    490 * guest_timing_exit_irqoff().
    491 */
    492static __always_inline void guest_exit_irqoff(void)
    493{
    494	guest_context_exit_irqoff();
    495	guest_timing_exit_irqoff();
    496}
    497
    498static inline void guest_exit(void)
    499{
    500	unsigned long flags;
    501
    502	local_irq_save(flags);
    503	guest_exit_irqoff();
    504	local_irq_restore(flags);
    505}
    506
    507/**
    508 * guest_state_exit_irqoff - Establish state when returning from guest mode
    509 *
    510 * Entry from a guest disables interrupts, but guest mode is traced as
    511 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
    512 *
    513 * 1) Tell lockdep that interrupts are disabled
    514 * 2) Invoke context tracking if enabled to reactivate RCU
    515 * 3) Trace interrupts off state
    516 *
    517 * Invoked from architecture specific code after exiting a guest.
    518 * Must be invoked with interrupts disabled and the caller must be
    519 * non-instrumentable.
    520 * The caller has to invoke guest_timing_exit_irqoff() after this.
    521 *
    522 * Note: this is analogous to enter_from_user_mode().
    523 */
    524static __always_inline void guest_state_exit_irqoff(void)
    525{
    526	lockdep_hardirqs_off(CALLER_ADDR0);
    527	guest_context_exit_irqoff();
    528
    529	instrumentation_begin();
    530	trace_hardirqs_off_finish();
    531	instrumentation_end();
    532}
    533
    534static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
    535{
    536	/*
    537	 * The memory barrier ensures a previous write to vcpu->requests cannot
    538	 * be reordered with the read of vcpu->mode.  It pairs with the general
    539	 * memory barrier following the write of vcpu->mode in VCPU RUN.
    540	 */
    541	smp_mb__before_atomic();
    542	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
    543}
    544
    545/*
    546 * Some of the bitops functions do not support too long bitmaps.
    547 * This number must be determined not to exceed such limits.
    548 */
    549#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
    550
    551/*
    552 * Since at idle each memslot belongs to two memslot sets it has to contain
    553 * two embedded nodes for each data structure that it forms a part of.
    554 *
    555 * Two memslot sets (one active and one inactive) are necessary so the VM
    556 * continues to run on one memslot set while the other is being modified.
    557 *
    558 * These two memslot sets normally point to the same set of memslots.
    559 * They can, however, be desynchronized when performing a memslot management
    560 * operation by replacing the memslot to be modified by its copy.
    561 * After the operation is complete, both memslot sets once again point to
    562 * the same, common set of memslot data.
    563 *
    564 * The memslots themselves are independent of each other so they can be
    565 * individually added or deleted.
    566 */
    567struct kvm_memory_slot {
    568	struct hlist_node id_node[2];
    569	struct interval_tree_node hva_node[2];
    570	struct rb_node gfn_node[2];
    571	gfn_t base_gfn;
    572	unsigned long npages;
    573	unsigned long *dirty_bitmap;
    574	struct kvm_arch_memory_slot arch;
    575	unsigned long userspace_addr;
    576	u32 flags;
    577	short id;
    578	u16 as_id;
    579};
    580
    581static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
    582{
    583	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
    584}
    585
    586static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
    587{
    588	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
    589}
    590
    591static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
    592{
    593	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
    594
    595	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
    596}
    597
    598#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
    599#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
    600#endif
    601
    602struct kvm_s390_adapter_int {
    603	u64 ind_addr;
    604	u64 summary_addr;
    605	u64 ind_offset;
    606	u32 summary_offset;
    607	u32 adapter_id;
    608};
    609
    610struct kvm_hv_sint {
    611	u32 vcpu;
    612	u32 sint;
    613};
    614
    615struct kvm_xen_evtchn {
    616	u32 port;
    617	u32 vcpu_id;
    618	int vcpu_idx;
    619	u32 priority;
    620};
    621
    622struct kvm_kernel_irq_routing_entry {
    623	u32 gsi;
    624	u32 type;
    625	int (*set)(struct kvm_kernel_irq_routing_entry *e,
    626		   struct kvm *kvm, int irq_source_id, int level,
    627		   bool line_status);
    628	union {
    629		struct {
    630			unsigned irqchip;
    631			unsigned pin;
    632		} irqchip;
    633		struct {
    634			u32 address_lo;
    635			u32 address_hi;
    636			u32 data;
    637			u32 flags;
    638			u32 devid;
    639		} msi;
    640		struct kvm_s390_adapter_int adapter;
    641		struct kvm_hv_sint hv_sint;
    642		struct kvm_xen_evtchn xen_evtchn;
    643	};
    644	struct hlist_node link;
    645};
    646
    647#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
    648struct kvm_irq_routing_table {
    649	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
    650	u32 nr_rt_entries;
    651	/*
    652	 * Array indexed by gsi. Each entry contains list of irq chips
    653	 * the gsi is connected to.
    654	 */
    655	struct hlist_head map[];
    656};
    657#endif
    658
    659#ifndef KVM_PRIVATE_MEM_SLOTS
    660#define KVM_PRIVATE_MEM_SLOTS 0
    661#endif
    662
    663#define KVM_MEM_SLOTS_NUM SHRT_MAX
    664#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
    665
    666#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
    667static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
    668{
    669	return 0;
    670}
    671#endif
    672
    673struct kvm_memslots {
    674	u64 generation;
    675	atomic_long_t last_used_slot;
    676	struct rb_root_cached hva_tree;
    677	struct rb_root gfn_tree;
    678	/*
    679	 * The mapping table from slot id to memslot.
    680	 *
    681	 * 7-bit bucket count matches the size of the old id to index array for
    682	 * 512 slots, while giving good performance with this slot count.
    683	 * Higher bucket counts bring only small performance improvements but
    684	 * always result in higher memory usage (even for lower memslot counts).
    685	 */
    686	DECLARE_HASHTABLE(id_hash, 7);
    687	int node_idx;
    688};
    689
    690struct kvm {
    691#ifdef KVM_HAVE_MMU_RWLOCK
    692	rwlock_t mmu_lock;
    693#else
    694	spinlock_t mmu_lock;
    695#endif /* KVM_HAVE_MMU_RWLOCK */
    696
    697	struct mutex slots_lock;
    698
    699	/*
    700	 * Protects the arch-specific fields of struct kvm_memory_slots in
    701	 * use by the VM. To be used under the slots_lock (above) or in a
    702	 * kvm->srcu critical section where acquiring the slots_lock would
    703	 * lead to deadlock with the synchronize_srcu in
    704	 * install_new_memslots.
    705	 */
    706	struct mutex slots_arch_lock;
    707	struct mm_struct *mm; /* userspace tied to this vm */
    708	unsigned long nr_memslot_pages;
    709	/* The two memslot sets - active and inactive (per address space) */
    710	struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
    711	/* The current active memslot set for each address space */
    712	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
    713	struct xarray vcpu_array;
    714
    715	/* Used to wait for completion of MMU notifiers.  */
    716	spinlock_t mn_invalidate_lock;
    717	unsigned long mn_active_invalidate_count;
    718	struct rcuwait mn_memslots_update_rcuwait;
    719
    720	/* For management / invalidation of gfn_to_pfn_caches */
    721	spinlock_t gpc_lock;
    722	struct list_head gpc_list;
    723
    724	/*
    725	 * created_vcpus is protected by kvm->lock, and is incremented
    726	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
    727	 * incremented after storing the kvm_vcpu pointer in vcpus,
    728	 * and is accessed atomically.
    729	 */
    730	atomic_t online_vcpus;
    731	int max_vcpus;
    732	int created_vcpus;
    733	int last_boosted_vcpu;
    734	struct list_head vm_list;
    735	struct mutex lock;
    736	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
    737#ifdef CONFIG_HAVE_KVM_EVENTFD
    738	struct {
    739		spinlock_t        lock;
    740		struct list_head  items;
    741		struct list_head  resampler_list;
    742		struct mutex      resampler_lock;
    743	} irqfds;
    744	struct list_head ioeventfds;
    745#endif
    746	struct kvm_vm_stat stat;
    747	struct kvm_arch arch;
    748	refcount_t users_count;
    749#ifdef CONFIG_KVM_MMIO
    750	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
    751	spinlock_t ring_lock;
    752	struct list_head coalesced_zones;
    753#endif
    754
    755	struct mutex irq_lock;
    756#ifdef CONFIG_HAVE_KVM_IRQCHIP
    757	/*
    758	 * Update side is protected by irq_lock.
    759	 */
    760	struct kvm_irq_routing_table __rcu *irq_routing;
    761#endif
    762#ifdef CONFIG_HAVE_KVM_IRQFD
    763	struct hlist_head irq_ack_notifier_list;
    764#endif
    765
    766#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
    767	struct mmu_notifier mmu_notifier;
    768	unsigned long mmu_notifier_seq;
    769	long mmu_notifier_count;
    770	unsigned long mmu_notifier_range_start;
    771	unsigned long mmu_notifier_range_end;
    772#endif
    773	struct list_head devices;
    774	u64 manual_dirty_log_protect;
    775	struct dentry *debugfs_dentry;
    776	struct kvm_stat_data **debugfs_stat_data;
    777	struct srcu_struct srcu;
    778	struct srcu_struct irq_srcu;
    779	pid_t userspace_pid;
    780	unsigned int max_halt_poll_ns;
    781	u32 dirty_ring_size;
    782	bool vm_bugged;
    783	bool vm_dead;
    784
    785#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
    786	struct notifier_block pm_notifier;
    787#endif
    788	char stats_id[KVM_STATS_NAME_SIZE];
    789};
    790
    791#define kvm_err(fmt, ...) \
    792	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
    793#define kvm_info(fmt, ...) \
    794	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
    795#define kvm_debug(fmt, ...) \
    796	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
    797#define kvm_debug_ratelimited(fmt, ...) \
    798	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
    799			     ## __VA_ARGS__)
    800#define kvm_pr_unimpl(fmt, ...) \
    801	pr_err_ratelimited("kvm [%i]: " fmt, \
    802			   task_tgid_nr(current), ## __VA_ARGS__)
    803
    804/* The guest did something we don't support. */
    805#define vcpu_unimpl(vcpu, fmt, ...)					\
    806	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
    807			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
    808
    809#define vcpu_debug(vcpu, fmt, ...)					\
    810	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
    811#define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
    812	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
    813			      ## __VA_ARGS__)
    814#define vcpu_err(vcpu, fmt, ...)					\
    815	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
    816
    817static inline void kvm_vm_dead(struct kvm *kvm)
    818{
    819	kvm->vm_dead = true;
    820	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
    821}
    822
    823static inline void kvm_vm_bugged(struct kvm *kvm)
    824{
    825	kvm->vm_bugged = true;
    826	kvm_vm_dead(kvm);
    827}
    828
    829
    830#define KVM_BUG(cond, kvm, fmt...)				\
    831({								\
    832	int __ret = (cond);					\
    833								\
    834	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
    835		kvm_vm_bugged(kvm);				\
    836	unlikely(__ret);					\
    837})
    838
    839#define KVM_BUG_ON(cond, kvm)					\
    840({								\
    841	int __ret = (cond);					\
    842								\
    843	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
    844		kvm_vm_bugged(kvm);				\
    845	unlikely(__ret);					\
    846})
    847
    848static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
    849{
    850#ifdef CONFIG_PROVE_RCU
    851	WARN_ONCE(vcpu->srcu_depth++,
    852		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
    853#endif
    854	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
    855}
    856
    857static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
    858{
    859	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
    860
    861#ifdef CONFIG_PROVE_RCU
    862	WARN_ONCE(--vcpu->srcu_depth,
    863		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
    864#endif
    865}
    866
    867static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
    868{
    869	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
    870}
    871
    872static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
    873{
    874	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
    875				      lockdep_is_held(&kvm->slots_lock) ||
    876				      !refcount_read(&kvm->users_count));
    877}
    878
    879static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
    880{
    881	int num_vcpus = atomic_read(&kvm->online_vcpus);
    882	i = array_index_nospec(i, num_vcpus);
    883
    884	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
    885	smp_rmb();
    886	return xa_load(&kvm->vcpu_array, i);
    887}
    888
    889#define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
    890	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
    891			  (atomic_read(&kvm->online_vcpus) - 1))
    892
    893static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
    894{
    895	struct kvm_vcpu *vcpu = NULL;
    896	unsigned long i;
    897
    898	if (id < 0)
    899		return NULL;
    900	if (id < KVM_MAX_VCPUS)
    901		vcpu = kvm_get_vcpu(kvm, id);
    902	if (vcpu && vcpu->vcpu_id == id)
    903		return vcpu;
    904	kvm_for_each_vcpu(i, vcpu, kvm)
    905		if (vcpu->vcpu_id == id)
    906			return vcpu;
    907	return NULL;
    908}
    909
    910static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
    911{
    912	return vcpu->vcpu_idx;
    913}
    914
    915void kvm_destroy_vcpus(struct kvm *kvm);
    916
    917void vcpu_load(struct kvm_vcpu *vcpu);
    918void vcpu_put(struct kvm_vcpu *vcpu);
    919
    920#ifdef __KVM_HAVE_IOAPIC
    921void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
    922void kvm_arch_post_irq_routing_update(struct kvm *kvm);
    923#else
    924static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
    925{
    926}
    927static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
    928{
    929}
    930#endif
    931
    932#ifdef CONFIG_HAVE_KVM_IRQFD
    933int kvm_irqfd_init(void);
    934void kvm_irqfd_exit(void);
    935#else
    936static inline int kvm_irqfd_init(void)
    937{
    938	return 0;
    939}
    940
    941static inline void kvm_irqfd_exit(void)
    942{
    943}
    944#endif
    945int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
    946		  struct module *module);
    947void kvm_exit(void);
    948
    949void kvm_get_kvm(struct kvm *kvm);
    950bool kvm_get_kvm_safe(struct kvm *kvm);
    951void kvm_put_kvm(struct kvm *kvm);
    952bool file_is_kvm(struct file *file);
    953void kvm_put_kvm_no_destroy(struct kvm *kvm);
    954
    955static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
    956{
    957	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
    958	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
    959			lockdep_is_held(&kvm->slots_lock) ||
    960			!refcount_read(&kvm->users_count));
    961}
    962
    963static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
    964{
    965	return __kvm_memslots(kvm, 0);
    966}
    967
    968static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
    969{
    970	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
    971
    972	return __kvm_memslots(vcpu->kvm, as_id);
    973}
    974
    975static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
    976{
    977	return RB_EMPTY_ROOT(&slots->gfn_tree);
    978}
    979
    980#define kvm_for_each_memslot(memslot, bkt, slots)			      \
    981	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
    982		if (WARN_ON_ONCE(!memslot->npages)) {			      \
    983		} else
    984
    985static inline
    986struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
    987{
    988	struct kvm_memory_slot *slot;
    989	int idx = slots->node_idx;
    990
    991	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
    992		if (slot->id == id)
    993			return slot;
    994	}
    995
    996	return NULL;
    997}
    998
    999/* Iterator used for walking memslots that overlap a gfn range. */
   1000struct kvm_memslot_iter {
   1001	struct kvm_memslots *slots;
   1002	struct rb_node *node;
   1003	struct kvm_memory_slot *slot;
   1004};
   1005
   1006static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
   1007{
   1008	iter->node = rb_next(iter->node);
   1009	if (!iter->node)
   1010		return;
   1011
   1012	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
   1013}
   1014
   1015static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
   1016					  struct kvm_memslots *slots,
   1017					  gfn_t start)
   1018{
   1019	int idx = slots->node_idx;
   1020	struct rb_node *tmp;
   1021	struct kvm_memory_slot *slot;
   1022
   1023	iter->slots = slots;
   1024
   1025	/*
   1026	 * Find the so called "upper bound" of a key - the first node that has
   1027	 * its key strictly greater than the searched one (the start gfn in our case).
   1028	 */
   1029	iter->node = NULL;
   1030	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
   1031		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
   1032		if (start < slot->base_gfn) {
   1033			iter->node = tmp;
   1034			tmp = tmp->rb_left;
   1035		} else {
   1036			tmp = tmp->rb_right;
   1037		}
   1038	}
   1039
   1040	/*
   1041	 * Find the slot with the lowest gfn that can possibly intersect with
   1042	 * the range, so we'll ideally have slot start <= range start
   1043	 */
   1044	if (iter->node) {
   1045		/*
   1046		 * A NULL previous node means that the very first slot
   1047		 * already has a higher start gfn.
   1048		 * In this case slot start > range start.
   1049		 */
   1050		tmp = rb_prev(iter->node);
   1051		if (tmp)
   1052			iter->node = tmp;
   1053	} else {
   1054		/* a NULL node below means no slots */
   1055		iter->node = rb_last(&slots->gfn_tree);
   1056	}
   1057
   1058	if (iter->node) {
   1059		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
   1060
   1061		/*
   1062		 * It is possible in the slot start < range start case that the
   1063		 * found slot ends before or at range start (slot end <= range start)
   1064		 * and so it does not overlap the requested range.
   1065		 *
   1066		 * In such non-overlapping case the next slot (if it exists) will
   1067		 * already have slot start > range start, otherwise the logic above
   1068		 * would have found it instead of the current slot.
   1069		 */
   1070		if (iter->slot->base_gfn + iter->slot->npages <= start)
   1071			kvm_memslot_iter_next(iter);
   1072	}
   1073}
   1074
   1075static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
   1076{
   1077	if (!iter->node)
   1078		return false;
   1079
   1080	/*
   1081	 * If this slot starts beyond or at the end of the range so does
   1082	 * every next one
   1083	 */
   1084	return iter->slot->base_gfn < end;
   1085}
   1086
   1087/* Iterate over each memslot at least partially intersecting [start, end) range */
   1088#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
   1089	for (kvm_memslot_iter_start(iter, slots, start);		\
   1090	     kvm_memslot_iter_is_valid(iter, end);			\
   1091	     kvm_memslot_iter_next(iter))
   1092
   1093/*
   1094 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
   1095 * - create a new memory slot
   1096 * - delete an existing memory slot
   1097 * - modify an existing memory slot
   1098 *   -- move it in the guest physical memory space
   1099 *   -- just change its flags
   1100 *
   1101 * Since flags can be changed by some of these operations, the following
   1102 * differentiation is the best we can do for __kvm_set_memory_region():
   1103 */
   1104enum kvm_mr_change {
   1105	KVM_MR_CREATE,
   1106	KVM_MR_DELETE,
   1107	KVM_MR_MOVE,
   1108	KVM_MR_FLAGS_ONLY,
   1109};
   1110
   1111int kvm_set_memory_region(struct kvm *kvm,
   1112			  const struct kvm_userspace_memory_region *mem);
   1113int __kvm_set_memory_region(struct kvm *kvm,
   1114			    const struct kvm_userspace_memory_region *mem);
   1115void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
   1116void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
   1117int kvm_arch_prepare_memory_region(struct kvm *kvm,
   1118				const struct kvm_memory_slot *old,
   1119				struct kvm_memory_slot *new,
   1120				enum kvm_mr_change change);
   1121void kvm_arch_commit_memory_region(struct kvm *kvm,
   1122				struct kvm_memory_slot *old,
   1123				const struct kvm_memory_slot *new,
   1124				enum kvm_mr_change change);
   1125/* flush all memory translations */
   1126void kvm_arch_flush_shadow_all(struct kvm *kvm);
   1127/* flush memory translations pointing to 'slot' */
   1128void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
   1129				   struct kvm_memory_slot *slot);
   1130
   1131int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
   1132			    struct page **pages, int nr_pages);
   1133
   1134struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
   1135unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
   1136unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
   1137unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
   1138unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
   1139				      bool *writable);
   1140void kvm_release_page_clean(struct page *page);
   1141void kvm_release_page_dirty(struct page *page);
   1142void kvm_set_page_accessed(struct page *page);
   1143
   1144kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
   1145kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
   1146		      bool *writable);
   1147kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
   1148kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
   1149kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
   1150			       bool atomic, bool *async, bool write_fault,
   1151			       bool *writable, hva_t *hva);
   1152
   1153void kvm_release_pfn_clean(kvm_pfn_t pfn);
   1154void kvm_release_pfn_dirty(kvm_pfn_t pfn);
   1155void kvm_set_pfn_dirty(kvm_pfn_t pfn);
   1156void kvm_set_pfn_accessed(kvm_pfn_t pfn);
   1157
   1158void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
   1159int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
   1160			int len);
   1161int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
   1162int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
   1163			   void *data, unsigned long len);
   1164int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
   1165				 void *data, unsigned int offset,
   1166				 unsigned long len);
   1167int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
   1168			 int offset, int len);
   1169int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
   1170		    unsigned long len);
   1171int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
   1172			   void *data, unsigned long len);
   1173int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
   1174				  void *data, unsigned int offset,
   1175				  unsigned long len);
   1176int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
   1177			      gpa_t gpa, unsigned long len);
   1178
   1179#define __kvm_get_guest(kvm, gfn, offset, v)				\
   1180({									\
   1181	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
   1182	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
   1183	int __ret = -EFAULT;						\
   1184									\
   1185	if (!kvm_is_error_hva(__addr))					\
   1186		__ret = get_user(v, __uaddr);				\
   1187	__ret;								\
   1188})
   1189
   1190#define kvm_get_guest(kvm, gpa, v)					\
   1191({									\
   1192	gpa_t __gpa = gpa;						\
   1193	struct kvm *__kvm = kvm;					\
   1194									\
   1195	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
   1196			offset_in_page(__gpa), v);			\
   1197})
   1198
   1199#define __kvm_put_guest(kvm, gfn, offset, v)				\
   1200({									\
   1201	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
   1202	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
   1203	int __ret = -EFAULT;						\
   1204									\
   1205	if (!kvm_is_error_hva(__addr))					\
   1206		__ret = put_user(v, __uaddr);				\
   1207	if (!__ret)							\
   1208		mark_page_dirty(kvm, gfn);				\
   1209	__ret;								\
   1210})
   1211
   1212#define kvm_put_guest(kvm, gpa, v)					\
   1213({									\
   1214	gpa_t __gpa = gpa;						\
   1215	struct kvm *__kvm = kvm;					\
   1216									\
   1217	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
   1218			offset_in_page(__gpa), v);			\
   1219})
   1220
   1221int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
   1222struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
   1223bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
   1224bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
   1225unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
   1226void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
   1227void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
   1228
   1229struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
   1230struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
   1231kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
   1232kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
   1233int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
   1234struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
   1235void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
   1236unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
   1237unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
   1238int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
   1239			     int len);
   1240int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
   1241			       unsigned long len);
   1242int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
   1243			unsigned long len);
   1244int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
   1245			      int offset, int len);
   1246int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
   1247			 unsigned long len);
   1248void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
   1249
   1250/**
   1251 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
   1252 *                             given guest physical address.
   1253 *
   1254 * @kvm:	   pointer to kvm instance.
   1255 * @gpc:	   struct gfn_to_pfn_cache object.
   1256 * @vcpu:	   vCPU to be used for marking pages dirty and to be woken on
   1257 *		   invalidation.
   1258 * @usage:	   indicates if the resulting host physical PFN is used while
   1259 *		   the @vcpu is IN_GUEST_MODE (in which case invalidation of 
   1260 *		   the cache from MMU notifiers---but not for KVM memslot
   1261 *		   changes!---will also force @vcpu to exit the guest and
   1262 *		   refresh the cache); and/or if the PFN used directly
   1263 *		   by KVM (and thus needs a kernel virtual mapping).
   1264 * @gpa:	   guest physical address to map.
   1265 * @len:	   sanity check; the range being access must fit a single page.
   1266 *
   1267 * @return:	   0 for success.
   1268 *		   -EINVAL for a mapping which would cross a page boundary.
   1269 *                 -EFAULT for an untranslatable guest physical address.
   1270 *
   1271 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
   1272 * invalidations to be processed.  Callers are required to use
   1273 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
   1274 * accessing the target page.
   1275 */
   1276int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
   1277			      struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
   1278			      gpa_t gpa, unsigned long len);
   1279
   1280/**
   1281 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
   1282 *
   1283 * @kvm:	   pointer to kvm instance.
   1284 * @gpc:	   struct gfn_to_pfn_cache object.
   1285 * @gpa:	   current guest physical address to map.
   1286 * @len:	   sanity check; the range being access must fit a single page.
   1287 *
   1288 * @return:	   %true if the cache is still valid and the address matches.
   1289 *		   %false if the cache is not valid.
   1290 *
   1291 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
   1292 * while calling this function, and then continue to hold the lock until the
   1293 * access is complete.
   1294 *
   1295 * Callers in IN_GUEST_MODE may do so without locking, although they should
   1296 * still hold a read lock on kvm->scru for the memslot checks.
   1297 */
   1298bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
   1299				gpa_t gpa, unsigned long len);
   1300
   1301/**
   1302 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
   1303 *
   1304 * @kvm:	   pointer to kvm instance.
   1305 * @gpc:	   struct gfn_to_pfn_cache object.
   1306 * @gpa:	   updated guest physical address to map.
   1307 * @len:	   sanity check; the range being access must fit a single page.
   1308 *
   1309 * @return:	   0 for success.
   1310 *		   -EINVAL for a mapping which would cross a page boundary.
   1311 *                 -EFAULT for an untranslatable guest physical address.
   1312 *
   1313 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
   1314 * returm from this function does not mean the page can be immediately
   1315 * accessed because it may have raced with an invalidation. Callers must
   1316 * still lock and check the cache status, as this function does not return
   1317 * with the lock still held to permit access.
   1318 */
   1319int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
   1320				 gpa_t gpa, unsigned long len);
   1321
   1322/**
   1323 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
   1324 *
   1325 * @kvm:	   pointer to kvm instance.
   1326 * @gpc:	   struct gfn_to_pfn_cache object.
   1327 *
   1328 * This unmaps the referenced page. The cache is left in the invalid state
   1329 * but at least the mapping from GPA to userspace HVA will remain cached
   1330 * and can be reused on a subsequent refresh.
   1331 */
   1332void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
   1333
   1334/**
   1335 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
   1336 *
   1337 * @kvm:	   pointer to kvm instance.
   1338 * @gpc:	   struct gfn_to_pfn_cache object.
   1339 *
   1340 * This removes a cache from the @kvm's list to be processed on MMU notifier
   1341 * invocation.
   1342 */
   1343void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
   1344
   1345void kvm_sigset_activate(struct kvm_vcpu *vcpu);
   1346void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
   1347
   1348void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
   1349bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
   1350void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
   1351void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
   1352bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
   1353void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
   1354int kvm_vcpu_yield_to(struct kvm_vcpu *target);
   1355void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
   1356
   1357void kvm_flush_remote_tlbs(struct kvm *kvm);
   1358
   1359#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
   1360int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
   1361int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
   1362void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
   1363void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
   1364#endif
   1365
   1366void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
   1367				   unsigned long end);
   1368void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
   1369				   unsigned long end);
   1370
   1371long kvm_arch_dev_ioctl(struct file *filp,
   1372			unsigned int ioctl, unsigned long arg);
   1373long kvm_arch_vcpu_ioctl(struct file *filp,
   1374			 unsigned int ioctl, unsigned long arg);
   1375vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
   1376
   1377int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
   1378
   1379void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
   1380					struct kvm_memory_slot *slot,
   1381					gfn_t gfn_offset,
   1382					unsigned long mask);
   1383void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
   1384
   1385#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
   1386void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
   1387					const struct kvm_memory_slot *memslot);
   1388#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
   1389int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
   1390int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
   1391		      int *is_dirty, struct kvm_memory_slot **memslot);
   1392#endif
   1393
   1394int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
   1395			bool line_status);
   1396int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
   1397			    struct kvm_enable_cap *cap);
   1398long kvm_arch_vm_ioctl(struct file *filp,
   1399		       unsigned int ioctl, unsigned long arg);
   1400
   1401int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
   1402int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
   1403
   1404int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
   1405				    struct kvm_translation *tr);
   1406
   1407int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
   1408int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
   1409int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
   1410				  struct kvm_sregs *sregs);
   1411int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
   1412				  struct kvm_sregs *sregs);
   1413int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
   1414				    struct kvm_mp_state *mp_state);
   1415int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
   1416				    struct kvm_mp_state *mp_state);
   1417int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
   1418					struct kvm_guest_debug *dbg);
   1419int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
   1420
   1421int kvm_arch_init(void *opaque);
   1422void kvm_arch_exit(void);
   1423
   1424void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
   1425
   1426void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
   1427void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
   1428int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
   1429int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
   1430void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
   1431void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
   1432
   1433#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
   1434int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
   1435#endif
   1436
   1437#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
   1438void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
   1439#endif
   1440
   1441int kvm_arch_hardware_enable(void);
   1442void kvm_arch_hardware_disable(void);
   1443int kvm_arch_hardware_setup(void *opaque);
   1444void kvm_arch_hardware_unsetup(void);
   1445int kvm_arch_check_processor_compat(void *opaque);
   1446int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
   1447bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
   1448int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
   1449bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
   1450bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
   1451int kvm_arch_post_init_vm(struct kvm *kvm);
   1452void kvm_arch_pre_destroy_vm(struct kvm *kvm);
   1453int kvm_arch_create_vm_debugfs(struct kvm *kvm);
   1454
   1455#ifndef __KVM_HAVE_ARCH_VM_ALLOC
   1456/*
   1457 * All architectures that want to use vzalloc currently also
   1458 * need their own kvm_arch_alloc_vm implementation.
   1459 */
   1460static inline struct kvm *kvm_arch_alloc_vm(void)
   1461{
   1462	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
   1463}
   1464#endif
   1465
   1466static inline void __kvm_arch_free_vm(struct kvm *kvm)
   1467{
   1468	kvfree(kvm);
   1469}
   1470
   1471#ifndef __KVM_HAVE_ARCH_VM_FREE
   1472static inline void kvm_arch_free_vm(struct kvm *kvm)
   1473{
   1474	__kvm_arch_free_vm(kvm);
   1475}
   1476#endif
   1477
   1478#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
   1479static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
   1480{
   1481	return -ENOTSUPP;
   1482}
   1483#endif
   1484
   1485#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
   1486void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
   1487void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
   1488bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
   1489#else
   1490static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
   1491{
   1492}
   1493
   1494static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
   1495{
   1496}
   1497
   1498static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
   1499{
   1500	return false;
   1501}
   1502#endif
   1503#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
   1504void kvm_arch_start_assignment(struct kvm *kvm);
   1505void kvm_arch_end_assignment(struct kvm *kvm);
   1506bool kvm_arch_has_assigned_device(struct kvm *kvm);
   1507#else
   1508static inline void kvm_arch_start_assignment(struct kvm *kvm)
   1509{
   1510}
   1511
   1512static inline void kvm_arch_end_assignment(struct kvm *kvm)
   1513{
   1514}
   1515
   1516static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
   1517{
   1518	return false;
   1519}
   1520#endif
   1521
   1522static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
   1523{
   1524#ifdef __KVM_HAVE_ARCH_WQP
   1525	return vcpu->arch.waitp;
   1526#else
   1527	return &vcpu->wait;
   1528#endif
   1529}
   1530
   1531/*
   1532 * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
   1533 * true if the vCPU was blocking and was awakened, false otherwise.
   1534 */
   1535static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
   1536{
   1537	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
   1538}
   1539
   1540static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
   1541{
   1542	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
   1543}
   1544
   1545#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
   1546/*
   1547 * returns true if the virtual interrupt controller is initialized and
   1548 * ready to accept virtual IRQ. On some architectures the virtual interrupt
   1549 * controller is dynamically instantiated and this is not always true.
   1550 */
   1551bool kvm_arch_intc_initialized(struct kvm *kvm);
   1552#else
   1553static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
   1554{
   1555	return true;
   1556}
   1557#endif
   1558
   1559#ifdef CONFIG_GUEST_PERF_EVENTS
   1560unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
   1561
   1562void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
   1563void kvm_unregister_perf_callbacks(void);
   1564#else
   1565static inline void kvm_register_perf_callbacks(void *ign) {}
   1566static inline void kvm_unregister_perf_callbacks(void) {}
   1567#endif /* CONFIG_GUEST_PERF_EVENTS */
   1568
   1569int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
   1570void kvm_arch_destroy_vm(struct kvm *kvm);
   1571void kvm_arch_sync_events(struct kvm *kvm);
   1572
   1573int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
   1574
   1575bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
   1576bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
   1577
   1578struct kvm_irq_ack_notifier {
   1579	struct hlist_node link;
   1580	unsigned gsi;
   1581	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
   1582};
   1583
   1584int kvm_irq_map_gsi(struct kvm *kvm,
   1585		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
   1586int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
   1587
   1588int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
   1589		bool line_status);
   1590int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
   1591		int irq_source_id, int level, bool line_status);
   1592int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
   1593			       struct kvm *kvm, int irq_source_id,
   1594			       int level, bool line_status);
   1595bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
   1596void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
   1597void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
   1598void kvm_register_irq_ack_notifier(struct kvm *kvm,
   1599				   struct kvm_irq_ack_notifier *kian);
   1600void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
   1601				   struct kvm_irq_ack_notifier *kian);
   1602int kvm_request_irq_source_id(struct kvm *kvm);
   1603void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
   1604bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
   1605
   1606/*
   1607 * Returns a pointer to the memslot if it contains gfn.
   1608 * Otherwise returns NULL.
   1609 */
   1610static inline struct kvm_memory_slot *
   1611try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
   1612{
   1613	if (!slot)
   1614		return NULL;
   1615
   1616	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
   1617		return slot;
   1618	else
   1619		return NULL;
   1620}
   1621
   1622/*
   1623 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
   1624 *
   1625 * With "approx" set returns the memslot also when the address falls
   1626 * in a hole. In that case one of the memslots bordering the hole is
   1627 * returned.
   1628 */
   1629static inline struct kvm_memory_slot *
   1630search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
   1631{
   1632	struct kvm_memory_slot *slot;
   1633	struct rb_node *node;
   1634	int idx = slots->node_idx;
   1635
   1636	slot = NULL;
   1637	for (node = slots->gfn_tree.rb_node; node; ) {
   1638		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
   1639		if (gfn >= slot->base_gfn) {
   1640			if (gfn < slot->base_gfn + slot->npages)
   1641				return slot;
   1642			node = node->rb_right;
   1643		} else
   1644			node = node->rb_left;
   1645	}
   1646
   1647	return approx ? slot : NULL;
   1648}
   1649
   1650static inline struct kvm_memory_slot *
   1651____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
   1652{
   1653	struct kvm_memory_slot *slot;
   1654
   1655	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
   1656	slot = try_get_memslot(slot, gfn);
   1657	if (slot)
   1658		return slot;
   1659
   1660	slot = search_memslots(slots, gfn, approx);
   1661	if (slot) {
   1662		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
   1663		return slot;
   1664	}
   1665
   1666	return NULL;
   1667}
   1668
   1669/*
   1670 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
   1671 * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
   1672 * because that would bloat other code too much.
   1673 */
   1674static inline struct kvm_memory_slot *
   1675__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
   1676{
   1677	return ____gfn_to_memslot(slots, gfn, false);
   1678}
   1679
   1680static inline unsigned long
   1681__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
   1682{
   1683	/*
   1684	 * The index was checked originally in search_memslots.  To avoid
   1685	 * that a malicious guest builds a Spectre gadget out of e.g. page
   1686	 * table walks, do not let the processor speculate loads outside
   1687	 * the guest's registered memslots.
   1688	 */
   1689	unsigned long offset = gfn - slot->base_gfn;
   1690	offset = array_index_nospec(offset, slot->npages);
   1691	return slot->userspace_addr + offset * PAGE_SIZE;
   1692}
   1693
   1694static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
   1695{
   1696	return gfn_to_memslot(kvm, gfn)->id;
   1697}
   1698
   1699static inline gfn_t
   1700hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
   1701{
   1702	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
   1703
   1704	return slot->base_gfn + gfn_offset;
   1705}
   1706
   1707static inline gpa_t gfn_to_gpa(gfn_t gfn)
   1708{
   1709	return (gpa_t)gfn << PAGE_SHIFT;
   1710}
   1711
   1712static inline gfn_t gpa_to_gfn(gpa_t gpa)
   1713{
   1714	return (gfn_t)(gpa >> PAGE_SHIFT);
   1715}
   1716
   1717static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
   1718{
   1719	return (hpa_t)pfn << PAGE_SHIFT;
   1720}
   1721
   1722static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
   1723						gpa_t gpa)
   1724{
   1725	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
   1726}
   1727
   1728static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
   1729{
   1730	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
   1731
   1732	return kvm_is_error_hva(hva);
   1733}
   1734
   1735enum kvm_stat_kind {
   1736	KVM_STAT_VM,
   1737	KVM_STAT_VCPU,
   1738};
   1739
   1740struct kvm_stat_data {
   1741	struct kvm *kvm;
   1742	const struct _kvm_stats_desc *desc;
   1743	enum kvm_stat_kind kind;
   1744};
   1745
   1746struct _kvm_stats_desc {
   1747	struct kvm_stats_desc desc;
   1748	char name[KVM_STATS_NAME_SIZE];
   1749};
   1750
   1751#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
   1752	.flags = type | unit | base |					       \
   1753		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
   1754		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
   1755		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
   1756	.exponent = exp,						       \
   1757	.size = sz,							       \
   1758	.bucket_size = bsz
   1759
   1760#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
   1761	{								       \
   1762		{							       \
   1763			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
   1764			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
   1765		},							       \
   1766		.name = #stat,						       \
   1767	}
   1768#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
   1769	{								       \
   1770		{							       \
   1771			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
   1772			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
   1773		},							       \
   1774		.name = #stat,						       \
   1775	}
   1776#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
   1777	{								       \
   1778		{							       \
   1779			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
   1780			.offset = offsetof(struct kvm_vm_stat, stat)	       \
   1781		},							       \
   1782		.name = #stat,						       \
   1783	}
   1784#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
   1785	{								       \
   1786		{							       \
   1787			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
   1788			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
   1789		},							       \
   1790		.name = #stat,						       \
   1791	}
   1792/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
   1793#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
   1794	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
   1795
   1796#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
   1797	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
   1798		unit, base, exponent, 1, 0)
   1799#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
   1800	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
   1801		unit, base, exponent, 1, 0)
   1802#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
   1803	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
   1804		unit, base, exponent, 1, 0)
   1805#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
   1806	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
   1807		unit, base, exponent, sz, bsz)
   1808#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
   1809	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
   1810		unit, base, exponent, sz, 0)
   1811
   1812/* Cumulative counter, read/write */
   1813#define STATS_DESC_COUNTER(SCOPE, name)					       \
   1814	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
   1815		KVM_STATS_BASE_POW10, 0)
   1816/* Instantaneous counter, read only */
   1817#define STATS_DESC_ICOUNTER(SCOPE, name)				       \
   1818	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
   1819		KVM_STATS_BASE_POW10, 0)
   1820/* Peak counter, read/write */
   1821#define STATS_DESC_PCOUNTER(SCOPE, name)				       \
   1822	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
   1823		KVM_STATS_BASE_POW10, 0)
   1824
   1825/* Cumulative time in nanosecond */
   1826#define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
   1827	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
   1828		KVM_STATS_BASE_POW10, -9)
   1829/* Linear histogram for time in nanosecond */
   1830#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
   1831	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
   1832		KVM_STATS_BASE_POW10, -9, sz, bsz)
   1833/* Logarithmic histogram for time in nanosecond */
   1834#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
   1835	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
   1836		KVM_STATS_BASE_POW10, -9, sz)
   1837
   1838#define KVM_GENERIC_VM_STATS()						       \
   1839	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
   1840	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
   1841
   1842#define KVM_GENERIC_VCPU_STATS()					       \
   1843	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
   1844	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
   1845	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
   1846	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
   1847	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
   1848	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
   1849	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
   1850	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
   1851			HALT_POLL_HIST_COUNT),				       \
   1852	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
   1853			HALT_POLL_HIST_COUNT),				       \
   1854	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
   1855			HALT_POLL_HIST_COUNT),				       \
   1856	STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking)
   1857
   1858extern struct dentry *kvm_debugfs_dir;
   1859
   1860ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
   1861		       const struct _kvm_stats_desc *desc,
   1862		       void *stats, size_t size_stats,
   1863		       char __user *user_buffer, size_t size, loff_t *offset);
   1864
   1865/**
   1866 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
   1867 * statistics data.
   1868 *
   1869 * @data: start address of the stats data
   1870 * @size: the number of bucket of the stats data
   1871 * @value: the new value used to update the linear histogram's bucket
   1872 * @bucket_size: the size (width) of a bucket
   1873 */
   1874static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
   1875						u64 value, size_t bucket_size)
   1876{
   1877	size_t index = div64_u64(value, bucket_size);
   1878
   1879	index = min(index, size - 1);
   1880	++data[index];
   1881}
   1882
   1883/**
   1884 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
   1885 * statistics data.
   1886 *
   1887 * @data: start address of the stats data
   1888 * @size: the number of bucket of the stats data
   1889 * @value: the new value used to update the logarithmic histogram's bucket
   1890 */
   1891static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
   1892{
   1893	size_t index = fls64(value);
   1894
   1895	index = min(index, size - 1);
   1896	++data[index];
   1897}
   1898
   1899#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
   1900	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
   1901#define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
   1902	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
   1903
   1904
   1905extern const struct kvm_stats_header kvm_vm_stats_header;
   1906extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
   1907extern const struct kvm_stats_header kvm_vcpu_stats_header;
   1908extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
   1909
   1910#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
   1911static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
   1912{
   1913	if (unlikely(kvm->mmu_notifier_count))
   1914		return 1;
   1915	/*
   1916	 * Ensure the read of mmu_notifier_count happens before the read
   1917	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
   1918	 * mmu_notifier_invalidate_range_end to make sure that the caller
   1919	 * either sees the old (non-zero) value of mmu_notifier_count or
   1920	 * the new (incremented) value of mmu_notifier_seq.
   1921	 * PowerPC Book3s HV KVM calls this under a per-page lock
   1922	 * rather than under kvm->mmu_lock, for scalability, so
   1923	 * can't rely on kvm->mmu_lock to keep things ordered.
   1924	 */
   1925	smp_rmb();
   1926	if (kvm->mmu_notifier_seq != mmu_seq)
   1927		return 1;
   1928	return 0;
   1929}
   1930
   1931static inline int mmu_notifier_retry_hva(struct kvm *kvm,
   1932					 unsigned long mmu_seq,
   1933					 unsigned long hva)
   1934{
   1935	lockdep_assert_held(&kvm->mmu_lock);
   1936	/*
   1937	 * If mmu_notifier_count is non-zero, then the range maintained by
   1938	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
   1939	 * might be being invalidated. Note that it may include some false
   1940	 * positives, due to shortcuts when handing concurrent invalidations.
   1941	 */
   1942	if (unlikely(kvm->mmu_notifier_count) &&
   1943	    hva >= kvm->mmu_notifier_range_start &&
   1944	    hva < kvm->mmu_notifier_range_end)
   1945		return 1;
   1946	if (kvm->mmu_notifier_seq != mmu_seq)
   1947		return 1;
   1948	return 0;
   1949}
   1950#endif
   1951
   1952#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
   1953
   1954#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
   1955
   1956bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
   1957int kvm_set_irq_routing(struct kvm *kvm,
   1958			const struct kvm_irq_routing_entry *entries,
   1959			unsigned nr,
   1960			unsigned flags);
   1961int kvm_set_routing_entry(struct kvm *kvm,
   1962			  struct kvm_kernel_irq_routing_entry *e,
   1963			  const struct kvm_irq_routing_entry *ue);
   1964void kvm_free_irq_routing(struct kvm *kvm);
   1965
   1966#else
   1967
   1968static inline void kvm_free_irq_routing(struct kvm *kvm) {}
   1969
   1970#endif
   1971
   1972int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
   1973
   1974#ifdef CONFIG_HAVE_KVM_EVENTFD
   1975
   1976void kvm_eventfd_init(struct kvm *kvm);
   1977int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
   1978
   1979#ifdef CONFIG_HAVE_KVM_IRQFD
   1980int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
   1981void kvm_irqfd_release(struct kvm *kvm);
   1982void kvm_irq_routing_update(struct kvm *);
   1983#else
   1984static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
   1985{
   1986	return -EINVAL;
   1987}
   1988
   1989static inline void kvm_irqfd_release(struct kvm *kvm) {}
   1990#endif
   1991
   1992#else
   1993
   1994static inline void kvm_eventfd_init(struct kvm *kvm) {}
   1995
   1996static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
   1997{
   1998	return -EINVAL;
   1999}
   2000
   2001static inline void kvm_irqfd_release(struct kvm *kvm) {}
   2002
   2003#ifdef CONFIG_HAVE_KVM_IRQCHIP
   2004static inline void kvm_irq_routing_update(struct kvm *kvm)
   2005{
   2006}
   2007#endif
   2008
   2009static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
   2010{
   2011	return -ENOSYS;
   2012}
   2013
   2014#endif /* CONFIG_HAVE_KVM_EVENTFD */
   2015
   2016void kvm_arch_irq_routing_update(struct kvm *kvm);
   2017
   2018static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
   2019{
   2020	/*
   2021	 * Ensure the rest of the request is published to kvm_check_request's
   2022	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
   2023	 */
   2024	smp_wmb();
   2025	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
   2026}
   2027
   2028static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
   2029{
   2030	/*
   2031	 * Request that don't require vCPU action should never be logged in
   2032	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
   2033	 * logged indefinitely and prevent the vCPU from entering the guest.
   2034	 */
   2035	BUILD_BUG_ON(!__builtin_constant_p(req) ||
   2036		     (req & KVM_REQUEST_NO_ACTION));
   2037
   2038	__kvm_make_request(req, vcpu);
   2039}
   2040
   2041static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
   2042{
   2043	return READ_ONCE(vcpu->requests);
   2044}
   2045
   2046static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
   2047{
   2048	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
   2049}
   2050
   2051static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
   2052{
   2053	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
   2054}
   2055
   2056static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
   2057{
   2058	if (kvm_test_request(req, vcpu)) {
   2059		kvm_clear_request(req, vcpu);
   2060
   2061		/*
   2062		 * Ensure the rest of the request is visible to kvm_check_request's
   2063		 * caller.  Paired with the smp_wmb in kvm_make_request.
   2064		 */
   2065		smp_mb__after_atomic();
   2066		return true;
   2067	} else {
   2068		return false;
   2069	}
   2070}
   2071
   2072extern bool kvm_rebooting;
   2073
   2074extern unsigned int halt_poll_ns;
   2075extern unsigned int halt_poll_ns_grow;
   2076extern unsigned int halt_poll_ns_grow_start;
   2077extern unsigned int halt_poll_ns_shrink;
   2078
   2079struct kvm_device {
   2080	const struct kvm_device_ops *ops;
   2081	struct kvm *kvm;
   2082	void *private;
   2083	struct list_head vm_node;
   2084};
   2085
   2086/* create, destroy, and name are mandatory */
   2087struct kvm_device_ops {
   2088	const char *name;
   2089
   2090	/*
   2091	 * create is called holding kvm->lock and any operations not suitable
   2092	 * to do while holding the lock should be deferred to init (see
   2093	 * below).
   2094	 */
   2095	int (*create)(struct kvm_device *dev, u32 type);
   2096
   2097	/*
   2098	 * init is called after create if create is successful and is called
   2099	 * outside of holding kvm->lock.
   2100	 */
   2101	void (*init)(struct kvm_device *dev);
   2102
   2103	/*
   2104	 * Destroy is responsible for freeing dev.
   2105	 *
   2106	 * Destroy may be called before or after destructors are called
   2107	 * on emulated I/O regions, depending on whether a reference is
   2108	 * held by a vcpu or other kvm component that gets destroyed
   2109	 * after the emulated I/O.
   2110	 */
   2111	void (*destroy)(struct kvm_device *dev);
   2112
   2113	/*
   2114	 * Release is an alternative method to free the device. It is
   2115	 * called when the device file descriptor is closed. Once
   2116	 * release is called, the destroy method will not be called
   2117	 * anymore as the device is removed from the device list of
   2118	 * the VM. kvm->lock is held.
   2119	 */
   2120	void (*release)(struct kvm_device *dev);
   2121
   2122	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
   2123	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
   2124	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
   2125	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
   2126		      unsigned long arg);
   2127	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
   2128};
   2129
   2130void kvm_device_get(struct kvm_device *dev);
   2131void kvm_device_put(struct kvm_device *dev);
   2132struct kvm_device *kvm_device_from_filp(struct file *filp);
   2133int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
   2134void kvm_unregister_device_ops(u32 type);
   2135
   2136extern struct kvm_device_ops kvm_mpic_ops;
   2137extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
   2138extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
   2139
   2140#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
   2141
   2142static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
   2143{
   2144	vcpu->spin_loop.in_spin_loop = val;
   2145}
   2146static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
   2147{
   2148	vcpu->spin_loop.dy_eligible = val;
   2149}
   2150
   2151#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
   2152
   2153static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
   2154{
   2155}
   2156
   2157static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
   2158{
   2159}
   2160#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
   2161
   2162static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
   2163{
   2164	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
   2165		!(memslot->flags & KVM_MEMSLOT_INVALID));
   2166}
   2167
   2168struct kvm_vcpu *kvm_get_running_vcpu(void);
   2169struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
   2170
   2171#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
   2172bool kvm_arch_has_irq_bypass(void);
   2173int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
   2174			   struct irq_bypass_producer *);
   2175void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
   2176			   struct irq_bypass_producer *);
   2177void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
   2178void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
   2179int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
   2180				  uint32_t guest_irq, bool set);
   2181bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
   2182				  struct kvm_kernel_irq_routing_entry *);
   2183#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
   2184
   2185#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
   2186/* If we wakeup during the poll time, was it a sucessful poll? */
   2187static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
   2188{
   2189	return vcpu->valid_wakeup;
   2190}
   2191
   2192#else
   2193static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
   2194{
   2195	return true;
   2196}
   2197#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
   2198
   2199#ifdef CONFIG_HAVE_KVM_NO_POLL
   2200/* Callback that tells if we must not poll */
   2201bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
   2202#else
   2203static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
   2204{
   2205	return false;
   2206}
   2207#endif /* CONFIG_HAVE_KVM_NO_POLL */
   2208
   2209#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
   2210long kvm_arch_vcpu_async_ioctl(struct file *filp,
   2211			       unsigned int ioctl, unsigned long arg);
   2212#else
   2213static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
   2214					     unsigned int ioctl,
   2215					     unsigned long arg)
   2216{
   2217	return -ENOIOCTLCMD;
   2218}
   2219#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
   2220
   2221void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
   2222					    unsigned long start, unsigned long end);
   2223
   2224#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
   2225int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
   2226#else
   2227static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
   2228{
   2229	return 0;
   2230}
   2231#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
   2232
   2233typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
   2234
   2235int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
   2236				uintptr_t data, const char *name,
   2237				struct task_struct **thread_ptr);
   2238
   2239#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
   2240static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
   2241{
   2242	vcpu->run->exit_reason = KVM_EXIT_INTR;
   2243	vcpu->stat.signal_exits++;
   2244}
   2245#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
   2246
   2247/*
   2248 * This defines how many reserved entries we want to keep before we
   2249 * kick the vcpu to the userspace to avoid dirty ring full.  This
   2250 * value can be tuned to higher if e.g. PML is enabled on the host.
   2251 */
   2252#define  KVM_DIRTY_RING_RSVD_ENTRIES  64
   2253
   2254/* Max number of entries allowed for each kvm dirty ring */
   2255#define  KVM_DIRTY_RING_MAX_ENTRIES  65536
   2256
   2257#endif