math.h (5432B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MATH_H 3#define _LINUX_MATH_H 4 5#include <linux/types.h> 6#include <asm/div64.h> 7#include <uapi/linux/kernel.h> 8 9/* 10 * This looks more complex than it should be. But we need to 11 * get the type for the ~ right in round_down (it needs to be 12 * as wide as the result!), and we want to evaluate the macro 13 * arguments just once each. 14 */ 15#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 16 17/** 18 * round_up - round up to next specified power of 2 19 * @x: the value to round 20 * @y: multiple to round up to (must be a power of 2) 21 * 22 * Rounds @x up to next multiple of @y (which must be a power of 2). 23 * To perform arbitrary rounding up, use roundup() below. 24 */ 25#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 26 27/** 28 * round_down - round down to next specified power of 2 29 * @x: the value to round 30 * @y: multiple to round down to (must be a power of 2) 31 * 32 * Rounds @x down to next multiple of @y (which must be a power of 2). 33 * To perform arbitrary rounding down, use rounddown() below. 34 */ 35#define round_down(x, y) ((x) & ~__round_mask(x, y)) 36 37#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 38 39#define DIV_ROUND_DOWN_ULL(ll, d) \ 40 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 41 42#define DIV_ROUND_UP_ULL(ll, d) \ 43 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) 44 45#if BITS_PER_LONG == 32 46# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 47#else 48# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 49#endif 50 51/** 52 * roundup - round up to the next specified multiple 53 * @x: the value to up 54 * @y: multiple to round up to 55 * 56 * Rounds @x up to next multiple of @y. If @y will always be a power 57 * of 2, consider using the faster round_up(). 58 */ 59#define roundup(x, y) ( \ 60{ \ 61 typeof(y) __y = y; \ 62 (((x) + (__y - 1)) / __y) * __y; \ 63} \ 64) 65/** 66 * rounddown - round down to next specified multiple 67 * @x: the value to round 68 * @y: multiple to round down to 69 * 70 * Rounds @x down to next multiple of @y. If @y will always be a power 71 * of 2, consider using the faster round_down(). 72 */ 73#define rounddown(x, y) ( \ 74{ \ 75 typeof(x) __x = (x); \ 76 __x - (__x % (y)); \ 77} \ 78) 79 80/* 81 * Divide positive or negative dividend by positive or negative divisor 82 * and round to closest integer. Result is undefined for negative 83 * divisors if the dividend variable type is unsigned and for negative 84 * dividends if the divisor variable type is unsigned. 85 */ 86#define DIV_ROUND_CLOSEST(x, divisor)( \ 87{ \ 88 typeof(x) __x = x; \ 89 typeof(divisor) __d = divisor; \ 90 (((typeof(x))-1) > 0 || \ 91 ((typeof(divisor))-1) > 0 || \ 92 (((__x) > 0) == ((__d) > 0))) ? \ 93 (((__x) + ((__d) / 2)) / (__d)) : \ 94 (((__x) - ((__d) / 2)) / (__d)); \ 95} \ 96) 97/* 98 * Same as above but for u64 dividends. divisor must be a 32-bit 99 * number. 100 */ 101#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 102{ \ 103 typeof(divisor) __d = divisor; \ 104 unsigned long long _tmp = (x) + (__d) / 2; \ 105 do_div(_tmp, __d); \ 106 _tmp; \ 107} \ 108) 109 110#define __STRUCT_FRACT(type) \ 111struct type##_fract { \ 112 __##type numerator; \ 113 __##type denominator; \ 114}; 115__STRUCT_FRACT(s16) 116__STRUCT_FRACT(u16) 117__STRUCT_FRACT(s32) 118__STRUCT_FRACT(u32) 119#undef __STRUCT_FRACT 120 121/* 122 * Multiplies an integer by a fraction, while avoiding unnecessary 123 * overflow or loss of precision. 124 */ 125#define mult_frac(x, numer, denom)( \ 126{ \ 127 typeof(x) quot = (x) / (denom); \ 128 typeof(x) rem = (x) % (denom); \ 129 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 130} \ 131) 132 133#define sector_div(a, b) do_div(a, b) 134 135/** 136 * abs - return absolute value of an argument 137 * @x: the value. If it is unsigned type, it is converted to signed type first. 138 * char is treated as if it was signed (regardless of whether it really is) 139 * but the macro's return type is preserved as char. 140 * 141 * Return: an absolute value of x. 142 */ 143#define abs(x) __abs_choose_expr(x, long long, \ 144 __abs_choose_expr(x, long, \ 145 __abs_choose_expr(x, int, \ 146 __abs_choose_expr(x, short, \ 147 __abs_choose_expr(x, char, \ 148 __builtin_choose_expr( \ 149 __builtin_types_compatible_p(typeof(x), char), \ 150 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 151 ((void)0))))))) 152 153#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 154 __builtin_types_compatible_p(typeof(x), signed type) || \ 155 __builtin_types_compatible_p(typeof(x), unsigned type), \ 156 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 157 158/** 159 * reciprocal_scale - "scale" a value into range [0, ep_ro) 160 * @val: value 161 * @ep_ro: right open interval endpoint 162 * 163 * Perform a "reciprocal multiplication" in order to "scale" a value into 164 * range [0, @ep_ro), where the upper interval endpoint is right-open. 165 * This is useful, e.g. for accessing a index of an array containing 166 * @ep_ro elements, for example. Think of it as sort of modulus, only that 167 * the result isn't that of modulo. ;) Note that if initial input is a 168 * small value, then result will return 0. 169 * 170 * Return: a result based on @val in interval [0, @ep_ro). 171 */ 172static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 173{ 174 return (u32)(((u64) val * ep_ro) >> 32); 175} 176 177u64 int_pow(u64 base, unsigned int exp); 178unsigned long int_sqrt(unsigned long); 179 180#if BITS_PER_LONG < 64 181u32 int_sqrt64(u64 x); 182#else 183static inline u32 int_sqrt64(u64 x) 184{ 185 return (u32)int_sqrt(x); 186} 187#endif 188 189#endif /* _LINUX_MATH_H */