cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

math.h (5432B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_MATH_H
      3#define _LINUX_MATH_H
      4
      5#include <linux/types.h>
      6#include <asm/div64.h>
      7#include <uapi/linux/kernel.h>
      8
      9/*
     10 * This looks more complex than it should be. But we need to
     11 * get the type for the ~ right in round_down (it needs to be
     12 * as wide as the result!), and we want to evaluate the macro
     13 * arguments just once each.
     14 */
     15#define __round_mask(x, y) ((__typeof__(x))((y)-1))
     16
     17/**
     18 * round_up - round up to next specified power of 2
     19 * @x: the value to round
     20 * @y: multiple to round up to (must be a power of 2)
     21 *
     22 * Rounds @x up to next multiple of @y (which must be a power of 2).
     23 * To perform arbitrary rounding up, use roundup() below.
     24 */
     25#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
     26
     27/**
     28 * round_down - round down to next specified power of 2
     29 * @x: the value to round
     30 * @y: multiple to round down to (must be a power of 2)
     31 *
     32 * Rounds @x down to next multiple of @y (which must be a power of 2).
     33 * To perform arbitrary rounding down, use rounddown() below.
     34 */
     35#define round_down(x, y) ((x) & ~__round_mask(x, y))
     36
     37#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
     38
     39#define DIV_ROUND_DOWN_ULL(ll, d) \
     40	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
     41
     42#define DIV_ROUND_UP_ULL(ll, d) \
     43	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
     44
     45#if BITS_PER_LONG == 32
     46# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
     47#else
     48# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
     49#endif
     50
     51/**
     52 * roundup - round up to the next specified multiple
     53 * @x: the value to up
     54 * @y: multiple to round up to
     55 *
     56 * Rounds @x up to next multiple of @y. If @y will always be a power
     57 * of 2, consider using the faster round_up().
     58 */
     59#define roundup(x, y) (					\
     60{							\
     61	typeof(y) __y = y;				\
     62	(((x) + (__y - 1)) / __y) * __y;		\
     63}							\
     64)
     65/**
     66 * rounddown - round down to next specified multiple
     67 * @x: the value to round
     68 * @y: multiple to round down to
     69 *
     70 * Rounds @x down to next multiple of @y. If @y will always be a power
     71 * of 2, consider using the faster round_down().
     72 */
     73#define rounddown(x, y) (				\
     74{							\
     75	typeof(x) __x = (x);				\
     76	__x - (__x % (y));				\
     77}							\
     78)
     79
     80/*
     81 * Divide positive or negative dividend by positive or negative divisor
     82 * and round to closest integer. Result is undefined for negative
     83 * divisors if the dividend variable type is unsigned and for negative
     84 * dividends if the divisor variable type is unsigned.
     85 */
     86#define DIV_ROUND_CLOSEST(x, divisor)(			\
     87{							\
     88	typeof(x) __x = x;				\
     89	typeof(divisor) __d = divisor;			\
     90	(((typeof(x))-1) > 0 ||				\
     91	 ((typeof(divisor))-1) > 0 ||			\
     92	 (((__x) > 0) == ((__d) > 0))) ?		\
     93		(((__x) + ((__d) / 2)) / (__d)) :	\
     94		(((__x) - ((__d) / 2)) / (__d));	\
     95}							\
     96)
     97/*
     98 * Same as above but for u64 dividends. divisor must be a 32-bit
     99 * number.
    100 */
    101#define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
    102{							\
    103	typeof(divisor) __d = divisor;			\
    104	unsigned long long _tmp = (x) + (__d) / 2;	\
    105	do_div(_tmp, __d);				\
    106	_tmp;						\
    107}							\
    108)
    109
    110#define __STRUCT_FRACT(type)				\
    111struct type##_fract {					\
    112	__##type numerator;				\
    113	__##type denominator;				\
    114};
    115__STRUCT_FRACT(s16)
    116__STRUCT_FRACT(u16)
    117__STRUCT_FRACT(s32)
    118__STRUCT_FRACT(u32)
    119#undef __STRUCT_FRACT
    120
    121/*
    122 * Multiplies an integer by a fraction, while avoiding unnecessary
    123 * overflow or loss of precision.
    124 */
    125#define mult_frac(x, numer, denom)(			\
    126{							\
    127	typeof(x) quot = (x) / (denom);			\
    128	typeof(x) rem  = (x) % (denom);			\
    129	(quot * (numer)) + ((rem * (numer)) / (denom));	\
    130}							\
    131)
    132
    133#define sector_div(a, b) do_div(a, b)
    134
    135/**
    136 * abs - return absolute value of an argument
    137 * @x: the value.  If it is unsigned type, it is converted to signed type first.
    138 *     char is treated as if it was signed (regardless of whether it really is)
    139 *     but the macro's return type is preserved as char.
    140 *
    141 * Return: an absolute value of x.
    142 */
    143#define abs(x)	__abs_choose_expr(x, long long,				\
    144		__abs_choose_expr(x, long,				\
    145		__abs_choose_expr(x, int,				\
    146		__abs_choose_expr(x, short,				\
    147		__abs_choose_expr(x, char,				\
    148		__builtin_choose_expr(					\
    149			__builtin_types_compatible_p(typeof(x), char),	\
    150			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
    151			((void)0)))))))
    152
    153#define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
    154	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
    155	__builtin_types_compatible_p(typeof(x), unsigned type),		\
    156	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
    157
    158/**
    159 * reciprocal_scale - "scale" a value into range [0, ep_ro)
    160 * @val: value
    161 * @ep_ro: right open interval endpoint
    162 *
    163 * Perform a "reciprocal multiplication" in order to "scale" a value into
    164 * range [0, @ep_ro), where the upper interval endpoint is right-open.
    165 * This is useful, e.g. for accessing a index of an array containing
    166 * @ep_ro elements, for example. Think of it as sort of modulus, only that
    167 * the result isn't that of modulo. ;) Note that if initial input is a
    168 * small value, then result will return 0.
    169 *
    170 * Return: a result based on @val in interval [0, @ep_ro).
    171 */
    172static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
    173{
    174	return (u32)(((u64) val * ep_ro) >> 32);
    175}
    176
    177u64 int_pow(u64 base, unsigned int exp);
    178unsigned long int_sqrt(unsigned long);
    179
    180#if BITS_PER_LONG < 64
    181u32 int_sqrt64(u64 x);
    182#else
    183static inline u32 int_sqrt64(u64 x)
    184{
    185	return (u32)int_sqrt(x);
    186}
    187#endif
    188
    189#endif	/* _LINUX_MATH_H */