cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

math64.h (8112B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_MATH64_H
      3#define _LINUX_MATH64_H
      4
      5#include <linux/types.h>
      6#include <linux/math.h>
      7#include <vdso/math64.h>
      8#include <asm/div64.h>
      9
     10#if BITS_PER_LONG == 64
     11
     12#define div64_long(x, y) div64_s64((x), (y))
     13#define div64_ul(x, y)   div64_u64((x), (y))
     14
     15/**
     16 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
     17 * @dividend: unsigned 64bit dividend
     18 * @divisor: unsigned 32bit divisor
     19 * @remainder: pointer to unsigned 32bit remainder
     20 *
     21 * Return: sets ``*remainder``, then returns dividend / divisor
     22 *
     23 * This is commonly provided by 32bit archs to provide an optimized 64bit
     24 * divide.
     25 */
     26static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
     27{
     28	*remainder = dividend % divisor;
     29	return dividend / divisor;
     30}
     31
     32/*
     33 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
     34 * @dividend: signed 64bit dividend
     35 * @divisor: signed 32bit divisor
     36 * @remainder: pointer to signed 32bit remainder
     37 *
     38 * Return: sets ``*remainder``, then returns dividend / divisor
     39 */
     40static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
     41{
     42	*remainder = dividend % divisor;
     43	return dividend / divisor;
     44}
     45
     46/*
     47 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
     48 * @dividend: unsigned 64bit dividend
     49 * @divisor: unsigned 64bit divisor
     50 * @remainder: pointer to unsigned 64bit remainder
     51 *
     52 * Return: sets ``*remainder``, then returns dividend / divisor
     53 */
     54static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
     55{
     56	*remainder = dividend % divisor;
     57	return dividend / divisor;
     58}
     59
     60/*
     61 * div64_u64 - unsigned 64bit divide with 64bit divisor
     62 * @dividend: unsigned 64bit dividend
     63 * @divisor: unsigned 64bit divisor
     64 *
     65 * Return: dividend / divisor
     66 */
     67static inline u64 div64_u64(u64 dividend, u64 divisor)
     68{
     69	return dividend / divisor;
     70}
     71
     72/*
     73 * div64_s64 - signed 64bit divide with 64bit divisor
     74 * @dividend: signed 64bit dividend
     75 * @divisor: signed 64bit divisor
     76 *
     77 * Return: dividend / divisor
     78 */
     79static inline s64 div64_s64(s64 dividend, s64 divisor)
     80{
     81	return dividend / divisor;
     82}
     83
     84#elif BITS_PER_LONG == 32
     85
     86#define div64_long(x, y) div_s64((x), (y))
     87#define div64_ul(x, y)   div_u64((x), (y))
     88
     89#ifndef div_u64_rem
     90static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
     91{
     92	*remainder = do_div(dividend, divisor);
     93	return dividend;
     94}
     95#endif
     96
     97#ifndef div_s64_rem
     98extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
     99#endif
    100
    101#ifndef div64_u64_rem
    102extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
    103#endif
    104
    105#ifndef div64_u64
    106extern u64 div64_u64(u64 dividend, u64 divisor);
    107#endif
    108
    109#ifndef div64_s64
    110extern s64 div64_s64(s64 dividend, s64 divisor);
    111#endif
    112
    113#endif /* BITS_PER_LONG */
    114
    115/**
    116 * div_u64 - unsigned 64bit divide with 32bit divisor
    117 * @dividend: unsigned 64bit dividend
    118 * @divisor: unsigned 32bit divisor
    119 *
    120 * This is the most common 64bit divide and should be used if possible,
    121 * as many 32bit archs can optimize this variant better than a full 64bit
    122 * divide.
    123 */
    124#ifndef div_u64
    125static inline u64 div_u64(u64 dividend, u32 divisor)
    126{
    127	u32 remainder;
    128	return div_u64_rem(dividend, divisor, &remainder);
    129}
    130#endif
    131
    132/**
    133 * div_s64 - signed 64bit divide with 32bit divisor
    134 * @dividend: signed 64bit dividend
    135 * @divisor: signed 32bit divisor
    136 */
    137#ifndef div_s64
    138static inline s64 div_s64(s64 dividend, s32 divisor)
    139{
    140	s32 remainder;
    141	return div_s64_rem(dividend, divisor, &remainder);
    142}
    143#endif
    144
    145u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
    146
    147#ifndef mul_u32_u32
    148/*
    149 * Many a GCC version messes this up and generates a 64x64 mult :-(
    150 */
    151static inline u64 mul_u32_u32(u32 a, u32 b)
    152{
    153	return (u64)a * b;
    154}
    155#endif
    156
    157#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
    158
    159#ifndef mul_u64_u32_shr
    160static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
    161{
    162	return (u64)(((unsigned __int128)a * mul) >> shift);
    163}
    164#endif /* mul_u64_u32_shr */
    165
    166#ifndef mul_u64_u64_shr
    167static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
    168{
    169	return (u64)(((unsigned __int128)a * mul) >> shift);
    170}
    171#endif /* mul_u64_u64_shr */
    172
    173#else
    174
    175#ifndef mul_u64_u32_shr
    176static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
    177{
    178	u32 ah, al;
    179	u64 ret;
    180
    181	al = a;
    182	ah = a >> 32;
    183
    184	ret = mul_u32_u32(al, mul) >> shift;
    185	if (ah)
    186		ret += mul_u32_u32(ah, mul) << (32 - shift);
    187
    188	return ret;
    189}
    190#endif /* mul_u64_u32_shr */
    191
    192#ifndef mul_u64_u64_shr
    193static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
    194{
    195	union {
    196		u64 ll;
    197		struct {
    198#ifdef __BIG_ENDIAN
    199			u32 high, low;
    200#else
    201			u32 low, high;
    202#endif
    203		} l;
    204	} rl, rm, rn, rh, a0, b0;
    205	u64 c;
    206
    207	a0.ll = a;
    208	b0.ll = b;
    209
    210	rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
    211	rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
    212	rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
    213	rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
    214
    215	/*
    216	 * Each of these lines computes a 64-bit intermediate result into "c",
    217	 * starting at bits 32-95.  The low 32-bits go into the result of the
    218	 * multiplication, the high 32-bits are carried into the next step.
    219	 */
    220	rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
    221	rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
    222	rh.l.high = (c >> 32) + rh.l.high;
    223
    224	/*
    225	 * The 128-bit result of the multiplication is in rl.ll and rh.ll,
    226	 * shift it right and throw away the high part of the result.
    227	 */
    228	if (shift == 0)
    229		return rl.ll;
    230	if (shift < 64)
    231		return (rl.ll >> shift) | (rh.ll << (64 - shift));
    232	return rh.ll >> (shift & 63);
    233}
    234#endif /* mul_u64_u64_shr */
    235
    236#endif
    237
    238#ifndef mul_s64_u64_shr
    239static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift)
    240{
    241	u64 ret;
    242
    243	/*
    244	 * Extract the sign before the multiplication and put it back
    245	 * afterwards if needed.
    246	 */
    247	ret = mul_u64_u64_shr(abs(a), b, shift);
    248
    249	if (a < 0)
    250		ret = -((s64) ret);
    251
    252	return ret;
    253}
    254#endif /* mul_s64_u64_shr */
    255
    256#ifndef mul_u64_u32_div
    257static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
    258{
    259	union {
    260		u64 ll;
    261		struct {
    262#ifdef __BIG_ENDIAN
    263			u32 high, low;
    264#else
    265			u32 low, high;
    266#endif
    267		} l;
    268	} u, rl, rh;
    269
    270	u.ll = a;
    271	rl.ll = mul_u32_u32(u.l.low, mul);
    272	rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
    273
    274	/* Bits 32-63 of the result will be in rh.l.low. */
    275	rl.l.high = do_div(rh.ll, divisor);
    276
    277	/* Bits 0-31 of the result will be in rl.l.low.	*/
    278	do_div(rl.ll, divisor);
    279
    280	rl.l.high = rh.l.low;
    281	return rl.ll;
    282}
    283#endif /* mul_u64_u32_div */
    284
    285u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
    286
    287#define DIV64_U64_ROUND_UP(ll, d)	\
    288	({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
    289
    290/**
    291 * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
    292 * @dividend: unsigned 64bit dividend
    293 * @divisor: unsigned 64bit divisor
    294 *
    295 * Divide unsigned 64bit dividend by unsigned 64bit divisor
    296 * and round to closest integer.
    297 *
    298 * Return: dividend / divisor rounded to nearest integer
    299 */
    300#define DIV64_U64_ROUND_CLOSEST(dividend, divisor)	\
    301	({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
    302
    303/*
    304 * DIV_U64_ROUND_CLOSEST - unsigned 64bit divide with 32bit divisor rounded to nearest integer
    305 * @dividend: unsigned 64bit dividend
    306 * @divisor: unsigned 32bit divisor
    307 *
    308 * Divide unsigned 64bit dividend by unsigned 32bit divisor
    309 * and round to closest integer.
    310 *
    311 * Return: dividend / divisor rounded to nearest integer
    312 */
    313#define DIV_U64_ROUND_CLOSEST(dividend, divisor)	\
    314	({ u32 _tmp = (divisor); div_u64((u64)(dividend) + _tmp / 2, _tmp); })
    315
    316/*
    317 * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
    318 * @dividend: signed 64bit dividend
    319 * @divisor: signed 32bit divisor
    320 *
    321 * Divide signed 64bit dividend by signed 32bit divisor
    322 * and round to closest integer.
    323 *
    324 * Return: dividend / divisor rounded to nearest integer
    325 */
    326#define DIV_S64_ROUND_CLOSEST(dividend, divisor)(	\
    327{							\
    328	s64 __x = (dividend);				\
    329	s32 __d = (divisor);				\
    330	((__x > 0) == (__d > 0)) ?			\
    331		div_s64((__x + (__d / 2)), __d) :	\
    332		div_s64((__x - (__d / 2)), __d);	\
    333}							\
    334)
    335#endif /* _LINUX_MATH64_H */