memblock.h (21033B)
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2#ifndef _LINUX_MEMBLOCK_H 3#define _LINUX_MEMBLOCK_H 4 5/* 6 * Logical memory blocks. 7 * 8 * Copyright (C) 2001 Peter Bergner, IBM Corp. 9 */ 10 11#include <linux/init.h> 12#include <linux/mm.h> 13#include <asm/dma.h> 14 15extern unsigned long max_low_pfn; 16extern unsigned long min_low_pfn; 17 18/* 19 * highest page 20 */ 21extern unsigned long max_pfn; 22/* 23 * highest possible page 24 */ 25extern unsigned long long max_possible_pfn; 26 27/** 28 * enum memblock_flags - definition of memory region attributes 29 * @MEMBLOCK_NONE: no special request 30 * @MEMBLOCK_HOTPLUG: memory region indicated in the firmware-provided memory 31 * map during early boot as hot(un)pluggable system RAM (e.g., memory range 32 * that might get hotunplugged later). With "movable_node" set on the kernel 33 * commandline, try keeping this memory region hotunpluggable. Does not apply 34 * to memblocks added ("hotplugged") after early boot. 35 * @MEMBLOCK_MIRROR: mirrored region 36 * @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as 37 * reserved in the memory map; refer to memblock_mark_nomap() description 38 * for further details 39 * @MEMBLOCK_DRIVER_MANAGED: memory region that is always detected and added 40 * via a driver, and never indicated in the firmware-provided memory map as 41 * system RAM. This corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED in the 42 * kernel resource tree. 43 */ 44enum memblock_flags { 45 MEMBLOCK_NONE = 0x0, /* No special request */ 46 MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */ 47 MEMBLOCK_MIRROR = 0x2, /* mirrored region */ 48 MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */ 49 MEMBLOCK_DRIVER_MANAGED = 0x8, /* always detected via a driver */ 50}; 51 52/** 53 * struct memblock_region - represents a memory region 54 * @base: base address of the region 55 * @size: size of the region 56 * @flags: memory region attributes 57 * @nid: NUMA node id 58 */ 59struct memblock_region { 60 phys_addr_t base; 61 phys_addr_t size; 62 enum memblock_flags flags; 63#ifdef CONFIG_NUMA 64 int nid; 65#endif 66}; 67 68/** 69 * struct memblock_type - collection of memory regions of certain type 70 * @cnt: number of regions 71 * @max: size of the allocated array 72 * @total_size: size of all regions 73 * @regions: array of regions 74 * @name: the memory type symbolic name 75 */ 76struct memblock_type { 77 unsigned long cnt; 78 unsigned long max; 79 phys_addr_t total_size; 80 struct memblock_region *regions; 81 char *name; 82}; 83 84/** 85 * struct memblock - memblock allocator metadata 86 * @bottom_up: is bottom up direction? 87 * @current_limit: physical address of the current allocation limit 88 * @memory: usable memory regions 89 * @reserved: reserved memory regions 90 */ 91struct memblock { 92 bool bottom_up; /* is bottom up direction? */ 93 phys_addr_t current_limit; 94 struct memblock_type memory; 95 struct memblock_type reserved; 96}; 97 98extern struct memblock memblock; 99 100#ifndef CONFIG_ARCH_KEEP_MEMBLOCK 101#define __init_memblock __meminit 102#define __initdata_memblock __meminitdata 103void memblock_discard(void); 104#else 105#define __init_memblock 106#define __initdata_memblock 107static inline void memblock_discard(void) {} 108#endif 109 110void memblock_allow_resize(void); 111int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid, 112 enum memblock_flags flags); 113int memblock_add(phys_addr_t base, phys_addr_t size); 114int memblock_remove(phys_addr_t base, phys_addr_t size); 115int memblock_phys_free(phys_addr_t base, phys_addr_t size); 116int memblock_reserve(phys_addr_t base, phys_addr_t size); 117#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 118int memblock_physmem_add(phys_addr_t base, phys_addr_t size); 119#endif 120void memblock_trim_memory(phys_addr_t align); 121bool memblock_overlaps_region(struct memblock_type *type, 122 phys_addr_t base, phys_addr_t size); 123int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size); 124int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size); 125int memblock_mark_mirror(phys_addr_t base, phys_addr_t size); 126int memblock_mark_nomap(phys_addr_t base, phys_addr_t size); 127int memblock_clear_nomap(phys_addr_t base, phys_addr_t size); 128 129void memblock_free_all(void); 130void memblock_free(void *ptr, size_t size); 131void reset_node_managed_pages(pg_data_t *pgdat); 132void reset_all_zones_managed_pages(void); 133 134/* Low level functions */ 135void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 136 struct memblock_type *type_a, 137 struct memblock_type *type_b, phys_addr_t *out_start, 138 phys_addr_t *out_end, int *out_nid); 139 140void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags, 141 struct memblock_type *type_a, 142 struct memblock_type *type_b, phys_addr_t *out_start, 143 phys_addr_t *out_end, int *out_nid); 144 145void memblock_free_late(phys_addr_t base, phys_addr_t size); 146 147#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 148static inline void __next_physmem_range(u64 *idx, struct memblock_type *type, 149 phys_addr_t *out_start, 150 phys_addr_t *out_end) 151{ 152 extern struct memblock_type physmem; 153 154 __next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type, 155 out_start, out_end, NULL); 156} 157 158/** 159 * for_each_physmem_range - iterate through physmem areas not included in type. 160 * @i: u64 used as loop variable 161 * @type: ptr to memblock_type which excludes from the iteration, can be %NULL 162 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 163 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 164 */ 165#define for_each_physmem_range(i, type, p_start, p_end) \ 166 for (i = 0, __next_physmem_range(&i, type, p_start, p_end); \ 167 i != (u64)ULLONG_MAX; \ 168 __next_physmem_range(&i, type, p_start, p_end)) 169#endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */ 170 171/** 172 * __for_each_mem_range - iterate through memblock areas from type_a and not 173 * included in type_b. Or just type_a if type_b is NULL. 174 * @i: u64 used as loop variable 175 * @type_a: ptr to memblock_type to iterate 176 * @type_b: ptr to memblock_type which excludes from the iteration 177 * @nid: node selector, %NUMA_NO_NODE for all nodes 178 * @flags: pick from blocks based on memory attributes 179 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 180 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 181 * @p_nid: ptr to int for nid of the range, can be %NULL 182 */ 183#define __for_each_mem_range(i, type_a, type_b, nid, flags, \ 184 p_start, p_end, p_nid) \ 185 for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \ 186 p_start, p_end, p_nid); \ 187 i != (u64)ULLONG_MAX; \ 188 __next_mem_range(&i, nid, flags, type_a, type_b, \ 189 p_start, p_end, p_nid)) 190 191/** 192 * __for_each_mem_range_rev - reverse iterate through memblock areas from 193 * type_a and not included in type_b. Or just type_a if type_b is NULL. 194 * @i: u64 used as loop variable 195 * @type_a: ptr to memblock_type to iterate 196 * @type_b: ptr to memblock_type which excludes from the iteration 197 * @nid: node selector, %NUMA_NO_NODE for all nodes 198 * @flags: pick from blocks based on memory attributes 199 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 200 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 201 * @p_nid: ptr to int for nid of the range, can be %NULL 202 */ 203#define __for_each_mem_range_rev(i, type_a, type_b, nid, flags, \ 204 p_start, p_end, p_nid) \ 205 for (i = (u64)ULLONG_MAX, \ 206 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \ 207 p_start, p_end, p_nid); \ 208 i != (u64)ULLONG_MAX; \ 209 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \ 210 p_start, p_end, p_nid)) 211 212/** 213 * for_each_mem_range - iterate through memory areas. 214 * @i: u64 used as loop variable 215 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 216 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 217 */ 218#define for_each_mem_range(i, p_start, p_end) \ 219 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, \ 220 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED, \ 221 p_start, p_end, NULL) 222 223/** 224 * for_each_mem_range_rev - reverse iterate through memblock areas from 225 * type_a and not included in type_b. Or just type_a if type_b is NULL. 226 * @i: u64 used as loop variable 227 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 228 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 229 */ 230#define for_each_mem_range_rev(i, p_start, p_end) \ 231 __for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \ 232 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED,\ 233 p_start, p_end, NULL) 234 235/** 236 * for_each_reserved_mem_range - iterate over all reserved memblock areas 237 * @i: u64 used as loop variable 238 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 239 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 240 * 241 * Walks over reserved areas of memblock. Available as soon as memblock 242 * is initialized. 243 */ 244#define for_each_reserved_mem_range(i, p_start, p_end) \ 245 __for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE, \ 246 MEMBLOCK_NONE, p_start, p_end, NULL) 247 248static inline bool memblock_is_hotpluggable(struct memblock_region *m) 249{ 250 return m->flags & MEMBLOCK_HOTPLUG; 251} 252 253static inline bool memblock_is_mirror(struct memblock_region *m) 254{ 255 return m->flags & MEMBLOCK_MIRROR; 256} 257 258static inline bool memblock_is_nomap(struct memblock_region *m) 259{ 260 return m->flags & MEMBLOCK_NOMAP; 261} 262 263static inline bool memblock_is_driver_managed(struct memblock_region *m) 264{ 265 return m->flags & MEMBLOCK_DRIVER_MANAGED; 266} 267 268int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn, 269 unsigned long *end_pfn); 270void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn, 271 unsigned long *out_end_pfn, int *out_nid); 272 273/** 274 * for_each_mem_pfn_range - early memory pfn range iterator 275 * @i: an integer used as loop variable 276 * @nid: node selector, %MAX_NUMNODES for all nodes 277 * @p_start: ptr to ulong for start pfn of the range, can be %NULL 278 * @p_end: ptr to ulong for end pfn of the range, can be %NULL 279 * @p_nid: ptr to int for nid of the range, can be %NULL 280 * 281 * Walks over configured memory ranges. 282 */ 283#define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \ 284 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \ 285 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid)) 286 287#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 288void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 289 unsigned long *out_spfn, 290 unsigned long *out_epfn); 291/** 292 * for_each_free_mem_pfn_range_in_zone - iterate through zone specific free 293 * memblock areas 294 * @i: u64 used as loop variable 295 * @zone: zone in which all of the memory blocks reside 296 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 297 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 298 * 299 * Walks over free (memory && !reserved) areas of memblock in a specific 300 * zone. Available once memblock and an empty zone is initialized. The main 301 * assumption is that the zone start, end, and pgdat have been associated. 302 * This way we can use the zone to determine NUMA node, and if a given part 303 * of the memblock is valid for the zone. 304 */ 305#define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \ 306 for (i = 0, \ 307 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \ 308 i != U64_MAX; \ 309 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end)) 310 311/** 312 * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific 313 * free memblock areas from a given point 314 * @i: u64 used as loop variable 315 * @zone: zone in which all of the memory blocks reside 316 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 317 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 318 * 319 * Walks over free (memory && !reserved) areas of memblock in a specific 320 * zone, continuing from current position. Available as soon as memblock is 321 * initialized. 322 */ 323#define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \ 324 for (; i != U64_MAX; \ 325 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end)) 326 327int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask); 328 329#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 330 331/** 332 * for_each_free_mem_range - iterate through free memblock areas 333 * @i: u64 used as loop variable 334 * @nid: node selector, %NUMA_NO_NODE for all nodes 335 * @flags: pick from blocks based on memory attributes 336 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 337 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 338 * @p_nid: ptr to int for nid of the range, can be %NULL 339 * 340 * Walks over free (memory && !reserved) areas of memblock. Available as 341 * soon as memblock is initialized. 342 */ 343#define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \ 344 __for_each_mem_range(i, &memblock.memory, &memblock.reserved, \ 345 nid, flags, p_start, p_end, p_nid) 346 347/** 348 * for_each_free_mem_range_reverse - rev-iterate through free memblock areas 349 * @i: u64 used as loop variable 350 * @nid: node selector, %NUMA_NO_NODE for all nodes 351 * @flags: pick from blocks based on memory attributes 352 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 353 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 354 * @p_nid: ptr to int for nid of the range, can be %NULL 355 * 356 * Walks over free (memory && !reserved) areas of memblock in reverse 357 * order. Available as soon as memblock is initialized. 358 */ 359#define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \ 360 p_nid) \ 361 __for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \ 362 nid, flags, p_start, p_end, p_nid) 363 364int memblock_set_node(phys_addr_t base, phys_addr_t size, 365 struct memblock_type *type, int nid); 366 367#ifdef CONFIG_NUMA 368static inline void memblock_set_region_node(struct memblock_region *r, int nid) 369{ 370 r->nid = nid; 371} 372 373static inline int memblock_get_region_node(const struct memblock_region *r) 374{ 375 return r->nid; 376} 377#else 378static inline void memblock_set_region_node(struct memblock_region *r, int nid) 379{ 380} 381 382static inline int memblock_get_region_node(const struct memblock_region *r) 383{ 384 return 0; 385} 386#endif /* CONFIG_NUMA */ 387 388/* Flags for memblock allocation APIs */ 389#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0) 390#define MEMBLOCK_ALLOC_ACCESSIBLE 0 391#define MEMBLOCK_ALLOC_NOLEAKTRACE 1 392 393/* We are using top down, so it is safe to use 0 here */ 394#define MEMBLOCK_LOW_LIMIT 0 395 396#ifndef ARCH_LOW_ADDRESS_LIMIT 397#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL 398#endif 399 400phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align, 401 phys_addr_t start, phys_addr_t end); 402phys_addr_t memblock_alloc_range_nid(phys_addr_t size, 403 phys_addr_t align, phys_addr_t start, 404 phys_addr_t end, int nid, bool exact_nid); 405phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid); 406 407static __always_inline phys_addr_t memblock_phys_alloc(phys_addr_t size, 408 phys_addr_t align) 409{ 410 return memblock_phys_alloc_range(size, align, 0, 411 MEMBLOCK_ALLOC_ACCESSIBLE); 412} 413 414void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align, 415 phys_addr_t min_addr, phys_addr_t max_addr, 416 int nid); 417void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align, 418 phys_addr_t min_addr, phys_addr_t max_addr, 419 int nid); 420void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, 421 phys_addr_t min_addr, phys_addr_t max_addr, 422 int nid); 423 424static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align) 425{ 426 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 427 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 428} 429 430static inline void *memblock_alloc_raw(phys_addr_t size, 431 phys_addr_t align) 432{ 433 return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT, 434 MEMBLOCK_ALLOC_ACCESSIBLE, 435 NUMA_NO_NODE); 436} 437 438static inline void *memblock_alloc_from(phys_addr_t size, 439 phys_addr_t align, 440 phys_addr_t min_addr) 441{ 442 return memblock_alloc_try_nid(size, align, min_addr, 443 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 444} 445 446static inline void *memblock_alloc_low(phys_addr_t size, 447 phys_addr_t align) 448{ 449 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 450 ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE); 451} 452 453static inline void *memblock_alloc_node(phys_addr_t size, 454 phys_addr_t align, int nid) 455{ 456 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 457 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 458} 459 460/* 461 * Set the allocation direction to bottom-up or top-down. 462 */ 463static inline __init_memblock void memblock_set_bottom_up(bool enable) 464{ 465 memblock.bottom_up = enable; 466} 467 468/* 469 * Check if the allocation direction is bottom-up or not. 470 * if this is true, that said, memblock will allocate memory 471 * in bottom-up direction. 472 */ 473static inline __init_memblock bool memblock_bottom_up(void) 474{ 475 return memblock.bottom_up; 476} 477 478phys_addr_t memblock_phys_mem_size(void); 479phys_addr_t memblock_reserved_size(void); 480phys_addr_t memblock_start_of_DRAM(void); 481phys_addr_t memblock_end_of_DRAM(void); 482void memblock_enforce_memory_limit(phys_addr_t memory_limit); 483void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size); 484void memblock_mem_limit_remove_map(phys_addr_t limit); 485bool memblock_is_memory(phys_addr_t addr); 486bool memblock_is_map_memory(phys_addr_t addr); 487bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size); 488bool memblock_is_reserved(phys_addr_t addr); 489bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size); 490 491void memblock_dump_all(void); 492 493/** 494 * memblock_set_current_limit - Set the current allocation limit to allow 495 * limiting allocations to what is currently 496 * accessible during boot 497 * @limit: New limit value (physical address) 498 */ 499void memblock_set_current_limit(phys_addr_t limit); 500 501 502phys_addr_t memblock_get_current_limit(void); 503 504/* 505 * pfn conversion functions 506 * 507 * While the memory MEMBLOCKs should always be page aligned, the reserved 508 * MEMBLOCKs may not be. This accessor attempt to provide a very clear 509 * idea of what they return for such non aligned MEMBLOCKs. 510 */ 511 512/** 513 * memblock_region_memory_base_pfn - get the lowest pfn of the memory region 514 * @reg: memblock_region structure 515 * 516 * Return: the lowest pfn intersecting with the memory region 517 */ 518static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg) 519{ 520 return PFN_UP(reg->base); 521} 522 523/** 524 * memblock_region_memory_end_pfn - get the end pfn of the memory region 525 * @reg: memblock_region structure 526 * 527 * Return: the end_pfn of the reserved region 528 */ 529static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg) 530{ 531 return PFN_DOWN(reg->base + reg->size); 532} 533 534/** 535 * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region 536 * @reg: memblock_region structure 537 * 538 * Return: the lowest pfn intersecting with the reserved region 539 */ 540static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg) 541{ 542 return PFN_DOWN(reg->base); 543} 544 545/** 546 * memblock_region_reserved_end_pfn - get the end pfn of the reserved region 547 * @reg: memblock_region structure 548 * 549 * Return: the end_pfn of the reserved region 550 */ 551static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg) 552{ 553 return PFN_UP(reg->base + reg->size); 554} 555 556/** 557 * for_each_mem_region - itereate over memory regions 558 * @region: loop variable 559 */ 560#define for_each_mem_region(region) \ 561 for (region = memblock.memory.regions; \ 562 region < (memblock.memory.regions + memblock.memory.cnt); \ 563 region++) 564 565/** 566 * for_each_reserved_mem_region - itereate over reserved memory regions 567 * @region: loop variable 568 */ 569#define for_each_reserved_mem_region(region) \ 570 for (region = memblock.reserved.regions; \ 571 region < (memblock.reserved.regions + memblock.reserved.cnt); \ 572 region++) 573 574extern void *alloc_large_system_hash(const char *tablename, 575 unsigned long bucketsize, 576 unsigned long numentries, 577 int scale, 578 int flags, 579 unsigned int *_hash_shift, 580 unsigned int *_hash_mask, 581 unsigned long low_limit, 582 unsigned long high_limit); 583 584#define HASH_EARLY 0x00000001 /* Allocating during early boot? */ 585#define HASH_SMALL 0x00000002 /* sub-page allocation allowed, min 586 * shift passed via *_hash_shift */ 587#define HASH_ZERO 0x00000004 /* Zero allocated hash table */ 588 589/* Only NUMA needs hash distribution. 64bit NUMA architectures have 590 * sufficient vmalloc space. 591 */ 592#ifdef CONFIG_NUMA 593#define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT) 594extern int hashdist; /* Distribute hashes across NUMA nodes? */ 595#else 596#define hashdist (0) 597#endif 598 599#ifdef CONFIG_MEMTEST 600extern void early_memtest(phys_addr_t start, phys_addr_t end); 601#else 602static inline void early_memtest(phys_addr_t start, phys_addr_t end) 603{ 604} 605#endif 606 607 608#endif /* _LINUX_MEMBLOCK_H */