memcontrol.h (45620B)
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_VMALLOC, 37 MEMCG_KMEM, 38 MEMCG_ZSWAP_B, 39 MEMCG_ZSWAPPED, 40 MEMCG_NR_STAT, 41}; 42 43enum memcg_memory_event { 44 MEMCG_LOW, 45 MEMCG_HIGH, 46 MEMCG_MAX, 47 MEMCG_OOM, 48 MEMCG_OOM_KILL, 49 MEMCG_OOM_GROUP_KILL, 50 MEMCG_SWAP_HIGH, 51 MEMCG_SWAP_MAX, 52 MEMCG_SWAP_FAIL, 53 MEMCG_NR_MEMORY_EVENTS, 54}; 55 56struct mem_cgroup_reclaim_cookie { 57 pg_data_t *pgdat; 58 unsigned int generation; 59}; 60 61#ifdef CONFIG_MEMCG 62 63#define MEM_CGROUP_ID_SHIFT 16 64#define MEM_CGROUP_ID_MAX USHRT_MAX 65 66struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69}; 70 71/* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81}; 82 83struct memcg_vmstats_percpu { 84 /* Local (CPU and cgroup) page state & events */ 85 long state[MEMCG_NR_STAT]; 86 unsigned long events[NR_VM_EVENT_ITEMS]; 87 88 /* Delta calculation for lockless upward propagation */ 89 long state_prev[MEMCG_NR_STAT]; 90 unsigned long events_prev[NR_VM_EVENT_ITEMS]; 91 92 /* Cgroup1: threshold notifications & softlimit tree updates */ 93 unsigned long nr_page_events; 94 unsigned long targets[MEM_CGROUP_NTARGETS]; 95}; 96 97struct memcg_vmstats { 98 /* Aggregated (CPU and subtree) page state & events */ 99 long state[MEMCG_NR_STAT]; 100 unsigned long events[NR_VM_EVENT_ITEMS]; 101 102 /* Pending child counts during tree propagation */ 103 long state_pending[MEMCG_NR_STAT]; 104 unsigned long events_pending[NR_VM_EVENT_ITEMS]; 105}; 106 107struct mem_cgroup_reclaim_iter { 108 struct mem_cgroup *position; 109 /* scan generation, increased every round-trip */ 110 unsigned int generation; 111}; 112 113/* 114 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 115 * shrinkers, which have elements charged to this memcg. 116 */ 117struct shrinker_info { 118 struct rcu_head rcu; 119 atomic_long_t *nr_deferred; 120 unsigned long *map; 121}; 122 123struct lruvec_stats_percpu { 124 /* Local (CPU and cgroup) state */ 125 long state[NR_VM_NODE_STAT_ITEMS]; 126 127 /* Delta calculation for lockless upward propagation */ 128 long state_prev[NR_VM_NODE_STAT_ITEMS]; 129}; 130 131struct lruvec_stats { 132 /* Aggregated (CPU and subtree) state */ 133 long state[NR_VM_NODE_STAT_ITEMS]; 134 135 /* Pending child counts during tree propagation */ 136 long state_pending[NR_VM_NODE_STAT_ITEMS]; 137}; 138 139/* 140 * per-node information in memory controller. 141 */ 142struct mem_cgroup_per_node { 143 struct lruvec lruvec; 144 145 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 146 struct lruvec_stats lruvec_stats; 147 148 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 149 150 struct mem_cgroup_reclaim_iter iter; 151 152 struct shrinker_info __rcu *shrinker_info; 153 154 struct rb_node tree_node; /* RB tree node */ 155 unsigned long usage_in_excess;/* Set to the value by which */ 156 /* the soft limit is exceeded*/ 157 bool on_tree; 158 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 159 /* use container_of */ 160}; 161 162struct mem_cgroup_threshold { 163 struct eventfd_ctx *eventfd; 164 unsigned long threshold; 165}; 166 167/* For threshold */ 168struct mem_cgroup_threshold_ary { 169 /* An array index points to threshold just below or equal to usage. */ 170 int current_threshold; 171 /* Size of entries[] */ 172 unsigned int size; 173 /* Array of thresholds */ 174 struct mem_cgroup_threshold entries[]; 175}; 176 177struct mem_cgroup_thresholds { 178 /* Primary thresholds array */ 179 struct mem_cgroup_threshold_ary *primary; 180 /* 181 * Spare threshold array. 182 * This is needed to make mem_cgroup_unregister_event() "never fail". 183 * It must be able to store at least primary->size - 1 entries. 184 */ 185 struct mem_cgroup_threshold_ary *spare; 186}; 187 188#if defined(CONFIG_SMP) 189struct memcg_padding { 190 char x[0]; 191} ____cacheline_internodealigned_in_smp; 192#define MEMCG_PADDING(name) struct memcg_padding name 193#else 194#define MEMCG_PADDING(name) 195#endif 196 197/* 198 * Remember four most recent foreign writebacks with dirty pages in this 199 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 200 * one in a given round, we're likely to catch it later if it keeps 201 * foreign-dirtying, so a fairly low count should be enough. 202 * 203 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 204 */ 205#define MEMCG_CGWB_FRN_CNT 4 206 207struct memcg_cgwb_frn { 208 u64 bdi_id; /* bdi->id of the foreign inode */ 209 int memcg_id; /* memcg->css.id of foreign inode */ 210 u64 at; /* jiffies_64 at the time of dirtying */ 211 struct wb_completion done; /* tracks in-flight foreign writebacks */ 212}; 213 214/* 215 * Bucket for arbitrarily byte-sized objects charged to a memory 216 * cgroup. The bucket can be reparented in one piece when the cgroup 217 * is destroyed, without having to round up the individual references 218 * of all live memory objects in the wild. 219 */ 220struct obj_cgroup { 221 struct percpu_ref refcnt; 222 struct mem_cgroup *memcg; 223 atomic_t nr_charged_bytes; 224 union { 225 struct list_head list; /* protected by objcg_lock */ 226 struct rcu_head rcu; 227 }; 228}; 229 230/* 231 * The memory controller data structure. The memory controller controls both 232 * page cache and RSS per cgroup. We would eventually like to provide 233 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 234 * to help the administrator determine what knobs to tune. 235 */ 236struct mem_cgroup { 237 struct cgroup_subsys_state css; 238 239 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 240 struct mem_cgroup_id id; 241 242 /* Accounted resources */ 243 struct page_counter memory; /* Both v1 & v2 */ 244 245 union { 246 struct page_counter swap; /* v2 only */ 247 struct page_counter memsw; /* v1 only */ 248 }; 249 250 /* Legacy consumer-oriented counters */ 251 struct page_counter kmem; /* v1 only */ 252 struct page_counter tcpmem; /* v1 only */ 253 254 /* Range enforcement for interrupt charges */ 255 struct work_struct high_work; 256 257#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 258 unsigned long zswap_max; 259#endif 260 261 unsigned long soft_limit; 262 263 /* vmpressure notifications */ 264 struct vmpressure vmpressure; 265 266 /* 267 * Should the OOM killer kill all belonging tasks, had it kill one? 268 */ 269 bool oom_group; 270 271 /* protected by memcg_oom_lock */ 272 bool oom_lock; 273 int under_oom; 274 275 int swappiness; 276 /* OOM-Killer disable */ 277 int oom_kill_disable; 278 279 /* memory.events and memory.events.local */ 280 struct cgroup_file events_file; 281 struct cgroup_file events_local_file; 282 283 /* handle for "memory.swap.events" */ 284 struct cgroup_file swap_events_file; 285 286 /* protect arrays of thresholds */ 287 struct mutex thresholds_lock; 288 289 /* thresholds for memory usage. RCU-protected */ 290 struct mem_cgroup_thresholds thresholds; 291 292 /* thresholds for mem+swap usage. RCU-protected */ 293 struct mem_cgroup_thresholds memsw_thresholds; 294 295 /* For oom notifier event fd */ 296 struct list_head oom_notify; 297 298 /* 299 * Should we move charges of a task when a task is moved into this 300 * mem_cgroup ? And what type of charges should we move ? 301 */ 302 unsigned long move_charge_at_immigrate; 303 /* taken only while moving_account > 0 */ 304 spinlock_t move_lock; 305 unsigned long move_lock_flags; 306 307 MEMCG_PADDING(_pad1_); 308 309 /* memory.stat */ 310 struct memcg_vmstats vmstats; 311 312 /* memory.events */ 313 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 314 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 315 316 unsigned long socket_pressure; 317 318 /* Legacy tcp memory accounting */ 319 bool tcpmem_active; 320 int tcpmem_pressure; 321 322#ifdef CONFIG_MEMCG_KMEM 323 int kmemcg_id; 324 struct obj_cgroup __rcu *objcg; 325 /* list of inherited objcgs, protected by objcg_lock */ 326 struct list_head objcg_list; 327#endif 328 329 MEMCG_PADDING(_pad2_); 330 331 /* 332 * set > 0 if pages under this cgroup are moving to other cgroup. 333 */ 334 atomic_t moving_account; 335 struct task_struct *move_lock_task; 336 337 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 338 339#ifdef CONFIG_CGROUP_WRITEBACK 340 struct list_head cgwb_list; 341 struct wb_domain cgwb_domain; 342 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 343#endif 344 345 /* List of events which userspace want to receive */ 346 struct list_head event_list; 347 spinlock_t event_list_lock; 348 349#ifdef CONFIG_TRANSPARENT_HUGEPAGE 350 struct deferred_split deferred_split_queue; 351#endif 352 353 struct mem_cgroup_per_node *nodeinfo[]; 354}; 355 356/* 357 * size of first charge trial. "32" comes from vmscan.c's magic value. 358 * TODO: maybe necessary to use big numbers in big irons. 359 */ 360#define MEMCG_CHARGE_BATCH 32U 361 362extern struct mem_cgroup *root_mem_cgroup; 363 364enum page_memcg_data_flags { 365 /* page->memcg_data is a pointer to an objcgs vector */ 366 MEMCG_DATA_OBJCGS = (1UL << 0), 367 /* page has been accounted as a non-slab kernel page */ 368 MEMCG_DATA_KMEM = (1UL << 1), 369 /* the next bit after the last actual flag */ 370 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 371}; 372 373#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 374 375static inline bool folio_memcg_kmem(struct folio *folio); 376 377/* 378 * After the initialization objcg->memcg is always pointing at 379 * a valid memcg, but can be atomically swapped to the parent memcg. 380 * 381 * The caller must ensure that the returned memcg won't be released: 382 * e.g. acquire the rcu_read_lock or css_set_lock. 383 */ 384static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 385{ 386 return READ_ONCE(objcg->memcg); 387} 388 389/* 390 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 391 * @folio: Pointer to the folio. 392 * 393 * Returns a pointer to the memory cgroup associated with the folio, 394 * or NULL. This function assumes that the folio is known to have a 395 * proper memory cgroup pointer. It's not safe to call this function 396 * against some type of folios, e.g. slab folios or ex-slab folios or 397 * kmem folios. 398 */ 399static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 400{ 401 unsigned long memcg_data = folio->memcg_data; 402 403 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 404 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 405 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 406 407 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 408} 409 410/* 411 * __folio_objcg - get the object cgroup associated with a kmem folio. 412 * @folio: Pointer to the folio. 413 * 414 * Returns a pointer to the object cgroup associated with the folio, 415 * or NULL. This function assumes that the folio is known to have a 416 * proper object cgroup pointer. It's not safe to call this function 417 * against some type of folios, e.g. slab folios or ex-slab folios or 418 * LRU folios. 419 */ 420static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 421{ 422 unsigned long memcg_data = folio->memcg_data; 423 424 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 425 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 426 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 427 428 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 429} 430 431/* 432 * folio_memcg - Get the memory cgroup associated with a folio. 433 * @folio: Pointer to the folio. 434 * 435 * Returns a pointer to the memory cgroup associated with the folio, 436 * or NULL. This function assumes that the folio is known to have a 437 * proper memory cgroup pointer. It's not safe to call this function 438 * against some type of folios, e.g. slab folios or ex-slab folios. 439 * 440 * For a non-kmem folio any of the following ensures folio and memcg binding 441 * stability: 442 * 443 * - the folio lock 444 * - LRU isolation 445 * - lock_page_memcg() 446 * - exclusive reference 447 * 448 * For a kmem folio a caller should hold an rcu read lock to protect memcg 449 * associated with a kmem folio from being released. 450 */ 451static inline struct mem_cgroup *folio_memcg(struct folio *folio) 452{ 453 if (folio_memcg_kmem(folio)) 454 return obj_cgroup_memcg(__folio_objcg(folio)); 455 return __folio_memcg(folio); 456} 457 458static inline struct mem_cgroup *page_memcg(struct page *page) 459{ 460 return folio_memcg(page_folio(page)); 461} 462 463/** 464 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 465 * @folio: Pointer to the folio. 466 * 467 * This function assumes that the folio is known to have a 468 * proper memory cgroup pointer. It's not safe to call this function 469 * against some type of folios, e.g. slab folios or ex-slab folios. 470 * 471 * Return: A pointer to the memory cgroup associated with the folio, 472 * or NULL. 473 */ 474static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 475{ 476 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 477 478 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 479 WARN_ON_ONCE(!rcu_read_lock_held()); 480 481 if (memcg_data & MEMCG_DATA_KMEM) { 482 struct obj_cgroup *objcg; 483 484 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 485 return obj_cgroup_memcg(objcg); 486 } 487 488 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 489} 490 491/* 492 * page_memcg_check - get the memory cgroup associated with a page 493 * @page: a pointer to the page struct 494 * 495 * Returns a pointer to the memory cgroup associated with the page, 496 * or NULL. This function unlike page_memcg() can take any page 497 * as an argument. It has to be used in cases when it's not known if a page 498 * has an associated memory cgroup pointer or an object cgroups vector or 499 * an object cgroup. 500 * 501 * For a non-kmem page any of the following ensures page and memcg binding 502 * stability: 503 * 504 * - the page lock 505 * - LRU isolation 506 * - lock_page_memcg() 507 * - exclusive reference 508 * 509 * For a kmem page a caller should hold an rcu read lock to protect memcg 510 * associated with a kmem page from being released. 511 */ 512static inline struct mem_cgroup *page_memcg_check(struct page *page) 513{ 514 /* 515 * Because page->memcg_data might be changed asynchronously 516 * for slab pages, READ_ONCE() should be used here. 517 */ 518 unsigned long memcg_data = READ_ONCE(page->memcg_data); 519 520 if (memcg_data & MEMCG_DATA_OBJCGS) 521 return NULL; 522 523 if (memcg_data & MEMCG_DATA_KMEM) { 524 struct obj_cgroup *objcg; 525 526 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 527 return obj_cgroup_memcg(objcg); 528 } 529 530 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 531} 532 533static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 534{ 535 struct mem_cgroup *memcg; 536 537 rcu_read_lock(); 538retry: 539 memcg = obj_cgroup_memcg(objcg); 540 if (unlikely(!css_tryget(&memcg->css))) 541 goto retry; 542 rcu_read_unlock(); 543 544 return memcg; 545} 546 547#ifdef CONFIG_MEMCG_KMEM 548/* 549 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 550 * @folio: Pointer to the folio. 551 * 552 * Checks if the folio has MemcgKmem flag set. The caller must ensure 553 * that the folio has an associated memory cgroup. It's not safe to call 554 * this function against some types of folios, e.g. slab folios. 555 */ 556static inline bool folio_memcg_kmem(struct folio *folio) 557{ 558 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 559 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 560 return folio->memcg_data & MEMCG_DATA_KMEM; 561} 562 563 564#else 565static inline bool folio_memcg_kmem(struct folio *folio) 566{ 567 return false; 568} 569 570#endif 571 572static inline bool PageMemcgKmem(struct page *page) 573{ 574 return folio_memcg_kmem(page_folio(page)); 575} 576 577static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 578{ 579 return (memcg == root_mem_cgroup); 580} 581 582static inline bool mem_cgroup_disabled(void) 583{ 584 return !cgroup_subsys_enabled(memory_cgrp_subsys); 585} 586 587static inline void mem_cgroup_protection(struct mem_cgroup *root, 588 struct mem_cgroup *memcg, 589 unsigned long *min, 590 unsigned long *low) 591{ 592 *min = *low = 0; 593 594 if (mem_cgroup_disabled()) 595 return; 596 597 /* 598 * There is no reclaim protection applied to a targeted reclaim. 599 * We are special casing this specific case here because 600 * mem_cgroup_protected calculation is not robust enough to keep 601 * the protection invariant for calculated effective values for 602 * parallel reclaimers with different reclaim target. This is 603 * especially a problem for tail memcgs (as they have pages on LRU) 604 * which would want to have effective values 0 for targeted reclaim 605 * but a different value for external reclaim. 606 * 607 * Example 608 * Let's have global and A's reclaim in parallel: 609 * | 610 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 611 * |\ 612 * | C (low = 1G, usage = 2.5G) 613 * B (low = 1G, usage = 0.5G) 614 * 615 * For the global reclaim 616 * A.elow = A.low 617 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 618 * C.elow = min(C.usage, C.low) 619 * 620 * With the effective values resetting we have A reclaim 621 * A.elow = 0 622 * B.elow = B.low 623 * C.elow = C.low 624 * 625 * If the global reclaim races with A's reclaim then 626 * B.elow = C.elow = 0 because children_low_usage > A.elow) 627 * is possible and reclaiming B would be violating the protection. 628 * 629 */ 630 if (root == memcg) 631 return; 632 633 *min = READ_ONCE(memcg->memory.emin); 634 *low = READ_ONCE(memcg->memory.elow); 635} 636 637void mem_cgroup_calculate_protection(struct mem_cgroup *root, 638 struct mem_cgroup *memcg); 639 640static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 641{ 642 /* 643 * The root memcg doesn't account charges, and doesn't support 644 * protection. 645 */ 646 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 647 648} 649 650static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 651{ 652 if (!mem_cgroup_supports_protection(memcg)) 653 return false; 654 655 return READ_ONCE(memcg->memory.elow) >= 656 page_counter_read(&memcg->memory); 657} 658 659static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 660{ 661 if (!mem_cgroup_supports_protection(memcg)) 662 return false; 663 664 return READ_ONCE(memcg->memory.emin) >= 665 page_counter_read(&memcg->memory); 666} 667 668int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 669 670/** 671 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 672 * @folio: Folio to charge. 673 * @mm: mm context of the allocating task. 674 * @gfp: Reclaim mode. 675 * 676 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 677 * pages according to @gfp if necessary. If @mm is NULL, try to 678 * charge to the active memcg. 679 * 680 * Do not use this for folios allocated for swapin. 681 * 682 * Return: 0 on success. Otherwise, an error code is returned. 683 */ 684static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 685 gfp_t gfp) 686{ 687 if (mem_cgroup_disabled()) 688 return 0; 689 return __mem_cgroup_charge(folio, mm, gfp); 690} 691 692int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 693 gfp_t gfp, swp_entry_t entry); 694void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 695 696void __mem_cgroup_uncharge(struct folio *folio); 697 698/** 699 * mem_cgroup_uncharge - Uncharge a folio. 700 * @folio: Folio to uncharge. 701 * 702 * Uncharge a folio previously charged with mem_cgroup_charge(). 703 */ 704static inline void mem_cgroup_uncharge(struct folio *folio) 705{ 706 if (mem_cgroup_disabled()) 707 return; 708 __mem_cgroup_uncharge(folio); 709} 710 711void __mem_cgroup_uncharge_list(struct list_head *page_list); 712static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 713{ 714 if (mem_cgroup_disabled()) 715 return; 716 __mem_cgroup_uncharge_list(page_list); 717} 718 719void mem_cgroup_migrate(struct folio *old, struct folio *new); 720 721/** 722 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 723 * @memcg: memcg of the wanted lruvec 724 * @pgdat: pglist_data 725 * 726 * Returns the lru list vector holding pages for a given @memcg & 727 * @pgdat combination. This can be the node lruvec, if the memory 728 * controller is disabled. 729 */ 730static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 731 struct pglist_data *pgdat) 732{ 733 struct mem_cgroup_per_node *mz; 734 struct lruvec *lruvec; 735 736 if (mem_cgroup_disabled()) { 737 lruvec = &pgdat->__lruvec; 738 goto out; 739 } 740 741 if (!memcg) 742 memcg = root_mem_cgroup; 743 744 mz = memcg->nodeinfo[pgdat->node_id]; 745 lruvec = &mz->lruvec; 746out: 747 /* 748 * Since a node can be onlined after the mem_cgroup was created, 749 * we have to be prepared to initialize lruvec->pgdat here; 750 * and if offlined then reonlined, we need to reinitialize it. 751 */ 752 if (unlikely(lruvec->pgdat != pgdat)) 753 lruvec->pgdat = pgdat; 754 return lruvec; 755} 756 757/** 758 * folio_lruvec - return lruvec for isolating/putting an LRU folio 759 * @folio: Pointer to the folio. 760 * 761 * This function relies on folio->mem_cgroup being stable. 762 */ 763static inline struct lruvec *folio_lruvec(struct folio *folio) 764{ 765 struct mem_cgroup *memcg = folio_memcg(folio); 766 767 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 768 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 769} 770 771struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 772 773struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 774 775struct lruvec *folio_lruvec_lock(struct folio *folio); 776struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 777struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 778 unsigned long *flags); 779 780#ifdef CONFIG_DEBUG_VM 781void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 782#else 783static inline 784void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 785{ 786} 787#endif 788 789static inline 790struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 791 return css ? container_of(css, struct mem_cgroup, css) : NULL; 792} 793 794static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 795{ 796 return percpu_ref_tryget(&objcg->refcnt); 797} 798 799static inline void obj_cgroup_get(struct obj_cgroup *objcg) 800{ 801 percpu_ref_get(&objcg->refcnt); 802} 803 804static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 805 unsigned long nr) 806{ 807 percpu_ref_get_many(&objcg->refcnt, nr); 808} 809 810static inline void obj_cgroup_put(struct obj_cgroup *objcg) 811{ 812 percpu_ref_put(&objcg->refcnt); 813} 814 815static inline void mem_cgroup_put(struct mem_cgroup *memcg) 816{ 817 if (memcg) 818 css_put(&memcg->css); 819} 820 821#define mem_cgroup_from_counter(counter, member) \ 822 container_of(counter, struct mem_cgroup, member) 823 824struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 825 struct mem_cgroup *, 826 struct mem_cgroup_reclaim_cookie *); 827void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 828int mem_cgroup_scan_tasks(struct mem_cgroup *, 829 int (*)(struct task_struct *, void *), void *); 830 831static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 832{ 833 if (mem_cgroup_disabled()) 834 return 0; 835 836 return memcg->id.id; 837} 838struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 839 840static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 841{ 842 return mem_cgroup_from_css(seq_css(m)); 843} 844 845static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 846{ 847 struct mem_cgroup_per_node *mz; 848 849 if (mem_cgroup_disabled()) 850 return NULL; 851 852 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 853 return mz->memcg; 854} 855 856/** 857 * parent_mem_cgroup - find the accounting parent of a memcg 858 * @memcg: memcg whose parent to find 859 * 860 * Returns the parent memcg, or NULL if this is the root or the memory 861 * controller is in legacy no-hierarchy mode. 862 */ 863static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 864{ 865 return mem_cgroup_from_css(memcg->css.parent); 866} 867 868static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 869 struct mem_cgroup *root) 870{ 871 if (root == memcg) 872 return true; 873 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 874} 875 876static inline bool mm_match_cgroup(struct mm_struct *mm, 877 struct mem_cgroup *memcg) 878{ 879 struct mem_cgroup *task_memcg; 880 bool match = false; 881 882 rcu_read_lock(); 883 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 884 if (task_memcg) 885 match = mem_cgroup_is_descendant(task_memcg, memcg); 886 rcu_read_unlock(); 887 return match; 888} 889 890struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 891ino_t page_cgroup_ino(struct page *page); 892 893static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 894{ 895 if (mem_cgroup_disabled()) 896 return true; 897 return !!(memcg->css.flags & CSS_ONLINE); 898} 899 900void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 901 int zid, int nr_pages); 902 903static inline 904unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 905 enum lru_list lru, int zone_idx) 906{ 907 struct mem_cgroup_per_node *mz; 908 909 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 910 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 911} 912 913void mem_cgroup_handle_over_high(void); 914 915unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 916 917unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 918 919void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 920 struct task_struct *p); 921 922void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 923 924static inline void mem_cgroup_enter_user_fault(void) 925{ 926 WARN_ON(current->in_user_fault); 927 current->in_user_fault = 1; 928} 929 930static inline void mem_cgroup_exit_user_fault(void) 931{ 932 WARN_ON(!current->in_user_fault); 933 current->in_user_fault = 0; 934} 935 936static inline bool task_in_memcg_oom(struct task_struct *p) 937{ 938 return p->memcg_in_oom; 939} 940 941bool mem_cgroup_oom_synchronize(bool wait); 942struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 943 struct mem_cgroup *oom_domain); 944void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 945 946void folio_memcg_lock(struct folio *folio); 947void folio_memcg_unlock(struct folio *folio); 948void lock_page_memcg(struct page *page); 949void unlock_page_memcg(struct page *page); 950 951void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 952 953/* idx can be of type enum memcg_stat_item or node_stat_item */ 954static inline void mod_memcg_state(struct mem_cgroup *memcg, 955 int idx, int val) 956{ 957 unsigned long flags; 958 959 local_irq_save(flags); 960 __mod_memcg_state(memcg, idx, val); 961 local_irq_restore(flags); 962} 963 964static inline void mod_memcg_page_state(struct page *page, 965 int idx, int val) 966{ 967 struct mem_cgroup *memcg; 968 969 if (mem_cgroup_disabled()) 970 return; 971 972 rcu_read_lock(); 973 memcg = page_memcg(page); 974 if (memcg) 975 mod_memcg_state(memcg, idx, val); 976 rcu_read_unlock(); 977} 978 979static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 980{ 981 return READ_ONCE(memcg->vmstats.state[idx]); 982} 983 984static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 985 enum node_stat_item idx) 986{ 987 struct mem_cgroup_per_node *pn; 988 989 if (mem_cgroup_disabled()) 990 return node_page_state(lruvec_pgdat(lruvec), idx); 991 992 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 993 return READ_ONCE(pn->lruvec_stats.state[idx]); 994} 995 996static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 997 enum node_stat_item idx) 998{ 999 struct mem_cgroup_per_node *pn; 1000 long x = 0; 1001 int cpu; 1002 1003 if (mem_cgroup_disabled()) 1004 return node_page_state(lruvec_pgdat(lruvec), idx); 1005 1006 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1007 for_each_possible_cpu(cpu) 1008 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); 1009#ifdef CONFIG_SMP 1010 if (x < 0) 1011 x = 0; 1012#endif 1013 return x; 1014} 1015 1016void mem_cgroup_flush_stats(void); 1017void mem_cgroup_flush_stats_delayed(void); 1018 1019void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1020 int val); 1021void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1022 1023static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1024 int val) 1025{ 1026 unsigned long flags; 1027 1028 local_irq_save(flags); 1029 __mod_lruvec_kmem_state(p, idx, val); 1030 local_irq_restore(flags); 1031} 1032 1033static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1034 enum node_stat_item idx, int val) 1035{ 1036 unsigned long flags; 1037 1038 local_irq_save(flags); 1039 __mod_memcg_lruvec_state(lruvec, idx, val); 1040 local_irq_restore(flags); 1041} 1042 1043void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1044 unsigned long count); 1045 1046static inline void count_memcg_events(struct mem_cgroup *memcg, 1047 enum vm_event_item idx, 1048 unsigned long count) 1049{ 1050 unsigned long flags; 1051 1052 local_irq_save(flags); 1053 __count_memcg_events(memcg, idx, count); 1054 local_irq_restore(flags); 1055} 1056 1057static inline void count_memcg_page_event(struct page *page, 1058 enum vm_event_item idx) 1059{ 1060 struct mem_cgroup *memcg = page_memcg(page); 1061 1062 if (memcg) 1063 count_memcg_events(memcg, idx, 1); 1064} 1065 1066static inline void count_memcg_folio_events(struct folio *folio, 1067 enum vm_event_item idx, unsigned long nr) 1068{ 1069 struct mem_cgroup *memcg = folio_memcg(folio); 1070 1071 if (memcg) 1072 count_memcg_events(memcg, idx, nr); 1073} 1074 1075static inline void count_memcg_event_mm(struct mm_struct *mm, 1076 enum vm_event_item idx) 1077{ 1078 struct mem_cgroup *memcg; 1079 1080 if (mem_cgroup_disabled()) 1081 return; 1082 1083 rcu_read_lock(); 1084 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1085 if (likely(memcg)) 1086 count_memcg_events(memcg, idx, 1); 1087 rcu_read_unlock(); 1088} 1089 1090static inline void memcg_memory_event(struct mem_cgroup *memcg, 1091 enum memcg_memory_event event) 1092{ 1093 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1094 event == MEMCG_SWAP_FAIL; 1095 1096 atomic_long_inc(&memcg->memory_events_local[event]); 1097 if (!swap_event) 1098 cgroup_file_notify(&memcg->events_local_file); 1099 1100 do { 1101 atomic_long_inc(&memcg->memory_events[event]); 1102 if (swap_event) 1103 cgroup_file_notify(&memcg->swap_events_file); 1104 else 1105 cgroup_file_notify(&memcg->events_file); 1106 1107 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1108 break; 1109 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1110 break; 1111 } while ((memcg = parent_mem_cgroup(memcg)) && 1112 !mem_cgroup_is_root(memcg)); 1113} 1114 1115static inline void memcg_memory_event_mm(struct mm_struct *mm, 1116 enum memcg_memory_event event) 1117{ 1118 struct mem_cgroup *memcg; 1119 1120 if (mem_cgroup_disabled()) 1121 return; 1122 1123 rcu_read_lock(); 1124 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1125 if (likely(memcg)) 1126 memcg_memory_event(memcg, event); 1127 rcu_read_unlock(); 1128} 1129 1130void split_page_memcg(struct page *head, unsigned int nr); 1131 1132unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1133 gfp_t gfp_mask, 1134 unsigned long *total_scanned); 1135 1136#else /* CONFIG_MEMCG */ 1137 1138#define MEM_CGROUP_ID_SHIFT 0 1139#define MEM_CGROUP_ID_MAX 0 1140 1141static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1142{ 1143 return NULL; 1144} 1145 1146static inline struct mem_cgroup *page_memcg(struct page *page) 1147{ 1148 return NULL; 1149} 1150 1151static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1152{ 1153 WARN_ON_ONCE(!rcu_read_lock_held()); 1154 return NULL; 1155} 1156 1157static inline struct mem_cgroup *page_memcg_check(struct page *page) 1158{ 1159 return NULL; 1160} 1161 1162static inline bool folio_memcg_kmem(struct folio *folio) 1163{ 1164 return false; 1165} 1166 1167static inline bool PageMemcgKmem(struct page *page) 1168{ 1169 return false; 1170} 1171 1172static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1173{ 1174 return true; 1175} 1176 1177static inline bool mem_cgroup_disabled(void) 1178{ 1179 return true; 1180} 1181 1182static inline void memcg_memory_event(struct mem_cgroup *memcg, 1183 enum memcg_memory_event event) 1184{ 1185} 1186 1187static inline void memcg_memory_event_mm(struct mm_struct *mm, 1188 enum memcg_memory_event event) 1189{ 1190} 1191 1192static inline void mem_cgroup_protection(struct mem_cgroup *root, 1193 struct mem_cgroup *memcg, 1194 unsigned long *min, 1195 unsigned long *low) 1196{ 1197 *min = *low = 0; 1198} 1199 1200static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1201 struct mem_cgroup *memcg) 1202{ 1203} 1204 1205static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 1206{ 1207 return false; 1208} 1209 1210static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 1211{ 1212 return false; 1213} 1214 1215static inline int mem_cgroup_charge(struct folio *folio, 1216 struct mm_struct *mm, gfp_t gfp) 1217{ 1218 return 0; 1219} 1220 1221static inline int mem_cgroup_swapin_charge_page(struct page *page, 1222 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1223{ 1224 return 0; 1225} 1226 1227static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1228{ 1229} 1230 1231static inline void mem_cgroup_uncharge(struct folio *folio) 1232{ 1233} 1234 1235static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1236{ 1237} 1238 1239static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1240{ 1241} 1242 1243static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1244 struct pglist_data *pgdat) 1245{ 1246 return &pgdat->__lruvec; 1247} 1248 1249static inline struct lruvec *folio_lruvec(struct folio *folio) 1250{ 1251 struct pglist_data *pgdat = folio_pgdat(folio); 1252 return &pgdat->__lruvec; 1253} 1254 1255static inline 1256void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1257{ 1258} 1259 1260static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1261{ 1262 return NULL; 1263} 1264 1265static inline bool mm_match_cgroup(struct mm_struct *mm, 1266 struct mem_cgroup *memcg) 1267{ 1268 return true; 1269} 1270 1271static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1272{ 1273 return NULL; 1274} 1275 1276static inline 1277struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1278{ 1279 return NULL; 1280} 1281 1282static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1283{ 1284} 1285 1286static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1287{ 1288} 1289 1290static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1291{ 1292 struct pglist_data *pgdat = folio_pgdat(folio); 1293 1294 spin_lock(&pgdat->__lruvec.lru_lock); 1295 return &pgdat->__lruvec; 1296} 1297 1298static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1299{ 1300 struct pglist_data *pgdat = folio_pgdat(folio); 1301 1302 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1303 return &pgdat->__lruvec; 1304} 1305 1306static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1307 unsigned long *flagsp) 1308{ 1309 struct pglist_data *pgdat = folio_pgdat(folio); 1310 1311 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1312 return &pgdat->__lruvec; 1313} 1314 1315static inline struct mem_cgroup * 1316mem_cgroup_iter(struct mem_cgroup *root, 1317 struct mem_cgroup *prev, 1318 struct mem_cgroup_reclaim_cookie *reclaim) 1319{ 1320 return NULL; 1321} 1322 1323static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1324 struct mem_cgroup *prev) 1325{ 1326} 1327 1328static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1329 int (*fn)(struct task_struct *, void *), void *arg) 1330{ 1331 return 0; 1332} 1333 1334static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1335{ 1336 return 0; 1337} 1338 1339static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1340{ 1341 WARN_ON_ONCE(id); 1342 /* XXX: This should always return root_mem_cgroup */ 1343 return NULL; 1344} 1345 1346static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1347{ 1348 return NULL; 1349} 1350 1351static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1352{ 1353 return NULL; 1354} 1355 1356static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1357{ 1358 return true; 1359} 1360 1361static inline 1362unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1363 enum lru_list lru, int zone_idx) 1364{ 1365 return 0; 1366} 1367 1368static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1369{ 1370 return 0; 1371} 1372 1373static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1374{ 1375 return 0; 1376} 1377 1378static inline void 1379mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1380{ 1381} 1382 1383static inline void 1384mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1385{ 1386} 1387 1388static inline void lock_page_memcg(struct page *page) 1389{ 1390} 1391 1392static inline void unlock_page_memcg(struct page *page) 1393{ 1394} 1395 1396static inline void folio_memcg_lock(struct folio *folio) 1397{ 1398} 1399 1400static inline void folio_memcg_unlock(struct folio *folio) 1401{ 1402} 1403 1404static inline void mem_cgroup_handle_over_high(void) 1405{ 1406} 1407 1408static inline void mem_cgroup_enter_user_fault(void) 1409{ 1410} 1411 1412static inline void mem_cgroup_exit_user_fault(void) 1413{ 1414} 1415 1416static inline bool task_in_memcg_oom(struct task_struct *p) 1417{ 1418 return false; 1419} 1420 1421static inline bool mem_cgroup_oom_synchronize(bool wait) 1422{ 1423 return false; 1424} 1425 1426static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1427 struct task_struct *victim, struct mem_cgroup *oom_domain) 1428{ 1429 return NULL; 1430} 1431 1432static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1433{ 1434} 1435 1436static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1437 int idx, 1438 int nr) 1439{ 1440} 1441 1442static inline void mod_memcg_state(struct mem_cgroup *memcg, 1443 int idx, 1444 int nr) 1445{ 1446} 1447 1448static inline void mod_memcg_page_state(struct page *page, 1449 int idx, int val) 1450{ 1451} 1452 1453static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1454{ 1455 return 0; 1456} 1457 1458static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1459 enum node_stat_item idx) 1460{ 1461 return node_page_state(lruvec_pgdat(lruvec), idx); 1462} 1463 1464static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1465 enum node_stat_item idx) 1466{ 1467 return node_page_state(lruvec_pgdat(lruvec), idx); 1468} 1469 1470static inline void mem_cgroup_flush_stats(void) 1471{ 1472} 1473 1474static inline void mem_cgroup_flush_stats_delayed(void) 1475{ 1476} 1477 1478static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1479 enum node_stat_item idx, int val) 1480{ 1481} 1482 1483static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1484 int val) 1485{ 1486 struct page *page = virt_to_head_page(p); 1487 1488 __mod_node_page_state(page_pgdat(page), idx, val); 1489} 1490 1491static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1492 int val) 1493{ 1494 struct page *page = virt_to_head_page(p); 1495 1496 mod_node_page_state(page_pgdat(page), idx, val); 1497} 1498 1499static inline void count_memcg_events(struct mem_cgroup *memcg, 1500 enum vm_event_item idx, 1501 unsigned long count) 1502{ 1503} 1504 1505static inline void __count_memcg_events(struct mem_cgroup *memcg, 1506 enum vm_event_item idx, 1507 unsigned long count) 1508{ 1509} 1510 1511static inline void count_memcg_page_event(struct page *page, 1512 int idx) 1513{ 1514} 1515 1516static inline void count_memcg_folio_events(struct folio *folio, 1517 enum vm_event_item idx, unsigned long nr) 1518{ 1519} 1520 1521static inline 1522void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1523{ 1524} 1525 1526static inline void split_page_memcg(struct page *head, unsigned int nr) 1527{ 1528} 1529 1530static inline 1531unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1532 gfp_t gfp_mask, 1533 unsigned long *total_scanned) 1534{ 1535 return 0; 1536} 1537#endif /* CONFIG_MEMCG */ 1538 1539static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1540{ 1541 __mod_lruvec_kmem_state(p, idx, 1); 1542} 1543 1544static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1545{ 1546 __mod_lruvec_kmem_state(p, idx, -1); 1547} 1548 1549static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1550{ 1551 struct mem_cgroup *memcg; 1552 1553 memcg = lruvec_memcg(lruvec); 1554 if (!memcg) 1555 return NULL; 1556 memcg = parent_mem_cgroup(memcg); 1557 if (!memcg) 1558 return NULL; 1559 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1560} 1561 1562static inline void unlock_page_lruvec(struct lruvec *lruvec) 1563{ 1564 spin_unlock(&lruvec->lru_lock); 1565} 1566 1567static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1568{ 1569 spin_unlock_irq(&lruvec->lru_lock); 1570} 1571 1572static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1573 unsigned long flags) 1574{ 1575 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1576} 1577 1578/* Test requires a stable page->memcg binding, see page_memcg() */ 1579static inline bool folio_matches_lruvec(struct folio *folio, 1580 struct lruvec *lruvec) 1581{ 1582 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1583 lruvec_memcg(lruvec) == folio_memcg(folio); 1584} 1585 1586/* Don't lock again iff page's lruvec locked */ 1587static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1588 struct lruvec *locked_lruvec) 1589{ 1590 if (locked_lruvec) { 1591 if (folio_matches_lruvec(folio, locked_lruvec)) 1592 return locked_lruvec; 1593 1594 unlock_page_lruvec_irq(locked_lruvec); 1595 } 1596 1597 return folio_lruvec_lock_irq(folio); 1598} 1599 1600/* Don't lock again iff page's lruvec locked */ 1601static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1602 struct lruvec *locked_lruvec, unsigned long *flags) 1603{ 1604 if (locked_lruvec) { 1605 if (folio_matches_lruvec(folio, locked_lruvec)) 1606 return locked_lruvec; 1607 1608 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1609 } 1610 1611 return folio_lruvec_lock_irqsave(folio, flags); 1612} 1613 1614#ifdef CONFIG_CGROUP_WRITEBACK 1615 1616struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1617void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1618 unsigned long *pheadroom, unsigned long *pdirty, 1619 unsigned long *pwriteback); 1620 1621void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1622 struct bdi_writeback *wb); 1623 1624static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1625 struct bdi_writeback *wb) 1626{ 1627 if (mem_cgroup_disabled()) 1628 return; 1629 1630 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css)) 1631 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1632} 1633 1634void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1635 1636#else /* CONFIG_CGROUP_WRITEBACK */ 1637 1638static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1639{ 1640 return NULL; 1641} 1642 1643static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1644 unsigned long *pfilepages, 1645 unsigned long *pheadroom, 1646 unsigned long *pdirty, 1647 unsigned long *pwriteback) 1648{ 1649} 1650 1651static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1652 struct bdi_writeback *wb) 1653{ 1654} 1655 1656static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1657{ 1658} 1659 1660#endif /* CONFIG_CGROUP_WRITEBACK */ 1661 1662struct sock; 1663bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1664 gfp_t gfp_mask); 1665void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1666#ifdef CONFIG_MEMCG 1667extern struct static_key_false memcg_sockets_enabled_key; 1668#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1669void mem_cgroup_sk_alloc(struct sock *sk); 1670void mem_cgroup_sk_free(struct sock *sk); 1671static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1672{ 1673 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1674 return true; 1675 do { 1676 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1677 return true; 1678 } while ((memcg = parent_mem_cgroup(memcg))); 1679 return false; 1680} 1681 1682int alloc_shrinker_info(struct mem_cgroup *memcg); 1683void free_shrinker_info(struct mem_cgroup *memcg); 1684void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1685void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1686#else 1687#define mem_cgroup_sockets_enabled 0 1688static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1689static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1690static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1691{ 1692 return false; 1693} 1694 1695static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1696 int nid, int shrinker_id) 1697{ 1698} 1699#endif 1700 1701#ifdef CONFIG_MEMCG_KMEM 1702bool mem_cgroup_kmem_disabled(void); 1703int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1704void __memcg_kmem_uncharge_page(struct page *page, int order); 1705 1706struct obj_cgroup *get_obj_cgroup_from_current(void); 1707struct obj_cgroup *get_obj_cgroup_from_page(struct page *page); 1708 1709int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1710void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1711 1712extern struct static_key_false memcg_kmem_enabled_key; 1713 1714static inline bool memcg_kmem_enabled(void) 1715{ 1716 return static_branch_likely(&memcg_kmem_enabled_key); 1717} 1718 1719static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1720 int order) 1721{ 1722 if (memcg_kmem_enabled()) 1723 return __memcg_kmem_charge_page(page, gfp, order); 1724 return 0; 1725} 1726 1727static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1728{ 1729 if (memcg_kmem_enabled()) 1730 __memcg_kmem_uncharge_page(page, order); 1731} 1732 1733/* 1734 * A helper for accessing memcg's kmem_id, used for getting 1735 * corresponding LRU lists. 1736 */ 1737static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1738{ 1739 return memcg ? memcg->kmemcg_id : -1; 1740} 1741 1742struct mem_cgroup *mem_cgroup_from_obj(void *p); 1743 1744static inline void count_objcg_event(struct obj_cgroup *objcg, 1745 enum vm_event_item idx) 1746{ 1747 struct mem_cgroup *memcg; 1748 1749 if (mem_cgroup_kmem_disabled()) 1750 return; 1751 1752 rcu_read_lock(); 1753 memcg = obj_cgroup_memcg(objcg); 1754 count_memcg_events(memcg, idx, 1); 1755 rcu_read_unlock(); 1756} 1757 1758#else 1759static inline bool mem_cgroup_kmem_disabled(void) 1760{ 1761 return true; 1762} 1763 1764static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1765 int order) 1766{ 1767 return 0; 1768} 1769 1770static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1771{ 1772} 1773 1774static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1775 int order) 1776{ 1777 return 0; 1778} 1779 1780static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1781{ 1782} 1783 1784static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 1785{ 1786 return NULL; 1787} 1788 1789static inline bool memcg_kmem_enabled(void) 1790{ 1791 return false; 1792} 1793 1794static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1795{ 1796 return -1; 1797} 1798 1799static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1800{ 1801 return NULL; 1802} 1803 1804static inline void count_objcg_event(struct obj_cgroup *objcg, 1805 enum vm_event_item idx) 1806{ 1807} 1808 1809#endif /* CONFIG_MEMCG_KMEM */ 1810 1811#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1812bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1813void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1814void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1815#else 1816static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1817{ 1818 return true; 1819} 1820static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1821 size_t size) 1822{ 1823} 1824static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1825 size_t size) 1826{ 1827} 1828#endif 1829 1830#endif /* _LINUX_MEMCONTROL_H */