mm.h (108916B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/bug.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/atomic.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/mmap_lock.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/percpu-refcount.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24#include <linux/page-flags.h> 25#include <linux/page_ref.h> 26#include <linux/overflow.h> 27#include <linux/sizes.h> 28#include <linux/sched.h> 29#include <linux/pgtable.h> 30#include <linux/kasan.h> 31 32struct mempolicy; 33struct anon_vma; 34struct anon_vma_chain; 35struct user_struct; 36struct pt_regs; 37 38extern int sysctl_page_lock_unfairness; 39 40void init_mm_internals(void); 41 42#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 43extern unsigned long max_mapnr; 44 45static inline void set_max_mapnr(unsigned long limit) 46{ 47 max_mapnr = limit; 48} 49#else 50static inline void set_max_mapnr(unsigned long limit) { } 51#endif 52 53extern atomic_long_t _totalram_pages; 54static inline unsigned long totalram_pages(void) 55{ 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57} 58 59static inline void totalram_pages_inc(void) 60{ 61 atomic_long_inc(&_totalram_pages); 62} 63 64static inline void totalram_pages_dec(void) 65{ 66 atomic_long_dec(&_totalram_pages); 67} 68 69static inline void totalram_pages_add(long count) 70{ 71 atomic_long_add(count, &_totalram_pages); 72} 73 74extern void * high_memory; 75extern int page_cluster; 76 77#ifdef CONFIG_SYSCTL 78extern int sysctl_legacy_va_layout; 79#else 80#define sysctl_legacy_va_layout 0 81#endif 82 83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 84extern const int mmap_rnd_bits_min; 85extern const int mmap_rnd_bits_max; 86extern int mmap_rnd_bits __read_mostly; 87#endif 88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 89extern const int mmap_rnd_compat_bits_min; 90extern const int mmap_rnd_compat_bits_max; 91extern int mmap_rnd_compat_bits __read_mostly; 92#endif 93 94#include <asm/page.h> 95#include <asm/processor.h> 96 97/* 98 * Architectures that support memory tagging (assigning tags to memory regions, 99 * embedding these tags into addresses that point to these memory regions, and 100 * checking that the memory and the pointer tags match on memory accesses) 101 * redefine this macro to strip tags from pointers. 102 * It's defined as noop for architectures that don't support memory tagging. 103 */ 104#ifndef untagged_addr 105#define untagged_addr(addr) (addr) 106#endif 107 108#ifndef __pa_symbol 109#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 110#endif 111 112#ifndef page_to_virt 113#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 114#endif 115 116#ifndef lm_alias 117#define lm_alias(x) __va(__pa_symbol(x)) 118#endif 119 120/* 121 * To prevent common memory management code establishing 122 * a zero page mapping on a read fault. 123 * This macro should be defined within <asm/pgtable.h>. 124 * s390 does this to prevent multiplexing of hardware bits 125 * related to the physical page in case of virtualization. 126 */ 127#ifndef mm_forbids_zeropage 128#define mm_forbids_zeropage(X) (0) 129#endif 130 131/* 132 * On some architectures it is expensive to call memset() for small sizes. 133 * If an architecture decides to implement their own version of 134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 135 * define their own version of this macro in <asm/pgtable.h> 136 */ 137#if BITS_PER_LONG == 64 138/* This function must be updated when the size of struct page grows above 80 139 * or reduces below 56. The idea that compiler optimizes out switch() 140 * statement, and only leaves move/store instructions. Also the compiler can 141 * combine write statements if they are both assignments and can be reordered, 142 * this can result in several of the writes here being dropped. 143 */ 144#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 145static inline void __mm_zero_struct_page(struct page *page) 146{ 147 unsigned long *_pp = (void *)page; 148 149 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 150 BUILD_BUG_ON(sizeof(struct page) & 7); 151 BUILD_BUG_ON(sizeof(struct page) < 56); 152 BUILD_BUG_ON(sizeof(struct page) > 80); 153 154 switch (sizeof(struct page)) { 155 case 80: 156 _pp[9] = 0; 157 fallthrough; 158 case 72: 159 _pp[8] = 0; 160 fallthrough; 161 case 64: 162 _pp[7] = 0; 163 fallthrough; 164 case 56: 165 _pp[6] = 0; 166 _pp[5] = 0; 167 _pp[4] = 0; 168 _pp[3] = 0; 169 _pp[2] = 0; 170 _pp[1] = 0; 171 _pp[0] = 0; 172 } 173} 174#else 175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 176#endif 177 178/* 179 * Default maximum number of active map areas, this limits the number of vmas 180 * per mm struct. Users can overwrite this number by sysctl but there is a 181 * problem. 182 * 183 * When a program's coredump is generated as ELF format, a section is created 184 * per a vma. In ELF, the number of sections is represented in unsigned short. 185 * This means the number of sections should be smaller than 65535 at coredump. 186 * Because the kernel adds some informative sections to a image of program at 187 * generating coredump, we need some margin. The number of extra sections is 188 * 1-3 now and depends on arch. We use "5" as safe margin, here. 189 * 190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 191 * not a hard limit any more. Although some userspace tools can be surprised by 192 * that. 193 */ 194#define MAPCOUNT_ELF_CORE_MARGIN (5) 195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 196 197extern int sysctl_max_map_count; 198 199extern unsigned long sysctl_user_reserve_kbytes; 200extern unsigned long sysctl_admin_reserve_kbytes; 201 202extern int sysctl_overcommit_memory; 203extern int sysctl_overcommit_ratio; 204extern unsigned long sysctl_overcommit_kbytes; 205 206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 215#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 216#else 217#define nth_page(page,n) ((page) + (n)) 218#define folio_page_idx(folio, p) ((p) - &(folio)->page) 219#endif 220 221/* to align the pointer to the (next) page boundary */ 222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 226 227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 228static inline struct folio *lru_to_folio(struct list_head *head) 229{ 230 return list_entry((head)->prev, struct folio, lru); 231} 232 233void setup_initial_init_mm(void *start_code, void *end_code, 234 void *end_data, void *brk); 235 236/* 237 * Linux kernel virtual memory manager primitives. 238 * The idea being to have a "virtual" mm in the same way 239 * we have a virtual fs - giving a cleaner interface to the 240 * mm details, and allowing different kinds of memory mappings 241 * (from shared memory to executable loading to arbitrary 242 * mmap() functions). 243 */ 244 245struct vm_area_struct *vm_area_alloc(struct mm_struct *); 246struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 247void vm_area_free(struct vm_area_struct *); 248 249#ifndef CONFIG_MMU 250extern struct rb_root nommu_region_tree; 251extern struct rw_semaphore nommu_region_sem; 252 253extern unsigned int kobjsize(const void *objp); 254#endif 255 256/* 257 * vm_flags in vm_area_struct, see mm_types.h. 258 * When changing, update also include/trace/events/mmflags.h 259 */ 260#define VM_NONE 0x00000000 261 262#define VM_READ 0x00000001 /* currently active flags */ 263#define VM_WRITE 0x00000002 264#define VM_EXEC 0x00000004 265#define VM_SHARED 0x00000008 266 267/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 268#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 269#define VM_MAYWRITE 0x00000020 270#define VM_MAYEXEC 0x00000040 271#define VM_MAYSHARE 0x00000080 272 273#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 274#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 275#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 276#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 277 278#define VM_LOCKED 0x00002000 279#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 280 281 /* Used by sys_madvise() */ 282#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 283#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 284 285#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 286#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 287#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 288#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 289#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 290#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 291#define VM_SYNC 0x00800000 /* Synchronous page faults */ 292#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 293#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 294#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 295 296#ifdef CONFIG_MEM_SOFT_DIRTY 297# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 298#else 299# define VM_SOFTDIRTY 0 300#endif 301 302#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 303#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 304#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 305#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 306 307#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 308#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 309#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 310#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 311#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 312#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 313#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 314#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 315#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 316#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 317#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 318#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 319 320#ifdef CONFIG_ARCH_HAS_PKEYS 321# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 322# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 323# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 324# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 325# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 326#ifdef CONFIG_PPC 327# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 328#else 329# define VM_PKEY_BIT4 0 330#endif 331#endif /* CONFIG_ARCH_HAS_PKEYS */ 332 333#if defined(CONFIG_X86) 334# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 335#elif defined(CONFIG_PPC) 336# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 337#elif defined(CONFIG_PARISC) 338# define VM_GROWSUP VM_ARCH_1 339#elif defined(CONFIG_IA64) 340# define VM_GROWSUP VM_ARCH_1 341#elif defined(CONFIG_SPARC64) 342# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 343# define VM_ARCH_CLEAR VM_SPARC_ADI 344#elif defined(CONFIG_ARM64) 345# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 346# define VM_ARCH_CLEAR VM_ARM64_BTI 347#elif !defined(CONFIG_MMU) 348# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 349#endif 350 351#if defined(CONFIG_ARM64_MTE) 352# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 353# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 354#else 355# define VM_MTE VM_NONE 356# define VM_MTE_ALLOWED VM_NONE 357#endif 358 359#ifndef VM_GROWSUP 360# define VM_GROWSUP VM_NONE 361#endif 362 363#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 364# define VM_UFFD_MINOR_BIT 37 365# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 366#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 367# define VM_UFFD_MINOR VM_NONE 368#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 369 370/* Bits set in the VMA until the stack is in its final location */ 371#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 372 373#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 374 375/* Common data flag combinations */ 376#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 378#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 379 VM_MAYWRITE | VM_MAYEXEC) 380#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 382 383#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 384#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 385#endif 386 387#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 388#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 389#endif 390 391#ifdef CONFIG_STACK_GROWSUP 392#define VM_STACK VM_GROWSUP 393#else 394#define VM_STACK VM_GROWSDOWN 395#endif 396 397#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 398 399/* VMA basic access permission flags */ 400#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 401 402 403/* 404 * Special vmas that are non-mergable, non-mlock()able. 405 */ 406#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 407 408/* This mask prevents VMA from being scanned with khugepaged */ 409#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 410 411/* This mask defines which mm->def_flags a process can inherit its parent */ 412#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 413 414/* This mask is used to clear all the VMA flags used by mlock */ 415#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 416 417/* Arch-specific flags to clear when updating VM flags on protection change */ 418#ifndef VM_ARCH_CLEAR 419# define VM_ARCH_CLEAR VM_NONE 420#endif 421#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 422 423/* 424 * mapping from the currently active vm_flags protection bits (the 425 * low four bits) to a page protection mask.. 426 */ 427extern pgprot_t protection_map[16]; 428 429/* 430 * The default fault flags that should be used by most of the 431 * arch-specific page fault handlers. 432 */ 433#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 434 FAULT_FLAG_KILLABLE | \ 435 FAULT_FLAG_INTERRUPTIBLE) 436 437/** 438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 439 * @flags: Fault flags. 440 * 441 * This is mostly used for places where we want to try to avoid taking 442 * the mmap_lock for too long a time when waiting for another condition 443 * to change, in which case we can try to be polite to release the 444 * mmap_lock in the first round to avoid potential starvation of other 445 * processes that would also want the mmap_lock. 446 * 447 * Return: true if the page fault allows retry and this is the first 448 * attempt of the fault handling; false otherwise. 449 */ 450static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 451{ 452 return (flags & FAULT_FLAG_ALLOW_RETRY) && 453 (!(flags & FAULT_FLAG_TRIED)); 454} 455 456#define FAULT_FLAG_TRACE \ 457 { FAULT_FLAG_WRITE, "WRITE" }, \ 458 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 459 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 460 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 461 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 462 { FAULT_FLAG_TRIED, "TRIED" }, \ 463 { FAULT_FLAG_USER, "USER" }, \ 464 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 465 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 466 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 467 { FAULT_FLAG_PAGE_SPLIT, "PAGESPLIT" } 468 469/* 470 * vm_fault is filled by the pagefault handler and passed to the vma's 471 * ->fault function. The vma's ->fault is responsible for returning a bitmask 472 * of VM_FAULT_xxx flags that give details about how the fault was handled. 473 * 474 * MM layer fills up gfp_mask for page allocations but fault handler might 475 * alter it if its implementation requires a different allocation context. 476 * 477 * pgoff should be used in favour of virtual_address, if possible. 478 */ 479struct vm_fault { 480 const struct { 481 struct vm_area_struct *vma; /* Target VMA */ 482 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 483 pgoff_t pgoff; /* Logical page offset based on vma */ 484 unsigned long address; /* Faulting virtual address - masked */ 485 unsigned long real_address; /* Faulting virtual address - unmasked */ 486 }; 487 enum fault_flag flags; /* FAULT_FLAG_xxx flags 488 * XXX: should really be 'const' */ 489 pmd_t *pmd; /* Pointer to pmd entry matching 490 * the 'address' */ 491 pud_t *pud; /* Pointer to pud entry matching 492 * the 'address' 493 */ 494 union { 495 pte_t orig_pte; /* Value of PTE at the time of fault */ 496 pmd_t orig_pmd; /* Value of PMD at the time of fault, 497 * used by PMD fault only. 498 */ 499 }; 500 501 struct page *cow_page; /* Page handler may use for COW fault */ 502 struct page *page; /* ->fault handlers should return a 503 * page here, unless VM_FAULT_NOPAGE 504 * is set (which is also implied by 505 * VM_FAULT_ERROR). 506 */ 507 /* These three entries are valid only while holding ptl lock */ 508 pte_t *pte; /* Pointer to pte entry matching 509 * the 'address'. NULL if the page 510 * table hasn't been allocated. 511 */ 512 spinlock_t *ptl; /* Page table lock. 513 * Protects pte page table if 'pte' 514 * is not NULL, otherwise pmd. 515 */ 516 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 517 * vm_ops->map_pages() sets up a page 518 * table from atomic context. 519 * do_fault_around() pre-allocates 520 * page table to avoid allocation from 521 * atomic context. 522 */ 523}; 524 525/* page entry size for vm->huge_fault() */ 526enum page_entry_size { 527 PE_SIZE_PTE = 0, 528 PE_SIZE_PMD, 529 PE_SIZE_PUD, 530}; 531 532/* 533 * These are the virtual MM functions - opening of an area, closing and 534 * unmapping it (needed to keep files on disk up-to-date etc), pointer 535 * to the functions called when a no-page or a wp-page exception occurs. 536 */ 537struct vm_operations_struct { 538 void (*open)(struct vm_area_struct * area); 539 /** 540 * @close: Called when the VMA is being removed from the MM. 541 * Context: User context. May sleep. Caller holds mmap_lock. 542 */ 543 void (*close)(struct vm_area_struct * area); 544 /* Called any time before splitting to check if it's allowed */ 545 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 546 int (*mremap)(struct vm_area_struct *area); 547 /* 548 * Called by mprotect() to make driver-specific permission 549 * checks before mprotect() is finalised. The VMA must not 550 * be modified. Returns 0 if eprotect() can proceed. 551 */ 552 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 553 unsigned long end, unsigned long newflags); 554 vm_fault_t (*fault)(struct vm_fault *vmf); 555 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 556 enum page_entry_size pe_size); 557 vm_fault_t (*map_pages)(struct vm_fault *vmf, 558 pgoff_t start_pgoff, pgoff_t end_pgoff); 559 unsigned long (*pagesize)(struct vm_area_struct * area); 560 561 /* notification that a previously read-only page is about to become 562 * writable, if an error is returned it will cause a SIGBUS */ 563 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 564 565 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 566 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 567 568 /* called by access_process_vm when get_user_pages() fails, typically 569 * for use by special VMAs. See also generic_access_phys() for a generic 570 * implementation useful for any iomem mapping. 571 */ 572 int (*access)(struct vm_area_struct *vma, unsigned long addr, 573 void *buf, int len, int write); 574 575 /* Called by the /proc/PID/maps code to ask the vma whether it 576 * has a special name. Returning non-NULL will also cause this 577 * vma to be dumped unconditionally. */ 578 const char *(*name)(struct vm_area_struct *vma); 579 580#ifdef CONFIG_NUMA 581 /* 582 * set_policy() op must add a reference to any non-NULL @new mempolicy 583 * to hold the policy upon return. Caller should pass NULL @new to 584 * remove a policy and fall back to surrounding context--i.e. do not 585 * install a MPOL_DEFAULT policy, nor the task or system default 586 * mempolicy. 587 */ 588 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 589 590 /* 591 * get_policy() op must add reference [mpol_get()] to any policy at 592 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 593 * in mm/mempolicy.c will do this automatically. 594 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 595 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 596 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 597 * must return NULL--i.e., do not "fallback" to task or system default 598 * policy. 599 */ 600 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 601 unsigned long addr); 602#endif 603 /* 604 * Called by vm_normal_page() for special PTEs to find the 605 * page for @addr. This is useful if the default behavior 606 * (using pte_page()) would not find the correct page. 607 */ 608 struct page *(*find_special_page)(struct vm_area_struct *vma, 609 unsigned long addr); 610}; 611 612static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 613{ 614 static const struct vm_operations_struct dummy_vm_ops = {}; 615 616 memset(vma, 0, sizeof(*vma)); 617 vma->vm_mm = mm; 618 vma->vm_ops = &dummy_vm_ops; 619 INIT_LIST_HEAD(&vma->anon_vma_chain); 620} 621 622static inline void vma_set_anonymous(struct vm_area_struct *vma) 623{ 624 vma->vm_ops = NULL; 625} 626 627static inline bool vma_is_anonymous(struct vm_area_struct *vma) 628{ 629 return !vma->vm_ops; 630} 631 632static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 633{ 634 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 635 636 if (!maybe_stack) 637 return false; 638 639 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 640 VM_STACK_INCOMPLETE_SETUP) 641 return true; 642 643 return false; 644} 645 646static inline bool vma_is_foreign(struct vm_area_struct *vma) 647{ 648 if (!current->mm) 649 return true; 650 651 if (current->mm != vma->vm_mm) 652 return true; 653 654 return false; 655} 656 657static inline bool vma_is_accessible(struct vm_area_struct *vma) 658{ 659 return vma->vm_flags & VM_ACCESS_FLAGS; 660} 661 662#ifdef CONFIG_SHMEM 663/* 664 * The vma_is_shmem is not inline because it is used only by slow 665 * paths in userfault. 666 */ 667bool vma_is_shmem(struct vm_area_struct *vma); 668#else 669static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 670#endif 671 672int vma_is_stack_for_current(struct vm_area_struct *vma); 673 674/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 675#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 676 677struct mmu_gather; 678struct inode; 679 680static inline unsigned int compound_order(struct page *page) 681{ 682 if (!PageHead(page)) 683 return 0; 684 return page[1].compound_order; 685} 686 687/** 688 * folio_order - The allocation order of a folio. 689 * @folio: The folio. 690 * 691 * A folio is composed of 2^order pages. See get_order() for the definition 692 * of order. 693 * 694 * Return: The order of the folio. 695 */ 696static inline unsigned int folio_order(struct folio *folio) 697{ 698 return compound_order(&folio->page); 699} 700 701#include <linux/huge_mm.h> 702 703/* 704 * Methods to modify the page usage count. 705 * 706 * What counts for a page usage: 707 * - cache mapping (page->mapping) 708 * - private data (page->private) 709 * - page mapped in a task's page tables, each mapping 710 * is counted separately 711 * 712 * Also, many kernel routines increase the page count before a critical 713 * routine so they can be sure the page doesn't go away from under them. 714 */ 715 716/* 717 * Drop a ref, return true if the refcount fell to zero (the page has no users) 718 */ 719static inline int put_page_testzero(struct page *page) 720{ 721 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 722 return page_ref_dec_and_test(page); 723} 724 725static inline int folio_put_testzero(struct folio *folio) 726{ 727 return put_page_testzero(&folio->page); 728} 729 730/* 731 * Try to grab a ref unless the page has a refcount of zero, return false if 732 * that is the case. 733 * This can be called when MMU is off so it must not access 734 * any of the virtual mappings. 735 */ 736static inline bool get_page_unless_zero(struct page *page) 737{ 738 return page_ref_add_unless(page, 1, 0); 739} 740 741extern int page_is_ram(unsigned long pfn); 742 743enum { 744 REGION_INTERSECTS, 745 REGION_DISJOINT, 746 REGION_MIXED, 747}; 748 749int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 750 unsigned long desc); 751 752/* Support for virtually mapped pages */ 753struct page *vmalloc_to_page(const void *addr); 754unsigned long vmalloc_to_pfn(const void *addr); 755 756/* 757 * Determine if an address is within the vmalloc range 758 * 759 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 760 * is no special casing required. 761 */ 762 763#ifndef is_ioremap_addr 764#define is_ioremap_addr(x) is_vmalloc_addr(x) 765#endif 766 767#ifdef CONFIG_MMU 768extern bool is_vmalloc_addr(const void *x); 769extern int is_vmalloc_or_module_addr(const void *x); 770#else 771static inline bool is_vmalloc_addr(const void *x) 772{ 773 return false; 774} 775static inline int is_vmalloc_or_module_addr(const void *x) 776{ 777 return 0; 778} 779#endif 780 781/* 782 * How many times the entire folio is mapped as a single unit (eg by a 783 * PMD or PUD entry). This is probably not what you want, except for 784 * debugging purposes; look at folio_mapcount() or page_mapcount() 785 * instead. 786 */ 787static inline int folio_entire_mapcount(struct folio *folio) 788{ 789 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 790 return atomic_read(folio_mapcount_ptr(folio)) + 1; 791} 792 793/* 794 * Mapcount of compound page as a whole, does not include mapped sub-pages. 795 * 796 * Must be called only for compound pages. 797 */ 798static inline int compound_mapcount(struct page *page) 799{ 800 return folio_entire_mapcount(page_folio(page)); 801} 802 803/* 804 * The atomic page->_mapcount, starts from -1: so that transitions 805 * both from it and to it can be tracked, using atomic_inc_and_test 806 * and atomic_add_negative(-1). 807 */ 808static inline void page_mapcount_reset(struct page *page) 809{ 810 atomic_set(&(page)->_mapcount, -1); 811} 812 813int __page_mapcount(struct page *page); 814 815/* 816 * Mapcount of 0-order page; when compound sub-page, includes 817 * compound_mapcount(). 818 * 819 * Result is undefined for pages which cannot be mapped into userspace. 820 * For example SLAB or special types of pages. See function page_has_type(). 821 * They use this place in struct page differently. 822 */ 823static inline int page_mapcount(struct page *page) 824{ 825 if (unlikely(PageCompound(page))) 826 return __page_mapcount(page); 827 return atomic_read(&page->_mapcount) + 1; 828} 829 830int folio_mapcount(struct folio *folio); 831 832#ifdef CONFIG_TRANSPARENT_HUGEPAGE 833static inline int total_mapcount(struct page *page) 834{ 835 return folio_mapcount(page_folio(page)); 836} 837 838#else 839static inline int total_mapcount(struct page *page) 840{ 841 return page_mapcount(page); 842} 843#endif 844 845static inline struct page *virt_to_head_page(const void *x) 846{ 847 struct page *page = virt_to_page(x); 848 849 return compound_head(page); 850} 851 852static inline struct folio *virt_to_folio(const void *x) 853{ 854 struct page *page = virt_to_page(x); 855 856 return page_folio(page); 857} 858 859void __put_page(struct page *page); 860 861void put_pages_list(struct list_head *pages); 862 863void split_page(struct page *page, unsigned int order); 864void folio_copy(struct folio *dst, struct folio *src); 865 866unsigned long nr_free_buffer_pages(void); 867 868/* 869 * Compound pages have a destructor function. Provide a 870 * prototype for that function and accessor functions. 871 * These are _only_ valid on the head of a compound page. 872 */ 873typedef void compound_page_dtor(struct page *); 874 875/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 876enum compound_dtor_id { 877 NULL_COMPOUND_DTOR, 878 COMPOUND_PAGE_DTOR, 879#ifdef CONFIG_HUGETLB_PAGE 880 HUGETLB_PAGE_DTOR, 881#endif 882#ifdef CONFIG_TRANSPARENT_HUGEPAGE 883 TRANSHUGE_PAGE_DTOR, 884#endif 885 NR_COMPOUND_DTORS, 886}; 887extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 888 889static inline void set_compound_page_dtor(struct page *page, 890 enum compound_dtor_id compound_dtor) 891{ 892 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 893 page[1].compound_dtor = compound_dtor; 894} 895 896static inline void destroy_compound_page(struct page *page) 897{ 898 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 899 compound_page_dtors[page[1].compound_dtor](page); 900} 901 902static inline int head_compound_pincount(struct page *head) 903{ 904 return atomic_read(compound_pincount_ptr(head)); 905} 906 907static inline void set_compound_order(struct page *page, unsigned int order) 908{ 909 page[1].compound_order = order; 910#ifdef CONFIG_64BIT 911 page[1].compound_nr = 1U << order; 912#endif 913} 914 915/* Returns the number of pages in this potentially compound page. */ 916static inline unsigned long compound_nr(struct page *page) 917{ 918 if (!PageHead(page)) 919 return 1; 920#ifdef CONFIG_64BIT 921 return page[1].compound_nr; 922#else 923 return 1UL << compound_order(page); 924#endif 925} 926 927/* Returns the number of bytes in this potentially compound page. */ 928static inline unsigned long page_size(struct page *page) 929{ 930 return PAGE_SIZE << compound_order(page); 931} 932 933/* Returns the number of bits needed for the number of bytes in a page */ 934static inline unsigned int page_shift(struct page *page) 935{ 936 return PAGE_SHIFT + compound_order(page); 937} 938 939/** 940 * thp_order - Order of a transparent huge page. 941 * @page: Head page of a transparent huge page. 942 */ 943static inline unsigned int thp_order(struct page *page) 944{ 945 VM_BUG_ON_PGFLAGS(PageTail(page), page); 946 return compound_order(page); 947} 948 949/** 950 * thp_nr_pages - The number of regular pages in this huge page. 951 * @page: The head page of a huge page. 952 */ 953static inline int thp_nr_pages(struct page *page) 954{ 955 VM_BUG_ON_PGFLAGS(PageTail(page), page); 956 return compound_nr(page); 957} 958 959/** 960 * thp_size - Size of a transparent huge page. 961 * @page: Head page of a transparent huge page. 962 * 963 * Return: Number of bytes in this page. 964 */ 965static inline unsigned long thp_size(struct page *page) 966{ 967 return PAGE_SIZE << thp_order(page); 968} 969 970void free_compound_page(struct page *page); 971 972#ifdef CONFIG_MMU 973/* 974 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 975 * servicing faults for write access. In the normal case, do always want 976 * pte_mkwrite. But get_user_pages can cause write faults for mappings 977 * that do not have writing enabled, when used by access_process_vm. 978 */ 979static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 980{ 981 if (likely(vma->vm_flags & VM_WRITE)) 982 pte = pte_mkwrite(pte); 983 return pte; 984} 985 986vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 987void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 988 989vm_fault_t finish_fault(struct vm_fault *vmf); 990vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 991#endif 992 993/* 994 * Multiple processes may "see" the same page. E.g. for untouched 995 * mappings of /dev/null, all processes see the same page full of 996 * zeroes, and text pages of executables and shared libraries have 997 * only one copy in memory, at most, normally. 998 * 999 * For the non-reserved pages, page_count(page) denotes a reference count. 1000 * page_count() == 0 means the page is free. page->lru is then used for 1001 * freelist management in the buddy allocator. 1002 * page_count() > 0 means the page has been allocated. 1003 * 1004 * Pages are allocated by the slab allocator in order to provide memory 1005 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1006 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1007 * unless a particular usage is carefully commented. (the responsibility of 1008 * freeing the kmalloc memory is the caller's, of course). 1009 * 1010 * A page may be used by anyone else who does a __get_free_page(). 1011 * In this case, page_count still tracks the references, and should only 1012 * be used through the normal accessor functions. The top bits of page->flags 1013 * and page->virtual store page management information, but all other fields 1014 * are unused and could be used privately, carefully. The management of this 1015 * page is the responsibility of the one who allocated it, and those who have 1016 * subsequently been given references to it. 1017 * 1018 * The other pages (we may call them "pagecache pages") are completely 1019 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1020 * The following discussion applies only to them. 1021 * 1022 * A pagecache page contains an opaque `private' member, which belongs to the 1023 * page's address_space. Usually, this is the address of a circular list of 1024 * the page's disk buffers. PG_private must be set to tell the VM to call 1025 * into the filesystem to release these pages. 1026 * 1027 * A page may belong to an inode's memory mapping. In this case, page->mapping 1028 * is the pointer to the inode, and page->index is the file offset of the page, 1029 * in units of PAGE_SIZE. 1030 * 1031 * If pagecache pages are not associated with an inode, they are said to be 1032 * anonymous pages. These may become associated with the swapcache, and in that 1033 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1034 * 1035 * In either case (swapcache or inode backed), the pagecache itself holds one 1036 * reference to the page. Setting PG_private should also increment the 1037 * refcount. The each user mapping also has a reference to the page. 1038 * 1039 * The pagecache pages are stored in a per-mapping radix tree, which is 1040 * rooted at mapping->i_pages, and indexed by offset. 1041 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1042 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1043 * 1044 * All pagecache pages may be subject to I/O: 1045 * - inode pages may need to be read from disk, 1046 * - inode pages which have been modified and are MAP_SHARED may need 1047 * to be written back to the inode on disk, 1048 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1049 * modified may need to be swapped out to swap space and (later) to be read 1050 * back into memory. 1051 */ 1052 1053/* 1054 * The zone field is never updated after free_area_init_core() 1055 * sets it, so none of the operations on it need to be atomic. 1056 */ 1057 1058/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1059#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1060#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1061#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1062#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1063#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1064 1065/* 1066 * Define the bit shifts to access each section. For non-existent 1067 * sections we define the shift as 0; that plus a 0 mask ensures 1068 * the compiler will optimise away reference to them. 1069 */ 1070#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1071#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1072#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1073#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1074#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1075 1076/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1077#ifdef NODE_NOT_IN_PAGE_FLAGS 1078#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1079#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1080 SECTIONS_PGOFF : ZONES_PGOFF) 1081#else 1082#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1083#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1084 NODES_PGOFF : ZONES_PGOFF) 1085#endif 1086 1087#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1088 1089#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1090#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1091#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1092#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1093#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1094#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1095 1096static inline enum zone_type page_zonenum(const struct page *page) 1097{ 1098 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1099 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1100} 1101 1102static inline enum zone_type folio_zonenum(const struct folio *folio) 1103{ 1104 return page_zonenum(&folio->page); 1105} 1106 1107#ifdef CONFIG_ZONE_DEVICE 1108static inline bool is_zone_device_page(const struct page *page) 1109{ 1110 return page_zonenum(page) == ZONE_DEVICE; 1111} 1112extern void memmap_init_zone_device(struct zone *, unsigned long, 1113 unsigned long, struct dev_pagemap *); 1114#else 1115static inline bool is_zone_device_page(const struct page *page) 1116{ 1117 return false; 1118} 1119#endif 1120 1121static inline bool folio_is_zone_device(const struct folio *folio) 1122{ 1123 return is_zone_device_page(&folio->page); 1124} 1125 1126static inline bool is_zone_movable_page(const struct page *page) 1127{ 1128 return page_zonenum(page) == ZONE_MOVABLE; 1129} 1130 1131#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1132DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1133 1134bool __put_devmap_managed_page(struct page *page); 1135static inline bool put_devmap_managed_page(struct page *page) 1136{ 1137 if (!static_branch_unlikely(&devmap_managed_key)) 1138 return false; 1139 if (!is_zone_device_page(page)) 1140 return false; 1141 return __put_devmap_managed_page(page); 1142} 1143 1144#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1145static inline bool put_devmap_managed_page(struct page *page) 1146{ 1147 return false; 1148} 1149#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1150 1151/* 127: arbitrary random number, small enough to assemble well */ 1152#define folio_ref_zero_or_close_to_overflow(folio) \ 1153 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1154 1155/** 1156 * folio_get - Increment the reference count on a folio. 1157 * @folio: The folio. 1158 * 1159 * Context: May be called in any context, as long as you know that 1160 * you have a refcount on the folio. If you do not already have one, 1161 * folio_try_get() may be the right interface for you to use. 1162 */ 1163static inline void folio_get(struct folio *folio) 1164{ 1165 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1166 folio_ref_inc(folio); 1167} 1168 1169static inline void get_page(struct page *page) 1170{ 1171 folio_get(page_folio(page)); 1172} 1173 1174bool __must_check try_grab_page(struct page *page, unsigned int flags); 1175 1176static inline __must_check bool try_get_page(struct page *page) 1177{ 1178 page = compound_head(page); 1179 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1180 return false; 1181 page_ref_inc(page); 1182 return true; 1183} 1184 1185/** 1186 * folio_put - Decrement the reference count on a folio. 1187 * @folio: The folio. 1188 * 1189 * If the folio's reference count reaches zero, the memory will be 1190 * released back to the page allocator and may be used by another 1191 * allocation immediately. Do not access the memory or the struct folio 1192 * after calling folio_put() unless you can be sure that it wasn't the 1193 * last reference. 1194 * 1195 * Context: May be called in process or interrupt context, but not in NMI 1196 * context. May be called while holding a spinlock. 1197 */ 1198static inline void folio_put(struct folio *folio) 1199{ 1200 if (folio_put_testzero(folio)) 1201 __put_page(&folio->page); 1202} 1203 1204/** 1205 * folio_put_refs - Reduce the reference count on a folio. 1206 * @folio: The folio. 1207 * @refs: The amount to subtract from the folio's reference count. 1208 * 1209 * If the folio's reference count reaches zero, the memory will be 1210 * released back to the page allocator and may be used by another 1211 * allocation immediately. Do not access the memory or the struct folio 1212 * after calling folio_put_refs() unless you can be sure that these weren't 1213 * the last references. 1214 * 1215 * Context: May be called in process or interrupt context, but not in NMI 1216 * context. May be called while holding a spinlock. 1217 */ 1218static inline void folio_put_refs(struct folio *folio, int refs) 1219{ 1220 if (folio_ref_sub_and_test(folio, refs)) 1221 __put_page(&folio->page); 1222} 1223 1224static inline void put_page(struct page *page) 1225{ 1226 struct folio *folio = page_folio(page); 1227 1228 /* 1229 * For some devmap managed pages we need to catch refcount transition 1230 * from 2 to 1: 1231 */ 1232 if (put_devmap_managed_page(&folio->page)) 1233 return; 1234 folio_put(folio); 1235} 1236 1237/* 1238 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1239 * the page's refcount so that two separate items are tracked: the original page 1240 * reference count, and also a new count of how many pin_user_pages() calls were 1241 * made against the page. ("gup-pinned" is another term for the latter). 1242 * 1243 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1244 * distinct from normal pages. As such, the unpin_user_page() call (and its 1245 * variants) must be used in order to release gup-pinned pages. 1246 * 1247 * Choice of value: 1248 * 1249 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1250 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1251 * simpler, due to the fact that adding an even power of two to the page 1252 * refcount has the effect of using only the upper N bits, for the code that 1253 * counts up using the bias value. This means that the lower bits are left for 1254 * the exclusive use of the original code that increments and decrements by one 1255 * (or at least, by much smaller values than the bias value). 1256 * 1257 * Of course, once the lower bits overflow into the upper bits (and this is 1258 * OK, because subtraction recovers the original values), then visual inspection 1259 * no longer suffices to directly view the separate counts. However, for normal 1260 * applications that don't have huge page reference counts, this won't be an 1261 * issue. 1262 * 1263 * Locking: the lockless algorithm described in folio_try_get_rcu() 1264 * provides safe operation for get_user_pages(), page_mkclean() and 1265 * other calls that race to set up page table entries. 1266 */ 1267#define GUP_PIN_COUNTING_BIAS (1U << 10) 1268 1269void unpin_user_page(struct page *page); 1270void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1271 bool make_dirty); 1272void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1273 bool make_dirty); 1274void unpin_user_pages(struct page **pages, unsigned long npages); 1275 1276static inline bool is_cow_mapping(vm_flags_t flags) 1277{ 1278 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1279} 1280 1281#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1282#define SECTION_IN_PAGE_FLAGS 1283#endif 1284 1285/* 1286 * The identification function is mainly used by the buddy allocator for 1287 * determining if two pages could be buddies. We are not really identifying 1288 * the zone since we could be using the section number id if we do not have 1289 * node id available in page flags. 1290 * We only guarantee that it will return the same value for two combinable 1291 * pages in a zone. 1292 */ 1293static inline int page_zone_id(struct page *page) 1294{ 1295 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1296} 1297 1298#ifdef NODE_NOT_IN_PAGE_FLAGS 1299extern int page_to_nid(const struct page *page); 1300#else 1301static inline int page_to_nid(const struct page *page) 1302{ 1303 struct page *p = (struct page *)page; 1304 1305 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1306} 1307#endif 1308 1309static inline int folio_nid(const struct folio *folio) 1310{ 1311 return page_to_nid(&folio->page); 1312} 1313 1314#ifdef CONFIG_NUMA_BALANCING 1315static inline int cpu_pid_to_cpupid(int cpu, int pid) 1316{ 1317 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1318} 1319 1320static inline int cpupid_to_pid(int cpupid) 1321{ 1322 return cpupid & LAST__PID_MASK; 1323} 1324 1325static inline int cpupid_to_cpu(int cpupid) 1326{ 1327 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1328} 1329 1330static inline int cpupid_to_nid(int cpupid) 1331{ 1332 return cpu_to_node(cpupid_to_cpu(cpupid)); 1333} 1334 1335static inline bool cpupid_pid_unset(int cpupid) 1336{ 1337 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1338} 1339 1340static inline bool cpupid_cpu_unset(int cpupid) 1341{ 1342 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1343} 1344 1345static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1346{ 1347 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1348} 1349 1350#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1351#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1352static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1353{ 1354 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1355} 1356 1357static inline int page_cpupid_last(struct page *page) 1358{ 1359 return page->_last_cpupid; 1360} 1361static inline void page_cpupid_reset_last(struct page *page) 1362{ 1363 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1364} 1365#else 1366static inline int page_cpupid_last(struct page *page) 1367{ 1368 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1369} 1370 1371extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1372 1373static inline void page_cpupid_reset_last(struct page *page) 1374{ 1375 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1376} 1377#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1378#else /* !CONFIG_NUMA_BALANCING */ 1379static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1380{ 1381 return page_to_nid(page); /* XXX */ 1382} 1383 1384static inline int page_cpupid_last(struct page *page) 1385{ 1386 return page_to_nid(page); /* XXX */ 1387} 1388 1389static inline int cpupid_to_nid(int cpupid) 1390{ 1391 return -1; 1392} 1393 1394static inline int cpupid_to_pid(int cpupid) 1395{ 1396 return -1; 1397} 1398 1399static inline int cpupid_to_cpu(int cpupid) 1400{ 1401 return -1; 1402} 1403 1404static inline int cpu_pid_to_cpupid(int nid, int pid) 1405{ 1406 return -1; 1407} 1408 1409static inline bool cpupid_pid_unset(int cpupid) 1410{ 1411 return true; 1412} 1413 1414static inline void page_cpupid_reset_last(struct page *page) 1415{ 1416} 1417 1418static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1419{ 1420 return false; 1421} 1422#endif /* CONFIG_NUMA_BALANCING */ 1423 1424#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1425 1426/* 1427 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1428 * setting tags for all pages to native kernel tag value 0xff, as the default 1429 * value 0x00 maps to 0xff. 1430 */ 1431 1432static inline u8 page_kasan_tag(const struct page *page) 1433{ 1434 u8 tag = 0xff; 1435 1436 if (kasan_enabled()) { 1437 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1438 tag ^= 0xff; 1439 } 1440 1441 return tag; 1442} 1443 1444static inline void page_kasan_tag_set(struct page *page, u8 tag) 1445{ 1446 unsigned long old_flags, flags; 1447 1448 if (!kasan_enabled()) 1449 return; 1450 1451 tag ^= 0xff; 1452 old_flags = READ_ONCE(page->flags); 1453 do { 1454 flags = old_flags; 1455 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1456 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1457 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1458} 1459 1460static inline void page_kasan_tag_reset(struct page *page) 1461{ 1462 if (kasan_enabled()) 1463 page_kasan_tag_set(page, 0xff); 1464} 1465 1466#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1467 1468static inline u8 page_kasan_tag(const struct page *page) 1469{ 1470 return 0xff; 1471} 1472 1473static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1474static inline void page_kasan_tag_reset(struct page *page) { } 1475 1476#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1477 1478static inline struct zone *page_zone(const struct page *page) 1479{ 1480 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1481} 1482 1483static inline pg_data_t *page_pgdat(const struct page *page) 1484{ 1485 return NODE_DATA(page_to_nid(page)); 1486} 1487 1488static inline struct zone *folio_zone(const struct folio *folio) 1489{ 1490 return page_zone(&folio->page); 1491} 1492 1493static inline pg_data_t *folio_pgdat(const struct folio *folio) 1494{ 1495 return page_pgdat(&folio->page); 1496} 1497 1498#ifdef SECTION_IN_PAGE_FLAGS 1499static inline void set_page_section(struct page *page, unsigned long section) 1500{ 1501 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1502 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1503} 1504 1505static inline unsigned long page_to_section(const struct page *page) 1506{ 1507 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1508} 1509#endif 1510 1511/** 1512 * folio_pfn - Return the Page Frame Number of a folio. 1513 * @folio: The folio. 1514 * 1515 * A folio may contain multiple pages. The pages have consecutive 1516 * Page Frame Numbers. 1517 * 1518 * Return: The Page Frame Number of the first page in the folio. 1519 */ 1520static inline unsigned long folio_pfn(struct folio *folio) 1521{ 1522 return page_to_pfn(&folio->page); 1523} 1524 1525static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1526{ 1527 return &folio_page(folio, 1)->compound_pincount; 1528} 1529 1530/** 1531 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1532 * @folio: The folio. 1533 * 1534 * This function checks if a folio has been pinned via a call to 1535 * a function in the pin_user_pages() family. 1536 * 1537 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1538 * because it means "definitely not pinned for DMA", but true means "probably 1539 * pinned for DMA, but possibly a false positive due to having at least 1540 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1541 * 1542 * False positives are OK, because: a) it's unlikely for a folio to 1543 * get that many refcounts, and b) all the callers of this routine are 1544 * expected to be able to deal gracefully with a false positive. 1545 * 1546 * For large folios, the result will be exactly correct. That's because 1547 * we have more tracking data available: the compound_pincount is used 1548 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1549 * 1550 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1551 * 1552 * Return: True, if it is likely that the page has been "dma-pinned". 1553 * False, if the page is definitely not dma-pinned. 1554 */ 1555static inline bool folio_maybe_dma_pinned(struct folio *folio) 1556{ 1557 if (folio_test_large(folio)) 1558 return atomic_read(folio_pincount_ptr(folio)) > 0; 1559 1560 /* 1561 * folio_ref_count() is signed. If that refcount overflows, then 1562 * folio_ref_count() returns a negative value, and callers will avoid 1563 * further incrementing the refcount. 1564 * 1565 * Here, for that overflow case, use the sign bit to count a little 1566 * bit higher via unsigned math, and thus still get an accurate result. 1567 */ 1568 return ((unsigned int)folio_ref_count(folio)) >= 1569 GUP_PIN_COUNTING_BIAS; 1570} 1571 1572static inline bool page_maybe_dma_pinned(struct page *page) 1573{ 1574 return folio_maybe_dma_pinned(page_folio(page)); 1575} 1576 1577/* 1578 * This should most likely only be called during fork() to see whether we 1579 * should break the cow immediately for an anon page on the src mm. 1580 * 1581 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1582 */ 1583static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1584 struct page *page) 1585{ 1586 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1587 1588 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1589 return false; 1590 1591 return page_maybe_dma_pinned(page); 1592} 1593 1594/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1595#ifdef CONFIG_MIGRATION 1596static inline bool is_pinnable_page(struct page *page) 1597{ 1598#ifdef CONFIG_CMA 1599 int mt = get_pageblock_migratetype(page); 1600 1601 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1602 return false; 1603#endif 1604 return !is_zone_movable_page(page) || is_zero_pfn(page_to_pfn(page)); 1605} 1606#else 1607static inline bool is_pinnable_page(struct page *page) 1608{ 1609 return true; 1610} 1611#endif 1612 1613static inline bool folio_is_pinnable(struct folio *folio) 1614{ 1615 return is_pinnable_page(&folio->page); 1616} 1617 1618static inline void set_page_zone(struct page *page, enum zone_type zone) 1619{ 1620 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1621 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1622} 1623 1624static inline void set_page_node(struct page *page, unsigned long node) 1625{ 1626 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1627 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1628} 1629 1630static inline void set_page_links(struct page *page, enum zone_type zone, 1631 unsigned long node, unsigned long pfn) 1632{ 1633 set_page_zone(page, zone); 1634 set_page_node(page, node); 1635#ifdef SECTION_IN_PAGE_FLAGS 1636 set_page_section(page, pfn_to_section_nr(pfn)); 1637#endif 1638} 1639 1640/** 1641 * folio_nr_pages - The number of pages in the folio. 1642 * @folio: The folio. 1643 * 1644 * Return: A positive power of two. 1645 */ 1646static inline long folio_nr_pages(struct folio *folio) 1647{ 1648 return compound_nr(&folio->page); 1649} 1650 1651/** 1652 * folio_next - Move to the next physical folio. 1653 * @folio: The folio we're currently operating on. 1654 * 1655 * If you have physically contiguous memory which may span more than 1656 * one folio (eg a &struct bio_vec), use this function to move from one 1657 * folio to the next. Do not use it if the memory is only virtually 1658 * contiguous as the folios are almost certainly not adjacent to each 1659 * other. This is the folio equivalent to writing ``page++``. 1660 * 1661 * Context: We assume that the folios are refcounted and/or locked at a 1662 * higher level and do not adjust the reference counts. 1663 * Return: The next struct folio. 1664 */ 1665static inline struct folio *folio_next(struct folio *folio) 1666{ 1667 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1668} 1669 1670/** 1671 * folio_shift - The size of the memory described by this folio. 1672 * @folio: The folio. 1673 * 1674 * A folio represents a number of bytes which is a power-of-two in size. 1675 * This function tells you which power-of-two the folio is. See also 1676 * folio_size() and folio_order(). 1677 * 1678 * Context: The caller should have a reference on the folio to prevent 1679 * it from being split. It is not necessary for the folio to be locked. 1680 * Return: The base-2 logarithm of the size of this folio. 1681 */ 1682static inline unsigned int folio_shift(struct folio *folio) 1683{ 1684 return PAGE_SHIFT + folio_order(folio); 1685} 1686 1687/** 1688 * folio_size - The number of bytes in a folio. 1689 * @folio: The folio. 1690 * 1691 * Context: The caller should have a reference on the folio to prevent 1692 * it from being split. It is not necessary for the folio to be locked. 1693 * Return: The number of bytes in this folio. 1694 */ 1695static inline size_t folio_size(struct folio *folio) 1696{ 1697 return PAGE_SIZE << folio_order(folio); 1698} 1699 1700#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1701static inline int arch_make_page_accessible(struct page *page) 1702{ 1703 return 0; 1704} 1705#endif 1706 1707#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1708static inline int arch_make_folio_accessible(struct folio *folio) 1709{ 1710 int ret; 1711 long i, nr = folio_nr_pages(folio); 1712 1713 for (i = 0; i < nr; i++) { 1714 ret = arch_make_page_accessible(folio_page(folio, i)); 1715 if (ret) 1716 break; 1717 } 1718 1719 return ret; 1720} 1721#endif 1722 1723/* 1724 * Some inline functions in vmstat.h depend on page_zone() 1725 */ 1726#include <linux/vmstat.h> 1727 1728static __always_inline void *lowmem_page_address(const struct page *page) 1729{ 1730 return page_to_virt(page); 1731} 1732 1733#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1734#define HASHED_PAGE_VIRTUAL 1735#endif 1736 1737#if defined(WANT_PAGE_VIRTUAL) 1738static inline void *page_address(const struct page *page) 1739{ 1740 return page->virtual; 1741} 1742static inline void set_page_address(struct page *page, void *address) 1743{ 1744 page->virtual = address; 1745} 1746#define page_address_init() do { } while(0) 1747#endif 1748 1749#if defined(HASHED_PAGE_VIRTUAL) 1750void *page_address(const struct page *page); 1751void set_page_address(struct page *page, void *virtual); 1752void page_address_init(void); 1753#endif 1754 1755#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1756#define page_address(page) lowmem_page_address(page) 1757#define set_page_address(page, address) do { } while(0) 1758#define page_address_init() do { } while(0) 1759#endif 1760 1761static inline void *folio_address(const struct folio *folio) 1762{ 1763 return page_address(&folio->page); 1764} 1765 1766extern void *page_rmapping(struct page *page); 1767extern pgoff_t __page_file_index(struct page *page); 1768 1769/* 1770 * Return the pagecache index of the passed page. Regular pagecache pages 1771 * use ->index whereas swapcache pages use swp_offset(->private) 1772 */ 1773static inline pgoff_t page_index(struct page *page) 1774{ 1775 if (unlikely(PageSwapCache(page))) 1776 return __page_file_index(page); 1777 return page->index; 1778} 1779 1780bool page_mapped(struct page *page); 1781bool folio_mapped(struct folio *folio); 1782 1783/* 1784 * Return true only if the page has been allocated with 1785 * ALLOC_NO_WATERMARKS and the low watermark was not 1786 * met implying that the system is under some pressure. 1787 */ 1788static inline bool page_is_pfmemalloc(const struct page *page) 1789{ 1790 /* 1791 * lru.next has bit 1 set if the page is allocated from the 1792 * pfmemalloc reserves. Callers may simply overwrite it if 1793 * they do not need to preserve that information. 1794 */ 1795 return (uintptr_t)page->lru.next & BIT(1); 1796} 1797 1798/* 1799 * Only to be called by the page allocator on a freshly allocated 1800 * page. 1801 */ 1802static inline void set_page_pfmemalloc(struct page *page) 1803{ 1804 page->lru.next = (void *)BIT(1); 1805} 1806 1807static inline void clear_page_pfmemalloc(struct page *page) 1808{ 1809 page->lru.next = NULL; 1810} 1811 1812/* 1813 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1814 */ 1815extern void pagefault_out_of_memory(void); 1816 1817#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1818#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1819#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1820 1821/* 1822 * Flags passed to show_mem() and show_free_areas() to suppress output in 1823 * various contexts. 1824 */ 1825#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1826 1827extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1828 1829#ifdef CONFIG_MMU 1830extern bool can_do_mlock(void); 1831#else 1832static inline bool can_do_mlock(void) { return false; } 1833#endif 1834extern int user_shm_lock(size_t, struct ucounts *); 1835extern void user_shm_unlock(size_t, struct ucounts *); 1836 1837struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1838 pte_t pte); 1839struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1840 pmd_t pmd); 1841 1842void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1843 unsigned long size); 1844void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1845 unsigned long size); 1846void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1847 unsigned long start, unsigned long end); 1848 1849struct mmu_notifier_range; 1850 1851void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1852 unsigned long end, unsigned long floor, unsigned long ceiling); 1853int 1854copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1855int follow_pte(struct mm_struct *mm, unsigned long address, 1856 pte_t **ptepp, spinlock_t **ptlp); 1857int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1858 unsigned long *pfn); 1859int follow_phys(struct vm_area_struct *vma, unsigned long address, 1860 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1861int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1862 void *buf, int len, int write); 1863 1864extern void truncate_pagecache(struct inode *inode, loff_t new); 1865extern void truncate_setsize(struct inode *inode, loff_t newsize); 1866void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1867void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1868int generic_error_remove_page(struct address_space *mapping, struct page *page); 1869 1870#ifdef CONFIG_MMU 1871extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1872 unsigned long address, unsigned int flags, 1873 struct pt_regs *regs); 1874extern int fixup_user_fault(struct mm_struct *mm, 1875 unsigned long address, unsigned int fault_flags, 1876 bool *unlocked); 1877void unmap_mapping_pages(struct address_space *mapping, 1878 pgoff_t start, pgoff_t nr, bool even_cows); 1879void unmap_mapping_range(struct address_space *mapping, 1880 loff_t const holebegin, loff_t const holelen, int even_cows); 1881#else 1882static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1883 unsigned long address, unsigned int flags, 1884 struct pt_regs *regs) 1885{ 1886 /* should never happen if there's no MMU */ 1887 BUG(); 1888 return VM_FAULT_SIGBUS; 1889} 1890static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1891 unsigned int fault_flags, bool *unlocked) 1892{ 1893 /* should never happen if there's no MMU */ 1894 BUG(); 1895 return -EFAULT; 1896} 1897static inline void unmap_mapping_pages(struct address_space *mapping, 1898 pgoff_t start, pgoff_t nr, bool even_cows) { } 1899static inline void unmap_mapping_range(struct address_space *mapping, 1900 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1901#endif 1902 1903static inline void unmap_shared_mapping_range(struct address_space *mapping, 1904 loff_t const holebegin, loff_t const holelen) 1905{ 1906 unmap_mapping_range(mapping, holebegin, holelen, 0); 1907} 1908 1909extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1910 void *buf, int len, unsigned int gup_flags); 1911extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1912 void *buf, int len, unsigned int gup_flags); 1913extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1914 void *buf, int len, unsigned int gup_flags); 1915 1916long get_user_pages_remote(struct mm_struct *mm, 1917 unsigned long start, unsigned long nr_pages, 1918 unsigned int gup_flags, struct page **pages, 1919 struct vm_area_struct **vmas, int *locked); 1920long pin_user_pages_remote(struct mm_struct *mm, 1921 unsigned long start, unsigned long nr_pages, 1922 unsigned int gup_flags, struct page **pages, 1923 struct vm_area_struct **vmas, int *locked); 1924long get_user_pages(unsigned long start, unsigned long nr_pages, 1925 unsigned int gup_flags, struct page **pages, 1926 struct vm_area_struct **vmas); 1927long pin_user_pages(unsigned long start, unsigned long nr_pages, 1928 unsigned int gup_flags, struct page **pages, 1929 struct vm_area_struct **vmas); 1930long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1931 struct page **pages, unsigned int gup_flags); 1932long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1933 struct page **pages, unsigned int gup_flags); 1934 1935int get_user_pages_fast(unsigned long start, int nr_pages, 1936 unsigned int gup_flags, struct page **pages); 1937int pin_user_pages_fast(unsigned long start, int nr_pages, 1938 unsigned int gup_flags, struct page **pages); 1939 1940int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1941int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1942 struct task_struct *task, bool bypass_rlim); 1943 1944struct kvec; 1945int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1946 struct page **pages); 1947struct page *get_dump_page(unsigned long addr); 1948 1949bool folio_mark_dirty(struct folio *folio); 1950bool set_page_dirty(struct page *page); 1951int set_page_dirty_lock(struct page *page); 1952 1953int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1954 1955extern unsigned long move_page_tables(struct vm_area_struct *vma, 1956 unsigned long old_addr, struct vm_area_struct *new_vma, 1957 unsigned long new_addr, unsigned long len, 1958 bool need_rmap_locks); 1959 1960/* 1961 * Flags used by change_protection(). For now we make it a bitmap so 1962 * that we can pass in multiple flags just like parameters. However 1963 * for now all the callers are only use one of the flags at the same 1964 * time. 1965 */ 1966/* Whether we should allow dirty bit accounting */ 1967#define MM_CP_DIRTY_ACCT (1UL << 0) 1968/* Whether this protection change is for NUMA hints */ 1969#define MM_CP_PROT_NUMA (1UL << 1) 1970/* Whether this change is for write protecting */ 1971#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1972#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1973#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1974 MM_CP_UFFD_WP_RESOLVE) 1975 1976extern unsigned long change_protection(struct mmu_gather *tlb, 1977 struct vm_area_struct *vma, unsigned long start, 1978 unsigned long end, pgprot_t newprot, 1979 unsigned long cp_flags); 1980extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, 1981 struct vm_area_struct **pprev, unsigned long start, 1982 unsigned long end, unsigned long newflags); 1983 1984/* 1985 * doesn't attempt to fault and will return short. 1986 */ 1987int get_user_pages_fast_only(unsigned long start, int nr_pages, 1988 unsigned int gup_flags, struct page **pages); 1989int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1990 unsigned int gup_flags, struct page **pages); 1991 1992static inline bool get_user_page_fast_only(unsigned long addr, 1993 unsigned int gup_flags, struct page **pagep) 1994{ 1995 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1996} 1997/* 1998 * per-process(per-mm_struct) statistics. 1999 */ 2000static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2001{ 2002 long val = atomic_long_read(&mm->rss_stat.count[member]); 2003 2004#ifdef SPLIT_RSS_COUNTING 2005 /* 2006 * counter is updated in asynchronous manner and may go to minus. 2007 * But it's never be expected number for users. 2008 */ 2009 if (val < 0) 2010 val = 0; 2011#endif 2012 return (unsigned long)val; 2013} 2014 2015void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 2016 2017static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2018{ 2019 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 2020 2021 mm_trace_rss_stat(mm, member, count); 2022} 2023 2024static inline void inc_mm_counter(struct mm_struct *mm, int member) 2025{ 2026 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 2027 2028 mm_trace_rss_stat(mm, member, count); 2029} 2030 2031static inline void dec_mm_counter(struct mm_struct *mm, int member) 2032{ 2033 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 2034 2035 mm_trace_rss_stat(mm, member, count); 2036} 2037 2038/* Optimized variant when page is already known not to be PageAnon */ 2039static inline int mm_counter_file(struct page *page) 2040{ 2041 if (PageSwapBacked(page)) 2042 return MM_SHMEMPAGES; 2043 return MM_FILEPAGES; 2044} 2045 2046static inline int mm_counter(struct page *page) 2047{ 2048 if (PageAnon(page)) 2049 return MM_ANONPAGES; 2050 return mm_counter_file(page); 2051} 2052 2053static inline unsigned long get_mm_rss(struct mm_struct *mm) 2054{ 2055 return get_mm_counter(mm, MM_FILEPAGES) + 2056 get_mm_counter(mm, MM_ANONPAGES) + 2057 get_mm_counter(mm, MM_SHMEMPAGES); 2058} 2059 2060static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2061{ 2062 return max(mm->hiwater_rss, get_mm_rss(mm)); 2063} 2064 2065static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2066{ 2067 return max(mm->hiwater_vm, mm->total_vm); 2068} 2069 2070static inline void update_hiwater_rss(struct mm_struct *mm) 2071{ 2072 unsigned long _rss = get_mm_rss(mm); 2073 2074 if ((mm)->hiwater_rss < _rss) 2075 (mm)->hiwater_rss = _rss; 2076} 2077 2078static inline void update_hiwater_vm(struct mm_struct *mm) 2079{ 2080 if (mm->hiwater_vm < mm->total_vm) 2081 mm->hiwater_vm = mm->total_vm; 2082} 2083 2084static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2085{ 2086 mm->hiwater_rss = get_mm_rss(mm); 2087} 2088 2089static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2090 struct mm_struct *mm) 2091{ 2092 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2093 2094 if (*maxrss < hiwater_rss) 2095 *maxrss = hiwater_rss; 2096} 2097 2098#if defined(SPLIT_RSS_COUNTING) 2099void sync_mm_rss(struct mm_struct *mm); 2100#else 2101static inline void sync_mm_rss(struct mm_struct *mm) 2102{ 2103} 2104#endif 2105 2106#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2107static inline int pte_special(pte_t pte) 2108{ 2109 return 0; 2110} 2111 2112static inline pte_t pte_mkspecial(pte_t pte) 2113{ 2114 return pte; 2115} 2116#endif 2117 2118#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2119static inline int pte_devmap(pte_t pte) 2120{ 2121 return 0; 2122} 2123#endif 2124 2125int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2126 2127extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2128 spinlock_t **ptl); 2129static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2130 spinlock_t **ptl) 2131{ 2132 pte_t *ptep; 2133 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2134 return ptep; 2135} 2136 2137#ifdef __PAGETABLE_P4D_FOLDED 2138static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2139 unsigned long address) 2140{ 2141 return 0; 2142} 2143#else 2144int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2145#endif 2146 2147#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2148static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2149 unsigned long address) 2150{ 2151 return 0; 2152} 2153static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2154static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2155 2156#else 2157int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2158 2159static inline void mm_inc_nr_puds(struct mm_struct *mm) 2160{ 2161 if (mm_pud_folded(mm)) 2162 return; 2163 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2164} 2165 2166static inline void mm_dec_nr_puds(struct mm_struct *mm) 2167{ 2168 if (mm_pud_folded(mm)) 2169 return; 2170 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2171} 2172#endif 2173 2174#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2175static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2176 unsigned long address) 2177{ 2178 return 0; 2179} 2180 2181static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2182static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2183 2184#else 2185int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2186 2187static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2188{ 2189 if (mm_pmd_folded(mm)) 2190 return; 2191 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2192} 2193 2194static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2195{ 2196 if (mm_pmd_folded(mm)) 2197 return; 2198 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2199} 2200#endif 2201 2202#ifdef CONFIG_MMU 2203static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2204{ 2205 atomic_long_set(&mm->pgtables_bytes, 0); 2206} 2207 2208static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2209{ 2210 return atomic_long_read(&mm->pgtables_bytes); 2211} 2212 2213static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2214{ 2215 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2216} 2217 2218static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2219{ 2220 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2221} 2222#else 2223 2224static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2225static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2226{ 2227 return 0; 2228} 2229 2230static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2231static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2232#endif 2233 2234int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2235int __pte_alloc_kernel(pmd_t *pmd); 2236 2237#if defined(CONFIG_MMU) 2238 2239static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2240 unsigned long address) 2241{ 2242 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2243 NULL : p4d_offset(pgd, address); 2244} 2245 2246static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2247 unsigned long address) 2248{ 2249 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2250 NULL : pud_offset(p4d, address); 2251} 2252 2253static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2254{ 2255 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2256 NULL: pmd_offset(pud, address); 2257} 2258#endif /* CONFIG_MMU */ 2259 2260#if USE_SPLIT_PTE_PTLOCKS 2261#if ALLOC_SPLIT_PTLOCKS 2262void __init ptlock_cache_init(void); 2263extern bool ptlock_alloc(struct page *page); 2264extern void ptlock_free(struct page *page); 2265 2266static inline spinlock_t *ptlock_ptr(struct page *page) 2267{ 2268 return page->ptl; 2269} 2270#else /* ALLOC_SPLIT_PTLOCKS */ 2271static inline void ptlock_cache_init(void) 2272{ 2273} 2274 2275static inline bool ptlock_alloc(struct page *page) 2276{ 2277 return true; 2278} 2279 2280static inline void ptlock_free(struct page *page) 2281{ 2282} 2283 2284static inline spinlock_t *ptlock_ptr(struct page *page) 2285{ 2286 return &page->ptl; 2287} 2288#endif /* ALLOC_SPLIT_PTLOCKS */ 2289 2290static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2291{ 2292 return ptlock_ptr(pmd_page(*pmd)); 2293} 2294 2295static inline bool ptlock_init(struct page *page) 2296{ 2297 /* 2298 * prep_new_page() initialize page->private (and therefore page->ptl) 2299 * with 0. Make sure nobody took it in use in between. 2300 * 2301 * It can happen if arch try to use slab for page table allocation: 2302 * slab code uses page->slab_cache, which share storage with page->ptl. 2303 */ 2304 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2305 if (!ptlock_alloc(page)) 2306 return false; 2307 spin_lock_init(ptlock_ptr(page)); 2308 return true; 2309} 2310 2311#else /* !USE_SPLIT_PTE_PTLOCKS */ 2312/* 2313 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2314 */ 2315static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2316{ 2317 return &mm->page_table_lock; 2318} 2319static inline void ptlock_cache_init(void) {} 2320static inline bool ptlock_init(struct page *page) { return true; } 2321static inline void ptlock_free(struct page *page) {} 2322#endif /* USE_SPLIT_PTE_PTLOCKS */ 2323 2324static inline void pgtable_init(void) 2325{ 2326 ptlock_cache_init(); 2327 pgtable_cache_init(); 2328} 2329 2330static inline bool pgtable_pte_page_ctor(struct page *page) 2331{ 2332 if (!ptlock_init(page)) 2333 return false; 2334 __SetPageTable(page); 2335 inc_lruvec_page_state(page, NR_PAGETABLE); 2336 return true; 2337} 2338 2339static inline void pgtable_pte_page_dtor(struct page *page) 2340{ 2341 ptlock_free(page); 2342 __ClearPageTable(page); 2343 dec_lruvec_page_state(page, NR_PAGETABLE); 2344} 2345 2346#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2347({ \ 2348 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2349 pte_t *__pte = pte_offset_map(pmd, address); \ 2350 *(ptlp) = __ptl; \ 2351 spin_lock(__ptl); \ 2352 __pte; \ 2353}) 2354 2355#define pte_unmap_unlock(pte, ptl) do { \ 2356 spin_unlock(ptl); \ 2357 pte_unmap(pte); \ 2358} while (0) 2359 2360#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2361 2362#define pte_alloc_map(mm, pmd, address) \ 2363 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2364 2365#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2366 (pte_alloc(mm, pmd) ? \ 2367 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2368 2369#define pte_alloc_kernel(pmd, address) \ 2370 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2371 NULL: pte_offset_kernel(pmd, address)) 2372 2373#if USE_SPLIT_PMD_PTLOCKS 2374 2375static struct page *pmd_to_page(pmd_t *pmd) 2376{ 2377 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2378 return virt_to_page((void *)((unsigned long) pmd & mask)); 2379} 2380 2381static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2382{ 2383 return ptlock_ptr(pmd_to_page(pmd)); 2384} 2385 2386static inline bool pmd_ptlock_init(struct page *page) 2387{ 2388#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2389 page->pmd_huge_pte = NULL; 2390#endif 2391 return ptlock_init(page); 2392} 2393 2394static inline void pmd_ptlock_free(struct page *page) 2395{ 2396#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2397 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2398#endif 2399 ptlock_free(page); 2400} 2401 2402#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2403 2404#else 2405 2406static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2407{ 2408 return &mm->page_table_lock; 2409} 2410 2411static inline bool pmd_ptlock_init(struct page *page) { return true; } 2412static inline void pmd_ptlock_free(struct page *page) {} 2413 2414#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2415 2416#endif 2417 2418static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2419{ 2420 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2421 spin_lock(ptl); 2422 return ptl; 2423} 2424 2425static inline bool pgtable_pmd_page_ctor(struct page *page) 2426{ 2427 if (!pmd_ptlock_init(page)) 2428 return false; 2429 __SetPageTable(page); 2430 inc_lruvec_page_state(page, NR_PAGETABLE); 2431 return true; 2432} 2433 2434static inline void pgtable_pmd_page_dtor(struct page *page) 2435{ 2436 pmd_ptlock_free(page); 2437 __ClearPageTable(page); 2438 dec_lruvec_page_state(page, NR_PAGETABLE); 2439} 2440 2441/* 2442 * No scalability reason to split PUD locks yet, but follow the same pattern 2443 * as the PMD locks to make it easier if we decide to. The VM should not be 2444 * considered ready to switch to split PUD locks yet; there may be places 2445 * which need to be converted from page_table_lock. 2446 */ 2447static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2448{ 2449 return &mm->page_table_lock; 2450} 2451 2452static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2453{ 2454 spinlock_t *ptl = pud_lockptr(mm, pud); 2455 2456 spin_lock(ptl); 2457 return ptl; 2458} 2459 2460extern void __init pagecache_init(void); 2461extern void free_initmem(void); 2462 2463/* 2464 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2465 * into the buddy system. The freed pages will be poisoned with pattern 2466 * "poison" if it's within range [0, UCHAR_MAX]. 2467 * Return pages freed into the buddy system. 2468 */ 2469extern unsigned long free_reserved_area(void *start, void *end, 2470 int poison, const char *s); 2471 2472extern void adjust_managed_page_count(struct page *page, long count); 2473extern void mem_init_print_info(void); 2474 2475extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2476 2477/* Free the reserved page into the buddy system, so it gets managed. */ 2478static inline void free_reserved_page(struct page *page) 2479{ 2480 ClearPageReserved(page); 2481 init_page_count(page); 2482 __free_page(page); 2483 adjust_managed_page_count(page, 1); 2484} 2485#define free_highmem_page(page) free_reserved_page(page) 2486 2487static inline void mark_page_reserved(struct page *page) 2488{ 2489 SetPageReserved(page); 2490 adjust_managed_page_count(page, -1); 2491} 2492 2493/* 2494 * Default method to free all the __init memory into the buddy system. 2495 * The freed pages will be poisoned with pattern "poison" if it's within 2496 * range [0, UCHAR_MAX]. 2497 * Return pages freed into the buddy system. 2498 */ 2499static inline unsigned long free_initmem_default(int poison) 2500{ 2501 extern char __init_begin[], __init_end[]; 2502 2503 return free_reserved_area(&__init_begin, &__init_end, 2504 poison, "unused kernel image (initmem)"); 2505} 2506 2507static inline unsigned long get_num_physpages(void) 2508{ 2509 int nid; 2510 unsigned long phys_pages = 0; 2511 2512 for_each_online_node(nid) 2513 phys_pages += node_present_pages(nid); 2514 2515 return phys_pages; 2516} 2517 2518/* 2519 * Using memblock node mappings, an architecture may initialise its 2520 * zones, allocate the backing mem_map and account for memory holes in an 2521 * architecture independent manner. 2522 * 2523 * An architecture is expected to register range of page frames backed by 2524 * physical memory with memblock_add[_node]() before calling 2525 * free_area_init() passing in the PFN each zone ends at. At a basic 2526 * usage, an architecture is expected to do something like 2527 * 2528 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2529 * max_highmem_pfn}; 2530 * for_each_valid_physical_page_range() 2531 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2532 * free_area_init(max_zone_pfns); 2533 */ 2534void free_area_init(unsigned long *max_zone_pfn); 2535unsigned long node_map_pfn_alignment(void); 2536unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2537 unsigned long end_pfn); 2538extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2539 unsigned long end_pfn); 2540extern void get_pfn_range_for_nid(unsigned int nid, 2541 unsigned long *start_pfn, unsigned long *end_pfn); 2542extern unsigned long find_min_pfn_with_active_regions(void); 2543 2544#ifndef CONFIG_NUMA 2545static inline int early_pfn_to_nid(unsigned long pfn) 2546{ 2547 return 0; 2548} 2549#else 2550/* please see mm/page_alloc.c */ 2551extern int __meminit early_pfn_to_nid(unsigned long pfn); 2552#endif 2553 2554extern void set_dma_reserve(unsigned long new_dma_reserve); 2555extern void memmap_init_range(unsigned long, int, unsigned long, 2556 unsigned long, unsigned long, enum meminit_context, 2557 struct vmem_altmap *, int migratetype); 2558extern void setup_per_zone_wmarks(void); 2559extern void calculate_min_free_kbytes(void); 2560extern int __meminit init_per_zone_wmark_min(void); 2561extern void mem_init(void); 2562extern void __init mmap_init(void); 2563extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2564extern long si_mem_available(void); 2565extern void si_meminfo(struct sysinfo * val); 2566extern void si_meminfo_node(struct sysinfo *val, int nid); 2567#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2568extern unsigned long arch_reserved_kernel_pages(void); 2569#endif 2570 2571extern __printf(3, 4) 2572void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2573 2574extern void setup_per_cpu_pageset(void); 2575 2576/* page_alloc.c */ 2577extern int min_free_kbytes; 2578extern int watermark_boost_factor; 2579extern int watermark_scale_factor; 2580extern bool arch_has_descending_max_zone_pfns(void); 2581 2582/* nommu.c */ 2583extern atomic_long_t mmap_pages_allocated; 2584extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2585 2586/* interval_tree.c */ 2587void vma_interval_tree_insert(struct vm_area_struct *node, 2588 struct rb_root_cached *root); 2589void vma_interval_tree_insert_after(struct vm_area_struct *node, 2590 struct vm_area_struct *prev, 2591 struct rb_root_cached *root); 2592void vma_interval_tree_remove(struct vm_area_struct *node, 2593 struct rb_root_cached *root); 2594struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2595 unsigned long start, unsigned long last); 2596struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2597 unsigned long start, unsigned long last); 2598 2599#define vma_interval_tree_foreach(vma, root, start, last) \ 2600 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2601 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2602 2603void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2604 struct rb_root_cached *root); 2605void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2606 struct rb_root_cached *root); 2607struct anon_vma_chain * 2608anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2609 unsigned long start, unsigned long last); 2610struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2611 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2612#ifdef CONFIG_DEBUG_VM_RB 2613void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2614#endif 2615 2616#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2617 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2618 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2619 2620/* mmap.c */ 2621extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2622extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2623 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2624 struct vm_area_struct *expand); 2625static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2626 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2627{ 2628 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2629} 2630extern struct vm_area_struct *vma_merge(struct mm_struct *, 2631 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2632 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2633 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2634extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2635extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2636 unsigned long addr, int new_below); 2637extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2638 unsigned long addr, int new_below); 2639extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2640extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2641 struct rb_node **, struct rb_node *); 2642extern void unlink_file_vma(struct vm_area_struct *); 2643extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2644 unsigned long addr, unsigned long len, pgoff_t pgoff, 2645 bool *need_rmap_locks); 2646extern void exit_mmap(struct mm_struct *); 2647 2648static inline int check_data_rlimit(unsigned long rlim, 2649 unsigned long new, 2650 unsigned long start, 2651 unsigned long end_data, 2652 unsigned long start_data) 2653{ 2654 if (rlim < RLIM_INFINITY) { 2655 if (((new - start) + (end_data - start_data)) > rlim) 2656 return -ENOSPC; 2657 } 2658 2659 return 0; 2660} 2661 2662extern int mm_take_all_locks(struct mm_struct *mm); 2663extern void mm_drop_all_locks(struct mm_struct *mm); 2664 2665extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2666extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2667extern struct file *get_mm_exe_file(struct mm_struct *mm); 2668extern struct file *get_task_exe_file(struct task_struct *task); 2669 2670extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2671extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2672 2673extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2674 const struct vm_special_mapping *sm); 2675extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2676 unsigned long addr, unsigned long len, 2677 unsigned long flags, 2678 const struct vm_special_mapping *spec); 2679/* This is an obsolete alternative to _install_special_mapping. */ 2680extern int install_special_mapping(struct mm_struct *mm, 2681 unsigned long addr, unsigned long len, 2682 unsigned long flags, struct page **pages); 2683 2684unsigned long randomize_stack_top(unsigned long stack_top); 2685unsigned long randomize_page(unsigned long start, unsigned long range); 2686 2687extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2688 2689extern unsigned long mmap_region(struct file *file, unsigned long addr, 2690 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2691 struct list_head *uf); 2692extern unsigned long do_mmap(struct file *file, unsigned long addr, 2693 unsigned long len, unsigned long prot, unsigned long flags, 2694 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2695extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2696 struct list_head *uf, bool downgrade); 2697extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2698 struct list_head *uf); 2699extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2700 2701#ifdef CONFIG_MMU 2702extern int __mm_populate(unsigned long addr, unsigned long len, 2703 int ignore_errors); 2704static inline void mm_populate(unsigned long addr, unsigned long len) 2705{ 2706 /* Ignore errors */ 2707 (void) __mm_populate(addr, len, 1); 2708} 2709#else 2710static inline void mm_populate(unsigned long addr, unsigned long len) {} 2711#endif 2712 2713/* These take the mm semaphore themselves */ 2714extern int __must_check vm_brk(unsigned long, unsigned long); 2715extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2716extern int vm_munmap(unsigned long, size_t); 2717extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2718 unsigned long, unsigned long, 2719 unsigned long, unsigned long); 2720 2721struct vm_unmapped_area_info { 2722#define VM_UNMAPPED_AREA_TOPDOWN 1 2723 unsigned long flags; 2724 unsigned long length; 2725 unsigned long low_limit; 2726 unsigned long high_limit; 2727 unsigned long align_mask; 2728 unsigned long align_offset; 2729}; 2730 2731extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2732 2733/* truncate.c */ 2734extern void truncate_inode_pages(struct address_space *, loff_t); 2735extern void truncate_inode_pages_range(struct address_space *, 2736 loff_t lstart, loff_t lend); 2737extern void truncate_inode_pages_final(struct address_space *); 2738 2739/* generic vm_area_ops exported for stackable file systems */ 2740extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2741extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2742 pgoff_t start_pgoff, pgoff_t end_pgoff); 2743extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2744 2745extern unsigned long stack_guard_gap; 2746/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2747extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2748 2749/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2750extern int expand_downwards(struct vm_area_struct *vma, 2751 unsigned long address); 2752#if VM_GROWSUP 2753extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2754#else 2755 #define expand_upwards(vma, address) (0) 2756#endif 2757 2758/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2759extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2760extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2761 struct vm_area_struct **pprev); 2762 2763/** 2764 * find_vma_intersection() - Look up the first VMA which intersects the interval 2765 * @mm: The process address space. 2766 * @start_addr: The inclusive start user address. 2767 * @end_addr: The exclusive end user address. 2768 * 2769 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2770 * start_addr < end_addr. 2771 */ 2772static inline 2773struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2774 unsigned long start_addr, 2775 unsigned long end_addr) 2776{ 2777 struct vm_area_struct *vma = find_vma(mm, start_addr); 2778 2779 if (vma && end_addr <= vma->vm_start) 2780 vma = NULL; 2781 return vma; 2782} 2783 2784/** 2785 * vma_lookup() - Find a VMA at a specific address 2786 * @mm: The process address space. 2787 * @addr: The user address. 2788 * 2789 * Return: The vm_area_struct at the given address, %NULL otherwise. 2790 */ 2791static inline 2792struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2793{ 2794 struct vm_area_struct *vma = find_vma(mm, addr); 2795 2796 if (vma && addr < vma->vm_start) 2797 vma = NULL; 2798 2799 return vma; 2800} 2801 2802static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2803{ 2804 unsigned long vm_start = vma->vm_start; 2805 2806 if (vma->vm_flags & VM_GROWSDOWN) { 2807 vm_start -= stack_guard_gap; 2808 if (vm_start > vma->vm_start) 2809 vm_start = 0; 2810 } 2811 return vm_start; 2812} 2813 2814static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2815{ 2816 unsigned long vm_end = vma->vm_end; 2817 2818 if (vma->vm_flags & VM_GROWSUP) { 2819 vm_end += stack_guard_gap; 2820 if (vm_end < vma->vm_end) 2821 vm_end = -PAGE_SIZE; 2822 } 2823 return vm_end; 2824} 2825 2826static inline unsigned long vma_pages(struct vm_area_struct *vma) 2827{ 2828 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2829} 2830 2831/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2832static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2833 unsigned long vm_start, unsigned long vm_end) 2834{ 2835 struct vm_area_struct *vma = find_vma(mm, vm_start); 2836 2837 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2838 vma = NULL; 2839 2840 return vma; 2841} 2842 2843static inline bool range_in_vma(struct vm_area_struct *vma, 2844 unsigned long start, unsigned long end) 2845{ 2846 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2847} 2848 2849#ifdef CONFIG_MMU 2850pgprot_t vm_get_page_prot(unsigned long vm_flags); 2851void vma_set_page_prot(struct vm_area_struct *vma); 2852#else 2853static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2854{ 2855 return __pgprot(0); 2856} 2857static inline void vma_set_page_prot(struct vm_area_struct *vma) 2858{ 2859 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2860} 2861#endif 2862 2863void vma_set_file(struct vm_area_struct *vma, struct file *file); 2864 2865#ifdef CONFIG_NUMA_BALANCING 2866unsigned long change_prot_numa(struct vm_area_struct *vma, 2867 unsigned long start, unsigned long end); 2868#endif 2869 2870struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2871int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2872 unsigned long pfn, unsigned long size, pgprot_t); 2873int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2874 unsigned long pfn, unsigned long size, pgprot_t prot); 2875int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2876int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2877 struct page **pages, unsigned long *num); 2878int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2879 unsigned long num); 2880int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2881 unsigned long num); 2882vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2883 unsigned long pfn); 2884vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2885 unsigned long pfn, pgprot_t pgprot); 2886vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2887 pfn_t pfn); 2888vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2889 pfn_t pfn, pgprot_t pgprot); 2890vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2891 unsigned long addr, pfn_t pfn); 2892int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2893 2894static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2895 unsigned long addr, struct page *page) 2896{ 2897 int err = vm_insert_page(vma, addr, page); 2898 2899 if (err == -ENOMEM) 2900 return VM_FAULT_OOM; 2901 if (err < 0 && err != -EBUSY) 2902 return VM_FAULT_SIGBUS; 2903 2904 return VM_FAULT_NOPAGE; 2905} 2906 2907#ifndef io_remap_pfn_range 2908static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2909 unsigned long addr, unsigned long pfn, 2910 unsigned long size, pgprot_t prot) 2911{ 2912 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2913} 2914#endif 2915 2916static inline vm_fault_t vmf_error(int err) 2917{ 2918 if (err == -ENOMEM) 2919 return VM_FAULT_OOM; 2920 return VM_FAULT_SIGBUS; 2921} 2922 2923struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2924 unsigned int foll_flags); 2925 2926#define FOLL_WRITE 0x01 /* check pte is writable */ 2927#define FOLL_TOUCH 0x02 /* mark page accessed */ 2928#define FOLL_GET 0x04 /* do get_page on page */ 2929#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2930#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2931#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2932 * and return without waiting upon it */ 2933#define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2934#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2935#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2936#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2937#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2938#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2939#define FOLL_COW 0x4000 /* internal GUP flag */ 2940#define FOLL_ANON 0x8000 /* don't do file mappings */ 2941#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2942#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2943#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2944#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2945 2946/* 2947 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2948 * other. Here is what they mean, and how to use them: 2949 * 2950 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2951 * period _often_ under userspace control. This is in contrast to 2952 * iov_iter_get_pages(), whose usages are transient. 2953 * 2954 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2955 * lifetime enforced by the filesystem and we need guarantees that longterm 2956 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2957 * the filesystem. Ideas for this coordination include revoking the longterm 2958 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2959 * added after the problem with filesystems was found FS DAX VMAs are 2960 * specifically failed. Filesystem pages are still subject to bugs and use of 2961 * FOLL_LONGTERM should be avoided on those pages. 2962 * 2963 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2964 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2965 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2966 * is due to an incompatibility with the FS DAX check and 2967 * FAULT_FLAG_ALLOW_RETRY. 2968 * 2969 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2970 * that region. And so, CMA attempts to migrate the page before pinning, when 2971 * FOLL_LONGTERM is specified. 2972 * 2973 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2974 * but an additional pin counting system) will be invoked. This is intended for 2975 * anything that gets a page reference and then touches page data (for example, 2976 * Direct IO). This lets the filesystem know that some non-file-system entity is 2977 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2978 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2979 * a call to unpin_user_page(). 2980 * 2981 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2982 * and separate refcounting mechanisms, however, and that means that each has 2983 * its own acquire and release mechanisms: 2984 * 2985 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2986 * 2987 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2988 * 2989 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2990 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2991 * calls applied to them, and that's perfectly OK. This is a constraint on the 2992 * callers, not on the pages.) 2993 * 2994 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2995 * directly by the caller. That's in order to help avoid mismatches when 2996 * releasing pages: get_user_pages*() pages must be released via put_page(), 2997 * while pin_user_pages*() pages must be released via unpin_user_page(). 2998 * 2999 * Please see Documentation/core-api/pin_user_pages.rst for more information. 3000 */ 3001 3002static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3003{ 3004 if (vm_fault & VM_FAULT_OOM) 3005 return -ENOMEM; 3006 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3007 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3008 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3009 return -EFAULT; 3010 return 0; 3011} 3012 3013/* 3014 * Indicates for which pages that are write-protected in the page table, 3015 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 3016 * GUP pin will remain consistent with the pages mapped into the page tables 3017 * of the MM. 3018 * 3019 * Temporary unmapping of PageAnonExclusive() pages or clearing of 3020 * PageAnonExclusive() has to protect against concurrent GUP: 3021 * * Ordinary GUP: Using the PT lock 3022 * * GUP-fast and fork(): mm->write_protect_seq 3023 * * GUP-fast and KSM or temporary unmapping (swap, migration): 3024 * clear/invalidate+flush of the page table entry 3025 * 3026 * Must be called with the (sub)page that's actually referenced via the 3027 * page table entry, which might not necessarily be the head page for a 3028 * PTE-mapped THP. 3029 */ 3030static inline bool gup_must_unshare(unsigned int flags, struct page *page) 3031{ 3032 /* 3033 * FOLL_WRITE is implicitly handled correctly as the page table entry 3034 * has to be writable -- and if it references (part of) an anonymous 3035 * folio, that part is required to be marked exclusive. 3036 */ 3037 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 3038 return false; 3039 /* 3040 * Note: PageAnon(page) is stable until the page is actually getting 3041 * freed. 3042 */ 3043 if (!PageAnon(page)) 3044 return false; 3045 /* 3046 * Note that PageKsm() pages cannot be exclusive, and consequently, 3047 * cannot get pinned. 3048 */ 3049 return !PageAnonExclusive(page); 3050} 3051 3052typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3053extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3054 unsigned long size, pte_fn_t fn, void *data); 3055extern int apply_to_existing_page_range(struct mm_struct *mm, 3056 unsigned long address, unsigned long size, 3057 pte_fn_t fn, void *data); 3058 3059extern void init_mem_debugging_and_hardening(void); 3060#ifdef CONFIG_PAGE_POISONING 3061extern void __kernel_poison_pages(struct page *page, int numpages); 3062extern void __kernel_unpoison_pages(struct page *page, int numpages); 3063extern bool _page_poisoning_enabled_early; 3064DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3065static inline bool page_poisoning_enabled(void) 3066{ 3067 return _page_poisoning_enabled_early; 3068} 3069/* 3070 * For use in fast paths after init_mem_debugging() has run, or when a 3071 * false negative result is not harmful when called too early. 3072 */ 3073static inline bool page_poisoning_enabled_static(void) 3074{ 3075 return static_branch_unlikely(&_page_poisoning_enabled); 3076} 3077static inline void kernel_poison_pages(struct page *page, int numpages) 3078{ 3079 if (page_poisoning_enabled_static()) 3080 __kernel_poison_pages(page, numpages); 3081} 3082static inline void kernel_unpoison_pages(struct page *page, int numpages) 3083{ 3084 if (page_poisoning_enabled_static()) 3085 __kernel_unpoison_pages(page, numpages); 3086} 3087#else 3088static inline bool page_poisoning_enabled(void) { return false; } 3089static inline bool page_poisoning_enabled_static(void) { return false; } 3090static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3091static inline void kernel_poison_pages(struct page *page, int numpages) { } 3092static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3093#endif 3094 3095DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3096static inline bool want_init_on_alloc(gfp_t flags) 3097{ 3098 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3099 &init_on_alloc)) 3100 return true; 3101 return flags & __GFP_ZERO; 3102} 3103 3104DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3105static inline bool want_init_on_free(void) 3106{ 3107 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3108 &init_on_free); 3109} 3110 3111extern bool _debug_pagealloc_enabled_early; 3112DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3113 3114static inline bool debug_pagealloc_enabled(void) 3115{ 3116 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3117 _debug_pagealloc_enabled_early; 3118} 3119 3120/* 3121 * For use in fast paths after init_debug_pagealloc() has run, or when a 3122 * false negative result is not harmful when called too early. 3123 */ 3124static inline bool debug_pagealloc_enabled_static(void) 3125{ 3126 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3127 return false; 3128 3129 return static_branch_unlikely(&_debug_pagealloc_enabled); 3130} 3131 3132#ifdef CONFIG_DEBUG_PAGEALLOC 3133/* 3134 * To support DEBUG_PAGEALLOC architecture must ensure that 3135 * __kernel_map_pages() never fails 3136 */ 3137extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3138 3139static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3140{ 3141 if (debug_pagealloc_enabled_static()) 3142 __kernel_map_pages(page, numpages, 1); 3143} 3144 3145static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3146{ 3147 if (debug_pagealloc_enabled_static()) 3148 __kernel_map_pages(page, numpages, 0); 3149} 3150#else /* CONFIG_DEBUG_PAGEALLOC */ 3151static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3152static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3153#endif /* CONFIG_DEBUG_PAGEALLOC */ 3154 3155#ifdef __HAVE_ARCH_GATE_AREA 3156extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3157extern int in_gate_area_no_mm(unsigned long addr); 3158extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3159#else 3160static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3161{ 3162 return NULL; 3163} 3164static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3165static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3166{ 3167 return 0; 3168} 3169#endif /* __HAVE_ARCH_GATE_AREA */ 3170 3171extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3172 3173#ifdef CONFIG_SYSCTL 3174extern int sysctl_drop_caches; 3175int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3176 loff_t *); 3177#endif 3178 3179void drop_slab(void); 3180 3181#ifndef CONFIG_MMU 3182#define randomize_va_space 0 3183#else 3184extern int randomize_va_space; 3185#endif 3186 3187const char * arch_vma_name(struct vm_area_struct *vma); 3188#ifdef CONFIG_MMU 3189void print_vma_addr(char *prefix, unsigned long rip); 3190#else 3191static inline void print_vma_addr(char *prefix, unsigned long rip) 3192{ 3193} 3194#endif 3195 3196#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 3197int vmemmap_remap_free(unsigned long start, unsigned long end, 3198 unsigned long reuse); 3199int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3200 unsigned long reuse, gfp_t gfp_mask); 3201#endif 3202 3203void *sparse_buffer_alloc(unsigned long size); 3204struct page * __populate_section_memmap(unsigned long pfn, 3205 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3206 struct dev_pagemap *pgmap); 3207pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3208p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3209pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3210pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3211pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3212 struct vmem_altmap *altmap, struct page *reuse); 3213void *vmemmap_alloc_block(unsigned long size, int node); 3214struct vmem_altmap; 3215void *vmemmap_alloc_block_buf(unsigned long size, int node, 3216 struct vmem_altmap *altmap); 3217void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3218int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3219 int node, struct vmem_altmap *altmap); 3220int vmemmap_populate(unsigned long start, unsigned long end, int node, 3221 struct vmem_altmap *altmap); 3222void vmemmap_populate_print_last(void); 3223#ifdef CONFIG_MEMORY_HOTPLUG 3224void vmemmap_free(unsigned long start, unsigned long end, 3225 struct vmem_altmap *altmap); 3226#endif 3227void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3228 unsigned long nr_pages); 3229 3230enum mf_flags { 3231 MF_COUNT_INCREASED = 1 << 0, 3232 MF_ACTION_REQUIRED = 1 << 1, 3233 MF_MUST_KILL = 1 << 2, 3234 MF_SOFT_OFFLINE = 1 << 3, 3235 MF_UNPOISON = 1 << 4, 3236 MF_SW_SIMULATED = 1 << 5, 3237}; 3238extern int memory_failure(unsigned long pfn, int flags); 3239extern void memory_failure_queue(unsigned long pfn, int flags); 3240extern void memory_failure_queue_kick(int cpu); 3241extern int unpoison_memory(unsigned long pfn); 3242extern int sysctl_memory_failure_early_kill; 3243extern int sysctl_memory_failure_recovery; 3244extern void shake_page(struct page *p); 3245extern atomic_long_t num_poisoned_pages __read_mostly; 3246extern int soft_offline_page(unsigned long pfn, int flags); 3247#ifdef CONFIG_MEMORY_FAILURE 3248extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags); 3249#else 3250static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 3251{ 3252 return 0; 3253} 3254#endif 3255 3256#ifndef arch_memory_failure 3257static inline int arch_memory_failure(unsigned long pfn, int flags) 3258{ 3259 return -ENXIO; 3260} 3261#endif 3262 3263#ifndef arch_is_platform_page 3264static inline bool arch_is_platform_page(u64 paddr) 3265{ 3266 return false; 3267} 3268#endif 3269 3270/* 3271 * Error handlers for various types of pages. 3272 */ 3273enum mf_result { 3274 MF_IGNORED, /* Error: cannot be handled */ 3275 MF_FAILED, /* Error: handling failed */ 3276 MF_DELAYED, /* Will be handled later */ 3277 MF_RECOVERED, /* Successfully recovered */ 3278}; 3279 3280enum mf_action_page_type { 3281 MF_MSG_KERNEL, 3282 MF_MSG_KERNEL_HIGH_ORDER, 3283 MF_MSG_SLAB, 3284 MF_MSG_DIFFERENT_COMPOUND, 3285 MF_MSG_HUGE, 3286 MF_MSG_FREE_HUGE, 3287 MF_MSG_NON_PMD_HUGE, 3288 MF_MSG_UNMAP_FAILED, 3289 MF_MSG_DIRTY_SWAPCACHE, 3290 MF_MSG_CLEAN_SWAPCACHE, 3291 MF_MSG_DIRTY_MLOCKED_LRU, 3292 MF_MSG_CLEAN_MLOCKED_LRU, 3293 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3294 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3295 MF_MSG_DIRTY_LRU, 3296 MF_MSG_CLEAN_LRU, 3297 MF_MSG_TRUNCATED_LRU, 3298 MF_MSG_BUDDY, 3299 MF_MSG_DAX, 3300 MF_MSG_UNSPLIT_THP, 3301 MF_MSG_UNKNOWN, 3302}; 3303 3304#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3305extern void clear_huge_page(struct page *page, 3306 unsigned long addr_hint, 3307 unsigned int pages_per_huge_page); 3308extern void copy_user_huge_page(struct page *dst, struct page *src, 3309 unsigned long addr_hint, 3310 struct vm_area_struct *vma, 3311 unsigned int pages_per_huge_page); 3312extern long copy_huge_page_from_user(struct page *dst_page, 3313 const void __user *usr_src, 3314 unsigned int pages_per_huge_page, 3315 bool allow_pagefault); 3316 3317/** 3318 * vma_is_special_huge - Are transhuge page-table entries considered special? 3319 * @vma: Pointer to the struct vm_area_struct to consider 3320 * 3321 * Whether transhuge page-table entries are considered "special" following 3322 * the definition in vm_normal_page(). 3323 * 3324 * Return: true if transhuge page-table entries should be considered special, 3325 * false otherwise. 3326 */ 3327static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3328{ 3329 return vma_is_dax(vma) || (vma->vm_file && 3330 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3331} 3332 3333#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3334 3335#ifdef CONFIG_DEBUG_PAGEALLOC 3336extern unsigned int _debug_guardpage_minorder; 3337DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3338 3339static inline unsigned int debug_guardpage_minorder(void) 3340{ 3341 return _debug_guardpage_minorder; 3342} 3343 3344static inline bool debug_guardpage_enabled(void) 3345{ 3346 return static_branch_unlikely(&_debug_guardpage_enabled); 3347} 3348 3349static inline bool page_is_guard(struct page *page) 3350{ 3351 if (!debug_guardpage_enabled()) 3352 return false; 3353 3354 return PageGuard(page); 3355} 3356#else 3357static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3358static inline bool debug_guardpage_enabled(void) { return false; } 3359static inline bool page_is_guard(struct page *page) { return false; } 3360#endif /* CONFIG_DEBUG_PAGEALLOC */ 3361 3362#if MAX_NUMNODES > 1 3363void __init setup_nr_node_ids(void); 3364#else 3365static inline void setup_nr_node_ids(void) {} 3366#endif 3367 3368extern int memcmp_pages(struct page *page1, struct page *page2); 3369 3370static inline int pages_identical(struct page *page1, struct page *page2) 3371{ 3372 return !memcmp_pages(page1, page2); 3373} 3374 3375#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3376unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3377 pgoff_t first_index, pgoff_t nr, 3378 pgoff_t bitmap_pgoff, 3379 unsigned long *bitmap, 3380 pgoff_t *start, 3381 pgoff_t *end); 3382 3383unsigned long wp_shared_mapping_range(struct address_space *mapping, 3384 pgoff_t first_index, pgoff_t nr); 3385#endif 3386 3387extern int sysctl_nr_trim_pages; 3388 3389#ifdef CONFIG_PRINTK 3390void mem_dump_obj(void *object); 3391#else 3392static inline void mem_dump_obj(void *object) {} 3393#endif 3394 3395/** 3396 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3397 * @seals: the seals to check 3398 * @vma: the vma to operate on 3399 * 3400 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3401 * the vma flags. Return 0 if check pass, or <0 for errors. 3402 */ 3403static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3404{ 3405 if (seals & F_SEAL_FUTURE_WRITE) { 3406 /* 3407 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3408 * "future write" seal active. 3409 */ 3410 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3411 return -EPERM; 3412 3413 /* 3414 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3415 * MAP_SHARED and read-only, take care to not allow mprotect to 3416 * revert protections on such mappings. Do this only for shared 3417 * mappings. For private mappings, don't need to mask 3418 * VM_MAYWRITE as we still want them to be COW-writable. 3419 */ 3420 if (vma->vm_flags & VM_SHARED) 3421 vma->vm_flags &= ~(VM_MAYWRITE); 3422 } 3423 3424 return 0; 3425} 3426 3427#ifdef CONFIG_ANON_VMA_NAME 3428int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3429 unsigned long len_in, 3430 struct anon_vma_name *anon_name); 3431#else 3432static inline int 3433madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3434 unsigned long len_in, struct anon_vma_name *anon_name) { 3435 return 0; 3436} 3437#endif 3438 3439/* 3440 * Whether to drop the pte markers, for example, the uffd-wp information for 3441 * file-backed memory. This should only be specified when we will completely 3442 * drop the page in the mm, either by truncation or unmapping of the vma. By 3443 * default, the flag is not set. 3444 */ 3445#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 3446 3447#endif /* _LINUX_MM_H */