cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mm.h (108916B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_MM_H
      3#define _LINUX_MM_H
      4
      5#include <linux/errno.h>
      6#include <linux/mmdebug.h>
      7#include <linux/gfp.h>
      8#include <linux/bug.h>
      9#include <linux/list.h>
     10#include <linux/mmzone.h>
     11#include <linux/rbtree.h>
     12#include <linux/atomic.h>
     13#include <linux/debug_locks.h>
     14#include <linux/mm_types.h>
     15#include <linux/mmap_lock.h>
     16#include <linux/range.h>
     17#include <linux/pfn.h>
     18#include <linux/percpu-refcount.h>
     19#include <linux/bit_spinlock.h>
     20#include <linux/shrinker.h>
     21#include <linux/resource.h>
     22#include <linux/page_ext.h>
     23#include <linux/err.h>
     24#include <linux/page-flags.h>
     25#include <linux/page_ref.h>
     26#include <linux/overflow.h>
     27#include <linux/sizes.h>
     28#include <linux/sched.h>
     29#include <linux/pgtable.h>
     30#include <linux/kasan.h>
     31
     32struct mempolicy;
     33struct anon_vma;
     34struct anon_vma_chain;
     35struct user_struct;
     36struct pt_regs;
     37
     38extern int sysctl_page_lock_unfairness;
     39
     40void init_mm_internals(void);
     41
     42#ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
     43extern unsigned long max_mapnr;
     44
     45static inline void set_max_mapnr(unsigned long limit)
     46{
     47	max_mapnr = limit;
     48}
     49#else
     50static inline void set_max_mapnr(unsigned long limit) { }
     51#endif
     52
     53extern atomic_long_t _totalram_pages;
     54static inline unsigned long totalram_pages(void)
     55{
     56	return (unsigned long)atomic_long_read(&_totalram_pages);
     57}
     58
     59static inline void totalram_pages_inc(void)
     60{
     61	atomic_long_inc(&_totalram_pages);
     62}
     63
     64static inline void totalram_pages_dec(void)
     65{
     66	atomic_long_dec(&_totalram_pages);
     67}
     68
     69static inline void totalram_pages_add(long count)
     70{
     71	atomic_long_add(count, &_totalram_pages);
     72}
     73
     74extern void * high_memory;
     75extern int page_cluster;
     76
     77#ifdef CONFIG_SYSCTL
     78extern int sysctl_legacy_va_layout;
     79#else
     80#define sysctl_legacy_va_layout 0
     81#endif
     82
     83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
     84extern const int mmap_rnd_bits_min;
     85extern const int mmap_rnd_bits_max;
     86extern int mmap_rnd_bits __read_mostly;
     87#endif
     88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
     89extern const int mmap_rnd_compat_bits_min;
     90extern const int mmap_rnd_compat_bits_max;
     91extern int mmap_rnd_compat_bits __read_mostly;
     92#endif
     93
     94#include <asm/page.h>
     95#include <asm/processor.h>
     96
     97/*
     98 * Architectures that support memory tagging (assigning tags to memory regions,
     99 * embedding these tags into addresses that point to these memory regions, and
    100 * checking that the memory and the pointer tags match on memory accesses)
    101 * redefine this macro to strip tags from pointers.
    102 * It's defined as noop for architectures that don't support memory tagging.
    103 */
    104#ifndef untagged_addr
    105#define untagged_addr(addr) (addr)
    106#endif
    107
    108#ifndef __pa_symbol
    109#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
    110#endif
    111
    112#ifndef page_to_virt
    113#define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
    114#endif
    115
    116#ifndef lm_alias
    117#define lm_alias(x)	__va(__pa_symbol(x))
    118#endif
    119
    120/*
    121 * To prevent common memory management code establishing
    122 * a zero page mapping on a read fault.
    123 * This macro should be defined within <asm/pgtable.h>.
    124 * s390 does this to prevent multiplexing of hardware bits
    125 * related to the physical page in case of virtualization.
    126 */
    127#ifndef mm_forbids_zeropage
    128#define mm_forbids_zeropage(X)	(0)
    129#endif
    130
    131/*
    132 * On some architectures it is expensive to call memset() for small sizes.
    133 * If an architecture decides to implement their own version of
    134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
    135 * define their own version of this macro in <asm/pgtable.h>
    136 */
    137#if BITS_PER_LONG == 64
    138/* This function must be updated when the size of struct page grows above 80
    139 * or reduces below 56. The idea that compiler optimizes out switch()
    140 * statement, and only leaves move/store instructions. Also the compiler can
    141 * combine write statements if they are both assignments and can be reordered,
    142 * this can result in several of the writes here being dropped.
    143 */
    144#define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
    145static inline void __mm_zero_struct_page(struct page *page)
    146{
    147	unsigned long *_pp = (void *)page;
    148
    149	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
    150	BUILD_BUG_ON(sizeof(struct page) & 7);
    151	BUILD_BUG_ON(sizeof(struct page) < 56);
    152	BUILD_BUG_ON(sizeof(struct page) > 80);
    153
    154	switch (sizeof(struct page)) {
    155	case 80:
    156		_pp[9] = 0;
    157		fallthrough;
    158	case 72:
    159		_pp[8] = 0;
    160		fallthrough;
    161	case 64:
    162		_pp[7] = 0;
    163		fallthrough;
    164	case 56:
    165		_pp[6] = 0;
    166		_pp[5] = 0;
    167		_pp[4] = 0;
    168		_pp[3] = 0;
    169		_pp[2] = 0;
    170		_pp[1] = 0;
    171		_pp[0] = 0;
    172	}
    173}
    174#else
    175#define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
    176#endif
    177
    178/*
    179 * Default maximum number of active map areas, this limits the number of vmas
    180 * per mm struct. Users can overwrite this number by sysctl but there is a
    181 * problem.
    182 *
    183 * When a program's coredump is generated as ELF format, a section is created
    184 * per a vma. In ELF, the number of sections is represented in unsigned short.
    185 * This means the number of sections should be smaller than 65535 at coredump.
    186 * Because the kernel adds some informative sections to a image of program at
    187 * generating coredump, we need some margin. The number of extra sections is
    188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
    189 *
    190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
    191 * not a hard limit any more. Although some userspace tools can be surprised by
    192 * that.
    193 */
    194#define MAPCOUNT_ELF_CORE_MARGIN	(5)
    195#define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
    196
    197extern int sysctl_max_map_count;
    198
    199extern unsigned long sysctl_user_reserve_kbytes;
    200extern unsigned long sysctl_admin_reserve_kbytes;
    201
    202extern int sysctl_overcommit_memory;
    203extern int sysctl_overcommit_ratio;
    204extern unsigned long sysctl_overcommit_kbytes;
    205
    206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
    207		loff_t *);
    208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
    209		loff_t *);
    210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
    211		loff_t *);
    212
    213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
    214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
    215#define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
    216#else
    217#define nth_page(page,n) ((page) + (n))
    218#define folio_page_idx(folio, p)	((p) - &(folio)->page)
    219#endif
    220
    221/* to align the pointer to the (next) page boundary */
    222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
    223
    224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
    225#define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
    226
    227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
    228static inline struct folio *lru_to_folio(struct list_head *head)
    229{
    230	return list_entry((head)->prev, struct folio, lru);
    231}
    232
    233void setup_initial_init_mm(void *start_code, void *end_code,
    234			   void *end_data, void *brk);
    235
    236/*
    237 * Linux kernel virtual memory manager primitives.
    238 * The idea being to have a "virtual" mm in the same way
    239 * we have a virtual fs - giving a cleaner interface to the
    240 * mm details, and allowing different kinds of memory mappings
    241 * (from shared memory to executable loading to arbitrary
    242 * mmap() functions).
    243 */
    244
    245struct vm_area_struct *vm_area_alloc(struct mm_struct *);
    246struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
    247void vm_area_free(struct vm_area_struct *);
    248
    249#ifndef CONFIG_MMU
    250extern struct rb_root nommu_region_tree;
    251extern struct rw_semaphore nommu_region_sem;
    252
    253extern unsigned int kobjsize(const void *objp);
    254#endif
    255
    256/*
    257 * vm_flags in vm_area_struct, see mm_types.h.
    258 * When changing, update also include/trace/events/mmflags.h
    259 */
    260#define VM_NONE		0x00000000
    261
    262#define VM_READ		0x00000001	/* currently active flags */
    263#define VM_WRITE	0x00000002
    264#define VM_EXEC		0x00000004
    265#define VM_SHARED	0x00000008
    266
    267/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
    268#define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
    269#define VM_MAYWRITE	0x00000020
    270#define VM_MAYEXEC	0x00000040
    271#define VM_MAYSHARE	0x00000080
    272
    273#define VM_GROWSDOWN	0x00000100	/* general info on the segment */
    274#define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
    275#define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
    276#define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
    277
    278#define VM_LOCKED	0x00002000
    279#define VM_IO           0x00004000	/* Memory mapped I/O or similar */
    280
    281					/* Used by sys_madvise() */
    282#define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
    283#define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
    284
    285#define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
    286#define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
    287#define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
    288#define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
    289#define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
    290#define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
    291#define VM_SYNC		0x00800000	/* Synchronous page faults */
    292#define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
    293#define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
    294#define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
    295
    296#ifdef CONFIG_MEM_SOFT_DIRTY
    297# define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
    298#else
    299# define VM_SOFTDIRTY	0
    300#endif
    301
    302#define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
    303#define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
    304#define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
    305#define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
    306
    307#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
    308#define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
    309#define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
    310#define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
    311#define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
    312#define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
    313#define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
    314#define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
    315#define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
    316#define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
    317#define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
    318#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
    319
    320#ifdef CONFIG_ARCH_HAS_PKEYS
    321# define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
    322# define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
    323# define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
    324# define VM_PKEY_BIT2	VM_HIGH_ARCH_2
    325# define VM_PKEY_BIT3	VM_HIGH_ARCH_3
    326#ifdef CONFIG_PPC
    327# define VM_PKEY_BIT4  VM_HIGH_ARCH_4
    328#else
    329# define VM_PKEY_BIT4  0
    330#endif
    331#endif /* CONFIG_ARCH_HAS_PKEYS */
    332
    333#if defined(CONFIG_X86)
    334# define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
    335#elif defined(CONFIG_PPC)
    336# define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
    337#elif defined(CONFIG_PARISC)
    338# define VM_GROWSUP	VM_ARCH_1
    339#elif defined(CONFIG_IA64)
    340# define VM_GROWSUP	VM_ARCH_1
    341#elif defined(CONFIG_SPARC64)
    342# define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
    343# define VM_ARCH_CLEAR	VM_SPARC_ADI
    344#elif defined(CONFIG_ARM64)
    345# define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
    346# define VM_ARCH_CLEAR	VM_ARM64_BTI
    347#elif !defined(CONFIG_MMU)
    348# define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
    349#endif
    350
    351#if defined(CONFIG_ARM64_MTE)
    352# define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
    353# define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
    354#else
    355# define VM_MTE		VM_NONE
    356# define VM_MTE_ALLOWED	VM_NONE
    357#endif
    358
    359#ifndef VM_GROWSUP
    360# define VM_GROWSUP	VM_NONE
    361#endif
    362
    363#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
    364# define VM_UFFD_MINOR_BIT	37
    365# define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
    366#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
    367# define VM_UFFD_MINOR		VM_NONE
    368#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
    369
    370/* Bits set in the VMA until the stack is in its final location */
    371#define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
    372
    373#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
    374
    375/* Common data flag combinations */
    376#define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
    377				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
    378#define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
    379				 VM_MAYWRITE | VM_MAYEXEC)
    380#define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
    381				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
    382
    383#ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
    384#define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
    385#endif
    386
    387#ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
    388#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
    389#endif
    390
    391#ifdef CONFIG_STACK_GROWSUP
    392#define VM_STACK	VM_GROWSUP
    393#else
    394#define VM_STACK	VM_GROWSDOWN
    395#endif
    396
    397#define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
    398
    399/* VMA basic access permission flags */
    400#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
    401
    402
    403/*
    404 * Special vmas that are non-mergable, non-mlock()able.
    405 */
    406#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
    407
    408/* This mask prevents VMA from being scanned with khugepaged */
    409#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
    410
    411/* This mask defines which mm->def_flags a process can inherit its parent */
    412#define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
    413
    414/* This mask is used to clear all the VMA flags used by mlock */
    415#define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
    416
    417/* Arch-specific flags to clear when updating VM flags on protection change */
    418#ifndef VM_ARCH_CLEAR
    419# define VM_ARCH_CLEAR	VM_NONE
    420#endif
    421#define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
    422
    423/*
    424 * mapping from the currently active vm_flags protection bits (the
    425 * low four bits) to a page protection mask..
    426 */
    427extern pgprot_t protection_map[16];
    428
    429/*
    430 * The default fault flags that should be used by most of the
    431 * arch-specific page fault handlers.
    432 */
    433#define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
    434			     FAULT_FLAG_KILLABLE | \
    435			     FAULT_FLAG_INTERRUPTIBLE)
    436
    437/**
    438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
    439 * @flags: Fault flags.
    440 *
    441 * This is mostly used for places where we want to try to avoid taking
    442 * the mmap_lock for too long a time when waiting for another condition
    443 * to change, in which case we can try to be polite to release the
    444 * mmap_lock in the first round to avoid potential starvation of other
    445 * processes that would also want the mmap_lock.
    446 *
    447 * Return: true if the page fault allows retry and this is the first
    448 * attempt of the fault handling; false otherwise.
    449 */
    450static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
    451{
    452	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
    453	    (!(flags & FAULT_FLAG_TRIED));
    454}
    455
    456#define FAULT_FLAG_TRACE \
    457	{ FAULT_FLAG_WRITE,		"WRITE" }, \
    458	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
    459	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
    460	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
    461	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
    462	{ FAULT_FLAG_TRIED,		"TRIED" }, \
    463	{ FAULT_FLAG_USER,		"USER" }, \
    464	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
    465	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
    466	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
    467	{ FAULT_FLAG_PAGE_SPLIT,	"PAGESPLIT" }
    468
    469/*
    470 * vm_fault is filled by the pagefault handler and passed to the vma's
    471 * ->fault function. The vma's ->fault is responsible for returning a bitmask
    472 * of VM_FAULT_xxx flags that give details about how the fault was handled.
    473 *
    474 * MM layer fills up gfp_mask for page allocations but fault handler might
    475 * alter it if its implementation requires a different allocation context.
    476 *
    477 * pgoff should be used in favour of virtual_address, if possible.
    478 */
    479struct vm_fault {
    480	const struct {
    481		struct vm_area_struct *vma;	/* Target VMA */
    482		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
    483		pgoff_t pgoff;			/* Logical page offset based on vma */
    484		unsigned long address;		/* Faulting virtual address - masked */
    485		unsigned long real_address;	/* Faulting virtual address - unmasked */
    486	};
    487	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
    488					 * XXX: should really be 'const' */
    489	pmd_t *pmd;			/* Pointer to pmd entry matching
    490					 * the 'address' */
    491	pud_t *pud;			/* Pointer to pud entry matching
    492					 * the 'address'
    493					 */
    494	union {
    495		pte_t orig_pte;		/* Value of PTE at the time of fault */
    496		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
    497					 * used by PMD fault only.
    498					 */
    499	};
    500
    501	struct page *cow_page;		/* Page handler may use for COW fault */
    502	struct page *page;		/* ->fault handlers should return a
    503					 * page here, unless VM_FAULT_NOPAGE
    504					 * is set (which is also implied by
    505					 * VM_FAULT_ERROR).
    506					 */
    507	/* These three entries are valid only while holding ptl lock */
    508	pte_t *pte;			/* Pointer to pte entry matching
    509					 * the 'address'. NULL if the page
    510					 * table hasn't been allocated.
    511					 */
    512	spinlock_t *ptl;		/* Page table lock.
    513					 * Protects pte page table if 'pte'
    514					 * is not NULL, otherwise pmd.
    515					 */
    516	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
    517					 * vm_ops->map_pages() sets up a page
    518					 * table from atomic context.
    519					 * do_fault_around() pre-allocates
    520					 * page table to avoid allocation from
    521					 * atomic context.
    522					 */
    523};
    524
    525/* page entry size for vm->huge_fault() */
    526enum page_entry_size {
    527	PE_SIZE_PTE = 0,
    528	PE_SIZE_PMD,
    529	PE_SIZE_PUD,
    530};
    531
    532/*
    533 * These are the virtual MM functions - opening of an area, closing and
    534 * unmapping it (needed to keep files on disk up-to-date etc), pointer
    535 * to the functions called when a no-page or a wp-page exception occurs.
    536 */
    537struct vm_operations_struct {
    538	void (*open)(struct vm_area_struct * area);
    539	/**
    540	 * @close: Called when the VMA is being removed from the MM.
    541	 * Context: User context.  May sleep.  Caller holds mmap_lock.
    542	 */
    543	void (*close)(struct vm_area_struct * area);
    544	/* Called any time before splitting to check if it's allowed */
    545	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
    546	int (*mremap)(struct vm_area_struct *area);
    547	/*
    548	 * Called by mprotect() to make driver-specific permission
    549	 * checks before mprotect() is finalised.   The VMA must not
    550	 * be modified.  Returns 0 if eprotect() can proceed.
    551	 */
    552	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
    553			unsigned long end, unsigned long newflags);
    554	vm_fault_t (*fault)(struct vm_fault *vmf);
    555	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
    556			enum page_entry_size pe_size);
    557	vm_fault_t (*map_pages)(struct vm_fault *vmf,
    558			pgoff_t start_pgoff, pgoff_t end_pgoff);
    559	unsigned long (*pagesize)(struct vm_area_struct * area);
    560
    561	/* notification that a previously read-only page is about to become
    562	 * writable, if an error is returned it will cause a SIGBUS */
    563	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
    564
    565	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
    566	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
    567
    568	/* called by access_process_vm when get_user_pages() fails, typically
    569	 * for use by special VMAs. See also generic_access_phys() for a generic
    570	 * implementation useful for any iomem mapping.
    571	 */
    572	int (*access)(struct vm_area_struct *vma, unsigned long addr,
    573		      void *buf, int len, int write);
    574
    575	/* Called by the /proc/PID/maps code to ask the vma whether it
    576	 * has a special name.  Returning non-NULL will also cause this
    577	 * vma to be dumped unconditionally. */
    578	const char *(*name)(struct vm_area_struct *vma);
    579
    580#ifdef CONFIG_NUMA
    581	/*
    582	 * set_policy() op must add a reference to any non-NULL @new mempolicy
    583	 * to hold the policy upon return.  Caller should pass NULL @new to
    584	 * remove a policy and fall back to surrounding context--i.e. do not
    585	 * install a MPOL_DEFAULT policy, nor the task or system default
    586	 * mempolicy.
    587	 */
    588	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
    589
    590	/*
    591	 * get_policy() op must add reference [mpol_get()] to any policy at
    592	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
    593	 * in mm/mempolicy.c will do this automatically.
    594	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
    595	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
    596	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
    597	 * must return NULL--i.e., do not "fallback" to task or system default
    598	 * policy.
    599	 */
    600	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
    601					unsigned long addr);
    602#endif
    603	/*
    604	 * Called by vm_normal_page() for special PTEs to find the
    605	 * page for @addr.  This is useful if the default behavior
    606	 * (using pte_page()) would not find the correct page.
    607	 */
    608	struct page *(*find_special_page)(struct vm_area_struct *vma,
    609					  unsigned long addr);
    610};
    611
    612static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
    613{
    614	static const struct vm_operations_struct dummy_vm_ops = {};
    615
    616	memset(vma, 0, sizeof(*vma));
    617	vma->vm_mm = mm;
    618	vma->vm_ops = &dummy_vm_ops;
    619	INIT_LIST_HEAD(&vma->anon_vma_chain);
    620}
    621
    622static inline void vma_set_anonymous(struct vm_area_struct *vma)
    623{
    624	vma->vm_ops = NULL;
    625}
    626
    627static inline bool vma_is_anonymous(struct vm_area_struct *vma)
    628{
    629	return !vma->vm_ops;
    630}
    631
    632static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
    633{
    634	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
    635
    636	if (!maybe_stack)
    637		return false;
    638
    639	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
    640						VM_STACK_INCOMPLETE_SETUP)
    641		return true;
    642
    643	return false;
    644}
    645
    646static inline bool vma_is_foreign(struct vm_area_struct *vma)
    647{
    648	if (!current->mm)
    649		return true;
    650
    651	if (current->mm != vma->vm_mm)
    652		return true;
    653
    654	return false;
    655}
    656
    657static inline bool vma_is_accessible(struct vm_area_struct *vma)
    658{
    659	return vma->vm_flags & VM_ACCESS_FLAGS;
    660}
    661
    662#ifdef CONFIG_SHMEM
    663/*
    664 * The vma_is_shmem is not inline because it is used only by slow
    665 * paths in userfault.
    666 */
    667bool vma_is_shmem(struct vm_area_struct *vma);
    668#else
    669static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
    670#endif
    671
    672int vma_is_stack_for_current(struct vm_area_struct *vma);
    673
    674/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
    675#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
    676
    677struct mmu_gather;
    678struct inode;
    679
    680static inline unsigned int compound_order(struct page *page)
    681{
    682	if (!PageHead(page))
    683		return 0;
    684	return page[1].compound_order;
    685}
    686
    687/**
    688 * folio_order - The allocation order of a folio.
    689 * @folio: The folio.
    690 *
    691 * A folio is composed of 2^order pages.  See get_order() for the definition
    692 * of order.
    693 *
    694 * Return: The order of the folio.
    695 */
    696static inline unsigned int folio_order(struct folio *folio)
    697{
    698	return compound_order(&folio->page);
    699}
    700
    701#include <linux/huge_mm.h>
    702
    703/*
    704 * Methods to modify the page usage count.
    705 *
    706 * What counts for a page usage:
    707 * - cache mapping   (page->mapping)
    708 * - private data    (page->private)
    709 * - page mapped in a task's page tables, each mapping
    710 *   is counted separately
    711 *
    712 * Also, many kernel routines increase the page count before a critical
    713 * routine so they can be sure the page doesn't go away from under them.
    714 */
    715
    716/*
    717 * Drop a ref, return true if the refcount fell to zero (the page has no users)
    718 */
    719static inline int put_page_testzero(struct page *page)
    720{
    721	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
    722	return page_ref_dec_and_test(page);
    723}
    724
    725static inline int folio_put_testzero(struct folio *folio)
    726{
    727	return put_page_testzero(&folio->page);
    728}
    729
    730/*
    731 * Try to grab a ref unless the page has a refcount of zero, return false if
    732 * that is the case.
    733 * This can be called when MMU is off so it must not access
    734 * any of the virtual mappings.
    735 */
    736static inline bool get_page_unless_zero(struct page *page)
    737{
    738	return page_ref_add_unless(page, 1, 0);
    739}
    740
    741extern int page_is_ram(unsigned long pfn);
    742
    743enum {
    744	REGION_INTERSECTS,
    745	REGION_DISJOINT,
    746	REGION_MIXED,
    747};
    748
    749int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
    750		      unsigned long desc);
    751
    752/* Support for virtually mapped pages */
    753struct page *vmalloc_to_page(const void *addr);
    754unsigned long vmalloc_to_pfn(const void *addr);
    755
    756/*
    757 * Determine if an address is within the vmalloc range
    758 *
    759 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
    760 * is no special casing required.
    761 */
    762
    763#ifndef is_ioremap_addr
    764#define is_ioremap_addr(x) is_vmalloc_addr(x)
    765#endif
    766
    767#ifdef CONFIG_MMU
    768extern bool is_vmalloc_addr(const void *x);
    769extern int is_vmalloc_or_module_addr(const void *x);
    770#else
    771static inline bool is_vmalloc_addr(const void *x)
    772{
    773	return false;
    774}
    775static inline int is_vmalloc_or_module_addr(const void *x)
    776{
    777	return 0;
    778}
    779#endif
    780
    781/*
    782 * How many times the entire folio is mapped as a single unit (eg by a
    783 * PMD or PUD entry).  This is probably not what you want, except for
    784 * debugging purposes; look at folio_mapcount() or page_mapcount()
    785 * instead.
    786 */
    787static inline int folio_entire_mapcount(struct folio *folio)
    788{
    789	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
    790	return atomic_read(folio_mapcount_ptr(folio)) + 1;
    791}
    792
    793/*
    794 * Mapcount of compound page as a whole, does not include mapped sub-pages.
    795 *
    796 * Must be called only for compound pages.
    797 */
    798static inline int compound_mapcount(struct page *page)
    799{
    800	return folio_entire_mapcount(page_folio(page));
    801}
    802
    803/*
    804 * The atomic page->_mapcount, starts from -1: so that transitions
    805 * both from it and to it can be tracked, using atomic_inc_and_test
    806 * and atomic_add_negative(-1).
    807 */
    808static inline void page_mapcount_reset(struct page *page)
    809{
    810	atomic_set(&(page)->_mapcount, -1);
    811}
    812
    813int __page_mapcount(struct page *page);
    814
    815/*
    816 * Mapcount of 0-order page; when compound sub-page, includes
    817 * compound_mapcount().
    818 *
    819 * Result is undefined for pages which cannot be mapped into userspace.
    820 * For example SLAB or special types of pages. See function page_has_type().
    821 * They use this place in struct page differently.
    822 */
    823static inline int page_mapcount(struct page *page)
    824{
    825	if (unlikely(PageCompound(page)))
    826		return __page_mapcount(page);
    827	return atomic_read(&page->_mapcount) + 1;
    828}
    829
    830int folio_mapcount(struct folio *folio);
    831
    832#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    833static inline int total_mapcount(struct page *page)
    834{
    835	return folio_mapcount(page_folio(page));
    836}
    837
    838#else
    839static inline int total_mapcount(struct page *page)
    840{
    841	return page_mapcount(page);
    842}
    843#endif
    844
    845static inline struct page *virt_to_head_page(const void *x)
    846{
    847	struct page *page = virt_to_page(x);
    848
    849	return compound_head(page);
    850}
    851
    852static inline struct folio *virt_to_folio(const void *x)
    853{
    854	struct page *page = virt_to_page(x);
    855
    856	return page_folio(page);
    857}
    858
    859void __put_page(struct page *page);
    860
    861void put_pages_list(struct list_head *pages);
    862
    863void split_page(struct page *page, unsigned int order);
    864void folio_copy(struct folio *dst, struct folio *src);
    865
    866unsigned long nr_free_buffer_pages(void);
    867
    868/*
    869 * Compound pages have a destructor function.  Provide a
    870 * prototype for that function and accessor functions.
    871 * These are _only_ valid on the head of a compound page.
    872 */
    873typedef void compound_page_dtor(struct page *);
    874
    875/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
    876enum compound_dtor_id {
    877	NULL_COMPOUND_DTOR,
    878	COMPOUND_PAGE_DTOR,
    879#ifdef CONFIG_HUGETLB_PAGE
    880	HUGETLB_PAGE_DTOR,
    881#endif
    882#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    883	TRANSHUGE_PAGE_DTOR,
    884#endif
    885	NR_COMPOUND_DTORS,
    886};
    887extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
    888
    889static inline void set_compound_page_dtor(struct page *page,
    890		enum compound_dtor_id compound_dtor)
    891{
    892	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
    893	page[1].compound_dtor = compound_dtor;
    894}
    895
    896static inline void destroy_compound_page(struct page *page)
    897{
    898	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
    899	compound_page_dtors[page[1].compound_dtor](page);
    900}
    901
    902static inline int head_compound_pincount(struct page *head)
    903{
    904	return atomic_read(compound_pincount_ptr(head));
    905}
    906
    907static inline void set_compound_order(struct page *page, unsigned int order)
    908{
    909	page[1].compound_order = order;
    910#ifdef CONFIG_64BIT
    911	page[1].compound_nr = 1U << order;
    912#endif
    913}
    914
    915/* Returns the number of pages in this potentially compound page. */
    916static inline unsigned long compound_nr(struct page *page)
    917{
    918	if (!PageHead(page))
    919		return 1;
    920#ifdef CONFIG_64BIT
    921	return page[1].compound_nr;
    922#else
    923	return 1UL << compound_order(page);
    924#endif
    925}
    926
    927/* Returns the number of bytes in this potentially compound page. */
    928static inline unsigned long page_size(struct page *page)
    929{
    930	return PAGE_SIZE << compound_order(page);
    931}
    932
    933/* Returns the number of bits needed for the number of bytes in a page */
    934static inline unsigned int page_shift(struct page *page)
    935{
    936	return PAGE_SHIFT + compound_order(page);
    937}
    938
    939/**
    940 * thp_order - Order of a transparent huge page.
    941 * @page: Head page of a transparent huge page.
    942 */
    943static inline unsigned int thp_order(struct page *page)
    944{
    945	VM_BUG_ON_PGFLAGS(PageTail(page), page);
    946	return compound_order(page);
    947}
    948
    949/**
    950 * thp_nr_pages - The number of regular pages in this huge page.
    951 * @page: The head page of a huge page.
    952 */
    953static inline int thp_nr_pages(struct page *page)
    954{
    955	VM_BUG_ON_PGFLAGS(PageTail(page), page);
    956	return compound_nr(page);
    957}
    958
    959/**
    960 * thp_size - Size of a transparent huge page.
    961 * @page: Head page of a transparent huge page.
    962 *
    963 * Return: Number of bytes in this page.
    964 */
    965static inline unsigned long thp_size(struct page *page)
    966{
    967	return PAGE_SIZE << thp_order(page);
    968}
    969
    970void free_compound_page(struct page *page);
    971
    972#ifdef CONFIG_MMU
    973/*
    974 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
    975 * servicing faults for write access.  In the normal case, do always want
    976 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
    977 * that do not have writing enabled, when used by access_process_vm.
    978 */
    979static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
    980{
    981	if (likely(vma->vm_flags & VM_WRITE))
    982		pte = pte_mkwrite(pte);
    983	return pte;
    984}
    985
    986vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
    987void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
    988
    989vm_fault_t finish_fault(struct vm_fault *vmf);
    990vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
    991#endif
    992
    993/*
    994 * Multiple processes may "see" the same page. E.g. for untouched
    995 * mappings of /dev/null, all processes see the same page full of
    996 * zeroes, and text pages of executables and shared libraries have
    997 * only one copy in memory, at most, normally.
    998 *
    999 * For the non-reserved pages, page_count(page) denotes a reference count.
   1000 *   page_count() == 0 means the page is free. page->lru is then used for
   1001 *   freelist management in the buddy allocator.
   1002 *   page_count() > 0  means the page has been allocated.
   1003 *
   1004 * Pages are allocated by the slab allocator in order to provide memory
   1005 * to kmalloc and kmem_cache_alloc. In this case, the management of the
   1006 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
   1007 * unless a particular usage is carefully commented. (the responsibility of
   1008 * freeing the kmalloc memory is the caller's, of course).
   1009 *
   1010 * A page may be used by anyone else who does a __get_free_page().
   1011 * In this case, page_count still tracks the references, and should only
   1012 * be used through the normal accessor functions. The top bits of page->flags
   1013 * and page->virtual store page management information, but all other fields
   1014 * are unused and could be used privately, carefully. The management of this
   1015 * page is the responsibility of the one who allocated it, and those who have
   1016 * subsequently been given references to it.
   1017 *
   1018 * The other pages (we may call them "pagecache pages") are completely
   1019 * managed by the Linux memory manager: I/O, buffers, swapping etc.
   1020 * The following discussion applies only to them.
   1021 *
   1022 * A pagecache page contains an opaque `private' member, which belongs to the
   1023 * page's address_space. Usually, this is the address of a circular list of
   1024 * the page's disk buffers. PG_private must be set to tell the VM to call
   1025 * into the filesystem to release these pages.
   1026 *
   1027 * A page may belong to an inode's memory mapping. In this case, page->mapping
   1028 * is the pointer to the inode, and page->index is the file offset of the page,
   1029 * in units of PAGE_SIZE.
   1030 *
   1031 * If pagecache pages are not associated with an inode, they are said to be
   1032 * anonymous pages. These may become associated with the swapcache, and in that
   1033 * case PG_swapcache is set, and page->private is an offset into the swapcache.
   1034 *
   1035 * In either case (swapcache or inode backed), the pagecache itself holds one
   1036 * reference to the page. Setting PG_private should also increment the
   1037 * refcount. The each user mapping also has a reference to the page.
   1038 *
   1039 * The pagecache pages are stored in a per-mapping radix tree, which is
   1040 * rooted at mapping->i_pages, and indexed by offset.
   1041 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
   1042 * lists, we instead now tag pages as dirty/writeback in the radix tree.
   1043 *
   1044 * All pagecache pages may be subject to I/O:
   1045 * - inode pages may need to be read from disk,
   1046 * - inode pages which have been modified and are MAP_SHARED may need
   1047 *   to be written back to the inode on disk,
   1048 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
   1049 *   modified may need to be swapped out to swap space and (later) to be read
   1050 *   back into memory.
   1051 */
   1052
   1053/*
   1054 * The zone field is never updated after free_area_init_core()
   1055 * sets it, so none of the operations on it need to be atomic.
   1056 */
   1057
   1058/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
   1059#define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
   1060#define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
   1061#define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
   1062#define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
   1063#define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
   1064
   1065/*
   1066 * Define the bit shifts to access each section.  For non-existent
   1067 * sections we define the shift as 0; that plus a 0 mask ensures
   1068 * the compiler will optimise away reference to them.
   1069 */
   1070#define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
   1071#define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
   1072#define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
   1073#define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
   1074#define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
   1075
   1076/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
   1077#ifdef NODE_NOT_IN_PAGE_FLAGS
   1078#define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
   1079#define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
   1080						SECTIONS_PGOFF : ZONES_PGOFF)
   1081#else
   1082#define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
   1083#define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
   1084						NODES_PGOFF : ZONES_PGOFF)
   1085#endif
   1086
   1087#define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
   1088
   1089#define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
   1090#define NODES_MASK		((1UL << NODES_WIDTH) - 1)
   1091#define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
   1092#define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
   1093#define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
   1094#define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
   1095
   1096static inline enum zone_type page_zonenum(const struct page *page)
   1097{
   1098	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
   1099	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
   1100}
   1101
   1102static inline enum zone_type folio_zonenum(const struct folio *folio)
   1103{
   1104	return page_zonenum(&folio->page);
   1105}
   1106
   1107#ifdef CONFIG_ZONE_DEVICE
   1108static inline bool is_zone_device_page(const struct page *page)
   1109{
   1110	return page_zonenum(page) == ZONE_DEVICE;
   1111}
   1112extern void memmap_init_zone_device(struct zone *, unsigned long,
   1113				    unsigned long, struct dev_pagemap *);
   1114#else
   1115static inline bool is_zone_device_page(const struct page *page)
   1116{
   1117	return false;
   1118}
   1119#endif
   1120
   1121static inline bool folio_is_zone_device(const struct folio *folio)
   1122{
   1123	return is_zone_device_page(&folio->page);
   1124}
   1125
   1126static inline bool is_zone_movable_page(const struct page *page)
   1127{
   1128	return page_zonenum(page) == ZONE_MOVABLE;
   1129}
   1130
   1131#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
   1132DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
   1133
   1134bool __put_devmap_managed_page(struct page *page);
   1135static inline bool put_devmap_managed_page(struct page *page)
   1136{
   1137	if (!static_branch_unlikely(&devmap_managed_key))
   1138		return false;
   1139	if (!is_zone_device_page(page))
   1140		return false;
   1141	return __put_devmap_managed_page(page);
   1142}
   1143
   1144#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
   1145static inline bool put_devmap_managed_page(struct page *page)
   1146{
   1147	return false;
   1148}
   1149#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
   1150
   1151/* 127: arbitrary random number, small enough to assemble well */
   1152#define folio_ref_zero_or_close_to_overflow(folio) \
   1153	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
   1154
   1155/**
   1156 * folio_get - Increment the reference count on a folio.
   1157 * @folio: The folio.
   1158 *
   1159 * Context: May be called in any context, as long as you know that
   1160 * you have a refcount on the folio.  If you do not already have one,
   1161 * folio_try_get() may be the right interface for you to use.
   1162 */
   1163static inline void folio_get(struct folio *folio)
   1164{
   1165	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
   1166	folio_ref_inc(folio);
   1167}
   1168
   1169static inline void get_page(struct page *page)
   1170{
   1171	folio_get(page_folio(page));
   1172}
   1173
   1174bool __must_check try_grab_page(struct page *page, unsigned int flags);
   1175
   1176static inline __must_check bool try_get_page(struct page *page)
   1177{
   1178	page = compound_head(page);
   1179	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
   1180		return false;
   1181	page_ref_inc(page);
   1182	return true;
   1183}
   1184
   1185/**
   1186 * folio_put - Decrement the reference count on a folio.
   1187 * @folio: The folio.
   1188 *
   1189 * If the folio's reference count reaches zero, the memory will be
   1190 * released back to the page allocator and may be used by another
   1191 * allocation immediately.  Do not access the memory or the struct folio
   1192 * after calling folio_put() unless you can be sure that it wasn't the
   1193 * last reference.
   1194 *
   1195 * Context: May be called in process or interrupt context, but not in NMI
   1196 * context.  May be called while holding a spinlock.
   1197 */
   1198static inline void folio_put(struct folio *folio)
   1199{
   1200	if (folio_put_testzero(folio))
   1201		__put_page(&folio->page);
   1202}
   1203
   1204/**
   1205 * folio_put_refs - Reduce the reference count on a folio.
   1206 * @folio: The folio.
   1207 * @refs: The amount to subtract from the folio's reference count.
   1208 *
   1209 * If the folio's reference count reaches zero, the memory will be
   1210 * released back to the page allocator and may be used by another
   1211 * allocation immediately.  Do not access the memory or the struct folio
   1212 * after calling folio_put_refs() unless you can be sure that these weren't
   1213 * the last references.
   1214 *
   1215 * Context: May be called in process or interrupt context, but not in NMI
   1216 * context.  May be called while holding a spinlock.
   1217 */
   1218static inline void folio_put_refs(struct folio *folio, int refs)
   1219{
   1220	if (folio_ref_sub_and_test(folio, refs))
   1221		__put_page(&folio->page);
   1222}
   1223
   1224static inline void put_page(struct page *page)
   1225{
   1226	struct folio *folio = page_folio(page);
   1227
   1228	/*
   1229	 * For some devmap managed pages we need to catch refcount transition
   1230	 * from 2 to 1:
   1231	 */
   1232	if (put_devmap_managed_page(&folio->page))
   1233		return;
   1234	folio_put(folio);
   1235}
   1236
   1237/*
   1238 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
   1239 * the page's refcount so that two separate items are tracked: the original page
   1240 * reference count, and also a new count of how many pin_user_pages() calls were
   1241 * made against the page. ("gup-pinned" is another term for the latter).
   1242 *
   1243 * With this scheme, pin_user_pages() becomes special: such pages are marked as
   1244 * distinct from normal pages. As such, the unpin_user_page() call (and its
   1245 * variants) must be used in order to release gup-pinned pages.
   1246 *
   1247 * Choice of value:
   1248 *
   1249 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
   1250 * counts with respect to pin_user_pages() and unpin_user_page() becomes
   1251 * simpler, due to the fact that adding an even power of two to the page
   1252 * refcount has the effect of using only the upper N bits, for the code that
   1253 * counts up using the bias value. This means that the lower bits are left for
   1254 * the exclusive use of the original code that increments and decrements by one
   1255 * (or at least, by much smaller values than the bias value).
   1256 *
   1257 * Of course, once the lower bits overflow into the upper bits (and this is
   1258 * OK, because subtraction recovers the original values), then visual inspection
   1259 * no longer suffices to directly view the separate counts. However, for normal
   1260 * applications that don't have huge page reference counts, this won't be an
   1261 * issue.
   1262 *
   1263 * Locking: the lockless algorithm described in folio_try_get_rcu()
   1264 * provides safe operation for get_user_pages(), page_mkclean() and
   1265 * other calls that race to set up page table entries.
   1266 */
   1267#define GUP_PIN_COUNTING_BIAS (1U << 10)
   1268
   1269void unpin_user_page(struct page *page);
   1270void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
   1271				 bool make_dirty);
   1272void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
   1273				      bool make_dirty);
   1274void unpin_user_pages(struct page **pages, unsigned long npages);
   1275
   1276static inline bool is_cow_mapping(vm_flags_t flags)
   1277{
   1278	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
   1279}
   1280
   1281#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
   1282#define SECTION_IN_PAGE_FLAGS
   1283#endif
   1284
   1285/*
   1286 * The identification function is mainly used by the buddy allocator for
   1287 * determining if two pages could be buddies. We are not really identifying
   1288 * the zone since we could be using the section number id if we do not have
   1289 * node id available in page flags.
   1290 * We only guarantee that it will return the same value for two combinable
   1291 * pages in a zone.
   1292 */
   1293static inline int page_zone_id(struct page *page)
   1294{
   1295	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
   1296}
   1297
   1298#ifdef NODE_NOT_IN_PAGE_FLAGS
   1299extern int page_to_nid(const struct page *page);
   1300#else
   1301static inline int page_to_nid(const struct page *page)
   1302{
   1303	struct page *p = (struct page *)page;
   1304
   1305	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
   1306}
   1307#endif
   1308
   1309static inline int folio_nid(const struct folio *folio)
   1310{
   1311	return page_to_nid(&folio->page);
   1312}
   1313
   1314#ifdef CONFIG_NUMA_BALANCING
   1315static inline int cpu_pid_to_cpupid(int cpu, int pid)
   1316{
   1317	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
   1318}
   1319
   1320static inline int cpupid_to_pid(int cpupid)
   1321{
   1322	return cpupid & LAST__PID_MASK;
   1323}
   1324
   1325static inline int cpupid_to_cpu(int cpupid)
   1326{
   1327	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
   1328}
   1329
   1330static inline int cpupid_to_nid(int cpupid)
   1331{
   1332	return cpu_to_node(cpupid_to_cpu(cpupid));
   1333}
   1334
   1335static inline bool cpupid_pid_unset(int cpupid)
   1336{
   1337	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
   1338}
   1339
   1340static inline bool cpupid_cpu_unset(int cpupid)
   1341{
   1342	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
   1343}
   1344
   1345static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
   1346{
   1347	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
   1348}
   1349
   1350#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
   1351#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
   1352static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
   1353{
   1354	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
   1355}
   1356
   1357static inline int page_cpupid_last(struct page *page)
   1358{
   1359	return page->_last_cpupid;
   1360}
   1361static inline void page_cpupid_reset_last(struct page *page)
   1362{
   1363	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
   1364}
   1365#else
   1366static inline int page_cpupid_last(struct page *page)
   1367{
   1368	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
   1369}
   1370
   1371extern int page_cpupid_xchg_last(struct page *page, int cpupid);
   1372
   1373static inline void page_cpupid_reset_last(struct page *page)
   1374{
   1375	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
   1376}
   1377#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
   1378#else /* !CONFIG_NUMA_BALANCING */
   1379static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
   1380{
   1381	return page_to_nid(page); /* XXX */
   1382}
   1383
   1384static inline int page_cpupid_last(struct page *page)
   1385{
   1386	return page_to_nid(page); /* XXX */
   1387}
   1388
   1389static inline int cpupid_to_nid(int cpupid)
   1390{
   1391	return -1;
   1392}
   1393
   1394static inline int cpupid_to_pid(int cpupid)
   1395{
   1396	return -1;
   1397}
   1398
   1399static inline int cpupid_to_cpu(int cpupid)
   1400{
   1401	return -1;
   1402}
   1403
   1404static inline int cpu_pid_to_cpupid(int nid, int pid)
   1405{
   1406	return -1;
   1407}
   1408
   1409static inline bool cpupid_pid_unset(int cpupid)
   1410{
   1411	return true;
   1412}
   1413
   1414static inline void page_cpupid_reset_last(struct page *page)
   1415{
   1416}
   1417
   1418static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
   1419{
   1420	return false;
   1421}
   1422#endif /* CONFIG_NUMA_BALANCING */
   1423
   1424#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
   1425
   1426/*
   1427 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
   1428 * setting tags for all pages to native kernel tag value 0xff, as the default
   1429 * value 0x00 maps to 0xff.
   1430 */
   1431
   1432static inline u8 page_kasan_tag(const struct page *page)
   1433{
   1434	u8 tag = 0xff;
   1435
   1436	if (kasan_enabled()) {
   1437		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
   1438		tag ^= 0xff;
   1439	}
   1440
   1441	return tag;
   1442}
   1443
   1444static inline void page_kasan_tag_set(struct page *page, u8 tag)
   1445{
   1446	unsigned long old_flags, flags;
   1447
   1448	if (!kasan_enabled())
   1449		return;
   1450
   1451	tag ^= 0xff;
   1452	old_flags = READ_ONCE(page->flags);
   1453	do {
   1454		flags = old_flags;
   1455		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
   1456		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
   1457	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
   1458}
   1459
   1460static inline void page_kasan_tag_reset(struct page *page)
   1461{
   1462	if (kasan_enabled())
   1463		page_kasan_tag_set(page, 0xff);
   1464}
   1465
   1466#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
   1467
   1468static inline u8 page_kasan_tag(const struct page *page)
   1469{
   1470	return 0xff;
   1471}
   1472
   1473static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
   1474static inline void page_kasan_tag_reset(struct page *page) { }
   1475
   1476#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
   1477
   1478static inline struct zone *page_zone(const struct page *page)
   1479{
   1480	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
   1481}
   1482
   1483static inline pg_data_t *page_pgdat(const struct page *page)
   1484{
   1485	return NODE_DATA(page_to_nid(page));
   1486}
   1487
   1488static inline struct zone *folio_zone(const struct folio *folio)
   1489{
   1490	return page_zone(&folio->page);
   1491}
   1492
   1493static inline pg_data_t *folio_pgdat(const struct folio *folio)
   1494{
   1495	return page_pgdat(&folio->page);
   1496}
   1497
   1498#ifdef SECTION_IN_PAGE_FLAGS
   1499static inline void set_page_section(struct page *page, unsigned long section)
   1500{
   1501	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
   1502	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
   1503}
   1504
   1505static inline unsigned long page_to_section(const struct page *page)
   1506{
   1507	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
   1508}
   1509#endif
   1510
   1511/**
   1512 * folio_pfn - Return the Page Frame Number of a folio.
   1513 * @folio: The folio.
   1514 *
   1515 * A folio may contain multiple pages.  The pages have consecutive
   1516 * Page Frame Numbers.
   1517 *
   1518 * Return: The Page Frame Number of the first page in the folio.
   1519 */
   1520static inline unsigned long folio_pfn(struct folio *folio)
   1521{
   1522	return page_to_pfn(&folio->page);
   1523}
   1524
   1525static inline atomic_t *folio_pincount_ptr(struct folio *folio)
   1526{
   1527	return &folio_page(folio, 1)->compound_pincount;
   1528}
   1529
   1530/**
   1531 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
   1532 * @folio: The folio.
   1533 *
   1534 * This function checks if a folio has been pinned via a call to
   1535 * a function in the pin_user_pages() family.
   1536 *
   1537 * For small folios, the return value is partially fuzzy: false is not fuzzy,
   1538 * because it means "definitely not pinned for DMA", but true means "probably
   1539 * pinned for DMA, but possibly a false positive due to having at least
   1540 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
   1541 *
   1542 * False positives are OK, because: a) it's unlikely for a folio to
   1543 * get that many refcounts, and b) all the callers of this routine are
   1544 * expected to be able to deal gracefully with a false positive.
   1545 *
   1546 * For large folios, the result will be exactly correct. That's because
   1547 * we have more tracking data available: the compound_pincount is used
   1548 * instead of the GUP_PIN_COUNTING_BIAS scheme.
   1549 *
   1550 * For more information, please see Documentation/core-api/pin_user_pages.rst.
   1551 *
   1552 * Return: True, if it is likely that the page has been "dma-pinned".
   1553 * False, if the page is definitely not dma-pinned.
   1554 */
   1555static inline bool folio_maybe_dma_pinned(struct folio *folio)
   1556{
   1557	if (folio_test_large(folio))
   1558		return atomic_read(folio_pincount_ptr(folio)) > 0;
   1559
   1560	/*
   1561	 * folio_ref_count() is signed. If that refcount overflows, then
   1562	 * folio_ref_count() returns a negative value, and callers will avoid
   1563	 * further incrementing the refcount.
   1564	 *
   1565	 * Here, for that overflow case, use the sign bit to count a little
   1566	 * bit higher via unsigned math, and thus still get an accurate result.
   1567	 */
   1568	return ((unsigned int)folio_ref_count(folio)) >=
   1569		GUP_PIN_COUNTING_BIAS;
   1570}
   1571
   1572static inline bool page_maybe_dma_pinned(struct page *page)
   1573{
   1574	return folio_maybe_dma_pinned(page_folio(page));
   1575}
   1576
   1577/*
   1578 * This should most likely only be called during fork() to see whether we
   1579 * should break the cow immediately for an anon page on the src mm.
   1580 *
   1581 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
   1582 */
   1583static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
   1584					  struct page *page)
   1585{
   1586	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
   1587
   1588	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
   1589		return false;
   1590
   1591	return page_maybe_dma_pinned(page);
   1592}
   1593
   1594/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
   1595#ifdef CONFIG_MIGRATION
   1596static inline bool is_pinnable_page(struct page *page)
   1597{
   1598#ifdef CONFIG_CMA
   1599	int mt = get_pageblock_migratetype(page);
   1600
   1601	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
   1602		return false;
   1603#endif
   1604	return !is_zone_movable_page(page) || is_zero_pfn(page_to_pfn(page));
   1605}
   1606#else
   1607static inline bool is_pinnable_page(struct page *page)
   1608{
   1609	return true;
   1610}
   1611#endif
   1612
   1613static inline bool folio_is_pinnable(struct folio *folio)
   1614{
   1615	return is_pinnable_page(&folio->page);
   1616}
   1617
   1618static inline void set_page_zone(struct page *page, enum zone_type zone)
   1619{
   1620	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
   1621	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
   1622}
   1623
   1624static inline void set_page_node(struct page *page, unsigned long node)
   1625{
   1626	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
   1627	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
   1628}
   1629
   1630static inline void set_page_links(struct page *page, enum zone_type zone,
   1631	unsigned long node, unsigned long pfn)
   1632{
   1633	set_page_zone(page, zone);
   1634	set_page_node(page, node);
   1635#ifdef SECTION_IN_PAGE_FLAGS
   1636	set_page_section(page, pfn_to_section_nr(pfn));
   1637#endif
   1638}
   1639
   1640/**
   1641 * folio_nr_pages - The number of pages in the folio.
   1642 * @folio: The folio.
   1643 *
   1644 * Return: A positive power of two.
   1645 */
   1646static inline long folio_nr_pages(struct folio *folio)
   1647{
   1648	return compound_nr(&folio->page);
   1649}
   1650
   1651/**
   1652 * folio_next - Move to the next physical folio.
   1653 * @folio: The folio we're currently operating on.
   1654 *
   1655 * If you have physically contiguous memory which may span more than
   1656 * one folio (eg a &struct bio_vec), use this function to move from one
   1657 * folio to the next.  Do not use it if the memory is only virtually
   1658 * contiguous as the folios are almost certainly not adjacent to each
   1659 * other.  This is the folio equivalent to writing ``page++``.
   1660 *
   1661 * Context: We assume that the folios are refcounted and/or locked at a
   1662 * higher level and do not adjust the reference counts.
   1663 * Return: The next struct folio.
   1664 */
   1665static inline struct folio *folio_next(struct folio *folio)
   1666{
   1667	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
   1668}
   1669
   1670/**
   1671 * folio_shift - The size of the memory described by this folio.
   1672 * @folio: The folio.
   1673 *
   1674 * A folio represents a number of bytes which is a power-of-two in size.
   1675 * This function tells you which power-of-two the folio is.  See also
   1676 * folio_size() and folio_order().
   1677 *
   1678 * Context: The caller should have a reference on the folio to prevent
   1679 * it from being split.  It is not necessary for the folio to be locked.
   1680 * Return: The base-2 logarithm of the size of this folio.
   1681 */
   1682static inline unsigned int folio_shift(struct folio *folio)
   1683{
   1684	return PAGE_SHIFT + folio_order(folio);
   1685}
   1686
   1687/**
   1688 * folio_size - The number of bytes in a folio.
   1689 * @folio: The folio.
   1690 *
   1691 * Context: The caller should have a reference on the folio to prevent
   1692 * it from being split.  It is not necessary for the folio to be locked.
   1693 * Return: The number of bytes in this folio.
   1694 */
   1695static inline size_t folio_size(struct folio *folio)
   1696{
   1697	return PAGE_SIZE << folio_order(folio);
   1698}
   1699
   1700#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
   1701static inline int arch_make_page_accessible(struct page *page)
   1702{
   1703	return 0;
   1704}
   1705#endif
   1706
   1707#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
   1708static inline int arch_make_folio_accessible(struct folio *folio)
   1709{
   1710	int ret;
   1711	long i, nr = folio_nr_pages(folio);
   1712
   1713	for (i = 0; i < nr; i++) {
   1714		ret = arch_make_page_accessible(folio_page(folio, i));
   1715		if (ret)
   1716			break;
   1717	}
   1718
   1719	return ret;
   1720}
   1721#endif
   1722
   1723/*
   1724 * Some inline functions in vmstat.h depend on page_zone()
   1725 */
   1726#include <linux/vmstat.h>
   1727
   1728static __always_inline void *lowmem_page_address(const struct page *page)
   1729{
   1730	return page_to_virt(page);
   1731}
   1732
   1733#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
   1734#define HASHED_PAGE_VIRTUAL
   1735#endif
   1736
   1737#if defined(WANT_PAGE_VIRTUAL)
   1738static inline void *page_address(const struct page *page)
   1739{
   1740	return page->virtual;
   1741}
   1742static inline void set_page_address(struct page *page, void *address)
   1743{
   1744	page->virtual = address;
   1745}
   1746#define page_address_init()  do { } while(0)
   1747#endif
   1748
   1749#if defined(HASHED_PAGE_VIRTUAL)
   1750void *page_address(const struct page *page);
   1751void set_page_address(struct page *page, void *virtual);
   1752void page_address_init(void);
   1753#endif
   1754
   1755#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
   1756#define page_address(page) lowmem_page_address(page)
   1757#define set_page_address(page, address)  do { } while(0)
   1758#define page_address_init()  do { } while(0)
   1759#endif
   1760
   1761static inline void *folio_address(const struct folio *folio)
   1762{
   1763	return page_address(&folio->page);
   1764}
   1765
   1766extern void *page_rmapping(struct page *page);
   1767extern pgoff_t __page_file_index(struct page *page);
   1768
   1769/*
   1770 * Return the pagecache index of the passed page.  Regular pagecache pages
   1771 * use ->index whereas swapcache pages use swp_offset(->private)
   1772 */
   1773static inline pgoff_t page_index(struct page *page)
   1774{
   1775	if (unlikely(PageSwapCache(page)))
   1776		return __page_file_index(page);
   1777	return page->index;
   1778}
   1779
   1780bool page_mapped(struct page *page);
   1781bool folio_mapped(struct folio *folio);
   1782
   1783/*
   1784 * Return true only if the page has been allocated with
   1785 * ALLOC_NO_WATERMARKS and the low watermark was not
   1786 * met implying that the system is under some pressure.
   1787 */
   1788static inline bool page_is_pfmemalloc(const struct page *page)
   1789{
   1790	/*
   1791	 * lru.next has bit 1 set if the page is allocated from the
   1792	 * pfmemalloc reserves.  Callers may simply overwrite it if
   1793	 * they do not need to preserve that information.
   1794	 */
   1795	return (uintptr_t)page->lru.next & BIT(1);
   1796}
   1797
   1798/*
   1799 * Only to be called by the page allocator on a freshly allocated
   1800 * page.
   1801 */
   1802static inline void set_page_pfmemalloc(struct page *page)
   1803{
   1804	page->lru.next = (void *)BIT(1);
   1805}
   1806
   1807static inline void clear_page_pfmemalloc(struct page *page)
   1808{
   1809	page->lru.next = NULL;
   1810}
   1811
   1812/*
   1813 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
   1814 */
   1815extern void pagefault_out_of_memory(void);
   1816
   1817#define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
   1818#define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
   1819#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
   1820
   1821/*
   1822 * Flags passed to show_mem() and show_free_areas() to suppress output in
   1823 * various contexts.
   1824 */
   1825#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
   1826
   1827extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
   1828
   1829#ifdef CONFIG_MMU
   1830extern bool can_do_mlock(void);
   1831#else
   1832static inline bool can_do_mlock(void) { return false; }
   1833#endif
   1834extern int user_shm_lock(size_t, struct ucounts *);
   1835extern void user_shm_unlock(size_t, struct ucounts *);
   1836
   1837struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
   1838			     pte_t pte);
   1839struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
   1840				pmd_t pmd);
   1841
   1842void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
   1843		  unsigned long size);
   1844void zap_page_range(struct vm_area_struct *vma, unsigned long address,
   1845		    unsigned long size);
   1846void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
   1847		unsigned long start, unsigned long end);
   1848
   1849struct mmu_notifier_range;
   1850
   1851void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
   1852		unsigned long end, unsigned long floor, unsigned long ceiling);
   1853int
   1854copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
   1855int follow_pte(struct mm_struct *mm, unsigned long address,
   1856	       pte_t **ptepp, spinlock_t **ptlp);
   1857int follow_pfn(struct vm_area_struct *vma, unsigned long address,
   1858	unsigned long *pfn);
   1859int follow_phys(struct vm_area_struct *vma, unsigned long address,
   1860		unsigned int flags, unsigned long *prot, resource_size_t *phys);
   1861int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
   1862			void *buf, int len, int write);
   1863
   1864extern void truncate_pagecache(struct inode *inode, loff_t new);
   1865extern void truncate_setsize(struct inode *inode, loff_t newsize);
   1866void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
   1867void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
   1868int generic_error_remove_page(struct address_space *mapping, struct page *page);
   1869
   1870#ifdef CONFIG_MMU
   1871extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
   1872				  unsigned long address, unsigned int flags,
   1873				  struct pt_regs *regs);
   1874extern int fixup_user_fault(struct mm_struct *mm,
   1875			    unsigned long address, unsigned int fault_flags,
   1876			    bool *unlocked);
   1877void unmap_mapping_pages(struct address_space *mapping,
   1878		pgoff_t start, pgoff_t nr, bool even_cows);
   1879void unmap_mapping_range(struct address_space *mapping,
   1880		loff_t const holebegin, loff_t const holelen, int even_cows);
   1881#else
   1882static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
   1883					 unsigned long address, unsigned int flags,
   1884					 struct pt_regs *regs)
   1885{
   1886	/* should never happen if there's no MMU */
   1887	BUG();
   1888	return VM_FAULT_SIGBUS;
   1889}
   1890static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
   1891		unsigned int fault_flags, bool *unlocked)
   1892{
   1893	/* should never happen if there's no MMU */
   1894	BUG();
   1895	return -EFAULT;
   1896}
   1897static inline void unmap_mapping_pages(struct address_space *mapping,
   1898		pgoff_t start, pgoff_t nr, bool even_cows) { }
   1899static inline void unmap_mapping_range(struct address_space *mapping,
   1900		loff_t const holebegin, loff_t const holelen, int even_cows) { }
   1901#endif
   1902
   1903static inline void unmap_shared_mapping_range(struct address_space *mapping,
   1904		loff_t const holebegin, loff_t const holelen)
   1905{
   1906	unmap_mapping_range(mapping, holebegin, holelen, 0);
   1907}
   1908
   1909extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
   1910		void *buf, int len, unsigned int gup_flags);
   1911extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
   1912		void *buf, int len, unsigned int gup_flags);
   1913extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
   1914			      void *buf, int len, unsigned int gup_flags);
   1915
   1916long get_user_pages_remote(struct mm_struct *mm,
   1917			    unsigned long start, unsigned long nr_pages,
   1918			    unsigned int gup_flags, struct page **pages,
   1919			    struct vm_area_struct **vmas, int *locked);
   1920long pin_user_pages_remote(struct mm_struct *mm,
   1921			   unsigned long start, unsigned long nr_pages,
   1922			   unsigned int gup_flags, struct page **pages,
   1923			   struct vm_area_struct **vmas, int *locked);
   1924long get_user_pages(unsigned long start, unsigned long nr_pages,
   1925			    unsigned int gup_flags, struct page **pages,
   1926			    struct vm_area_struct **vmas);
   1927long pin_user_pages(unsigned long start, unsigned long nr_pages,
   1928		    unsigned int gup_flags, struct page **pages,
   1929		    struct vm_area_struct **vmas);
   1930long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
   1931		    struct page **pages, unsigned int gup_flags);
   1932long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
   1933		    struct page **pages, unsigned int gup_flags);
   1934
   1935int get_user_pages_fast(unsigned long start, int nr_pages,
   1936			unsigned int gup_flags, struct page **pages);
   1937int pin_user_pages_fast(unsigned long start, int nr_pages,
   1938			unsigned int gup_flags, struct page **pages);
   1939
   1940int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
   1941int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
   1942			struct task_struct *task, bool bypass_rlim);
   1943
   1944struct kvec;
   1945int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
   1946			struct page **pages);
   1947struct page *get_dump_page(unsigned long addr);
   1948
   1949bool folio_mark_dirty(struct folio *folio);
   1950bool set_page_dirty(struct page *page);
   1951int set_page_dirty_lock(struct page *page);
   1952
   1953int get_cmdline(struct task_struct *task, char *buffer, int buflen);
   1954
   1955extern unsigned long move_page_tables(struct vm_area_struct *vma,
   1956		unsigned long old_addr, struct vm_area_struct *new_vma,
   1957		unsigned long new_addr, unsigned long len,
   1958		bool need_rmap_locks);
   1959
   1960/*
   1961 * Flags used by change_protection().  For now we make it a bitmap so
   1962 * that we can pass in multiple flags just like parameters.  However
   1963 * for now all the callers are only use one of the flags at the same
   1964 * time.
   1965 */
   1966/* Whether we should allow dirty bit accounting */
   1967#define  MM_CP_DIRTY_ACCT                  (1UL << 0)
   1968/* Whether this protection change is for NUMA hints */
   1969#define  MM_CP_PROT_NUMA                   (1UL << 1)
   1970/* Whether this change is for write protecting */
   1971#define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
   1972#define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
   1973#define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
   1974					    MM_CP_UFFD_WP_RESOLVE)
   1975
   1976extern unsigned long change_protection(struct mmu_gather *tlb,
   1977			      struct vm_area_struct *vma, unsigned long start,
   1978			      unsigned long end, pgprot_t newprot,
   1979			      unsigned long cp_flags);
   1980extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
   1981			  struct vm_area_struct **pprev, unsigned long start,
   1982			  unsigned long end, unsigned long newflags);
   1983
   1984/*
   1985 * doesn't attempt to fault and will return short.
   1986 */
   1987int get_user_pages_fast_only(unsigned long start, int nr_pages,
   1988			     unsigned int gup_flags, struct page **pages);
   1989int pin_user_pages_fast_only(unsigned long start, int nr_pages,
   1990			     unsigned int gup_flags, struct page **pages);
   1991
   1992static inline bool get_user_page_fast_only(unsigned long addr,
   1993			unsigned int gup_flags, struct page **pagep)
   1994{
   1995	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
   1996}
   1997/*
   1998 * per-process(per-mm_struct) statistics.
   1999 */
   2000static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
   2001{
   2002	long val = atomic_long_read(&mm->rss_stat.count[member]);
   2003
   2004#ifdef SPLIT_RSS_COUNTING
   2005	/*
   2006	 * counter is updated in asynchronous manner and may go to minus.
   2007	 * But it's never be expected number for users.
   2008	 */
   2009	if (val < 0)
   2010		val = 0;
   2011#endif
   2012	return (unsigned long)val;
   2013}
   2014
   2015void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
   2016
   2017static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
   2018{
   2019	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
   2020
   2021	mm_trace_rss_stat(mm, member, count);
   2022}
   2023
   2024static inline void inc_mm_counter(struct mm_struct *mm, int member)
   2025{
   2026	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
   2027
   2028	mm_trace_rss_stat(mm, member, count);
   2029}
   2030
   2031static inline void dec_mm_counter(struct mm_struct *mm, int member)
   2032{
   2033	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
   2034
   2035	mm_trace_rss_stat(mm, member, count);
   2036}
   2037
   2038/* Optimized variant when page is already known not to be PageAnon */
   2039static inline int mm_counter_file(struct page *page)
   2040{
   2041	if (PageSwapBacked(page))
   2042		return MM_SHMEMPAGES;
   2043	return MM_FILEPAGES;
   2044}
   2045
   2046static inline int mm_counter(struct page *page)
   2047{
   2048	if (PageAnon(page))
   2049		return MM_ANONPAGES;
   2050	return mm_counter_file(page);
   2051}
   2052
   2053static inline unsigned long get_mm_rss(struct mm_struct *mm)
   2054{
   2055	return get_mm_counter(mm, MM_FILEPAGES) +
   2056		get_mm_counter(mm, MM_ANONPAGES) +
   2057		get_mm_counter(mm, MM_SHMEMPAGES);
   2058}
   2059
   2060static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
   2061{
   2062	return max(mm->hiwater_rss, get_mm_rss(mm));
   2063}
   2064
   2065static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
   2066{
   2067	return max(mm->hiwater_vm, mm->total_vm);
   2068}
   2069
   2070static inline void update_hiwater_rss(struct mm_struct *mm)
   2071{
   2072	unsigned long _rss = get_mm_rss(mm);
   2073
   2074	if ((mm)->hiwater_rss < _rss)
   2075		(mm)->hiwater_rss = _rss;
   2076}
   2077
   2078static inline void update_hiwater_vm(struct mm_struct *mm)
   2079{
   2080	if (mm->hiwater_vm < mm->total_vm)
   2081		mm->hiwater_vm = mm->total_vm;
   2082}
   2083
   2084static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
   2085{
   2086	mm->hiwater_rss = get_mm_rss(mm);
   2087}
   2088
   2089static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
   2090					 struct mm_struct *mm)
   2091{
   2092	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
   2093
   2094	if (*maxrss < hiwater_rss)
   2095		*maxrss = hiwater_rss;
   2096}
   2097
   2098#if defined(SPLIT_RSS_COUNTING)
   2099void sync_mm_rss(struct mm_struct *mm);
   2100#else
   2101static inline void sync_mm_rss(struct mm_struct *mm)
   2102{
   2103}
   2104#endif
   2105
   2106#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
   2107static inline int pte_special(pte_t pte)
   2108{
   2109	return 0;
   2110}
   2111
   2112static inline pte_t pte_mkspecial(pte_t pte)
   2113{
   2114	return pte;
   2115}
   2116#endif
   2117
   2118#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
   2119static inline int pte_devmap(pte_t pte)
   2120{
   2121	return 0;
   2122}
   2123#endif
   2124
   2125int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
   2126
   2127extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
   2128			       spinlock_t **ptl);
   2129static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
   2130				    spinlock_t **ptl)
   2131{
   2132	pte_t *ptep;
   2133	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
   2134	return ptep;
   2135}
   2136
   2137#ifdef __PAGETABLE_P4D_FOLDED
   2138static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
   2139						unsigned long address)
   2140{
   2141	return 0;
   2142}
   2143#else
   2144int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
   2145#endif
   2146
   2147#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
   2148static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
   2149						unsigned long address)
   2150{
   2151	return 0;
   2152}
   2153static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
   2154static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
   2155
   2156#else
   2157int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
   2158
   2159static inline void mm_inc_nr_puds(struct mm_struct *mm)
   2160{
   2161	if (mm_pud_folded(mm))
   2162		return;
   2163	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
   2164}
   2165
   2166static inline void mm_dec_nr_puds(struct mm_struct *mm)
   2167{
   2168	if (mm_pud_folded(mm))
   2169		return;
   2170	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
   2171}
   2172#endif
   2173
   2174#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
   2175static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
   2176						unsigned long address)
   2177{
   2178	return 0;
   2179}
   2180
   2181static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
   2182static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
   2183
   2184#else
   2185int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
   2186
   2187static inline void mm_inc_nr_pmds(struct mm_struct *mm)
   2188{
   2189	if (mm_pmd_folded(mm))
   2190		return;
   2191	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
   2192}
   2193
   2194static inline void mm_dec_nr_pmds(struct mm_struct *mm)
   2195{
   2196	if (mm_pmd_folded(mm))
   2197		return;
   2198	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
   2199}
   2200#endif
   2201
   2202#ifdef CONFIG_MMU
   2203static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
   2204{
   2205	atomic_long_set(&mm->pgtables_bytes, 0);
   2206}
   2207
   2208static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
   2209{
   2210	return atomic_long_read(&mm->pgtables_bytes);
   2211}
   2212
   2213static inline void mm_inc_nr_ptes(struct mm_struct *mm)
   2214{
   2215	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
   2216}
   2217
   2218static inline void mm_dec_nr_ptes(struct mm_struct *mm)
   2219{
   2220	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
   2221}
   2222#else
   2223
   2224static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
   2225static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
   2226{
   2227	return 0;
   2228}
   2229
   2230static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
   2231static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
   2232#endif
   2233
   2234int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
   2235int __pte_alloc_kernel(pmd_t *pmd);
   2236
   2237#if defined(CONFIG_MMU)
   2238
   2239static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
   2240		unsigned long address)
   2241{
   2242	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
   2243		NULL : p4d_offset(pgd, address);
   2244}
   2245
   2246static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
   2247		unsigned long address)
   2248{
   2249	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
   2250		NULL : pud_offset(p4d, address);
   2251}
   2252
   2253static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
   2254{
   2255	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
   2256		NULL: pmd_offset(pud, address);
   2257}
   2258#endif /* CONFIG_MMU */
   2259
   2260#if USE_SPLIT_PTE_PTLOCKS
   2261#if ALLOC_SPLIT_PTLOCKS
   2262void __init ptlock_cache_init(void);
   2263extern bool ptlock_alloc(struct page *page);
   2264extern void ptlock_free(struct page *page);
   2265
   2266static inline spinlock_t *ptlock_ptr(struct page *page)
   2267{
   2268	return page->ptl;
   2269}
   2270#else /* ALLOC_SPLIT_PTLOCKS */
   2271static inline void ptlock_cache_init(void)
   2272{
   2273}
   2274
   2275static inline bool ptlock_alloc(struct page *page)
   2276{
   2277	return true;
   2278}
   2279
   2280static inline void ptlock_free(struct page *page)
   2281{
   2282}
   2283
   2284static inline spinlock_t *ptlock_ptr(struct page *page)
   2285{
   2286	return &page->ptl;
   2287}
   2288#endif /* ALLOC_SPLIT_PTLOCKS */
   2289
   2290static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
   2291{
   2292	return ptlock_ptr(pmd_page(*pmd));
   2293}
   2294
   2295static inline bool ptlock_init(struct page *page)
   2296{
   2297	/*
   2298	 * prep_new_page() initialize page->private (and therefore page->ptl)
   2299	 * with 0. Make sure nobody took it in use in between.
   2300	 *
   2301	 * It can happen if arch try to use slab for page table allocation:
   2302	 * slab code uses page->slab_cache, which share storage with page->ptl.
   2303	 */
   2304	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
   2305	if (!ptlock_alloc(page))
   2306		return false;
   2307	spin_lock_init(ptlock_ptr(page));
   2308	return true;
   2309}
   2310
   2311#else	/* !USE_SPLIT_PTE_PTLOCKS */
   2312/*
   2313 * We use mm->page_table_lock to guard all pagetable pages of the mm.
   2314 */
   2315static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
   2316{
   2317	return &mm->page_table_lock;
   2318}
   2319static inline void ptlock_cache_init(void) {}
   2320static inline bool ptlock_init(struct page *page) { return true; }
   2321static inline void ptlock_free(struct page *page) {}
   2322#endif /* USE_SPLIT_PTE_PTLOCKS */
   2323
   2324static inline void pgtable_init(void)
   2325{
   2326	ptlock_cache_init();
   2327	pgtable_cache_init();
   2328}
   2329
   2330static inline bool pgtable_pte_page_ctor(struct page *page)
   2331{
   2332	if (!ptlock_init(page))
   2333		return false;
   2334	__SetPageTable(page);
   2335	inc_lruvec_page_state(page, NR_PAGETABLE);
   2336	return true;
   2337}
   2338
   2339static inline void pgtable_pte_page_dtor(struct page *page)
   2340{
   2341	ptlock_free(page);
   2342	__ClearPageTable(page);
   2343	dec_lruvec_page_state(page, NR_PAGETABLE);
   2344}
   2345
   2346#define pte_offset_map_lock(mm, pmd, address, ptlp)	\
   2347({							\
   2348	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
   2349	pte_t *__pte = pte_offset_map(pmd, address);	\
   2350	*(ptlp) = __ptl;				\
   2351	spin_lock(__ptl);				\
   2352	__pte;						\
   2353})
   2354
   2355#define pte_unmap_unlock(pte, ptl)	do {		\
   2356	spin_unlock(ptl);				\
   2357	pte_unmap(pte);					\
   2358} while (0)
   2359
   2360#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
   2361
   2362#define pte_alloc_map(mm, pmd, address)			\
   2363	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
   2364
   2365#define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
   2366	(pte_alloc(mm, pmd) ?			\
   2367		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
   2368
   2369#define pte_alloc_kernel(pmd, address)			\
   2370	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
   2371		NULL: pte_offset_kernel(pmd, address))
   2372
   2373#if USE_SPLIT_PMD_PTLOCKS
   2374
   2375static struct page *pmd_to_page(pmd_t *pmd)
   2376{
   2377	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
   2378	return virt_to_page((void *)((unsigned long) pmd & mask));
   2379}
   2380
   2381static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
   2382{
   2383	return ptlock_ptr(pmd_to_page(pmd));
   2384}
   2385
   2386static inline bool pmd_ptlock_init(struct page *page)
   2387{
   2388#ifdef CONFIG_TRANSPARENT_HUGEPAGE
   2389	page->pmd_huge_pte = NULL;
   2390#endif
   2391	return ptlock_init(page);
   2392}
   2393
   2394static inline void pmd_ptlock_free(struct page *page)
   2395{
   2396#ifdef CONFIG_TRANSPARENT_HUGEPAGE
   2397	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
   2398#endif
   2399	ptlock_free(page);
   2400}
   2401
   2402#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
   2403
   2404#else
   2405
   2406static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
   2407{
   2408	return &mm->page_table_lock;
   2409}
   2410
   2411static inline bool pmd_ptlock_init(struct page *page) { return true; }
   2412static inline void pmd_ptlock_free(struct page *page) {}
   2413
   2414#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
   2415
   2416#endif
   2417
   2418static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
   2419{
   2420	spinlock_t *ptl = pmd_lockptr(mm, pmd);
   2421	spin_lock(ptl);
   2422	return ptl;
   2423}
   2424
   2425static inline bool pgtable_pmd_page_ctor(struct page *page)
   2426{
   2427	if (!pmd_ptlock_init(page))
   2428		return false;
   2429	__SetPageTable(page);
   2430	inc_lruvec_page_state(page, NR_PAGETABLE);
   2431	return true;
   2432}
   2433
   2434static inline void pgtable_pmd_page_dtor(struct page *page)
   2435{
   2436	pmd_ptlock_free(page);
   2437	__ClearPageTable(page);
   2438	dec_lruvec_page_state(page, NR_PAGETABLE);
   2439}
   2440
   2441/*
   2442 * No scalability reason to split PUD locks yet, but follow the same pattern
   2443 * as the PMD locks to make it easier if we decide to.  The VM should not be
   2444 * considered ready to switch to split PUD locks yet; there may be places
   2445 * which need to be converted from page_table_lock.
   2446 */
   2447static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
   2448{
   2449	return &mm->page_table_lock;
   2450}
   2451
   2452static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
   2453{
   2454	spinlock_t *ptl = pud_lockptr(mm, pud);
   2455
   2456	spin_lock(ptl);
   2457	return ptl;
   2458}
   2459
   2460extern void __init pagecache_init(void);
   2461extern void free_initmem(void);
   2462
   2463/*
   2464 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
   2465 * into the buddy system. The freed pages will be poisoned with pattern
   2466 * "poison" if it's within range [0, UCHAR_MAX].
   2467 * Return pages freed into the buddy system.
   2468 */
   2469extern unsigned long free_reserved_area(void *start, void *end,
   2470					int poison, const char *s);
   2471
   2472extern void adjust_managed_page_count(struct page *page, long count);
   2473extern void mem_init_print_info(void);
   2474
   2475extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
   2476
   2477/* Free the reserved page into the buddy system, so it gets managed. */
   2478static inline void free_reserved_page(struct page *page)
   2479{
   2480	ClearPageReserved(page);
   2481	init_page_count(page);
   2482	__free_page(page);
   2483	adjust_managed_page_count(page, 1);
   2484}
   2485#define free_highmem_page(page) free_reserved_page(page)
   2486
   2487static inline void mark_page_reserved(struct page *page)
   2488{
   2489	SetPageReserved(page);
   2490	adjust_managed_page_count(page, -1);
   2491}
   2492
   2493/*
   2494 * Default method to free all the __init memory into the buddy system.
   2495 * The freed pages will be poisoned with pattern "poison" if it's within
   2496 * range [0, UCHAR_MAX].
   2497 * Return pages freed into the buddy system.
   2498 */
   2499static inline unsigned long free_initmem_default(int poison)
   2500{
   2501	extern char __init_begin[], __init_end[];
   2502
   2503	return free_reserved_area(&__init_begin, &__init_end,
   2504				  poison, "unused kernel image (initmem)");
   2505}
   2506
   2507static inline unsigned long get_num_physpages(void)
   2508{
   2509	int nid;
   2510	unsigned long phys_pages = 0;
   2511
   2512	for_each_online_node(nid)
   2513		phys_pages += node_present_pages(nid);
   2514
   2515	return phys_pages;
   2516}
   2517
   2518/*
   2519 * Using memblock node mappings, an architecture may initialise its
   2520 * zones, allocate the backing mem_map and account for memory holes in an
   2521 * architecture independent manner.
   2522 *
   2523 * An architecture is expected to register range of page frames backed by
   2524 * physical memory with memblock_add[_node]() before calling
   2525 * free_area_init() passing in the PFN each zone ends at. At a basic
   2526 * usage, an architecture is expected to do something like
   2527 *
   2528 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
   2529 * 							 max_highmem_pfn};
   2530 * for_each_valid_physical_page_range()
   2531 *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
   2532 * free_area_init(max_zone_pfns);
   2533 */
   2534void free_area_init(unsigned long *max_zone_pfn);
   2535unsigned long node_map_pfn_alignment(void);
   2536unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
   2537						unsigned long end_pfn);
   2538extern unsigned long absent_pages_in_range(unsigned long start_pfn,
   2539						unsigned long end_pfn);
   2540extern void get_pfn_range_for_nid(unsigned int nid,
   2541			unsigned long *start_pfn, unsigned long *end_pfn);
   2542extern unsigned long find_min_pfn_with_active_regions(void);
   2543
   2544#ifndef CONFIG_NUMA
   2545static inline int early_pfn_to_nid(unsigned long pfn)
   2546{
   2547	return 0;
   2548}
   2549#else
   2550/* please see mm/page_alloc.c */
   2551extern int __meminit early_pfn_to_nid(unsigned long pfn);
   2552#endif
   2553
   2554extern void set_dma_reserve(unsigned long new_dma_reserve);
   2555extern void memmap_init_range(unsigned long, int, unsigned long,
   2556		unsigned long, unsigned long, enum meminit_context,
   2557		struct vmem_altmap *, int migratetype);
   2558extern void setup_per_zone_wmarks(void);
   2559extern void calculate_min_free_kbytes(void);
   2560extern int __meminit init_per_zone_wmark_min(void);
   2561extern void mem_init(void);
   2562extern void __init mmap_init(void);
   2563extern void show_mem(unsigned int flags, nodemask_t *nodemask);
   2564extern long si_mem_available(void);
   2565extern void si_meminfo(struct sysinfo * val);
   2566extern void si_meminfo_node(struct sysinfo *val, int nid);
   2567#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
   2568extern unsigned long arch_reserved_kernel_pages(void);
   2569#endif
   2570
   2571extern __printf(3, 4)
   2572void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
   2573
   2574extern void setup_per_cpu_pageset(void);
   2575
   2576/* page_alloc.c */
   2577extern int min_free_kbytes;
   2578extern int watermark_boost_factor;
   2579extern int watermark_scale_factor;
   2580extern bool arch_has_descending_max_zone_pfns(void);
   2581
   2582/* nommu.c */
   2583extern atomic_long_t mmap_pages_allocated;
   2584extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
   2585
   2586/* interval_tree.c */
   2587void vma_interval_tree_insert(struct vm_area_struct *node,
   2588			      struct rb_root_cached *root);
   2589void vma_interval_tree_insert_after(struct vm_area_struct *node,
   2590				    struct vm_area_struct *prev,
   2591				    struct rb_root_cached *root);
   2592void vma_interval_tree_remove(struct vm_area_struct *node,
   2593			      struct rb_root_cached *root);
   2594struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
   2595				unsigned long start, unsigned long last);
   2596struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
   2597				unsigned long start, unsigned long last);
   2598
   2599#define vma_interval_tree_foreach(vma, root, start, last)		\
   2600	for (vma = vma_interval_tree_iter_first(root, start, last);	\
   2601	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
   2602
   2603void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
   2604				   struct rb_root_cached *root);
   2605void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
   2606				   struct rb_root_cached *root);
   2607struct anon_vma_chain *
   2608anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
   2609				  unsigned long start, unsigned long last);
   2610struct anon_vma_chain *anon_vma_interval_tree_iter_next(
   2611	struct anon_vma_chain *node, unsigned long start, unsigned long last);
   2612#ifdef CONFIG_DEBUG_VM_RB
   2613void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
   2614#endif
   2615
   2616#define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
   2617	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
   2618	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
   2619
   2620/* mmap.c */
   2621extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
   2622extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
   2623	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
   2624	struct vm_area_struct *expand);
   2625static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
   2626	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
   2627{
   2628	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
   2629}
   2630extern struct vm_area_struct *vma_merge(struct mm_struct *,
   2631	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
   2632	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
   2633	struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
   2634extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
   2635extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
   2636	unsigned long addr, int new_below);
   2637extern int split_vma(struct mm_struct *, struct vm_area_struct *,
   2638	unsigned long addr, int new_below);
   2639extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
   2640extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
   2641	struct rb_node **, struct rb_node *);
   2642extern void unlink_file_vma(struct vm_area_struct *);
   2643extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
   2644	unsigned long addr, unsigned long len, pgoff_t pgoff,
   2645	bool *need_rmap_locks);
   2646extern void exit_mmap(struct mm_struct *);
   2647
   2648static inline int check_data_rlimit(unsigned long rlim,
   2649				    unsigned long new,
   2650				    unsigned long start,
   2651				    unsigned long end_data,
   2652				    unsigned long start_data)
   2653{
   2654	if (rlim < RLIM_INFINITY) {
   2655		if (((new - start) + (end_data - start_data)) > rlim)
   2656			return -ENOSPC;
   2657	}
   2658
   2659	return 0;
   2660}
   2661
   2662extern int mm_take_all_locks(struct mm_struct *mm);
   2663extern void mm_drop_all_locks(struct mm_struct *mm);
   2664
   2665extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
   2666extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
   2667extern struct file *get_mm_exe_file(struct mm_struct *mm);
   2668extern struct file *get_task_exe_file(struct task_struct *task);
   2669
   2670extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
   2671extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
   2672
   2673extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
   2674				   const struct vm_special_mapping *sm);
   2675extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
   2676				   unsigned long addr, unsigned long len,
   2677				   unsigned long flags,
   2678				   const struct vm_special_mapping *spec);
   2679/* This is an obsolete alternative to _install_special_mapping. */
   2680extern int install_special_mapping(struct mm_struct *mm,
   2681				   unsigned long addr, unsigned long len,
   2682				   unsigned long flags, struct page **pages);
   2683
   2684unsigned long randomize_stack_top(unsigned long stack_top);
   2685unsigned long randomize_page(unsigned long start, unsigned long range);
   2686
   2687extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
   2688
   2689extern unsigned long mmap_region(struct file *file, unsigned long addr,
   2690	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
   2691	struct list_head *uf);
   2692extern unsigned long do_mmap(struct file *file, unsigned long addr,
   2693	unsigned long len, unsigned long prot, unsigned long flags,
   2694	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
   2695extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
   2696		       struct list_head *uf, bool downgrade);
   2697extern int do_munmap(struct mm_struct *, unsigned long, size_t,
   2698		     struct list_head *uf);
   2699extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
   2700
   2701#ifdef CONFIG_MMU
   2702extern int __mm_populate(unsigned long addr, unsigned long len,
   2703			 int ignore_errors);
   2704static inline void mm_populate(unsigned long addr, unsigned long len)
   2705{
   2706	/* Ignore errors */
   2707	(void) __mm_populate(addr, len, 1);
   2708}
   2709#else
   2710static inline void mm_populate(unsigned long addr, unsigned long len) {}
   2711#endif
   2712
   2713/* These take the mm semaphore themselves */
   2714extern int __must_check vm_brk(unsigned long, unsigned long);
   2715extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
   2716extern int vm_munmap(unsigned long, size_t);
   2717extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
   2718        unsigned long, unsigned long,
   2719        unsigned long, unsigned long);
   2720
   2721struct vm_unmapped_area_info {
   2722#define VM_UNMAPPED_AREA_TOPDOWN 1
   2723	unsigned long flags;
   2724	unsigned long length;
   2725	unsigned long low_limit;
   2726	unsigned long high_limit;
   2727	unsigned long align_mask;
   2728	unsigned long align_offset;
   2729};
   2730
   2731extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
   2732
   2733/* truncate.c */
   2734extern void truncate_inode_pages(struct address_space *, loff_t);
   2735extern void truncate_inode_pages_range(struct address_space *,
   2736				       loff_t lstart, loff_t lend);
   2737extern void truncate_inode_pages_final(struct address_space *);
   2738
   2739/* generic vm_area_ops exported for stackable file systems */
   2740extern vm_fault_t filemap_fault(struct vm_fault *vmf);
   2741extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
   2742		pgoff_t start_pgoff, pgoff_t end_pgoff);
   2743extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
   2744
   2745extern unsigned long stack_guard_gap;
   2746/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
   2747extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
   2748
   2749/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
   2750extern int expand_downwards(struct vm_area_struct *vma,
   2751		unsigned long address);
   2752#if VM_GROWSUP
   2753extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
   2754#else
   2755  #define expand_upwards(vma, address) (0)
   2756#endif
   2757
   2758/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
   2759extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
   2760extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
   2761					     struct vm_area_struct **pprev);
   2762
   2763/**
   2764 * find_vma_intersection() - Look up the first VMA which intersects the interval
   2765 * @mm: The process address space.
   2766 * @start_addr: The inclusive start user address.
   2767 * @end_addr: The exclusive end user address.
   2768 *
   2769 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
   2770 * start_addr < end_addr.
   2771 */
   2772static inline
   2773struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
   2774					     unsigned long start_addr,
   2775					     unsigned long end_addr)
   2776{
   2777	struct vm_area_struct *vma = find_vma(mm, start_addr);
   2778
   2779	if (vma && end_addr <= vma->vm_start)
   2780		vma = NULL;
   2781	return vma;
   2782}
   2783
   2784/**
   2785 * vma_lookup() - Find a VMA at a specific address
   2786 * @mm: The process address space.
   2787 * @addr: The user address.
   2788 *
   2789 * Return: The vm_area_struct at the given address, %NULL otherwise.
   2790 */
   2791static inline
   2792struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
   2793{
   2794	struct vm_area_struct *vma = find_vma(mm, addr);
   2795
   2796	if (vma && addr < vma->vm_start)
   2797		vma = NULL;
   2798
   2799	return vma;
   2800}
   2801
   2802static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
   2803{
   2804	unsigned long vm_start = vma->vm_start;
   2805
   2806	if (vma->vm_flags & VM_GROWSDOWN) {
   2807		vm_start -= stack_guard_gap;
   2808		if (vm_start > vma->vm_start)
   2809			vm_start = 0;
   2810	}
   2811	return vm_start;
   2812}
   2813
   2814static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
   2815{
   2816	unsigned long vm_end = vma->vm_end;
   2817
   2818	if (vma->vm_flags & VM_GROWSUP) {
   2819		vm_end += stack_guard_gap;
   2820		if (vm_end < vma->vm_end)
   2821			vm_end = -PAGE_SIZE;
   2822	}
   2823	return vm_end;
   2824}
   2825
   2826static inline unsigned long vma_pages(struct vm_area_struct *vma)
   2827{
   2828	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
   2829}
   2830
   2831/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
   2832static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
   2833				unsigned long vm_start, unsigned long vm_end)
   2834{
   2835	struct vm_area_struct *vma = find_vma(mm, vm_start);
   2836
   2837	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
   2838		vma = NULL;
   2839
   2840	return vma;
   2841}
   2842
   2843static inline bool range_in_vma(struct vm_area_struct *vma,
   2844				unsigned long start, unsigned long end)
   2845{
   2846	return (vma && vma->vm_start <= start && end <= vma->vm_end);
   2847}
   2848
   2849#ifdef CONFIG_MMU
   2850pgprot_t vm_get_page_prot(unsigned long vm_flags);
   2851void vma_set_page_prot(struct vm_area_struct *vma);
   2852#else
   2853static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
   2854{
   2855	return __pgprot(0);
   2856}
   2857static inline void vma_set_page_prot(struct vm_area_struct *vma)
   2858{
   2859	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
   2860}
   2861#endif
   2862
   2863void vma_set_file(struct vm_area_struct *vma, struct file *file);
   2864
   2865#ifdef CONFIG_NUMA_BALANCING
   2866unsigned long change_prot_numa(struct vm_area_struct *vma,
   2867			unsigned long start, unsigned long end);
   2868#endif
   2869
   2870struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
   2871int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
   2872			unsigned long pfn, unsigned long size, pgprot_t);
   2873int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
   2874		unsigned long pfn, unsigned long size, pgprot_t prot);
   2875int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
   2876int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
   2877			struct page **pages, unsigned long *num);
   2878int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
   2879				unsigned long num);
   2880int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
   2881				unsigned long num);
   2882vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
   2883			unsigned long pfn);
   2884vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
   2885			unsigned long pfn, pgprot_t pgprot);
   2886vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
   2887			pfn_t pfn);
   2888vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
   2889			pfn_t pfn, pgprot_t pgprot);
   2890vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
   2891		unsigned long addr, pfn_t pfn);
   2892int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
   2893
   2894static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
   2895				unsigned long addr, struct page *page)
   2896{
   2897	int err = vm_insert_page(vma, addr, page);
   2898
   2899	if (err == -ENOMEM)
   2900		return VM_FAULT_OOM;
   2901	if (err < 0 && err != -EBUSY)
   2902		return VM_FAULT_SIGBUS;
   2903
   2904	return VM_FAULT_NOPAGE;
   2905}
   2906
   2907#ifndef io_remap_pfn_range
   2908static inline int io_remap_pfn_range(struct vm_area_struct *vma,
   2909				     unsigned long addr, unsigned long pfn,
   2910				     unsigned long size, pgprot_t prot)
   2911{
   2912	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
   2913}
   2914#endif
   2915
   2916static inline vm_fault_t vmf_error(int err)
   2917{
   2918	if (err == -ENOMEM)
   2919		return VM_FAULT_OOM;
   2920	return VM_FAULT_SIGBUS;
   2921}
   2922
   2923struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
   2924			 unsigned int foll_flags);
   2925
   2926#define FOLL_WRITE	0x01	/* check pte is writable */
   2927#define FOLL_TOUCH	0x02	/* mark page accessed */
   2928#define FOLL_GET	0x04	/* do get_page on page */
   2929#define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
   2930#define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
   2931#define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
   2932				 * and return without waiting upon it */
   2933#define FOLL_NOFAULT	0x80	/* do not fault in pages */
   2934#define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
   2935#define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
   2936#define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
   2937#define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
   2938#define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
   2939#define FOLL_COW	0x4000	/* internal GUP flag */
   2940#define FOLL_ANON	0x8000	/* don't do file mappings */
   2941#define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
   2942#define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
   2943#define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
   2944#define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
   2945
   2946/*
   2947 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
   2948 * other. Here is what they mean, and how to use them:
   2949 *
   2950 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
   2951 * period _often_ under userspace control.  This is in contrast to
   2952 * iov_iter_get_pages(), whose usages are transient.
   2953 *
   2954 * FIXME: For pages which are part of a filesystem, mappings are subject to the
   2955 * lifetime enforced by the filesystem and we need guarantees that longterm
   2956 * users like RDMA and V4L2 only establish mappings which coordinate usage with
   2957 * the filesystem.  Ideas for this coordination include revoking the longterm
   2958 * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
   2959 * added after the problem with filesystems was found FS DAX VMAs are
   2960 * specifically failed.  Filesystem pages are still subject to bugs and use of
   2961 * FOLL_LONGTERM should be avoided on those pages.
   2962 *
   2963 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
   2964 * Currently only get_user_pages() and get_user_pages_fast() support this flag
   2965 * and calls to get_user_pages_[un]locked are specifically not allowed.  This
   2966 * is due to an incompatibility with the FS DAX check and
   2967 * FAULT_FLAG_ALLOW_RETRY.
   2968 *
   2969 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
   2970 * that region.  And so, CMA attempts to migrate the page before pinning, when
   2971 * FOLL_LONGTERM is specified.
   2972 *
   2973 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
   2974 * but an additional pin counting system) will be invoked. This is intended for
   2975 * anything that gets a page reference and then touches page data (for example,
   2976 * Direct IO). This lets the filesystem know that some non-file-system entity is
   2977 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
   2978 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
   2979 * a call to unpin_user_page().
   2980 *
   2981 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
   2982 * and separate refcounting mechanisms, however, and that means that each has
   2983 * its own acquire and release mechanisms:
   2984 *
   2985 *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
   2986 *
   2987 *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
   2988 *
   2989 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
   2990 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
   2991 * calls applied to them, and that's perfectly OK. This is a constraint on the
   2992 * callers, not on the pages.)
   2993 *
   2994 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
   2995 * directly by the caller. That's in order to help avoid mismatches when
   2996 * releasing pages: get_user_pages*() pages must be released via put_page(),
   2997 * while pin_user_pages*() pages must be released via unpin_user_page().
   2998 *
   2999 * Please see Documentation/core-api/pin_user_pages.rst for more information.
   3000 */
   3001
   3002static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
   3003{
   3004	if (vm_fault & VM_FAULT_OOM)
   3005		return -ENOMEM;
   3006	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
   3007		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
   3008	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
   3009		return -EFAULT;
   3010	return 0;
   3011}
   3012
   3013/*
   3014 * Indicates for which pages that are write-protected in the page table,
   3015 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
   3016 * GUP pin will remain consistent with the pages mapped into the page tables
   3017 * of the MM.
   3018 *
   3019 * Temporary unmapping of PageAnonExclusive() pages or clearing of
   3020 * PageAnonExclusive() has to protect against concurrent GUP:
   3021 * * Ordinary GUP: Using the PT lock
   3022 * * GUP-fast and fork(): mm->write_protect_seq
   3023 * * GUP-fast and KSM or temporary unmapping (swap, migration):
   3024 *   clear/invalidate+flush of the page table entry
   3025 *
   3026 * Must be called with the (sub)page that's actually referenced via the
   3027 * page table entry, which might not necessarily be the head page for a
   3028 * PTE-mapped THP.
   3029 */
   3030static inline bool gup_must_unshare(unsigned int flags, struct page *page)
   3031{
   3032	/*
   3033	 * FOLL_WRITE is implicitly handled correctly as the page table entry
   3034	 * has to be writable -- and if it references (part of) an anonymous
   3035	 * folio, that part is required to be marked exclusive.
   3036	 */
   3037	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
   3038		return false;
   3039	/*
   3040	 * Note: PageAnon(page) is stable until the page is actually getting
   3041	 * freed.
   3042	 */
   3043	if (!PageAnon(page))
   3044		return false;
   3045	/*
   3046	 * Note that PageKsm() pages cannot be exclusive, and consequently,
   3047	 * cannot get pinned.
   3048	 */
   3049	return !PageAnonExclusive(page);
   3050}
   3051
   3052typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
   3053extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
   3054			       unsigned long size, pte_fn_t fn, void *data);
   3055extern int apply_to_existing_page_range(struct mm_struct *mm,
   3056				   unsigned long address, unsigned long size,
   3057				   pte_fn_t fn, void *data);
   3058
   3059extern void init_mem_debugging_and_hardening(void);
   3060#ifdef CONFIG_PAGE_POISONING
   3061extern void __kernel_poison_pages(struct page *page, int numpages);
   3062extern void __kernel_unpoison_pages(struct page *page, int numpages);
   3063extern bool _page_poisoning_enabled_early;
   3064DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
   3065static inline bool page_poisoning_enabled(void)
   3066{
   3067	return _page_poisoning_enabled_early;
   3068}
   3069/*
   3070 * For use in fast paths after init_mem_debugging() has run, or when a
   3071 * false negative result is not harmful when called too early.
   3072 */
   3073static inline bool page_poisoning_enabled_static(void)
   3074{
   3075	return static_branch_unlikely(&_page_poisoning_enabled);
   3076}
   3077static inline void kernel_poison_pages(struct page *page, int numpages)
   3078{
   3079	if (page_poisoning_enabled_static())
   3080		__kernel_poison_pages(page, numpages);
   3081}
   3082static inline void kernel_unpoison_pages(struct page *page, int numpages)
   3083{
   3084	if (page_poisoning_enabled_static())
   3085		__kernel_unpoison_pages(page, numpages);
   3086}
   3087#else
   3088static inline bool page_poisoning_enabled(void) { return false; }
   3089static inline bool page_poisoning_enabled_static(void) { return false; }
   3090static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
   3091static inline void kernel_poison_pages(struct page *page, int numpages) { }
   3092static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
   3093#endif
   3094
   3095DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
   3096static inline bool want_init_on_alloc(gfp_t flags)
   3097{
   3098	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
   3099				&init_on_alloc))
   3100		return true;
   3101	return flags & __GFP_ZERO;
   3102}
   3103
   3104DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
   3105static inline bool want_init_on_free(void)
   3106{
   3107	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
   3108				   &init_on_free);
   3109}
   3110
   3111extern bool _debug_pagealloc_enabled_early;
   3112DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
   3113
   3114static inline bool debug_pagealloc_enabled(void)
   3115{
   3116	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
   3117		_debug_pagealloc_enabled_early;
   3118}
   3119
   3120/*
   3121 * For use in fast paths after init_debug_pagealloc() has run, or when a
   3122 * false negative result is not harmful when called too early.
   3123 */
   3124static inline bool debug_pagealloc_enabled_static(void)
   3125{
   3126	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
   3127		return false;
   3128
   3129	return static_branch_unlikely(&_debug_pagealloc_enabled);
   3130}
   3131
   3132#ifdef CONFIG_DEBUG_PAGEALLOC
   3133/*
   3134 * To support DEBUG_PAGEALLOC architecture must ensure that
   3135 * __kernel_map_pages() never fails
   3136 */
   3137extern void __kernel_map_pages(struct page *page, int numpages, int enable);
   3138
   3139static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
   3140{
   3141	if (debug_pagealloc_enabled_static())
   3142		__kernel_map_pages(page, numpages, 1);
   3143}
   3144
   3145static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
   3146{
   3147	if (debug_pagealloc_enabled_static())
   3148		__kernel_map_pages(page, numpages, 0);
   3149}
   3150#else	/* CONFIG_DEBUG_PAGEALLOC */
   3151static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
   3152static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
   3153#endif	/* CONFIG_DEBUG_PAGEALLOC */
   3154
   3155#ifdef __HAVE_ARCH_GATE_AREA
   3156extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
   3157extern int in_gate_area_no_mm(unsigned long addr);
   3158extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
   3159#else
   3160static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
   3161{
   3162	return NULL;
   3163}
   3164static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
   3165static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
   3166{
   3167	return 0;
   3168}
   3169#endif	/* __HAVE_ARCH_GATE_AREA */
   3170
   3171extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
   3172
   3173#ifdef CONFIG_SYSCTL
   3174extern int sysctl_drop_caches;
   3175int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
   3176		loff_t *);
   3177#endif
   3178
   3179void drop_slab(void);
   3180
   3181#ifndef CONFIG_MMU
   3182#define randomize_va_space 0
   3183#else
   3184extern int randomize_va_space;
   3185#endif
   3186
   3187const char * arch_vma_name(struct vm_area_struct *vma);
   3188#ifdef CONFIG_MMU
   3189void print_vma_addr(char *prefix, unsigned long rip);
   3190#else
   3191static inline void print_vma_addr(char *prefix, unsigned long rip)
   3192{
   3193}
   3194#endif
   3195
   3196#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
   3197int vmemmap_remap_free(unsigned long start, unsigned long end,
   3198		       unsigned long reuse);
   3199int vmemmap_remap_alloc(unsigned long start, unsigned long end,
   3200			unsigned long reuse, gfp_t gfp_mask);
   3201#endif
   3202
   3203void *sparse_buffer_alloc(unsigned long size);
   3204struct page * __populate_section_memmap(unsigned long pfn,
   3205		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
   3206		struct dev_pagemap *pgmap);
   3207pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
   3208p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
   3209pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
   3210pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
   3211pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
   3212			    struct vmem_altmap *altmap, struct page *reuse);
   3213void *vmemmap_alloc_block(unsigned long size, int node);
   3214struct vmem_altmap;
   3215void *vmemmap_alloc_block_buf(unsigned long size, int node,
   3216			      struct vmem_altmap *altmap);
   3217void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
   3218int vmemmap_populate_basepages(unsigned long start, unsigned long end,
   3219			       int node, struct vmem_altmap *altmap);
   3220int vmemmap_populate(unsigned long start, unsigned long end, int node,
   3221		struct vmem_altmap *altmap);
   3222void vmemmap_populate_print_last(void);
   3223#ifdef CONFIG_MEMORY_HOTPLUG
   3224void vmemmap_free(unsigned long start, unsigned long end,
   3225		struct vmem_altmap *altmap);
   3226#endif
   3227void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
   3228				  unsigned long nr_pages);
   3229
   3230enum mf_flags {
   3231	MF_COUNT_INCREASED = 1 << 0,
   3232	MF_ACTION_REQUIRED = 1 << 1,
   3233	MF_MUST_KILL = 1 << 2,
   3234	MF_SOFT_OFFLINE = 1 << 3,
   3235	MF_UNPOISON = 1 << 4,
   3236	MF_SW_SIMULATED = 1 << 5,
   3237};
   3238extern int memory_failure(unsigned long pfn, int flags);
   3239extern void memory_failure_queue(unsigned long pfn, int flags);
   3240extern void memory_failure_queue_kick(int cpu);
   3241extern int unpoison_memory(unsigned long pfn);
   3242extern int sysctl_memory_failure_early_kill;
   3243extern int sysctl_memory_failure_recovery;
   3244extern void shake_page(struct page *p);
   3245extern atomic_long_t num_poisoned_pages __read_mostly;
   3246extern int soft_offline_page(unsigned long pfn, int flags);
   3247#ifdef CONFIG_MEMORY_FAILURE
   3248extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
   3249#else
   3250static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
   3251{
   3252	return 0;
   3253}
   3254#endif
   3255
   3256#ifndef arch_memory_failure
   3257static inline int arch_memory_failure(unsigned long pfn, int flags)
   3258{
   3259	return -ENXIO;
   3260}
   3261#endif
   3262
   3263#ifndef arch_is_platform_page
   3264static inline bool arch_is_platform_page(u64 paddr)
   3265{
   3266	return false;
   3267}
   3268#endif
   3269
   3270/*
   3271 * Error handlers for various types of pages.
   3272 */
   3273enum mf_result {
   3274	MF_IGNORED,	/* Error: cannot be handled */
   3275	MF_FAILED,	/* Error: handling failed */
   3276	MF_DELAYED,	/* Will be handled later */
   3277	MF_RECOVERED,	/* Successfully recovered */
   3278};
   3279
   3280enum mf_action_page_type {
   3281	MF_MSG_KERNEL,
   3282	MF_MSG_KERNEL_HIGH_ORDER,
   3283	MF_MSG_SLAB,
   3284	MF_MSG_DIFFERENT_COMPOUND,
   3285	MF_MSG_HUGE,
   3286	MF_MSG_FREE_HUGE,
   3287	MF_MSG_NON_PMD_HUGE,
   3288	MF_MSG_UNMAP_FAILED,
   3289	MF_MSG_DIRTY_SWAPCACHE,
   3290	MF_MSG_CLEAN_SWAPCACHE,
   3291	MF_MSG_DIRTY_MLOCKED_LRU,
   3292	MF_MSG_CLEAN_MLOCKED_LRU,
   3293	MF_MSG_DIRTY_UNEVICTABLE_LRU,
   3294	MF_MSG_CLEAN_UNEVICTABLE_LRU,
   3295	MF_MSG_DIRTY_LRU,
   3296	MF_MSG_CLEAN_LRU,
   3297	MF_MSG_TRUNCATED_LRU,
   3298	MF_MSG_BUDDY,
   3299	MF_MSG_DAX,
   3300	MF_MSG_UNSPLIT_THP,
   3301	MF_MSG_UNKNOWN,
   3302};
   3303
   3304#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
   3305extern void clear_huge_page(struct page *page,
   3306			    unsigned long addr_hint,
   3307			    unsigned int pages_per_huge_page);
   3308extern void copy_user_huge_page(struct page *dst, struct page *src,
   3309				unsigned long addr_hint,
   3310				struct vm_area_struct *vma,
   3311				unsigned int pages_per_huge_page);
   3312extern long copy_huge_page_from_user(struct page *dst_page,
   3313				const void __user *usr_src,
   3314				unsigned int pages_per_huge_page,
   3315				bool allow_pagefault);
   3316
   3317/**
   3318 * vma_is_special_huge - Are transhuge page-table entries considered special?
   3319 * @vma: Pointer to the struct vm_area_struct to consider
   3320 *
   3321 * Whether transhuge page-table entries are considered "special" following
   3322 * the definition in vm_normal_page().
   3323 *
   3324 * Return: true if transhuge page-table entries should be considered special,
   3325 * false otherwise.
   3326 */
   3327static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
   3328{
   3329	return vma_is_dax(vma) || (vma->vm_file &&
   3330				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
   3331}
   3332
   3333#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
   3334
   3335#ifdef CONFIG_DEBUG_PAGEALLOC
   3336extern unsigned int _debug_guardpage_minorder;
   3337DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
   3338
   3339static inline unsigned int debug_guardpage_minorder(void)
   3340{
   3341	return _debug_guardpage_minorder;
   3342}
   3343
   3344static inline bool debug_guardpage_enabled(void)
   3345{
   3346	return static_branch_unlikely(&_debug_guardpage_enabled);
   3347}
   3348
   3349static inline bool page_is_guard(struct page *page)
   3350{
   3351	if (!debug_guardpage_enabled())
   3352		return false;
   3353
   3354	return PageGuard(page);
   3355}
   3356#else
   3357static inline unsigned int debug_guardpage_minorder(void) { return 0; }
   3358static inline bool debug_guardpage_enabled(void) { return false; }
   3359static inline bool page_is_guard(struct page *page) { return false; }
   3360#endif /* CONFIG_DEBUG_PAGEALLOC */
   3361
   3362#if MAX_NUMNODES > 1
   3363void __init setup_nr_node_ids(void);
   3364#else
   3365static inline void setup_nr_node_ids(void) {}
   3366#endif
   3367
   3368extern int memcmp_pages(struct page *page1, struct page *page2);
   3369
   3370static inline int pages_identical(struct page *page1, struct page *page2)
   3371{
   3372	return !memcmp_pages(page1, page2);
   3373}
   3374
   3375#ifdef CONFIG_MAPPING_DIRTY_HELPERS
   3376unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
   3377						pgoff_t first_index, pgoff_t nr,
   3378						pgoff_t bitmap_pgoff,
   3379						unsigned long *bitmap,
   3380						pgoff_t *start,
   3381						pgoff_t *end);
   3382
   3383unsigned long wp_shared_mapping_range(struct address_space *mapping,
   3384				      pgoff_t first_index, pgoff_t nr);
   3385#endif
   3386
   3387extern int sysctl_nr_trim_pages;
   3388
   3389#ifdef CONFIG_PRINTK
   3390void mem_dump_obj(void *object);
   3391#else
   3392static inline void mem_dump_obj(void *object) {}
   3393#endif
   3394
   3395/**
   3396 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
   3397 * @seals: the seals to check
   3398 * @vma: the vma to operate on
   3399 *
   3400 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
   3401 * the vma flags.  Return 0 if check pass, or <0 for errors.
   3402 */
   3403static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
   3404{
   3405	if (seals & F_SEAL_FUTURE_WRITE) {
   3406		/*
   3407		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
   3408		 * "future write" seal active.
   3409		 */
   3410		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
   3411			return -EPERM;
   3412
   3413		/*
   3414		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
   3415		 * MAP_SHARED and read-only, take care to not allow mprotect to
   3416		 * revert protections on such mappings. Do this only for shared
   3417		 * mappings. For private mappings, don't need to mask
   3418		 * VM_MAYWRITE as we still want them to be COW-writable.
   3419		 */
   3420		if (vma->vm_flags & VM_SHARED)
   3421			vma->vm_flags &= ~(VM_MAYWRITE);
   3422	}
   3423
   3424	return 0;
   3425}
   3426
   3427#ifdef CONFIG_ANON_VMA_NAME
   3428int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
   3429			  unsigned long len_in,
   3430			  struct anon_vma_name *anon_name);
   3431#else
   3432static inline int
   3433madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
   3434		      unsigned long len_in, struct anon_vma_name *anon_name) {
   3435	return 0;
   3436}
   3437#endif
   3438
   3439/*
   3440 * Whether to drop the pte markers, for example, the uffd-wp information for
   3441 * file-backed memory.  This should only be specified when we will completely
   3442 * drop the page in the mm, either by truncation or unmapping of the vma.  By
   3443 * default, the flag is not set.
   3444 */
   3445#define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
   3446
   3447#endif /* _LINUX_MM_H */