mm_types.h (28978B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/rwsem.h> 13#include <linux/completion.h> 14#include <linux/cpumask.h> 15#include <linux/uprobes.h> 16#include <linux/rcupdate.h> 17#include <linux/page-flags-layout.h> 18#include <linux/workqueue.h> 19#include <linux/seqlock.h> 20 21#include <asm/mmu.h> 22 23#ifndef AT_VECTOR_SIZE_ARCH 24#define AT_VECTOR_SIZE_ARCH 0 25#endif 26#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 27 28#define INIT_PASID 0 29 30struct address_space; 31struct mem_cgroup; 32 33/* 34 * Each physical page in the system has a struct page associated with 35 * it to keep track of whatever it is we are using the page for at the 36 * moment. Note that we have no way to track which tasks are using 37 * a page, though if it is a pagecache page, rmap structures can tell us 38 * who is mapping it. 39 * 40 * If you allocate the page using alloc_pages(), you can use some of the 41 * space in struct page for your own purposes. The five words in the main 42 * union are available, except for bit 0 of the first word which must be 43 * kept clear. Many users use this word to store a pointer to an object 44 * which is guaranteed to be aligned. If you use the same storage as 45 * page->mapping, you must restore it to NULL before freeing the page. 46 * 47 * If your page will not be mapped to userspace, you can also use the four 48 * bytes in the mapcount union, but you must call page_mapcount_reset() 49 * before freeing it. 50 * 51 * If you want to use the refcount field, it must be used in such a way 52 * that other CPUs temporarily incrementing and then decrementing the 53 * refcount does not cause problems. On receiving the page from 54 * alloc_pages(), the refcount will be positive. 55 * 56 * If you allocate pages of order > 0, you can use some of the fields 57 * in each subpage, but you may need to restore some of their values 58 * afterwards. 59 * 60 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 61 * That requires that freelist & counters in struct slab be adjacent and 62 * double-word aligned. Because struct slab currently just reinterprets the 63 * bits of struct page, we align all struct pages to double-word boundaries, 64 * and ensure that 'freelist' is aligned within struct slab. 65 */ 66#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 67#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 68#else 69#define _struct_page_alignment 70#endif 71 72struct page { 73 unsigned long flags; /* Atomic flags, some possibly 74 * updated asynchronously */ 75 /* 76 * Five words (20/40 bytes) are available in this union. 77 * WARNING: bit 0 of the first word is used for PageTail(). That 78 * means the other users of this union MUST NOT use the bit to 79 * avoid collision and false-positive PageTail(). 80 */ 81 union { 82 struct { /* Page cache and anonymous pages */ 83 /** 84 * @lru: Pageout list, eg. active_list protected by 85 * lruvec->lru_lock. Sometimes used as a generic list 86 * by the page owner. 87 */ 88 union { 89 struct list_head lru; 90 /* Or, for the Unevictable "LRU list" slot */ 91 struct { 92 /* Always even, to negate PageTail */ 93 void *__filler; 94 /* Count page's or folio's mlocks */ 95 unsigned int mlock_count; 96 }; 97 }; 98 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 99 struct address_space *mapping; 100 pgoff_t index; /* Our offset within mapping. */ 101 /** 102 * @private: Mapping-private opaque data. 103 * Usually used for buffer_heads if PagePrivate. 104 * Used for swp_entry_t if PageSwapCache. 105 * Indicates order in the buddy system if PageBuddy. 106 */ 107 unsigned long private; 108 }; 109 struct { /* page_pool used by netstack */ 110 /** 111 * @pp_magic: magic value to avoid recycling non 112 * page_pool allocated pages. 113 */ 114 unsigned long pp_magic; 115 struct page_pool *pp; 116 unsigned long _pp_mapping_pad; 117 unsigned long dma_addr; 118 union { 119 /** 120 * dma_addr_upper: might require a 64-bit 121 * value on 32-bit architectures. 122 */ 123 unsigned long dma_addr_upper; 124 /** 125 * For frag page support, not supported in 126 * 32-bit architectures with 64-bit DMA. 127 */ 128 atomic_long_t pp_frag_count; 129 }; 130 }; 131 struct { /* Tail pages of compound page */ 132 unsigned long compound_head; /* Bit zero is set */ 133 134 /* First tail page only */ 135 unsigned char compound_dtor; 136 unsigned char compound_order; 137 atomic_t compound_mapcount; 138 atomic_t compound_pincount; 139#ifdef CONFIG_64BIT 140 unsigned int compound_nr; /* 1 << compound_order */ 141#endif 142 }; 143 struct { /* Second tail page of compound page */ 144 unsigned long _compound_pad_1; /* compound_head */ 145 unsigned long _compound_pad_2; 146 /* For both global and memcg */ 147 struct list_head deferred_list; 148 }; 149 struct { /* Page table pages */ 150 unsigned long _pt_pad_1; /* compound_head */ 151 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 152 unsigned long _pt_pad_2; /* mapping */ 153 union { 154 struct mm_struct *pt_mm; /* x86 pgds only */ 155 atomic_t pt_frag_refcount; /* powerpc */ 156 }; 157#if ALLOC_SPLIT_PTLOCKS 158 spinlock_t *ptl; 159#else 160 spinlock_t ptl; 161#endif 162 }; 163 struct { /* ZONE_DEVICE pages */ 164 /** @pgmap: Points to the hosting device page map. */ 165 struct dev_pagemap *pgmap; 166 void *zone_device_data; 167 /* 168 * ZONE_DEVICE private pages are counted as being 169 * mapped so the next 3 words hold the mapping, index, 170 * and private fields from the source anonymous or 171 * page cache page while the page is migrated to device 172 * private memory. 173 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 174 * use the mapping, index, and private fields when 175 * pmem backed DAX files are mapped. 176 */ 177 }; 178 179 /** @rcu_head: You can use this to free a page by RCU. */ 180 struct rcu_head rcu_head; 181 }; 182 183 union { /* This union is 4 bytes in size. */ 184 /* 185 * If the page can be mapped to userspace, encodes the number 186 * of times this page is referenced by a page table. 187 */ 188 atomic_t _mapcount; 189 190 /* 191 * If the page is neither PageSlab nor mappable to userspace, 192 * the value stored here may help determine what this page 193 * is used for. See page-flags.h for a list of page types 194 * which are currently stored here. 195 */ 196 unsigned int page_type; 197 }; 198 199 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 200 atomic_t _refcount; 201 202#ifdef CONFIG_MEMCG 203 unsigned long memcg_data; 204#endif 205 206 /* 207 * On machines where all RAM is mapped into kernel address space, 208 * we can simply calculate the virtual address. On machines with 209 * highmem some memory is mapped into kernel virtual memory 210 * dynamically, so we need a place to store that address. 211 * Note that this field could be 16 bits on x86 ... ;) 212 * 213 * Architectures with slow multiplication can define 214 * WANT_PAGE_VIRTUAL in asm/page.h 215 */ 216#if defined(WANT_PAGE_VIRTUAL) 217 void *virtual; /* Kernel virtual address (NULL if 218 not kmapped, ie. highmem) */ 219#endif /* WANT_PAGE_VIRTUAL */ 220 221#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 222 int _last_cpupid; 223#endif 224} _struct_page_alignment; 225 226/** 227 * struct folio - Represents a contiguous set of bytes. 228 * @flags: Identical to the page flags. 229 * @lru: Least Recently Used list; tracks how recently this folio was used. 230 * @mlock_count: Number of times this folio has been pinned by mlock(). 231 * @mapping: The file this page belongs to, or refers to the anon_vma for 232 * anonymous memory. 233 * @index: Offset within the file, in units of pages. For anonymous memory, 234 * this is the index from the beginning of the mmap. 235 * @private: Filesystem per-folio data (see folio_attach_private()). 236 * Used for swp_entry_t if folio_test_swapcache(). 237 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 238 * find out how many times this folio is mapped by userspace. 239 * @_refcount: Do not access this member directly. Use folio_ref_count() 240 * to find how many references there are to this folio. 241 * @memcg_data: Memory Control Group data. 242 * 243 * A folio is a physically, virtually and logically contiguous set 244 * of bytes. It is a power-of-two in size, and it is aligned to that 245 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 246 * in the page cache, it is at a file offset which is a multiple of that 247 * power-of-two. It may be mapped into userspace at an address which is 248 * at an arbitrary page offset, but its kernel virtual address is aligned 249 * to its size. 250 */ 251struct folio { 252 /* private: don't document the anon union */ 253 union { 254 struct { 255 /* public: */ 256 unsigned long flags; 257 union { 258 struct list_head lru; 259 /* private: avoid cluttering the output */ 260 struct { 261 void *__filler; 262 /* public: */ 263 unsigned int mlock_count; 264 /* private: */ 265 }; 266 /* public: */ 267 }; 268 struct address_space *mapping; 269 pgoff_t index; 270 void *private; 271 atomic_t _mapcount; 272 atomic_t _refcount; 273#ifdef CONFIG_MEMCG 274 unsigned long memcg_data; 275#endif 276 /* private: the union with struct page is transitional */ 277 }; 278 struct page page; 279 }; 280}; 281 282static_assert(sizeof(struct page) == sizeof(struct folio)); 283#define FOLIO_MATCH(pg, fl) \ 284 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 285FOLIO_MATCH(flags, flags); 286FOLIO_MATCH(lru, lru); 287FOLIO_MATCH(mapping, mapping); 288FOLIO_MATCH(compound_head, lru); 289FOLIO_MATCH(index, index); 290FOLIO_MATCH(private, private); 291FOLIO_MATCH(_mapcount, _mapcount); 292FOLIO_MATCH(_refcount, _refcount); 293#ifdef CONFIG_MEMCG 294FOLIO_MATCH(memcg_data, memcg_data); 295#endif 296#undef FOLIO_MATCH 297 298static inline atomic_t *folio_mapcount_ptr(struct folio *folio) 299{ 300 struct page *tail = &folio->page + 1; 301 return &tail->compound_mapcount; 302} 303 304static inline atomic_t *compound_mapcount_ptr(struct page *page) 305{ 306 return &page[1].compound_mapcount; 307} 308 309static inline atomic_t *compound_pincount_ptr(struct page *page) 310{ 311 return &page[1].compound_pincount; 312} 313 314/* 315 * Used for sizing the vmemmap region on some architectures 316 */ 317#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 318 319#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 320#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 321 322/* 323 * page_private can be used on tail pages. However, PagePrivate is only 324 * checked by the VM on the head page. So page_private on the tail pages 325 * should be used for data that's ancillary to the head page (eg attaching 326 * buffer heads to tail pages after attaching buffer heads to the head page) 327 */ 328#define page_private(page) ((page)->private) 329 330static inline void set_page_private(struct page *page, unsigned long private) 331{ 332 page->private = private; 333} 334 335static inline void *folio_get_private(struct folio *folio) 336{ 337 return folio->private; 338} 339 340struct page_frag_cache { 341 void * va; 342#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 343 __u16 offset; 344 __u16 size; 345#else 346 __u32 offset; 347#endif 348 /* we maintain a pagecount bias, so that we dont dirty cache line 349 * containing page->_refcount every time we allocate a fragment. 350 */ 351 unsigned int pagecnt_bias; 352 bool pfmemalloc; 353}; 354 355typedef unsigned long vm_flags_t; 356 357/* 358 * A region containing a mapping of a non-memory backed file under NOMMU 359 * conditions. These are held in a global tree and are pinned by the VMAs that 360 * map parts of them. 361 */ 362struct vm_region { 363 struct rb_node vm_rb; /* link in global region tree */ 364 vm_flags_t vm_flags; /* VMA vm_flags */ 365 unsigned long vm_start; /* start address of region */ 366 unsigned long vm_end; /* region initialised to here */ 367 unsigned long vm_top; /* region allocated to here */ 368 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 369 struct file *vm_file; /* the backing file or NULL */ 370 371 int vm_usage; /* region usage count (access under nommu_region_sem) */ 372 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 373 * this region */ 374}; 375 376#ifdef CONFIG_USERFAULTFD 377#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 378struct vm_userfaultfd_ctx { 379 struct userfaultfd_ctx *ctx; 380}; 381#else /* CONFIG_USERFAULTFD */ 382#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 383struct vm_userfaultfd_ctx {}; 384#endif /* CONFIG_USERFAULTFD */ 385 386struct anon_vma_name { 387 struct kref kref; 388 /* The name needs to be at the end because it is dynamically sized. */ 389 char name[]; 390}; 391 392/* 393 * This struct describes a virtual memory area. There is one of these 394 * per VM-area/task. A VM area is any part of the process virtual memory 395 * space that has a special rule for the page-fault handlers (ie a shared 396 * library, the executable area etc). 397 */ 398struct vm_area_struct { 399 /* The first cache line has the info for VMA tree walking. */ 400 401 unsigned long vm_start; /* Our start address within vm_mm. */ 402 unsigned long vm_end; /* The first byte after our end address 403 within vm_mm. */ 404 405 /* linked list of VM areas per task, sorted by address */ 406 struct vm_area_struct *vm_next, *vm_prev; 407 408 struct rb_node vm_rb; 409 410 /* 411 * Largest free memory gap in bytes to the left of this VMA. 412 * Either between this VMA and vma->vm_prev, or between one of the 413 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 414 * get_unmapped_area find a free area of the right size. 415 */ 416 unsigned long rb_subtree_gap; 417 418 /* Second cache line starts here. */ 419 420 struct mm_struct *vm_mm; /* The address space we belong to. */ 421 422 /* 423 * Access permissions of this VMA. 424 * See vmf_insert_mixed_prot() for discussion. 425 */ 426 pgprot_t vm_page_prot; 427 unsigned long vm_flags; /* Flags, see mm.h. */ 428 429 /* 430 * For areas with an address space and backing store, 431 * linkage into the address_space->i_mmap interval tree. 432 * 433 * For private anonymous mappings, a pointer to a null terminated string 434 * containing the name given to the vma, or NULL if unnamed. 435 */ 436 437 union { 438 struct { 439 struct rb_node rb; 440 unsigned long rb_subtree_last; 441 } shared; 442 /* 443 * Serialized by mmap_sem. Never use directly because it is 444 * valid only when vm_file is NULL. Use anon_vma_name instead. 445 */ 446 struct anon_vma_name *anon_name; 447 }; 448 449 /* 450 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 451 * list, after a COW of one of the file pages. A MAP_SHARED vma 452 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 453 * or brk vma (with NULL file) can only be in an anon_vma list. 454 */ 455 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 456 * page_table_lock */ 457 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 458 459 /* Function pointers to deal with this struct. */ 460 const struct vm_operations_struct *vm_ops; 461 462 /* Information about our backing store: */ 463 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 464 units */ 465 struct file * vm_file; /* File we map to (can be NULL). */ 466 void * vm_private_data; /* was vm_pte (shared mem) */ 467 468#ifdef CONFIG_SWAP 469 atomic_long_t swap_readahead_info; 470#endif 471#ifndef CONFIG_MMU 472 struct vm_region *vm_region; /* NOMMU mapping region */ 473#endif 474#ifdef CONFIG_NUMA 475 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 476#endif 477 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 478} __randomize_layout; 479 480struct kioctx_table; 481struct mm_struct { 482 struct { 483 struct vm_area_struct *mmap; /* list of VMAs */ 484 struct rb_root mm_rb; 485 u64 vmacache_seqnum; /* per-thread vmacache */ 486#ifdef CONFIG_MMU 487 unsigned long (*get_unmapped_area) (struct file *filp, 488 unsigned long addr, unsigned long len, 489 unsigned long pgoff, unsigned long flags); 490#endif 491 unsigned long mmap_base; /* base of mmap area */ 492 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 493#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 494 /* Base addresses for compatible mmap() */ 495 unsigned long mmap_compat_base; 496 unsigned long mmap_compat_legacy_base; 497#endif 498 unsigned long task_size; /* size of task vm space */ 499 unsigned long highest_vm_end; /* highest vma end address */ 500 pgd_t * pgd; 501 502#ifdef CONFIG_MEMBARRIER 503 /** 504 * @membarrier_state: Flags controlling membarrier behavior. 505 * 506 * This field is close to @pgd to hopefully fit in the same 507 * cache-line, which needs to be touched by switch_mm(). 508 */ 509 atomic_t membarrier_state; 510#endif 511 512 /** 513 * @mm_users: The number of users including userspace. 514 * 515 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 516 * drops to 0 (i.e. when the task exits and there are no other 517 * temporary reference holders), we also release a reference on 518 * @mm_count (which may then free the &struct mm_struct if 519 * @mm_count also drops to 0). 520 */ 521 atomic_t mm_users; 522 523 /** 524 * @mm_count: The number of references to &struct mm_struct 525 * (@mm_users count as 1). 526 * 527 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 528 * &struct mm_struct is freed. 529 */ 530 atomic_t mm_count; 531 532#ifdef CONFIG_MMU 533 atomic_long_t pgtables_bytes; /* PTE page table pages */ 534#endif 535 int map_count; /* number of VMAs */ 536 537 spinlock_t page_table_lock; /* Protects page tables and some 538 * counters 539 */ 540 /* 541 * With some kernel config, the current mmap_lock's offset 542 * inside 'mm_struct' is at 0x120, which is very optimal, as 543 * its two hot fields 'count' and 'owner' sit in 2 different 544 * cachelines, and when mmap_lock is highly contended, both 545 * of the 2 fields will be accessed frequently, current layout 546 * will help to reduce cache bouncing. 547 * 548 * So please be careful with adding new fields before 549 * mmap_lock, which can easily push the 2 fields into one 550 * cacheline. 551 */ 552 struct rw_semaphore mmap_lock; 553 554 struct list_head mmlist; /* List of maybe swapped mm's. These 555 * are globally strung together off 556 * init_mm.mmlist, and are protected 557 * by mmlist_lock 558 */ 559 560 561 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 562 unsigned long hiwater_vm; /* High-water virtual memory usage */ 563 564 unsigned long total_vm; /* Total pages mapped */ 565 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 566 atomic64_t pinned_vm; /* Refcount permanently increased */ 567 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 568 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 569 unsigned long stack_vm; /* VM_STACK */ 570 unsigned long def_flags; 571 572 /** 573 * @write_protect_seq: Locked when any thread is write 574 * protecting pages mapped by this mm to enforce a later COW, 575 * for instance during page table copying for fork(). 576 */ 577 seqcount_t write_protect_seq; 578 579 spinlock_t arg_lock; /* protect the below fields */ 580 581 unsigned long start_code, end_code, start_data, end_data; 582 unsigned long start_brk, brk, start_stack; 583 unsigned long arg_start, arg_end, env_start, env_end; 584 585 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 586 587 /* 588 * Special counters, in some configurations protected by the 589 * page_table_lock, in other configurations by being atomic. 590 */ 591 struct mm_rss_stat rss_stat; 592 593 struct linux_binfmt *binfmt; 594 595 /* Architecture-specific MM context */ 596 mm_context_t context; 597 598 unsigned long flags; /* Must use atomic bitops to access */ 599 600#ifdef CONFIG_AIO 601 spinlock_t ioctx_lock; 602 struct kioctx_table __rcu *ioctx_table; 603#endif 604#ifdef CONFIG_MEMCG 605 /* 606 * "owner" points to a task that is regarded as the canonical 607 * user/owner of this mm. All of the following must be true in 608 * order for it to be changed: 609 * 610 * current == mm->owner 611 * current->mm != mm 612 * new_owner->mm == mm 613 * new_owner->alloc_lock is held 614 */ 615 struct task_struct __rcu *owner; 616#endif 617 struct user_namespace *user_ns; 618 619 /* store ref to file /proc/<pid>/exe symlink points to */ 620 struct file __rcu *exe_file; 621#ifdef CONFIG_MMU_NOTIFIER 622 struct mmu_notifier_subscriptions *notifier_subscriptions; 623#endif 624#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 625 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 626#endif 627#ifdef CONFIG_NUMA_BALANCING 628 /* 629 * numa_next_scan is the next time that the PTEs will be marked 630 * pte_numa. NUMA hinting faults will gather statistics and 631 * migrate pages to new nodes if necessary. 632 */ 633 unsigned long numa_next_scan; 634 635 /* Restart point for scanning and setting pte_numa */ 636 unsigned long numa_scan_offset; 637 638 /* numa_scan_seq prevents two threads setting pte_numa */ 639 int numa_scan_seq; 640#endif 641 /* 642 * An operation with batched TLB flushing is going on. Anything 643 * that can move process memory needs to flush the TLB when 644 * moving a PROT_NONE or PROT_NUMA mapped page. 645 */ 646 atomic_t tlb_flush_pending; 647#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 648 /* See flush_tlb_batched_pending() */ 649 atomic_t tlb_flush_batched; 650#endif 651 struct uprobes_state uprobes_state; 652#ifdef CONFIG_PREEMPT_RT 653 struct rcu_head delayed_drop; 654#endif 655#ifdef CONFIG_HUGETLB_PAGE 656 atomic_long_t hugetlb_usage; 657#endif 658 struct work_struct async_put_work; 659 660#ifdef CONFIG_IOMMU_SVA 661 u32 pasid; 662#endif 663#ifdef CONFIG_KSM 664 /* 665 * Represent how many pages of this process are involved in KSM 666 * merging. 667 */ 668 unsigned long ksm_merging_pages; 669#endif 670 } __randomize_layout; 671 672 /* 673 * The mm_cpumask needs to be at the end of mm_struct, because it 674 * is dynamically sized based on nr_cpu_ids. 675 */ 676 unsigned long cpu_bitmap[]; 677}; 678 679extern struct mm_struct init_mm; 680 681/* Pointer magic because the dynamic array size confuses some compilers. */ 682static inline void mm_init_cpumask(struct mm_struct *mm) 683{ 684 unsigned long cpu_bitmap = (unsigned long)mm; 685 686 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 687 cpumask_clear((struct cpumask *)cpu_bitmap); 688} 689 690/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 691static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 692{ 693 return (struct cpumask *)&mm->cpu_bitmap; 694} 695 696struct mmu_gather; 697extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 698extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 699extern void tlb_finish_mmu(struct mmu_gather *tlb); 700 701struct vm_fault; 702 703/** 704 * typedef vm_fault_t - Return type for page fault handlers. 705 * 706 * Page fault handlers return a bitmask of %VM_FAULT values. 707 */ 708typedef __bitwise unsigned int vm_fault_t; 709 710/** 711 * enum vm_fault_reason - Page fault handlers return a bitmask of 712 * these values to tell the core VM what happened when handling the 713 * fault. Used to decide whether a process gets delivered SIGBUS or 714 * just gets major/minor fault counters bumped up. 715 * 716 * @VM_FAULT_OOM: Out Of Memory 717 * @VM_FAULT_SIGBUS: Bad access 718 * @VM_FAULT_MAJOR: Page read from storage 719 * @VM_FAULT_WRITE: Special case for get_user_pages 720 * @VM_FAULT_HWPOISON: Hit poisoned small page 721 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 722 * in upper bits 723 * @VM_FAULT_SIGSEGV: segmentation fault 724 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 725 * @VM_FAULT_LOCKED: ->fault locked the returned page 726 * @VM_FAULT_RETRY: ->fault blocked, must retry 727 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 728 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 729 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 730 * fsync() to complete (for synchronous page faults 731 * in DAX) 732 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 733 * 734 */ 735enum vm_fault_reason { 736 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 737 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 738 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 739 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 740 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 741 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 742 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 743 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 744 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 745 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 746 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 747 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 748 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 749 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 750}; 751 752/* Encode hstate index for a hwpoisoned large page */ 753#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 754#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 755 756#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 757 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 758 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 759 760#define VM_FAULT_RESULT_TRACE \ 761 { VM_FAULT_OOM, "OOM" }, \ 762 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 763 { VM_FAULT_MAJOR, "MAJOR" }, \ 764 { VM_FAULT_WRITE, "WRITE" }, \ 765 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 766 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 767 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 768 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 769 { VM_FAULT_LOCKED, "LOCKED" }, \ 770 { VM_FAULT_RETRY, "RETRY" }, \ 771 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 772 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 773 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 774 775struct vm_special_mapping { 776 const char *name; /* The name, e.g. "[vdso]". */ 777 778 /* 779 * If .fault is not provided, this points to a 780 * NULL-terminated array of pages that back the special mapping. 781 * 782 * This must not be NULL unless .fault is provided. 783 */ 784 struct page **pages; 785 786 /* 787 * If non-NULL, then this is called to resolve page faults 788 * on the special mapping. If used, .pages is not checked. 789 */ 790 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 791 struct vm_area_struct *vma, 792 struct vm_fault *vmf); 793 794 int (*mremap)(const struct vm_special_mapping *sm, 795 struct vm_area_struct *new_vma); 796}; 797 798enum tlb_flush_reason { 799 TLB_FLUSH_ON_TASK_SWITCH, 800 TLB_REMOTE_SHOOTDOWN, 801 TLB_LOCAL_SHOOTDOWN, 802 TLB_LOCAL_MM_SHOOTDOWN, 803 TLB_REMOTE_SEND_IPI, 804 NR_TLB_FLUSH_REASONS, 805}; 806 807 /* 808 * A swap entry has to fit into a "unsigned long", as the entry is hidden 809 * in the "index" field of the swapper address space. 810 */ 811typedef struct { 812 unsigned long val; 813} swp_entry_t; 814 815/** 816 * enum fault_flag - Fault flag definitions. 817 * @FAULT_FLAG_WRITE: Fault was a write fault. 818 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 819 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 820 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 821 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 822 * @FAULT_FLAG_TRIED: The fault has been tried once. 823 * @FAULT_FLAG_USER: The fault originated in userspace. 824 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 825 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 826 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 827 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to unshare (and mark 828 * exclusive) a possibly shared anonymous page that is 829 * mapped R/O. 830 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 831 * We should only access orig_pte if this flag set. 832 * @FAULT_FLAG_PAGE_SPLIT: The fault was due page size mismatch, split the 833 * region to smaller page size and retry. 834 * 835 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 836 * whether we would allow page faults to retry by specifying these two 837 * fault flags correctly. Currently there can be three legal combinations: 838 * 839 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 840 * this is the first try 841 * 842 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 843 * we've already tried at least once 844 * 845 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 846 * 847 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 848 * be used. Note that page faults can be allowed to retry for multiple times, 849 * in which case we'll have an initial fault with flags (a) then later on 850 * continuous faults with flags (b). We should always try to detect pending 851 * signals before a retry to make sure the continuous page faults can still be 852 * interrupted if necessary. 853 * 854 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 855 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 856 * no existing R/O-mapped anonymous page is encountered. 857 */ 858enum fault_flag { 859 FAULT_FLAG_WRITE = 1 << 0, 860 FAULT_FLAG_MKWRITE = 1 << 1, 861 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 862 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 863 FAULT_FLAG_KILLABLE = 1 << 4, 864 FAULT_FLAG_TRIED = 1 << 5, 865 FAULT_FLAG_USER = 1 << 6, 866 FAULT_FLAG_REMOTE = 1 << 7, 867 FAULT_FLAG_INSTRUCTION = 1 << 8, 868 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 869 FAULT_FLAG_UNSHARE = 1 << 10, 870 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 871 FAULT_FLAG_PAGE_SPLIT = 1 << 12, 872}; 873 874typedef unsigned int __bitwise zap_flags_t; 875 876#endif /* _LINUX_MM_TYPES_H */