mmu_notifier.h (25229B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMU_NOTIFIER_H 3#define _LINUX_MMU_NOTIFIER_H 4 5#include <linux/list.h> 6#include <linux/spinlock.h> 7#include <linux/mm_types.h> 8#include <linux/mmap_lock.h> 9#include <linux/srcu.h> 10#include <linux/interval_tree.h> 11 12struct mmu_notifier_subscriptions; 13struct mmu_notifier; 14struct mmu_notifier_range; 15struct mmu_interval_notifier; 16 17/** 18 * enum mmu_notifier_event - reason for the mmu notifier callback 19 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that 20 * move the range 21 * 22 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like 23 * madvise() or replacing a page by another one, ...). 24 * 25 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range 26 * ie using the vma access permission (vm_page_prot) to update the whole range 27 * is enough no need to inspect changes to the CPU page table (mprotect() 28 * syscall) 29 * 30 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for 31 * pages in the range so to mirror those changes the user must inspect the CPU 32 * page table (from the end callback). 33 * 34 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same 35 * access flags). User should soft dirty the page in the end callback to make 36 * sure that anyone relying on soft dirtiness catch pages that might be written 37 * through non CPU mappings. 38 * 39 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal 40 * that the mm refcount is zero and the range is no longer accessible. 41 * 42 * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal 43 * a device driver to possibly ignore the invalidation if the 44 * owner field matches the driver's device private pgmap owner. 45 * 46 * @MMU_NOTIFY_EXCLUSIVE: to signal a device driver that the device will no 47 * longer have exclusive access to the page. When sent during creation of an 48 * exclusive range the owner will be initialised to the value provided by the 49 * caller of make_device_exclusive_range(), otherwise the owner will be NULL. 50 */ 51enum mmu_notifier_event { 52 MMU_NOTIFY_UNMAP = 0, 53 MMU_NOTIFY_CLEAR, 54 MMU_NOTIFY_PROTECTION_VMA, 55 MMU_NOTIFY_PROTECTION_PAGE, 56 MMU_NOTIFY_SOFT_DIRTY, 57 MMU_NOTIFY_RELEASE, 58 MMU_NOTIFY_MIGRATE, 59 MMU_NOTIFY_EXCLUSIVE, 60}; 61 62#define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) 63 64struct mmu_notifier_ops { 65 /* 66 * Called either by mmu_notifier_unregister or when the mm is 67 * being destroyed by exit_mmap, always before all pages are 68 * freed. This can run concurrently with other mmu notifier 69 * methods (the ones invoked outside the mm context) and it 70 * should tear down all secondary mmu mappings and freeze the 71 * secondary mmu. If this method isn't implemented you've to 72 * be sure that nothing could possibly write to the pages 73 * through the secondary mmu by the time the last thread with 74 * tsk->mm == mm exits. 75 * 76 * As side note: the pages freed after ->release returns could 77 * be immediately reallocated by the gart at an alias physical 78 * address with a different cache model, so if ->release isn't 79 * implemented because all _software_ driven memory accesses 80 * through the secondary mmu are terminated by the time the 81 * last thread of this mm quits, you've also to be sure that 82 * speculative _hardware_ operations can't allocate dirty 83 * cachelines in the cpu that could not be snooped and made 84 * coherent with the other read and write operations happening 85 * through the gart alias address, so leading to memory 86 * corruption. 87 */ 88 void (*release)(struct mmu_notifier *subscription, 89 struct mm_struct *mm); 90 91 /* 92 * clear_flush_young is called after the VM is 93 * test-and-clearing the young/accessed bitflag in the 94 * pte. This way the VM will provide proper aging to the 95 * accesses to the page through the secondary MMUs and not 96 * only to the ones through the Linux pte. 97 * Start-end is necessary in case the secondary MMU is mapping the page 98 * at a smaller granularity than the primary MMU. 99 */ 100 int (*clear_flush_young)(struct mmu_notifier *subscription, 101 struct mm_struct *mm, 102 unsigned long start, 103 unsigned long end); 104 105 /* 106 * clear_young is a lightweight version of clear_flush_young. Like the 107 * latter, it is supposed to test-and-clear the young/accessed bitflag 108 * in the secondary pte, but it may omit flushing the secondary tlb. 109 */ 110 int (*clear_young)(struct mmu_notifier *subscription, 111 struct mm_struct *mm, 112 unsigned long start, 113 unsigned long end); 114 115 /* 116 * test_young is called to check the young/accessed bitflag in 117 * the secondary pte. This is used to know if the page is 118 * frequently used without actually clearing the flag or tearing 119 * down the secondary mapping on the page. 120 */ 121 int (*test_young)(struct mmu_notifier *subscription, 122 struct mm_struct *mm, 123 unsigned long address); 124 125 /* 126 * change_pte is called in cases that pte mapping to page is changed: 127 * for example, when ksm remaps pte to point to a new shared page. 128 */ 129 void (*change_pte)(struct mmu_notifier *subscription, 130 struct mm_struct *mm, 131 unsigned long address, 132 pte_t pte); 133 134 /* 135 * invalidate_range_start() and invalidate_range_end() must be 136 * paired and are called only when the mmap_lock and/or the 137 * locks protecting the reverse maps are held. If the subsystem 138 * can't guarantee that no additional references are taken to 139 * the pages in the range, it has to implement the 140 * invalidate_range() notifier to remove any references taken 141 * after invalidate_range_start(). 142 * 143 * Invalidation of multiple concurrent ranges may be 144 * optionally permitted by the driver. Either way the 145 * establishment of sptes is forbidden in the range passed to 146 * invalidate_range_begin/end for the whole duration of the 147 * invalidate_range_begin/end critical section. 148 * 149 * invalidate_range_start() is called when all pages in the 150 * range are still mapped and have at least a refcount of one. 151 * 152 * invalidate_range_end() is called when all pages in the 153 * range have been unmapped and the pages have been freed by 154 * the VM. 155 * 156 * The VM will remove the page table entries and potentially 157 * the page between invalidate_range_start() and 158 * invalidate_range_end(). If the page must not be freed 159 * because of pending I/O or other circumstances then the 160 * invalidate_range_start() callback (or the initial mapping 161 * by the driver) must make sure that the refcount is kept 162 * elevated. 163 * 164 * If the driver increases the refcount when the pages are 165 * initially mapped into an address space then either 166 * invalidate_range_start() or invalidate_range_end() may 167 * decrease the refcount. If the refcount is decreased on 168 * invalidate_range_start() then the VM can free pages as page 169 * table entries are removed. If the refcount is only 170 * dropped on invalidate_range_end() then the driver itself 171 * will drop the last refcount but it must take care to flush 172 * any secondary tlb before doing the final free on the 173 * page. Pages will no longer be referenced by the linux 174 * address space but may still be referenced by sptes until 175 * the last refcount is dropped. 176 * 177 * If blockable argument is set to false then the callback cannot 178 * sleep and has to return with -EAGAIN if sleeping would be required. 179 * 0 should be returned otherwise. Please note that notifiers that can 180 * fail invalidate_range_start are not allowed to implement 181 * invalidate_range_end, as there is no mechanism for informing the 182 * notifier that its start failed. 183 */ 184 int (*invalidate_range_start)(struct mmu_notifier *subscription, 185 const struct mmu_notifier_range *range); 186 void (*invalidate_range_end)(struct mmu_notifier *subscription, 187 const struct mmu_notifier_range *range); 188 189 /* 190 * invalidate_range() is either called between 191 * invalidate_range_start() and invalidate_range_end() when the 192 * VM has to free pages that where unmapped, but before the 193 * pages are actually freed, or outside of _start()/_end() when 194 * a (remote) TLB is necessary. 195 * 196 * If invalidate_range() is used to manage a non-CPU TLB with 197 * shared page-tables, it not necessary to implement the 198 * invalidate_range_start()/end() notifiers, as 199 * invalidate_range() already catches the points in time when an 200 * external TLB range needs to be flushed. For more in depth 201 * discussion on this see Documentation/vm/mmu_notifier.rst 202 * 203 * Note that this function might be called with just a sub-range 204 * of what was passed to invalidate_range_start()/end(), if 205 * called between those functions. 206 */ 207 void (*invalidate_range)(struct mmu_notifier *subscription, 208 struct mm_struct *mm, 209 unsigned long start, 210 unsigned long end); 211 212 /* 213 * These callbacks are used with the get/put interface to manage the 214 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new 215 * notifier for use with the mm. 216 * 217 * free_notifier() is only called after the mmu_notifier has been 218 * fully put, calls to any ops callback are prevented and no ops 219 * callbacks are currently running. It is called from a SRCU callback 220 * and cannot sleep. 221 */ 222 struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); 223 void (*free_notifier)(struct mmu_notifier *subscription); 224}; 225 226/* 227 * The notifier chains are protected by mmap_lock and/or the reverse map 228 * semaphores. Notifier chains are only changed when all reverse maps and 229 * the mmap_lock locks are taken. 230 * 231 * Therefore notifier chains can only be traversed when either 232 * 233 * 1. mmap_lock is held. 234 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). 235 * 3. No other concurrent thread can access the list (release) 236 */ 237struct mmu_notifier { 238 struct hlist_node hlist; 239 const struct mmu_notifier_ops *ops; 240 struct mm_struct *mm; 241 struct rcu_head rcu; 242 unsigned int users; 243}; 244 245/** 246 * struct mmu_interval_notifier_ops 247 * @invalidate: Upon return the caller must stop using any SPTEs within this 248 * range. This function can sleep. Return false only if sleeping 249 * was required but mmu_notifier_range_blockable(range) is false. 250 */ 251struct mmu_interval_notifier_ops { 252 bool (*invalidate)(struct mmu_interval_notifier *interval_sub, 253 const struct mmu_notifier_range *range, 254 unsigned long cur_seq); 255}; 256 257struct mmu_interval_notifier { 258 struct interval_tree_node interval_tree; 259 const struct mmu_interval_notifier_ops *ops; 260 struct mm_struct *mm; 261 struct hlist_node deferred_item; 262 unsigned long invalidate_seq; 263}; 264 265#ifdef CONFIG_MMU_NOTIFIER 266 267#ifdef CONFIG_LOCKDEP 268extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; 269#endif 270 271struct mmu_notifier_range { 272 struct vm_area_struct *vma; 273 struct mm_struct *mm; 274 unsigned long start; 275 unsigned long end; 276 unsigned flags; 277 enum mmu_notifier_event event; 278 void *owner; 279}; 280 281static inline int mm_has_notifiers(struct mm_struct *mm) 282{ 283 return unlikely(mm->notifier_subscriptions); 284} 285 286struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 287 struct mm_struct *mm); 288static inline struct mmu_notifier * 289mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) 290{ 291 struct mmu_notifier *ret; 292 293 mmap_write_lock(mm); 294 ret = mmu_notifier_get_locked(ops, mm); 295 mmap_write_unlock(mm); 296 return ret; 297} 298void mmu_notifier_put(struct mmu_notifier *subscription); 299void mmu_notifier_synchronize(void); 300 301extern int mmu_notifier_register(struct mmu_notifier *subscription, 302 struct mm_struct *mm); 303extern int __mmu_notifier_register(struct mmu_notifier *subscription, 304 struct mm_struct *mm); 305extern void mmu_notifier_unregister(struct mmu_notifier *subscription, 306 struct mm_struct *mm); 307 308unsigned long 309mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub); 310int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, 311 struct mm_struct *mm, unsigned long start, 312 unsigned long length, 313 const struct mmu_interval_notifier_ops *ops); 314int mmu_interval_notifier_insert_locked( 315 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 316 unsigned long start, unsigned long length, 317 const struct mmu_interval_notifier_ops *ops); 318void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub); 319 320/** 321 * mmu_interval_set_seq - Save the invalidation sequence 322 * @interval_sub - The subscription passed to invalidate 323 * @cur_seq - The cur_seq passed to the invalidate() callback 324 * 325 * This must be called unconditionally from the invalidate callback of a 326 * struct mmu_interval_notifier_ops under the same lock that is used to call 327 * mmu_interval_read_retry(). It updates the sequence number for later use by 328 * mmu_interval_read_retry(). The provided cur_seq will always be odd. 329 * 330 * If the caller does not call mmu_interval_read_begin() or 331 * mmu_interval_read_retry() then this call is not required. 332 */ 333static inline void 334mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub, 335 unsigned long cur_seq) 336{ 337 WRITE_ONCE(interval_sub->invalidate_seq, cur_seq); 338} 339 340/** 341 * mmu_interval_read_retry - End a read side critical section against a VA range 342 * interval_sub: The subscription 343 * seq: The return of the paired mmu_interval_read_begin() 344 * 345 * This MUST be called under a user provided lock that is also held 346 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). 347 * 348 * Each call should be paired with a single mmu_interval_read_begin() and 349 * should be used to conclude the read side. 350 * 351 * Returns true if an invalidation collided with this critical section, and 352 * the caller should retry. 353 */ 354static inline bool 355mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub, 356 unsigned long seq) 357{ 358 return interval_sub->invalidate_seq != seq; 359} 360 361/** 362 * mmu_interval_check_retry - Test if a collision has occurred 363 * interval_sub: The subscription 364 * seq: The return of the matching mmu_interval_read_begin() 365 * 366 * This can be used in the critical section between mmu_interval_read_begin() 367 * and mmu_interval_read_retry(). A return of true indicates an invalidation 368 * has collided with this critical region and a future 369 * mmu_interval_read_retry() will return true. 370 * 371 * False is not reliable and only suggests a collision may not have 372 * occurred. It can be called many times and does not have to hold the user 373 * provided lock. 374 * 375 * This call can be used as part of loops and other expensive operations to 376 * expedite a retry. 377 */ 378static inline bool 379mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub, 380 unsigned long seq) 381{ 382 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 383 return READ_ONCE(interval_sub->invalidate_seq) != seq; 384} 385 386extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm); 387extern void __mmu_notifier_release(struct mm_struct *mm); 388extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 389 unsigned long start, 390 unsigned long end); 391extern int __mmu_notifier_clear_young(struct mm_struct *mm, 392 unsigned long start, 393 unsigned long end); 394extern int __mmu_notifier_test_young(struct mm_struct *mm, 395 unsigned long address); 396extern void __mmu_notifier_change_pte(struct mm_struct *mm, 397 unsigned long address, pte_t pte); 398extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); 399extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, 400 bool only_end); 401extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, 402 unsigned long start, unsigned long end); 403extern bool 404mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); 405 406static inline bool 407mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 408{ 409 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); 410} 411 412static inline void mmu_notifier_release(struct mm_struct *mm) 413{ 414 if (mm_has_notifiers(mm)) 415 __mmu_notifier_release(mm); 416} 417 418static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 419 unsigned long start, 420 unsigned long end) 421{ 422 if (mm_has_notifiers(mm)) 423 return __mmu_notifier_clear_flush_young(mm, start, end); 424 return 0; 425} 426 427static inline int mmu_notifier_clear_young(struct mm_struct *mm, 428 unsigned long start, 429 unsigned long end) 430{ 431 if (mm_has_notifiers(mm)) 432 return __mmu_notifier_clear_young(mm, start, end); 433 return 0; 434} 435 436static inline int mmu_notifier_test_young(struct mm_struct *mm, 437 unsigned long address) 438{ 439 if (mm_has_notifiers(mm)) 440 return __mmu_notifier_test_young(mm, address); 441 return 0; 442} 443 444static inline void mmu_notifier_change_pte(struct mm_struct *mm, 445 unsigned long address, pte_t pte) 446{ 447 if (mm_has_notifiers(mm)) 448 __mmu_notifier_change_pte(mm, address, pte); 449} 450 451static inline void 452mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 453{ 454 might_sleep(); 455 456 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 457 if (mm_has_notifiers(range->mm)) { 458 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; 459 __mmu_notifier_invalidate_range_start(range); 460 } 461 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 462} 463 464static inline int 465mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 466{ 467 int ret = 0; 468 469 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 470 if (mm_has_notifiers(range->mm)) { 471 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; 472 ret = __mmu_notifier_invalidate_range_start(range); 473 } 474 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 475 return ret; 476} 477 478static inline void 479mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 480{ 481 if (mmu_notifier_range_blockable(range)) 482 might_sleep(); 483 484 if (mm_has_notifiers(range->mm)) 485 __mmu_notifier_invalidate_range_end(range, false); 486} 487 488static inline void 489mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 490{ 491 if (mm_has_notifiers(range->mm)) 492 __mmu_notifier_invalidate_range_end(range, true); 493} 494 495static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 496 unsigned long start, unsigned long end) 497{ 498 if (mm_has_notifiers(mm)) 499 __mmu_notifier_invalidate_range(mm, start, end); 500} 501 502static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) 503{ 504 mm->notifier_subscriptions = NULL; 505} 506 507static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 508{ 509 if (mm_has_notifiers(mm)) 510 __mmu_notifier_subscriptions_destroy(mm); 511} 512 513 514static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, 515 enum mmu_notifier_event event, 516 unsigned flags, 517 struct vm_area_struct *vma, 518 struct mm_struct *mm, 519 unsigned long start, 520 unsigned long end) 521{ 522 range->vma = vma; 523 range->event = event; 524 range->mm = mm; 525 range->start = start; 526 range->end = end; 527 range->flags = flags; 528} 529 530static inline void mmu_notifier_range_init_owner( 531 struct mmu_notifier_range *range, 532 enum mmu_notifier_event event, unsigned int flags, 533 struct vm_area_struct *vma, struct mm_struct *mm, 534 unsigned long start, unsigned long end, void *owner) 535{ 536 mmu_notifier_range_init(range, event, flags, vma, mm, start, end); 537 range->owner = owner; 538} 539 540#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ 541({ \ 542 int __young; \ 543 struct vm_area_struct *___vma = __vma; \ 544 unsigned long ___address = __address; \ 545 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ 546 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 547 ___address, \ 548 ___address + \ 549 PAGE_SIZE); \ 550 __young; \ 551}) 552 553#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ 554({ \ 555 int __young; \ 556 struct vm_area_struct *___vma = __vma; \ 557 unsigned long ___address = __address; \ 558 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ 559 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 560 ___address, \ 561 ___address + \ 562 PMD_SIZE); \ 563 __young; \ 564}) 565 566#define ptep_clear_young_notify(__vma, __address, __ptep) \ 567({ \ 568 int __young; \ 569 struct vm_area_struct *___vma = __vma; \ 570 unsigned long ___address = __address; \ 571 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ 572 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 573 ___address + PAGE_SIZE); \ 574 __young; \ 575}) 576 577#define pmdp_clear_young_notify(__vma, __address, __pmdp) \ 578({ \ 579 int __young; \ 580 struct vm_area_struct *___vma = __vma; \ 581 unsigned long ___address = __address; \ 582 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ 583 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 584 ___address + PMD_SIZE); \ 585 __young; \ 586}) 587 588#define ptep_clear_flush_notify(__vma, __address, __ptep) \ 589({ \ 590 unsigned long ___addr = __address & PAGE_MASK; \ 591 struct mm_struct *___mm = (__vma)->vm_mm; \ 592 pte_t ___pte; \ 593 \ 594 ___pte = ptep_clear_flush(__vma, __address, __ptep); \ 595 mmu_notifier_invalidate_range(___mm, ___addr, \ 596 ___addr + PAGE_SIZE); \ 597 \ 598 ___pte; \ 599}) 600 601#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ 602({ \ 603 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ 604 struct mm_struct *___mm = (__vma)->vm_mm; \ 605 pmd_t ___pmd; \ 606 \ 607 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ 608 mmu_notifier_invalidate_range(___mm, ___haddr, \ 609 ___haddr + HPAGE_PMD_SIZE); \ 610 \ 611 ___pmd; \ 612}) 613 614#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ 615({ \ 616 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ 617 struct mm_struct *___mm = (__vma)->vm_mm; \ 618 pud_t ___pud; \ 619 \ 620 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ 621 mmu_notifier_invalidate_range(___mm, ___haddr, \ 622 ___haddr + HPAGE_PUD_SIZE); \ 623 \ 624 ___pud; \ 625}) 626 627/* 628 * set_pte_at_notify() sets the pte _after_ running the notifier. 629 * This is safe to start by updating the secondary MMUs, because the primary MMU 630 * pte invalidate must have already happened with a ptep_clear_flush() before 631 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is 632 * required when we change both the protection of the mapping from read-only to 633 * read-write and the pfn (like during copy on write page faults). Otherwise the 634 * old page would remain mapped readonly in the secondary MMUs after the new 635 * page is already writable by some CPU through the primary MMU. 636 */ 637#define set_pte_at_notify(__mm, __address, __ptep, __pte) \ 638({ \ 639 struct mm_struct *___mm = __mm; \ 640 unsigned long ___address = __address; \ 641 pte_t ___pte = __pte; \ 642 \ 643 mmu_notifier_change_pte(___mm, ___address, ___pte); \ 644 set_pte_at(___mm, ___address, __ptep, ___pte); \ 645}) 646 647#else /* CONFIG_MMU_NOTIFIER */ 648 649struct mmu_notifier_range { 650 unsigned long start; 651 unsigned long end; 652}; 653 654static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, 655 unsigned long start, 656 unsigned long end) 657{ 658 range->start = start; 659 range->end = end; 660} 661 662#define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \ 663 _mmu_notifier_range_init(range, start, end) 664#define mmu_notifier_range_init_owner(range, event, flags, vma, mm, start, \ 665 end, owner) \ 666 _mmu_notifier_range_init(range, start, end) 667 668static inline bool 669mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 670{ 671 return true; 672} 673 674static inline int mm_has_notifiers(struct mm_struct *mm) 675{ 676 return 0; 677} 678 679static inline void mmu_notifier_release(struct mm_struct *mm) 680{ 681} 682 683static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 684 unsigned long start, 685 unsigned long end) 686{ 687 return 0; 688} 689 690static inline int mmu_notifier_test_young(struct mm_struct *mm, 691 unsigned long address) 692{ 693 return 0; 694} 695 696static inline void mmu_notifier_change_pte(struct mm_struct *mm, 697 unsigned long address, pte_t pte) 698{ 699} 700 701static inline void 702mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 703{ 704} 705 706static inline int 707mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 708{ 709 return 0; 710} 711 712static inline 713void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 714{ 715} 716 717static inline void 718mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 719{ 720} 721 722static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 723 unsigned long start, unsigned long end) 724{ 725} 726 727static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) 728{ 729} 730 731static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 732{ 733} 734 735#define mmu_notifier_range_update_to_read_only(r) false 736 737#define ptep_clear_flush_young_notify ptep_clear_flush_young 738#define pmdp_clear_flush_young_notify pmdp_clear_flush_young 739#define ptep_clear_young_notify ptep_test_and_clear_young 740#define pmdp_clear_young_notify pmdp_test_and_clear_young 741#define ptep_clear_flush_notify ptep_clear_flush 742#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush 743#define pudp_huge_clear_flush_notify pudp_huge_clear_flush 744#define set_pte_at_notify set_pte_at 745 746static inline void mmu_notifier_synchronize(void) 747{ 748} 749 750#endif /* CONFIG_MMU_NOTIFIER */ 751 752#endif /* _LINUX_MMU_NOTIFIER_H */