cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu_notifier.h (25229B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_MMU_NOTIFIER_H
      3#define _LINUX_MMU_NOTIFIER_H
      4
      5#include <linux/list.h>
      6#include <linux/spinlock.h>
      7#include <linux/mm_types.h>
      8#include <linux/mmap_lock.h>
      9#include <linux/srcu.h>
     10#include <linux/interval_tree.h>
     11
     12struct mmu_notifier_subscriptions;
     13struct mmu_notifier;
     14struct mmu_notifier_range;
     15struct mmu_interval_notifier;
     16
     17/**
     18 * enum mmu_notifier_event - reason for the mmu notifier callback
     19 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
     20 * move the range
     21 *
     22 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
     23 * madvise() or replacing a page by another one, ...).
     24 *
     25 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
     26 * ie using the vma access permission (vm_page_prot) to update the whole range
     27 * is enough no need to inspect changes to the CPU page table (mprotect()
     28 * syscall)
     29 *
     30 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
     31 * pages in the range so to mirror those changes the user must inspect the CPU
     32 * page table (from the end callback).
     33 *
     34 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
     35 * access flags). User should soft dirty the page in the end callback to make
     36 * sure that anyone relying on soft dirtiness catch pages that might be written
     37 * through non CPU mappings.
     38 *
     39 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal
     40 * that the mm refcount is zero and the range is no longer accessible.
     41 *
     42 * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal
     43 * a device driver to possibly ignore the invalidation if the
     44 * owner field matches the driver's device private pgmap owner.
     45 *
     46 * @MMU_NOTIFY_EXCLUSIVE: to signal a device driver that the device will no
     47 * longer have exclusive access to the page. When sent during creation of an
     48 * exclusive range the owner will be initialised to the value provided by the
     49 * caller of make_device_exclusive_range(), otherwise the owner will be NULL.
     50 */
     51enum mmu_notifier_event {
     52	MMU_NOTIFY_UNMAP = 0,
     53	MMU_NOTIFY_CLEAR,
     54	MMU_NOTIFY_PROTECTION_VMA,
     55	MMU_NOTIFY_PROTECTION_PAGE,
     56	MMU_NOTIFY_SOFT_DIRTY,
     57	MMU_NOTIFY_RELEASE,
     58	MMU_NOTIFY_MIGRATE,
     59	MMU_NOTIFY_EXCLUSIVE,
     60};
     61
     62#define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
     63
     64struct mmu_notifier_ops {
     65	/*
     66	 * Called either by mmu_notifier_unregister or when the mm is
     67	 * being destroyed by exit_mmap, always before all pages are
     68	 * freed. This can run concurrently with other mmu notifier
     69	 * methods (the ones invoked outside the mm context) and it
     70	 * should tear down all secondary mmu mappings and freeze the
     71	 * secondary mmu. If this method isn't implemented you've to
     72	 * be sure that nothing could possibly write to the pages
     73	 * through the secondary mmu by the time the last thread with
     74	 * tsk->mm == mm exits.
     75	 *
     76	 * As side note: the pages freed after ->release returns could
     77	 * be immediately reallocated by the gart at an alias physical
     78	 * address with a different cache model, so if ->release isn't
     79	 * implemented because all _software_ driven memory accesses
     80	 * through the secondary mmu are terminated by the time the
     81	 * last thread of this mm quits, you've also to be sure that
     82	 * speculative _hardware_ operations can't allocate dirty
     83	 * cachelines in the cpu that could not be snooped and made
     84	 * coherent with the other read and write operations happening
     85	 * through the gart alias address, so leading to memory
     86	 * corruption.
     87	 */
     88	void (*release)(struct mmu_notifier *subscription,
     89			struct mm_struct *mm);
     90
     91	/*
     92	 * clear_flush_young is called after the VM is
     93	 * test-and-clearing the young/accessed bitflag in the
     94	 * pte. This way the VM will provide proper aging to the
     95	 * accesses to the page through the secondary MMUs and not
     96	 * only to the ones through the Linux pte.
     97	 * Start-end is necessary in case the secondary MMU is mapping the page
     98	 * at a smaller granularity than the primary MMU.
     99	 */
    100	int (*clear_flush_young)(struct mmu_notifier *subscription,
    101				 struct mm_struct *mm,
    102				 unsigned long start,
    103				 unsigned long end);
    104
    105	/*
    106	 * clear_young is a lightweight version of clear_flush_young. Like the
    107	 * latter, it is supposed to test-and-clear the young/accessed bitflag
    108	 * in the secondary pte, but it may omit flushing the secondary tlb.
    109	 */
    110	int (*clear_young)(struct mmu_notifier *subscription,
    111			   struct mm_struct *mm,
    112			   unsigned long start,
    113			   unsigned long end);
    114
    115	/*
    116	 * test_young is called to check the young/accessed bitflag in
    117	 * the secondary pte. This is used to know if the page is
    118	 * frequently used without actually clearing the flag or tearing
    119	 * down the secondary mapping on the page.
    120	 */
    121	int (*test_young)(struct mmu_notifier *subscription,
    122			  struct mm_struct *mm,
    123			  unsigned long address);
    124
    125	/*
    126	 * change_pte is called in cases that pte mapping to page is changed:
    127	 * for example, when ksm remaps pte to point to a new shared page.
    128	 */
    129	void (*change_pte)(struct mmu_notifier *subscription,
    130			   struct mm_struct *mm,
    131			   unsigned long address,
    132			   pte_t pte);
    133
    134	/*
    135	 * invalidate_range_start() and invalidate_range_end() must be
    136	 * paired and are called only when the mmap_lock and/or the
    137	 * locks protecting the reverse maps are held. If the subsystem
    138	 * can't guarantee that no additional references are taken to
    139	 * the pages in the range, it has to implement the
    140	 * invalidate_range() notifier to remove any references taken
    141	 * after invalidate_range_start().
    142	 *
    143	 * Invalidation of multiple concurrent ranges may be
    144	 * optionally permitted by the driver. Either way the
    145	 * establishment of sptes is forbidden in the range passed to
    146	 * invalidate_range_begin/end for the whole duration of the
    147	 * invalidate_range_begin/end critical section.
    148	 *
    149	 * invalidate_range_start() is called when all pages in the
    150	 * range are still mapped and have at least a refcount of one.
    151	 *
    152	 * invalidate_range_end() is called when all pages in the
    153	 * range have been unmapped and the pages have been freed by
    154	 * the VM.
    155	 *
    156	 * The VM will remove the page table entries and potentially
    157	 * the page between invalidate_range_start() and
    158	 * invalidate_range_end(). If the page must not be freed
    159	 * because of pending I/O or other circumstances then the
    160	 * invalidate_range_start() callback (or the initial mapping
    161	 * by the driver) must make sure that the refcount is kept
    162	 * elevated.
    163	 *
    164	 * If the driver increases the refcount when the pages are
    165	 * initially mapped into an address space then either
    166	 * invalidate_range_start() or invalidate_range_end() may
    167	 * decrease the refcount. If the refcount is decreased on
    168	 * invalidate_range_start() then the VM can free pages as page
    169	 * table entries are removed.  If the refcount is only
    170	 * dropped on invalidate_range_end() then the driver itself
    171	 * will drop the last refcount but it must take care to flush
    172	 * any secondary tlb before doing the final free on the
    173	 * page. Pages will no longer be referenced by the linux
    174	 * address space but may still be referenced by sptes until
    175	 * the last refcount is dropped.
    176	 *
    177	 * If blockable argument is set to false then the callback cannot
    178	 * sleep and has to return with -EAGAIN if sleeping would be required.
    179	 * 0 should be returned otherwise. Please note that notifiers that can
    180	 * fail invalidate_range_start are not allowed to implement
    181	 * invalidate_range_end, as there is no mechanism for informing the
    182	 * notifier that its start failed.
    183	 */
    184	int (*invalidate_range_start)(struct mmu_notifier *subscription,
    185				      const struct mmu_notifier_range *range);
    186	void (*invalidate_range_end)(struct mmu_notifier *subscription,
    187				     const struct mmu_notifier_range *range);
    188
    189	/*
    190	 * invalidate_range() is either called between
    191	 * invalidate_range_start() and invalidate_range_end() when the
    192	 * VM has to free pages that where unmapped, but before the
    193	 * pages are actually freed, or outside of _start()/_end() when
    194	 * a (remote) TLB is necessary.
    195	 *
    196	 * If invalidate_range() is used to manage a non-CPU TLB with
    197	 * shared page-tables, it not necessary to implement the
    198	 * invalidate_range_start()/end() notifiers, as
    199	 * invalidate_range() already catches the points in time when an
    200	 * external TLB range needs to be flushed. For more in depth
    201	 * discussion on this see Documentation/vm/mmu_notifier.rst
    202	 *
    203	 * Note that this function might be called with just a sub-range
    204	 * of what was passed to invalidate_range_start()/end(), if
    205	 * called between those functions.
    206	 */
    207	void (*invalidate_range)(struct mmu_notifier *subscription,
    208				 struct mm_struct *mm,
    209				 unsigned long start,
    210				 unsigned long end);
    211
    212	/*
    213	 * These callbacks are used with the get/put interface to manage the
    214	 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new
    215	 * notifier for use with the mm.
    216	 *
    217	 * free_notifier() is only called after the mmu_notifier has been
    218	 * fully put, calls to any ops callback are prevented and no ops
    219	 * callbacks are currently running. It is called from a SRCU callback
    220	 * and cannot sleep.
    221	 */
    222	struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
    223	void (*free_notifier)(struct mmu_notifier *subscription);
    224};
    225
    226/*
    227 * The notifier chains are protected by mmap_lock and/or the reverse map
    228 * semaphores. Notifier chains are only changed when all reverse maps and
    229 * the mmap_lock locks are taken.
    230 *
    231 * Therefore notifier chains can only be traversed when either
    232 *
    233 * 1. mmap_lock is held.
    234 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
    235 * 3. No other concurrent thread can access the list (release)
    236 */
    237struct mmu_notifier {
    238	struct hlist_node hlist;
    239	const struct mmu_notifier_ops *ops;
    240	struct mm_struct *mm;
    241	struct rcu_head rcu;
    242	unsigned int users;
    243};
    244
    245/**
    246 * struct mmu_interval_notifier_ops
    247 * @invalidate: Upon return the caller must stop using any SPTEs within this
    248 *              range. This function can sleep. Return false only if sleeping
    249 *              was required but mmu_notifier_range_blockable(range) is false.
    250 */
    251struct mmu_interval_notifier_ops {
    252	bool (*invalidate)(struct mmu_interval_notifier *interval_sub,
    253			   const struct mmu_notifier_range *range,
    254			   unsigned long cur_seq);
    255};
    256
    257struct mmu_interval_notifier {
    258	struct interval_tree_node interval_tree;
    259	const struct mmu_interval_notifier_ops *ops;
    260	struct mm_struct *mm;
    261	struct hlist_node deferred_item;
    262	unsigned long invalidate_seq;
    263};
    264
    265#ifdef CONFIG_MMU_NOTIFIER
    266
    267#ifdef CONFIG_LOCKDEP
    268extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
    269#endif
    270
    271struct mmu_notifier_range {
    272	struct vm_area_struct *vma;
    273	struct mm_struct *mm;
    274	unsigned long start;
    275	unsigned long end;
    276	unsigned flags;
    277	enum mmu_notifier_event event;
    278	void *owner;
    279};
    280
    281static inline int mm_has_notifiers(struct mm_struct *mm)
    282{
    283	return unlikely(mm->notifier_subscriptions);
    284}
    285
    286struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
    287					     struct mm_struct *mm);
    288static inline struct mmu_notifier *
    289mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
    290{
    291	struct mmu_notifier *ret;
    292
    293	mmap_write_lock(mm);
    294	ret = mmu_notifier_get_locked(ops, mm);
    295	mmap_write_unlock(mm);
    296	return ret;
    297}
    298void mmu_notifier_put(struct mmu_notifier *subscription);
    299void mmu_notifier_synchronize(void);
    300
    301extern int mmu_notifier_register(struct mmu_notifier *subscription,
    302				 struct mm_struct *mm);
    303extern int __mmu_notifier_register(struct mmu_notifier *subscription,
    304				   struct mm_struct *mm);
    305extern void mmu_notifier_unregister(struct mmu_notifier *subscription,
    306				    struct mm_struct *mm);
    307
    308unsigned long
    309mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub);
    310int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
    311				 struct mm_struct *mm, unsigned long start,
    312				 unsigned long length,
    313				 const struct mmu_interval_notifier_ops *ops);
    314int mmu_interval_notifier_insert_locked(
    315	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
    316	unsigned long start, unsigned long length,
    317	const struct mmu_interval_notifier_ops *ops);
    318void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub);
    319
    320/**
    321 * mmu_interval_set_seq - Save the invalidation sequence
    322 * @interval_sub - The subscription passed to invalidate
    323 * @cur_seq - The cur_seq passed to the invalidate() callback
    324 *
    325 * This must be called unconditionally from the invalidate callback of a
    326 * struct mmu_interval_notifier_ops under the same lock that is used to call
    327 * mmu_interval_read_retry(). It updates the sequence number for later use by
    328 * mmu_interval_read_retry(). The provided cur_seq will always be odd.
    329 *
    330 * If the caller does not call mmu_interval_read_begin() or
    331 * mmu_interval_read_retry() then this call is not required.
    332 */
    333static inline void
    334mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub,
    335		     unsigned long cur_seq)
    336{
    337	WRITE_ONCE(interval_sub->invalidate_seq, cur_seq);
    338}
    339
    340/**
    341 * mmu_interval_read_retry - End a read side critical section against a VA range
    342 * interval_sub: The subscription
    343 * seq: The return of the paired mmu_interval_read_begin()
    344 *
    345 * This MUST be called under a user provided lock that is also held
    346 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq().
    347 *
    348 * Each call should be paired with a single mmu_interval_read_begin() and
    349 * should be used to conclude the read side.
    350 *
    351 * Returns true if an invalidation collided with this critical section, and
    352 * the caller should retry.
    353 */
    354static inline bool
    355mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub,
    356			unsigned long seq)
    357{
    358	return interval_sub->invalidate_seq != seq;
    359}
    360
    361/**
    362 * mmu_interval_check_retry - Test if a collision has occurred
    363 * interval_sub: The subscription
    364 * seq: The return of the matching mmu_interval_read_begin()
    365 *
    366 * This can be used in the critical section between mmu_interval_read_begin()
    367 * and mmu_interval_read_retry().  A return of true indicates an invalidation
    368 * has collided with this critical region and a future
    369 * mmu_interval_read_retry() will return true.
    370 *
    371 * False is not reliable and only suggests a collision may not have
    372 * occurred. It can be called many times and does not have to hold the user
    373 * provided lock.
    374 *
    375 * This call can be used as part of loops and other expensive operations to
    376 * expedite a retry.
    377 */
    378static inline bool
    379mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub,
    380			 unsigned long seq)
    381{
    382	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
    383	return READ_ONCE(interval_sub->invalidate_seq) != seq;
    384}
    385
    386extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm);
    387extern void __mmu_notifier_release(struct mm_struct *mm);
    388extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
    389					  unsigned long start,
    390					  unsigned long end);
    391extern int __mmu_notifier_clear_young(struct mm_struct *mm,
    392				      unsigned long start,
    393				      unsigned long end);
    394extern int __mmu_notifier_test_young(struct mm_struct *mm,
    395				     unsigned long address);
    396extern void __mmu_notifier_change_pte(struct mm_struct *mm,
    397				      unsigned long address, pte_t pte);
    398extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
    399extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
    400				  bool only_end);
    401extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
    402				  unsigned long start, unsigned long end);
    403extern bool
    404mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
    405
    406static inline bool
    407mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
    408{
    409	return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
    410}
    411
    412static inline void mmu_notifier_release(struct mm_struct *mm)
    413{
    414	if (mm_has_notifiers(mm))
    415		__mmu_notifier_release(mm);
    416}
    417
    418static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
    419					  unsigned long start,
    420					  unsigned long end)
    421{
    422	if (mm_has_notifiers(mm))
    423		return __mmu_notifier_clear_flush_young(mm, start, end);
    424	return 0;
    425}
    426
    427static inline int mmu_notifier_clear_young(struct mm_struct *mm,
    428					   unsigned long start,
    429					   unsigned long end)
    430{
    431	if (mm_has_notifiers(mm))
    432		return __mmu_notifier_clear_young(mm, start, end);
    433	return 0;
    434}
    435
    436static inline int mmu_notifier_test_young(struct mm_struct *mm,
    437					  unsigned long address)
    438{
    439	if (mm_has_notifiers(mm))
    440		return __mmu_notifier_test_young(mm, address);
    441	return 0;
    442}
    443
    444static inline void mmu_notifier_change_pte(struct mm_struct *mm,
    445					   unsigned long address, pte_t pte)
    446{
    447	if (mm_has_notifiers(mm))
    448		__mmu_notifier_change_pte(mm, address, pte);
    449}
    450
    451static inline void
    452mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
    453{
    454	might_sleep();
    455
    456	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
    457	if (mm_has_notifiers(range->mm)) {
    458		range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
    459		__mmu_notifier_invalidate_range_start(range);
    460	}
    461	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
    462}
    463
    464static inline int
    465mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
    466{
    467	int ret = 0;
    468
    469	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
    470	if (mm_has_notifiers(range->mm)) {
    471		range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
    472		ret = __mmu_notifier_invalidate_range_start(range);
    473	}
    474	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
    475	return ret;
    476}
    477
    478static inline void
    479mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
    480{
    481	if (mmu_notifier_range_blockable(range))
    482		might_sleep();
    483
    484	if (mm_has_notifiers(range->mm))
    485		__mmu_notifier_invalidate_range_end(range, false);
    486}
    487
    488static inline void
    489mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
    490{
    491	if (mm_has_notifiers(range->mm))
    492		__mmu_notifier_invalidate_range_end(range, true);
    493}
    494
    495static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
    496				  unsigned long start, unsigned long end)
    497{
    498	if (mm_has_notifiers(mm))
    499		__mmu_notifier_invalidate_range(mm, start, end);
    500}
    501
    502static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
    503{
    504	mm->notifier_subscriptions = NULL;
    505}
    506
    507static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
    508{
    509	if (mm_has_notifiers(mm))
    510		__mmu_notifier_subscriptions_destroy(mm);
    511}
    512
    513
    514static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
    515					   enum mmu_notifier_event event,
    516					   unsigned flags,
    517					   struct vm_area_struct *vma,
    518					   struct mm_struct *mm,
    519					   unsigned long start,
    520					   unsigned long end)
    521{
    522	range->vma = vma;
    523	range->event = event;
    524	range->mm = mm;
    525	range->start = start;
    526	range->end = end;
    527	range->flags = flags;
    528}
    529
    530static inline void mmu_notifier_range_init_owner(
    531			struct mmu_notifier_range *range,
    532			enum mmu_notifier_event event, unsigned int flags,
    533			struct vm_area_struct *vma, struct mm_struct *mm,
    534			unsigned long start, unsigned long end, void *owner)
    535{
    536	mmu_notifier_range_init(range, event, flags, vma, mm, start, end);
    537	range->owner = owner;
    538}
    539
    540#define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
    541({									\
    542	int __young;							\
    543	struct vm_area_struct *___vma = __vma;				\
    544	unsigned long ___address = __address;				\
    545	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
    546	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
    547						  ___address,		\
    548						  ___address +		\
    549							PAGE_SIZE);	\
    550	__young;							\
    551})
    552
    553#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
    554({									\
    555	int __young;							\
    556	struct vm_area_struct *___vma = __vma;				\
    557	unsigned long ___address = __address;				\
    558	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
    559	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
    560						  ___address,		\
    561						  ___address +		\
    562							PMD_SIZE);	\
    563	__young;							\
    564})
    565
    566#define ptep_clear_young_notify(__vma, __address, __ptep)		\
    567({									\
    568	int __young;							\
    569	struct vm_area_struct *___vma = __vma;				\
    570	unsigned long ___address = __address;				\
    571	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
    572	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
    573					    ___address + PAGE_SIZE);	\
    574	__young;							\
    575})
    576
    577#define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
    578({									\
    579	int __young;							\
    580	struct vm_area_struct *___vma = __vma;				\
    581	unsigned long ___address = __address;				\
    582	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
    583	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
    584					    ___address + PMD_SIZE);	\
    585	__young;							\
    586})
    587
    588#define	ptep_clear_flush_notify(__vma, __address, __ptep)		\
    589({									\
    590	unsigned long ___addr = __address & PAGE_MASK;			\
    591	struct mm_struct *___mm = (__vma)->vm_mm;			\
    592	pte_t ___pte;							\
    593									\
    594	___pte = ptep_clear_flush(__vma, __address, __ptep);		\
    595	mmu_notifier_invalidate_range(___mm, ___addr,			\
    596					___addr + PAGE_SIZE);		\
    597									\
    598	___pte;								\
    599})
    600
    601#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)		\
    602({									\
    603	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
    604	struct mm_struct *___mm = (__vma)->vm_mm;			\
    605	pmd_t ___pmd;							\
    606									\
    607	___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);		\
    608	mmu_notifier_invalidate_range(___mm, ___haddr,			\
    609				      ___haddr + HPAGE_PMD_SIZE);	\
    610									\
    611	___pmd;								\
    612})
    613
    614#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud)		\
    615({									\
    616	unsigned long ___haddr = __haddr & HPAGE_PUD_MASK;		\
    617	struct mm_struct *___mm = (__vma)->vm_mm;			\
    618	pud_t ___pud;							\
    619									\
    620	___pud = pudp_huge_clear_flush(__vma, __haddr, __pud);		\
    621	mmu_notifier_invalidate_range(___mm, ___haddr,			\
    622				      ___haddr + HPAGE_PUD_SIZE);	\
    623									\
    624	___pud;								\
    625})
    626
    627/*
    628 * set_pte_at_notify() sets the pte _after_ running the notifier.
    629 * This is safe to start by updating the secondary MMUs, because the primary MMU
    630 * pte invalidate must have already happened with a ptep_clear_flush() before
    631 * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
    632 * required when we change both the protection of the mapping from read-only to
    633 * read-write and the pfn (like during copy on write page faults). Otherwise the
    634 * old page would remain mapped readonly in the secondary MMUs after the new
    635 * page is already writable by some CPU through the primary MMU.
    636 */
    637#define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
    638({									\
    639	struct mm_struct *___mm = __mm;					\
    640	unsigned long ___address = __address;				\
    641	pte_t ___pte = __pte;						\
    642									\
    643	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
    644	set_pte_at(___mm, ___address, __ptep, ___pte);			\
    645})
    646
    647#else /* CONFIG_MMU_NOTIFIER */
    648
    649struct mmu_notifier_range {
    650	unsigned long start;
    651	unsigned long end;
    652};
    653
    654static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
    655					    unsigned long start,
    656					    unsigned long end)
    657{
    658	range->start = start;
    659	range->end = end;
    660}
    661
    662#define mmu_notifier_range_init(range,event,flags,vma,mm,start,end)  \
    663	_mmu_notifier_range_init(range, start, end)
    664#define mmu_notifier_range_init_owner(range, event, flags, vma, mm, start, \
    665					end, owner) \
    666	_mmu_notifier_range_init(range, start, end)
    667
    668static inline bool
    669mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
    670{
    671	return true;
    672}
    673
    674static inline int mm_has_notifiers(struct mm_struct *mm)
    675{
    676	return 0;
    677}
    678
    679static inline void mmu_notifier_release(struct mm_struct *mm)
    680{
    681}
    682
    683static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
    684					  unsigned long start,
    685					  unsigned long end)
    686{
    687	return 0;
    688}
    689
    690static inline int mmu_notifier_test_young(struct mm_struct *mm,
    691					  unsigned long address)
    692{
    693	return 0;
    694}
    695
    696static inline void mmu_notifier_change_pte(struct mm_struct *mm,
    697					   unsigned long address, pte_t pte)
    698{
    699}
    700
    701static inline void
    702mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
    703{
    704}
    705
    706static inline int
    707mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
    708{
    709	return 0;
    710}
    711
    712static inline
    713void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
    714{
    715}
    716
    717static inline void
    718mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
    719{
    720}
    721
    722static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
    723				  unsigned long start, unsigned long end)
    724{
    725}
    726
    727static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
    728{
    729}
    730
    731static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
    732{
    733}
    734
    735#define mmu_notifier_range_update_to_read_only(r) false
    736
    737#define ptep_clear_flush_young_notify ptep_clear_flush_young
    738#define pmdp_clear_flush_young_notify pmdp_clear_flush_young
    739#define ptep_clear_young_notify ptep_test_and_clear_young
    740#define pmdp_clear_young_notify pmdp_test_and_clear_young
    741#define	ptep_clear_flush_notify ptep_clear_flush
    742#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
    743#define pudp_huge_clear_flush_notify pudp_huge_clear_flush
    744#define set_pte_at_notify set_pte_at
    745
    746static inline void mmu_notifier_synchronize(void)
    747{
    748}
    749
    750#endif /* CONFIG_MMU_NOTIFIER */
    751
    752#endif /* _LINUX_MMU_NOTIFIER_H */