cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmzone.h (48823B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_MMZONE_H
      3#define _LINUX_MMZONE_H
      4
      5#ifndef __ASSEMBLY__
      6#ifndef __GENERATING_BOUNDS_H
      7
      8#include <linux/spinlock.h>
      9#include <linux/list.h>
     10#include <linux/wait.h>
     11#include <linux/bitops.h>
     12#include <linux/cache.h>
     13#include <linux/threads.h>
     14#include <linux/numa.h>
     15#include <linux/init.h>
     16#include <linux/seqlock.h>
     17#include <linux/nodemask.h>
     18#include <linux/pageblock-flags.h>
     19#include <linux/page-flags-layout.h>
     20#include <linux/atomic.h>
     21#include <linux/mm_types.h>
     22#include <linux/page-flags.h>
     23#include <linux/local_lock.h>
     24#include <asm/page.h>
     25
     26/* Free memory management - zoned buddy allocator.  */
     27#ifndef CONFIG_FORCE_MAX_ZONEORDER
     28#define MAX_ORDER 11
     29#else
     30#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
     31#endif
     32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
     33
     34/*
     35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
     36 * costly to service.  That is between allocation orders which should
     37 * coalesce naturally under reasonable reclaim pressure and those which
     38 * will not.
     39 */
     40#define PAGE_ALLOC_COSTLY_ORDER 3
     41
     42enum migratetype {
     43	MIGRATE_UNMOVABLE,
     44	MIGRATE_MOVABLE,
     45	MIGRATE_RECLAIMABLE,
     46	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
     47	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
     48#ifdef CONFIG_CMA
     49	/*
     50	 * MIGRATE_CMA migration type is designed to mimic the way
     51	 * ZONE_MOVABLE works.  Only movable pages can be allocated
     52	 * from MIGRATE_CMA pageblocks and page allocator never
     53	 * implicitly change migration type of MIGRATE_CMA pageblock.
     54	 *
     55	 * The way to use it is to change migratetype of a range of
     56	 * pageblocks to MIGRATE_CMA which can be done by
     57	 * __free_pageblock_cma() function.
     58	 */
     59	MIGRATE_CMA,
     60#endif
     61#ifdef CONFIG_MEMORY_ISOLATION
     62	MIGRATE_ISOLATE,	/* can't allocate from here */
     63#endif
     64	MIGRATE_TYPES
     65};
     66
     67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
     68extern const char * const migratetype_names[MIGRATE_TYPES];
     69
     70#ifdef CONFIG_CMA
     71#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
     72#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
     73#else
     74#  define is_migrate_cma(migratetype) false
     75#  define is_migrate_cma_page(_page) false
     76#endif
     77
     78static inline bool is_migrate_movable(int mt)
     79{
     80	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
     81}
     82
     83/*
     84 * Check whether a migratetype can be merged with another migratetype.
     85 *
     86 * It is only mergeable when it can fall back to other migratetypes for
     87 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
     88 */
     89static inline bool migratetype_is_mergeable(int mt)
     90{
     91	return mt < MIGRATE_PCPTYPES;
     92}
     93
     94#define for_each_migratetype_order(order, type) \
     95	for (order = 0; order < MAX_ORDER; order++) \
     96		for (type = 0; type < MIGRATE_TYPES; type++)
     97
     98extern int page_group_by_mobility_disabled;
     99
    100#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
    101
    102#define get_pageblock_migratetype(page)					\
    103	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
    104
    105struct free_area {
    106	struct list_head	free_list[MIGRATE_TYPES];
    107	unsigned long		nr_free;
    108};
    109
    110static inline struct page *get_page_from_free_area(struct free_area *area,
    111					    int migratetype)
    112{
    113	return list_first_entry_or_null(&area->free_list[migratetype],
    114					struct page, lru);
    115}
    116
    117static inline bool free_area_empty(struct free_area *area, int migratetype)
    118{
    119	return list_empty(&area->free_list[migratetype]);
    120}
    121
    122struct pglist_data;
    123
    124/*
    125 * Add a wild amount of padding here to ensure data fall into separate
    126 * cachelines.  There are very few zone structures in the machine, so space
    127 * consumption is not a concern here.
    128 */
    129#if defined(CONFIG_SMP)
    130struct zone_padding {
    131	char x[0];
    132} ____cacheline_internodealigned_in_smp;
    133#define ZONE_PADDING(name)	struct zone_padding name;
    134#else
    135#define ZONE_PADDING(name)
    136#endif
    137
    138#ifdef CONFIG_NUMA
    139enum numa_stat_item {
    140	NUMA_HIT,		/* allocated in intended node */
    141	NUMA_MISS,		/* allocated in non intended node */
    142	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
    143	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
    144	NUMA_LOCAL,		/* allocation from local node */
    145	NUMA_OTHER,		/* allocation from other node */
    146	NR_VM_NUMA_EVENT_ITEMS
    147};
    148#else
    149#define NR_VM_NUMA_EVENT_ITEMS 0
    150#endif
    151
    152enum zone_stat_item {
    153	/* First 128 byte cacheline (assuming 64 bit words) */
    154	NR_FREE_PAGES,
    155	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
    156	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
    157	NR_ZONE_ACTIVE_ANON,
    158	NR_ZONE_INACTIVE_FILE,
    159	NR_ZONE_ACTIVE_FILE,
    160	NR_ZONE_UNEVICTABLE,
    161	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
    162	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
    163	/* Second 128 byte cacheline */
    164	NR_BOUNCE,
    165#if IS_ENABLED(CONFIG_ZSMALLOC)
    166	NR_ZSPAGES,		/* allocated in zsmalloc */
    167#endif
    168	NR_FREE_CMA_PAGES,
    169	NR_VM_ZONE_STAT_ITEMS };
    170
    171enum node_stat_item {
    172	NR_LRU_BASE,
    173	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
    174	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
    175	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
    176	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
    177	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
    178	NR_SLAB_RECLAIMABLE_B,
    179	NR_SLAB_UNRECLAIMABLE_B,
    180	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
    181	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
    182	WORKINGSET_NODES,
    183	WORKINGSET_REFAULT_BASE,
    184	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
    185	WORKINGSET_REFAULT_FILE,
    186	WORKINGSET_ACTIVATE_BASE,
    187	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
    188	WORKINGSET_ACTIVATE_FILE,
    189	WORKINGSET_RESTORE_BASE,
    190	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
    191	WORKINGSET_RESTORE_FILE,
    192	WORKINGSET_NODERECLAIM,
    193	NR_ANON_MAPPED,	/* Mapped anonymous pages */
    194	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
    195			   only modified from process context */
    196	NR_FILE_PAGES,
    197	NR_FILE_DIRTY,
    198	NR_WRITEBACK,
    199	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
    200	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
    201	NR_SHMEM_THPS,
    202	NR_SHMEM_PMDMAPPED,
    203	NR_FILE_THPS,
    204	NR_FILE_PMDMAPPED,
    205	NR_ANON_THPS,
    206	NR_VMSCAN_WRITE,
    207	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
    208	NR_DIRTIED,		/* page dirtyings since bootup */
    209	NR_WRITTEN,		/* page writings since bootup */
    210	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
    211	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
    212	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
    213	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
    214	NR_KERNEL_STACK_KB,	/* measured in KiB */
    215#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
    216	NR_KERNEL_SCS_KB,	/* measured in KiB */
    217#endif
    218	NR_PAGETABLE,		/* used for pagetables */
    219#ifdef CONFIG_SWAP
    220	NR_SWAPCACHE,
    221#endif
    222#ifdef CONFIG_NUMA_BALANCING
    223	PGPROMOTE_SUCCESS,	/* promote successfully */
    224#endif
    225	NR_VM_NODE_STAT_ITEMS
    226};
    227
    228/*
    229 * Returns true if the item should be printed in THPs (/proc/vmstat
    230 * currently prints number of anon, file and shmem THPs. But the item
    231 * is charged in pages).
    232 */
    233static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
    234{
    235	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
    236		return false;
    237
    238	return item == NR_ANON_THPS ||
    239	       item == NR_FILE_THPS ||
    240	       item == NR_SHMEM_THPS ||
    241	       item == NR_SHMEM_PMDMAPPED ||
    242	       item == NR_FILE_PMDMAPPED;
    243}
    244
    245/*
    246 * Returns true if the value is measured in bytes (most vmstat values are
    247 * measured in pages). This defines the API part, the internal representation
    248 * might be different.
    249 */
    250static __always_inline bool vmstat_item_in_bytes(int idx)
    251{
    252	/*
    253	 * Global and per-node slab counters track slab pages.
    254	 * It's expected that changes are multiples of PAGE_SIZE.
    255	 * Internally values are stored in pages.
    256	 *
    257	 * Per-memcg and per-lruvec counters track memory, consumed
    258	 * by individual slab objects. These counters are actually
    259	 * byte-precise.
    260	 */
    261	return (idx == NR_SLAB_RECLAIMABLE_B ||
    262		idx == NR_SLAB_UNRECLAIMABLE_B);
    263}
    264
    265/*
    266 * We do arithmetic on the LRU lists in various places in the code,
    267 * so it is important to keep the active lists LRU_ACTIVE higher in
    268 * the array than the corresponding inactive lists, and to keep
    269 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
    270 *
    271 * This has to be kept in sync with the statistics in zone_stat_item
    272 * above and the descriptions in vmstat_text in mm/vmstat.c
    273 */
    274#define LRU_BASE 0
    275#define LRU_ACTIVE 1
    276#define LRU_FILE 2
    277
    278enum lru_list {
    279	LRU_INACTIVE_ANON = LRU_BASE,
    280	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
    281	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
    282	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
    283	LRU_UNEVICTABLE,
    284	NR_LRU_LISTS
    285};
    286
    287enum vmscan_throttle_state {
    288	VMSCAN_THROTTLE_WRITEBACK,
    289	VMSCAN_THROTTLE_ISOLATED,
    290	VMSCAN_THROTTLE_NOPROGRESS,
    291	VMSCAN_THROTTLE_CONGESTED,
    292	NR_VMSCAN_THROTTLE,
    293};
    294
    295#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
    296
    297#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
    298
    299static inline bool is_file_lru(enum lru_list lru)
    300{
    301	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
    302}
    303
    304static inline bool is_active_lru(enum lru_list lru)
    305{
    306	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
    307}
    308
    309#define ANON_AND_FILE 2
    310
    311enum lruvec_flags {
    312	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
    313					 * backed by a congested BDI
    314					 */
    315};
    316
    317struct lruvec {
    318	struct list_head		lists[NR_LRU_LISTS];
    319	/* per lruvec lru_lock for memcg */
    320	spinlock_t			lru_lock;
    321	/*
    322	 * These track the cost of reclaiming one LRU - file or anon -
    323	 * over the other. As the observed cost of reclaiming one LRU
    324	 * increases, the reclaim scan balance tips toward the other.
    325	 */
    326	unsigned long			anon_cost;
    327	unsigned long			file_cost;
    328	/* Non-resident age, driven by LRU movement */
    329	atomic_long_t			nonresident_age;
    330	/* Refaults at the time of last reclaim cycle */
    331	unsigned long			refaults[ANON_AND_FILE];
    332	/* Various lruvec state flags (enum lruvec_flags) */
    333	unsigned long			flags;
    334#ifdef CONFIG_MEMCG
    335	struct pglist_data *pgdat;
    336#endif
    337};
    338
    339/* Isolate unmapped pages */
    340#define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
    341/* Isolate for asynchronous migration */
    342#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
    343/* Isolate unevictable pages */
    344#define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
    345
    346/* LRU Isolation modes. */
    347typedef unsigned __bitwise isolate_mode_t;
    348
    349enum zone_watermarks {
    350	WMARK_MIN,
    351	WMARK_LOW,
    352	WMARK_HIGH,
    353	WMARK_PROMO,
    354	NR_WMARK
    355};
    356
    357/*
    358 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
    359 * for pageblock size for THP if configured.
    360 */
    361#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    362#define NR_PCP_THP 1
    363#else
    364#define NR_PCP_THP 0
    365#endif
    366#define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
    367
    368/*
    369 * Shift to encode migratetype and order in the same integer, with order
    370 * in the least significant bits.
    371 */
    372#define NR_PCP_ORDER_WIDTH 8
    373#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
    374
    375#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
    376#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
    377#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
    378#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
    379
    380/* Fields and list protected by pagesets local_lock in page_alloc.c */
    381struct per_cpu_pages {
    382	int count;		/* number of pages in the list */
    383	int high;		/* high watermark, emptying needed */
    384	int batch;		/* chunk size for buddy add/remove */
    385	short free_factor;	/* batch scaling factor during free */
    386#ifdef CONFIG_NUMA
    387	short expire;		/* When 0, remote pagesets are drained */
    388#endif
    389
    390	/* Lists of pages, one per migrate type stored on the pcp-lists */
    391	struct list_head lists[NR_PCP_LISTS];
    392};
    393
    394struct per_cpu_zonestat {
    395#ifdef CONFIG_SMP
    396	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
    397	s8 stat_threshold;
    398#endif
    399#ifdef CONFIG_NUMA
    400	/*
    401	 * Low priority inaccurate counters that are only folded
    402	 * on demand. Use a large type to avoid the overhead of
    403	 * folding during refresh_cpu_vm_stats.
    404	 */
    405	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
    406#endif
    407};
    408
    409struct per_cpu_nodestat {
    410	s8 stat_threshold;
    411	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
    412};
    413
    414#endif /* !__GENERATING_BOUNDS.H */
    415
    416enum zone_type {
    417	/*
    418	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
    419	 * to DMA to all of the addressable memory (ZONE_NORMAL).
    420	 * On architectures where this area covers the whole 32 bit address
    421	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
    422	 * DMA addressing constraints. This distinction is important as a 32bit
    423	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
    424	 * platforms may need both zones as they support peripherals with
    425	 * different DMA addressing limitations.
    426	 */
    427#ifdef CONFIG_ZONE_DMA
    428	ZONE_DMA,
    429#endif
    430#ifdef CONFIG_ZONE_DMA32
    431	ZONE_DMA32,
    432#endif
    433	/*
    434	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
    435	 * performed on pages in ZONE_NORMAL if the DMA devices support
    436	 * transfers to all addressable memory.
    437	 */
    438	ZONE_NORMAL,
    439#ifdef CONFIG_HIGHMEM
    440	/*
    441	 * A memory area that is only addressable by the kernel through
    442	 * mapping portions into its own address space. This is for example
    443	 * used by i386 to allow the kernel to address the memory beyond
    444	 * 900MB. The kernel will set up special mappings (page
    445	 * table entries on i386) for each page that the kernel needs to
    446	 * access.
    447	 */
    448	ZONE_HIGHMEM,
    449#endif
    450	/*
    451	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
    452	 * movable pages with few exceptional cases described below. Main use
    453	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
    454	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
    455	 * to increase the number of THP/huge pages. Notable special cases are:
    456	 *
    457	 * 1. Pinned pages: (long-term) pinning of movable pages might
    458	 *    essentially turn such pages unmovable. Therefore, we do not allow
    459	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
    460	 *    faulted, they come from the right zone right away. However, it is
    461	 *    still possible that address space already has pages in
    462	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
    463	 *    touches that memory before pinning). In such case we migrate them
    464	 *    to a different zone. When migration fails - pinning fails.
    465	 * 2. memblock allocations: kernelcore/movablecore setups might create
    466	 *    situations where ZONE_MOVABLE contains unmovable allocations
    467	 *    after boot. Memory offlining and allocations fail early.
    468	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
    469	 *    situations where ZONE_MOVABLE contains memory holes after boot,
    470	 *    for example, if we have sections that are only partially
    471	 *    populated. Memory offlining and allocations fail early.
    472	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
    473	 *    memory offlining, such pages cannot be allocated.
    474	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
    475	 *    hotplugged memory blocks might only partially be managed by the
    476	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
    477	 *    parts not manged by the buddy are unmovable PG_offline pages. In
    478	 *    some cases (virtio-mem), such pages can be skipped during
    479	 *    memory offlining, however, cannot be moved/allocated. These
    480	 *    techniques might use alloc_contig_range() to hide previously
    481	 *    exposed pages from the buddy again (e.g., to implement some sort
    482	 *    of memory unplug in virtio-mem).
    483	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
    484	 *    situations where ZERO_PAGE(0) which is allocated differently
    485	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
    486	 *    cannot be migrated.
    487	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
    488	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
    489	 *    such zone. Such pages cannot be really moved around as they are
    490	 *    self-stored in the range, but they are treated as movable when
    491	 *    the range they describe is about to be offlined.
    492	 *
    493	 * In general, no unmovable allocations that degrade memory offlining
    494	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
    495	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
    496	 * if has_unmovable_pages() states that there are no unmovable pages,
    497	 * there can be false negatives).
    498	 */
    499	ZONE_MOVABLE,
    500#ifdef CONFIG_ZONE_DEVICE
    501	ZONE_DEVICE,
    502#endif
    503	__MAX_NR_ZONES
    504
    505};
    506
    507#ifndef __GENERATING_BOUNDS_H
    508
    509#define ASYNC_AND_SYNC 2
    510
    511struct zone {
    512	/* Read-mostly fields */
    513
    514	/* zone watermarks, access with *_wmark_pages(zone) macros */
    515	unsigned long _watermark[NR_WMARK];
    516	unsigned long watermark_boost;
    517
    518	unsigned long nr_reserved_highatomic;
    519
    520	/*
    521	 * We don't know if the memory that we're going to allocate will be
    522	 * freeable or/and it will be released eventually, so to avoid totally
    523	 * wasting several GB of ram we must reserve some of the lower zone
    524	 * memory (otherwise we risk to run OOM on the lower zones despite
    525	 * there being tons of freeable ram on the higher zones).  This array is
    526	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
    527	 * changes.
    528	 */
    529	long lowmem_reserve[MAX_NR_ZONES];
    530
    531#ifdef CONFIG_NUMA
    532	int node;
    533#endif
    534	struct pglist_data	*zone_pgdat;
    535	struct per_cpu_pages	__percpu *per_cpu_pageset;
    536	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
    537	/*
    538	 * the high and batch values are copied to individual pagesets for
    539	 * faster access
    540	 */
    541	int pageset_high;
    542	int pageset_batch;
    543
    544#ifndef CONFIG_SPARSEMEM
    545	/*
    546	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
    547	 * In SPARSEMEM, this map is stored in struct mem_section
    548	 */
    549	unsigned long		*pageblock_flags;
    550#endif /* CONFIG_SPARSEMEM */
    551
    552	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
    553	unsigned long		zone_start_pfn;
    554
    555	/*
    556	 * spanned_pages is the total pages spanned by the zone, including
    557	 * holes, which is calculated as:
    558	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
    559	 *
    560	 * present_pages is physical pages existing within the zone, which
    561	 * is calculated as:
    562	 *	present_pages = spanned_pages - absent_pages(pages in holes);
    563	 *
    564	 * present_early_pages is present pages existing within the zone
    565	 * located on memory available since early boot, excluding hotplugged
    566	 * memory.
    567	 *
    568	 * managed_pages is present pages managed by the buddy system, which
    569	 * is calculated as (reserved_pages includes pages allocated by the
    570	 * bootmem allocator):
    571	 *	managed_pages = present_pages - reserved_pages;
    572	 *
    573	 * cma pages is present pages that are assigned for CMA use
    574	 * (MIGRATE_CMA).
    575	 *
    576	 * So present_pages may be used by memory hotplug or memory power
    577	 * management logic to figure out unmanaged pages by checking
    578	 * (present_pages - managed_pages). And managed_pages should be used
    579	 * by page allocator and vm scanner to calculate all kinds of watermarks
    580	 * and thresholds.
    581	 *
    582	 * Locking rules:
    583	 *
    584	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
    585	 * It is a seqlock because it has to be read outside of zone->lock,
    586	 * and it is done in the main allocator path.  But, it is written
    587	 * quite infrequently.
    588	 *
    589	 * The span_seq lock is declared along with zone->lock because it is
    590	 * frequently read in proximity to zone->lock.  It's good to
    591	 * give them a chance of being in the same cacheline.
    592	 *
    593	 * Write access to present_pages at runtime should be protected by
    594	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
    595	 * present_pages should get_online_mems() to get a stable value.
    596	 */
    597	atomic_long_t		managed_pages;
    598	unsigned long		spanned_pages;
    599	unsigned long		present_pages;
    600#if defined(CONFIG_MEMORY_HOTPLUG)
    601	unsigned long		present_early_pages;
    602#endif
    603#ifdef CONFIG_CMA
    604	unsigned long		cma_pages;
    605#endif
    606
    607	const char		*name;
    608
    609#ifdef CONFIG_MEMORY_ISOLATION
    610	/*
    611	 * Number of isolated pageblock. It is used to solve incorrect
    612	 * freepage counting problem due to racy retrieving migratetype
    613	 * of pageblock. Protected by zone->lock.
    614	 */
    615	unsigned long		nr_isolate_pageblock;
    616#endif
    617
    618#ifdef CONFIG_MEMORY_HOTPLUG
    619	/* see spanned/present_pages for more description */
    620	seqlock_t		span_seqlock;
    621#endif
    622
    623	int initialized;
    624
    625	/* Write-intensive fields used from the page allocator */
    626	ZONE_PADDING(_pad1_)
    627
    628	/* free areas of different sizes */
    629	struct free_area	free_area[MAX_ORDER];
    630
    631	/* zone flags, see below */
    632	unsigned long		flags;
    633
    634	/* Primarily protects free_area */
    635	spinlock_t		lock;
    636
    637	/* Write-intensive fields used by compaction and vmstats. */
    638	ZONE_PADDING(_pad2_)
    639
    640	/*
    641	 * When free pages are below this point, additional steps are taken
    642	 * when reading the number of free pages to avoid per-cpu counter
    643	 * drift allowing watermarks to be breached
    644	 */
    645	unsigned long percpu_drift_mark;
    646
    647#if defined CONFIG_COMPACTION || defined CONFIG_CMA
    648	/* pfn where compaction free scanner should start */
    649	unsigned long		compact_cached_free_pfn;
    650	/* pfn where compaction migration scanner should start */
    651	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
    652	unsigned long		compact_init_migrate_pfn;
    653	unsigned long		compact_init_free_pfn;
    654#endif
    655
    656#ifdef CONFIG_COMPACTION
    657	/*
    658	 * On compaction failure, 1<<compact_defer_shift compactions
    659	 * are skipped before trying again. The number attempted since
    660	 * last failure is tracked with compact_considered.
    661	 * compact_order_failed is the minimum compaction failed order.
    662	 */
    663	unsigned int		compact_considered;
    664	unsigned int		compact_defer_shift;
    665	int			compact_order_failed;
    666#endif
    667
    668#if defined CONFIG_COMPACTION || defined CONFIG_CMA
    669	/* Set to true when the PG_migrate_skip bits should be cleared */
    670	bool			compact_blockskip_flush;
    671#endif
    672
    673	bool			contiguous;
    674
    675	ZONE_PADDING(_pad3_)
    676	/* Zone statistics */
    677	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
    678	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
    679} ____cacheline_internodealigned_in_smp;
    680
    681enum pgdat_flags {
    682	PGDAT_DIRTY,			/* reclaim scanning has recently found
    683					 * many dirty file pages at the tail
    684					 * of the LRU.
    685					 */
    686	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
    687					 * many pages under writeback
    688					 */
    689	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
    690};
    691
    692enum zone_flags {
    693	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
    694					 * Cleared when kswapd is woken.
    695					 */
    696	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
    697};
    698
    699static inline unsigned long zone_managed_pages(struct zone *zone)
    700{
    701	return (unsigned long)atomic_long_read(&zone->managed_pages);
    702}
    703
    704static inline unsigned long zone_cma_pages(struct zone *zone)
    705{
    706#ifdef CONFIG_CMA
    707	return zone->cma_pages;
    708#else
    709	return 0;
    710#endif
    711}
    712
    713static inline unsigned long zone_end_pfn(const struct zone *zone)
    714{
    715	return zone->zone_start_pfn + zone->spanned_pages;
    716}
    717
    718static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
    719{
    720	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
    721}
    722
    723static inline bool zone_is_initialized(struct zone *zone)
    724{
    725	return zone->initialized;
    726}
    727
    728static inline bool zone_is_empty(struct zone *zone)
    729{
    730	return zone->spanned_pages == 0;
    731}
    732
    733/*
    734 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
    735 * intersection with the given zone
    736 */
    737static inline bool zone_intersects(struct zone *zone,
    738		unsigned long start_pfn, unsigned long nr_pages)
    739{
    740	if (zone_is_empty(zone))
    741		return false;
    742	if (start_pfn >= zone_end_pfn(zone) ||
    743	    start_pfn + nr_pages <= zone->zone_start_pfn)
    744		return false;
    745
    746	return true;
    747}
    748
    749/*
    750 * The "priority" of VM scanning is how much of the queues we will scan in one
    751 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
    752 * queues ("queue_length >> 12") during an aging round.
    753 */
    754#define DEF_PRIORITY 12
    755
    756/* Maximum number of zones on a zonelist */
    757#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
    758
    759enum {
    760	ZONELIST_FALLBACK,	/* zonelist with fallback */
    761#ifdef CONFIG_NUMA
    762	/*
    763	 * The NUMA zonelists are doubled because we need zonelists that
    764	 * restrict the allocations to a single node for __GFP_THISNODE.
    765	 */
    766	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
    767#endif
    768	MAX_ZONELISTS
    769};
    770
    771/*
    772 * This struct contains information about a zone in a zonelist. It is stored
    773 * here to avoid dereferences into large structures and lookups of tables
    774 */
    775struct zoneref {
    776	struct zone *zone;	/* Pointer to actual zone */
    777	int zone_idx;		/* zone_idx(zoneref->zone) */
    778};
    779
    780/*
    781 * One allocation request operates on a zonelist. A zonelist
    782 * is a list of zones, the first one is the 'goal' of the
    783 * allocation, the other zones are fallback zones, in decreasing
    784 * priority.
    785 *
    786 * To speed the reading of the zonelist, the zonerefs contain the zone index
    787 * of the entry being read. Helper functions to access information given
    788 * a struct zoneref are
    789 *
    790 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
    791 * zonelist_zone_idx()	- Return the index of the zone for an entry
    792 * zonelist_node_idx()	- Return the index of the node for an entry
    793 */
    794struct zonelist {
    795	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
    796};
    797
    798/*
    799 * The array of struct pages for flatmem.
    800 * It must be declared for SPARSEMEM as well because there are configurations
    801 * that rely on that.
    802 */
    803extern struct page *mem_map;
    804
    805#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    806struct deferred_split {
    807	spinlock_t split_queue_lock;
    808	struct list_head split_queue;
    809	unsigned long split_queue_len;
    810};
    811#endif
    812
    813/*
    814 * On NUMA machines, each NUMA node would have a pg_data_t to describe
    815 * it's memory layout. On UMA machines there is a single pglist_data which
    816 * describes the whole memory.
    817 *
    818 * Memory statistics and page replacement data structures are maintained on a
    819 * per-zone basis.
    820 */
    821typedef struct pglist_data {
    822	/*
    823	 * node_zones contains just the zones for THIS node. Not all of the
    824	 * zones may be populated, but it is the full list. It is referenced by
    825	 * this node's node_zonelists as well as other node's node_zonelists.
    826	 */
    827	struct zone node_zones[MAX_NR_ZONES];
    828
    829	/*
    830	 * node_zonelists contains references to all zones in all nodes.
    831	 * Generally the first zones will be references to this node's
    832	 * node_zones.
    833	 */
    834	struct zonelist node_zonelists[MAX_ZONELISTS];
    835
    836	int nr_zones; /* number of populated zones in this node */
    837#ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
    838	struct page *node_mem_map;
    839#ifdef CONFIG_PAGE_EXTENSION
    840	struct page_ext *node_page_ext;
    841#endif
    842#endif
    843#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
    844	/*
    845	 * Must be held any time you expect node_start_pfn,
    846	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
    847	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
    848	 * init.
    849	 *
    850	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
    851	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
    852	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
    853	 *
    854	 * Nests above zone->lock and zone->span_seqlock
    855	 */
    856	spinlock_t node_size_lock;
    857#endif
    858	unsigned long node_start_pfn;
    859	unsigned long node_present_pages; /* total number of physical pages */
    860	unsigned long node_spanned_pages; /* total size of physical page
    861					     range, including holes */
    862	int node_id;
    863	wait_queue_head_t kswapd_wait;
    864	wait_queue_head_t pfmemalloc_wait;
    865
    866	/* workqueues for throttling reclaim for different reasons. */
    867	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
    868
    869	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
    870	unsigned long nr_reclaim_start;	/* nr pages written while throttled
    871					 * when throttling started. */
    872	struct task_struct *kswapd;	/* Protected by
    873					   mem_hotplug_begin/end() */
    874	int kswapd_order;
    875	enum zone_type kswapd_highest_zoneidx;
    876
    877	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
    878
    879#ifdef CONFIG_COMPACTION
    880	int kcompactd_max_order;
    881	enum zone_type kcompactd_highest_zoneidx;
    882	wait_queue_head_t kcompactd_wait;
    883	struct task_struct *kcompactd;
    884	bool proactive_compact_trigger;
    885#endif
    886	/*
    887	 * This is a per-node reserve of pages that are not available
    888	 * to userspace allocations.
    889	 */
    890	unsigned long		totalreserve_pages;
    891
    892#ifdef CONFIG_NUMA
    893	/*
    894	 * node reclaim becomes active if more unmapped pages exist.
    895	 */
    896	unsigned long		min_unmapped_pages;
    897	unsigned long		min_slab_pages;
    898#endif /* CONFIG_NUMA */
    899
    900	/* Write-intensive fields used by page reclaim */
    901	ZONE_PADDING(_pad1_)
    902
    903#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    904	/*
    905	 * If memory initialisation on large machines is deferred then this
    906	 * is the first PFN that needs to be initialised.
    907	 */
    908	unsigned long first_deferred_pfn;
    909#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    910
    911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    912	struct deferred_split deferred_split_queue;
    913#endif
    914
    915	/* Fields commonly accessed by the page reclaim scanner */
    916
    917	/*
    918	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
    919	 *
    920	 * Use mem_cgroup_lruvec() to look up lruvecs.
    921	 */
    922	struct lruvec		__lruvec;
    923
    924	unsigned long		flags;
    925
    926	ZONE_PADDING(_pad2_)
    927
    928	/* Per-node vmstats */
    929	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
    930	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
    931} pg_data_t;
    932
    933#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
    934#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
    935
    936#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
    937#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
    938
    939static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
    940{
    941	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
    942}
    943
    944static inline bool pgdat_is_empty(pg_data_t *pgdat)
    945{
    946	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
    947}
    948
    949#include <linux/memory_hotplug.h>
    950
    951void build_all_zonelists(pg_data_t *pgdat);
    952void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
    953		   enum zone_type highest_zoneidx);
    954bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
    955			 int highest_zoneidx, unsigned int alloc_flags,
    956			 long free_pages);
    957bool zone_watermark_ok(struct zone *z, unsigned int order,
    958		unsigned long mark, int highest_zoneidx,
    959		unsigned int alloc_flags);
    960bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
    961		unsigned long mark, int highest_zoneidx);
    962/*
    963 * Memory initialization context, use to differentiate memory added by
    964 * the platform statically or via memory hotplug interface.
    965 */
    966enum meminit_context {
    967	MEMINIT_EARLY,
    968	MEMINIT_HOTPLUG,
    969};
    970
    971extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
    972				     unsigned long size);
    973
    974extern void lruvec_init(struct lruvec *lruvec);
    975
    976static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
    977{
    978#ifdef CONFIG_MEMCG
    979	return lruvec->pgdat;
    980#else
    981	return container_of(lruvec, struct pglist_data, __lruvec);
    982#endif
    983}
    984
    985#ifdef CONFIG_HAVE_MEMORYLESS_NODES
    986int local_memory_node(int node_id);
    987#else
    988static inline int local_memory_node(int node_id) { return node_id; };
    989#endif
    990
    991/*
    992 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
    993 */
    994#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
    995
    996#ifdef CONFIG_ZONE_DEVICE
    997static inline bool zone_is_zone_device(struct zone *zone)
    998{
    999	return zone_idx(zone) == ZONE_DEVICE;
   1000}
   1001#else
   1002static inline bool zone_is_zone_device(struct zone *zone)
   1003{
   1004	return false;
   1005}
   1006#endif
   1007
   1008/*
   1009 * Returns true if a zone has pages managed by the buddy allocator.
   1010 * All the reclaim decisions have to use this function rather than
   1011 * populated_zone(). If the whole zone is reserved then we can easily
   1012 * end up with populated_zone() && !managed_zone().
   1013 */
   1014static inline bool managed_zone(struct zone *zone)
   1015{
   1016	return zone_managed_pages(zone);
   1017}
   1018
   1019/* Returns true if a zone has memory */
   1020static inline bool populated_zone(struct zone *zone)
   1021{
   1022	return zone->present_pages;
   1023}
   1024
   1025#ifdef CONFIG_NUMA
   1026static inline int zone_to_nid(struct zone *zone)
   1027{
   1028	return zone->node;
   1029}
   1030
   1031static inline void zone_set_nid(struct zone *zone, int nid)
   1032{
   1033	zone->node = nid;
   1034}
   1035#else
   1036static inline int zone_to_nid(struct zone *zone)
   1037{
   1038	return 0;
   1039}
   1040
   1041static inline void zone_set_nid(struct zone *zone, int nid) {}
   1042#endif
   1043
   1044extern int movable_zone;
   1045
   1046static inline int is_highmem_idx(enum zone_type idx)
   1047{
   1048#ifdef CONFIG_HIGHMEM
   1049	return (idx == ZONE_HIGHMEM ||
   1050		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
   1051#else
   1052	return 0;
   1053#endif
   1054}
   1055
   1056#ifdef CONFIG_ZONE_DMA
   1057bool has_managed_dma(void);
   1058#else
   1059static inline bool has_managed_dma(void)
   1060{
   1061	return false;
   1062}
   1063#endif
   1064
   1065/**
   1066 * is_highmem - helper function to quickly check if a struct zone is a
   1067 *              highmem zone or not.  This is an attempt to keep references
   1068 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
   1069 * @zone: pointer to struct zone variable
   1070 * Return: 1 for a highmem zone, 0 otherwise
   1071 */
   1072static inline int is_highmem(struct zone *zone)
   1073{
   1074#ifdef CONFIG_HIGHMEM
   1075	return is_highmem_idx(zone_idx(zone));
   1076#else
   1077	return 0;
   1078#endif
   1079}
   1080
   1081/* These two functions are used to setup the per zone pages min values */
   1082struct ctl_table;
   1083
   1084int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
   1085		loff_t *);
   1086int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
   1087		size_t *, loff_t *);
   1088extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
   1089int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
   1090		size_t *, loff_t *);
   1091int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
   1092		void *, size_t *, loff_t *);
   1093int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
   1094		void *, size_t *, loff_t *);
   1095int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
   1096		void *, size_t *, loff_t *);
   1097int numa_zonelist_order_handler(struct ctl_table *, int,
   1098		void *, size_t *, loff_t *);
   1099extern int percpu_pagelist_high_fraction;
   1100extern char numa_zonelist_order[];
   1101#define NUMA_ZONELIST_ORDER_LEN	16
   1102
   1103#ifndef CONFIG_NUMA
   1104
   1105extern struct pglist_data contig_page_data;
   1106static inline struct pglist_data *NODE_DATA(int nid)
   1107{
   1108	return &contig_page_data;
   1109}
   1110
   1111#else /* CONFIG_NUMA */
   1112
   1113#include <asm/mmzone.h>
   1114
   1115#endif /* !CONFIG_NUMA */
   1116
   1117extern struct pglist_data *first_online_pgdat(void);
   1118extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
   1119extern struct zone *next_zone(struct zone *zone);
   1120
   1121/**
   1122 * for_each_online_pgdat - helper macro to iterate over all online nodes
   1123 * @pgdat: pointer to a pg_data_t variable
   1124 */
   1125#define for_each_online_pgdat(pgdat)			\
   1126	for (pgdat = first_online_pgdat();		\
   1127	     pgdat;					\
   1128	     pgdat = next_online_pgdat(pgdat))
   1129/**
   1130 * for_each_zone - helper macro to iterate over all memory zones
   1131 * @zone: pointer to struct zone variable
   1132 *
   1133 * The user only needs to declare the zone variable, for_each_zone
   1134 * fills it in.
   1135 */
   1136#define for_each_zone(zone)			        \
   1137	for (zone = (first_online_pgdat())->node_zones; \
   1138	     zone;					\
   1139	     zone = next_zone(zone))
   1140
   1141#define for_each_populated_zone(zone)		        \
   1142	for (zone = (first_online_pgdat())->node_zones; \
   1143	     zone;					\
   1144	     zone = next_zone(zone))			\
   1145		if (!populated_zone(zone))		\
   1146			; /* do nothing */		\
   1147		else
   1148
   1149static inline struct zone *zonelist_zone(struct zoneref *zoneref)
   1150{
   1151	return zoneref->zone;
   1152}
   1153
   1154static inline int zonelist_zone_idx(struct zoneref *zoneref)
   1155{
   1156	return zoneref->zone_idx;
   1157}
   1158
   1159static inline int zonelist_node_idx(struct zoneref *zoneref)
   1160{
   1161	return zone_to_nid(zoneref->zone);
   1162}
   1163
   1164struct zoneref *__next_zones_zonelist(struct zoneref *z,
   1165					enum zone_type highest_zoneidx,
   1166					nodemask_t *nodes);
   1167
   1168/**
   1169 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
   1170 * @z: The cursor used as a starting point for the search
   1171 * @highest_zoneidx: The zone index of the highest zone to return
   1172 * @nodes: An optional nodemask to filter the zonelist with
   1173 *
   1174 * This function returns the next zone at or below a given zone index that is
   1175 * within the allowed nodemask using a cursor as the starting point for the
   1176 * search. The zoneref returned is a cursor that represents the current zone
   1177 * being examined. It should be advanced by one before calling
   1178 * next_zones_zonelist again.
   1179 *
   1180 * Return: the next zone at or below highest_zoneidx within the allowed
   1181 * nodemask using a cursor within a zonelist as a starting point
   1182 */
   1183static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
   1184					enum zone_type highest_zoneidx,
   1185					nodemask_t *nodes)
   1186{
   1187	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
   1188		return z;
   1189	return __next_zones_zonelist(z, highest_zoneidx, nodes);
   1190}
   1191
   1192/**
   1193 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
   1194 * @zonelist: The zonelist to search for a suitable zone
   1195 * @highest_zoneidx: The zone index of the highest zone to return
   1196 * @nodes: An optional nodemask to filter the zonelist with
   1197 *
   1198 * This function returns the first zone at or below a given zone index that is
   1199 * within the allowed nodemask. The zoneref returned is a cursor that can be
   1200 * used to iterate the zonelist with next_zones_zonelist by advancing it by
   1201 * one before calling.
   1202 *
   1203 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
   1204 * never NULL). This may happen either genuinely, or due to concurrent nodemask
   1205 * update due to cpuset modification.
   1206 *
   1207 * Return: Zoneref pointer for the first suitable zone found
   1208 */
   1209static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
   1210					enum zone_type highest_zoneidx,
   1211					nodemask_t *nodes)
   1212{
   1213	return next_zones_zonelist(zonelist->_zonerefs,
   1214							highest_zoneidx, nodes);
   1215}
   1216
   1217/**
   1218 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
   1219 * @zone: The current zone in the iterator
   1220 * @z: The current pointer within zonelist->_zonerefs being iterated
   1221 * @zlist: The zonelist being iterated
   1222 * @highidx: The zone index of the highest zone to return
   1223 * @nodemask: Nodemask allowed by the allocator
   1224 *
   1225 * This iterator iterates though all zones at or below a given zone index and
   1226 * within a given nodemask
   1227 */
   1228#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
   1229	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
   1230		zone;							\
   1231		z = next_zones_zonelist(++z, highidx, nodemask),	\
   1232			zone = zonelist_zone(z))
   1233
   1234#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
   1235	for (zone = z->zone;	\
   1236		zone;							\
   1237		z = next_zones_zonelist(++z, highidx, nodemask),	\
   1238			zone = zonelist_zone(z))
   1239
   1240
   1241/**
   1242 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
   1243 * @zone: The current zone in the iterator
   1244 * @z: The current pointer within zonelist->zones being iterated
   1245 * @zlist: The zonelist being iterated
   1246 * @highidx: The zone index of the highest zone to return
   1247 *
   1248 * This iterator iterates though all zones at or below a given zone index.
   1249 */
   1250#define for_each_zone_zonelist(zone, z, zlist, highidx) \
   1251	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
   1252
   1253/* Whether the 'nodes' are all movable nodes */
   1254static inline bool movable_only_nodes(nodemask_t *nodes)
   1255{
   1256	struct zonelist *zonelist;
   1257	struct zoneref *z;
   1258	int nid;
   1259
   1260	if (nodes_empty(*nodes))
   1261		return false;
   1262
   1263	/*
   1264	 * We can chose arbitrary node from the nodemask to get a
   1265	 * zonelist as they are interlinked. We just need to find
   1266	 * at least one zone that can satisfy kernel allocations.
   1267	 */
   1268	nid = first_node(*nodes);
   1269	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
   1270	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
   1271	return (!z->zone) ? true : false;
   1272}
   1273
   1274
   1275#ifdef CONFIG_SPARSEMEM
   1276#include <asm/sparsemem.h>
   1277#endif
   1278
   1279#ifdef CONFIG_FLATMEM
   1280#define pfn_to_nid(pfn)		(0)
   1281#endif
   1282
   1283#ifdef CONFIG_SPARSEMEM
   1284
   1285/*
   1286 * PA_SECTION_SHIFT		physical address to/from section number
   1287 * PFN_SECTION_SHIFT		pfn to/from section number
   1288 */
   1289#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
   1290#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
   1291
   1292#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
   1293
   1294#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
   1295#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
   1296
   1297#define SECTION_BLOCKFLAGS_BITS \
   1298	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
   1299
   1300#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
   1301#error Allocator MAX_ORDER exceeds SECTION_SIZE
   1302#endif
   1303
   1304static inline unsigned long pfn_to_section_nr(unsigned long pfn)
   1305{
   1306	return pfn >> PFN_SECTION_SHIFT;
   1307}
   1308static inline unsigned long section_nr_to_pfn(unsigned long sec)
   1309{
   1310	return sec << PFN_SECTION_SHIFT;
   1311}
   1312
   1313#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
   1314#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
   1315
   1316#define SUBSECTION_SHIFT 21
   1317#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
   1318
   1319#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
   1320#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
   1321#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
   1322
   1323#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
   1324#error Subsection size exceeds section size
   1325#else
   1326#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
   1327#endif
   1328
   1329#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
   1330#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
   1331
   1332struct mem_section_usage {
   1333#ifdef CONFIG_SPARSEMEM_VMEMMAP
   1334	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
   1335#endif
   1336	/* See declaration of similar field in struct zone */
   1337	unsigned long pageblock_flags[0];
   1338};
   1339
   1340void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
   1341
   1342struct page;
   1343struct page_ext;
   1344struct mem_section {
   1345	/*
   1346	 * This is, logically, a pointer to an array of struct
   1347	 * pages.  However, it is stored with some other magic.
   1348	 * (see sparse.c::sparse_init_one_section())
   1349	 *
   1350	 * Additionally during early boot we encode node id of
   1351	 * the location of the section here to guide allocation.
   1352	 * (see sparse.c::memory_present())
   1353	 *
   1354	 * Making it a UL at least makes someone do a cast
   1355	 * before using it wrong.
   1356	 */
   1357	unsigned long section_mem_map;
   1358
   1359	struct mem_section_usage *usage;
   1360#ifdef CONFIG_PAGE_EXTENSION
   1361	/*
   1362	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
   1363	 * section. (see page_ext.h about this.)
   1364	 */
   1365	struct page_ext *page_ext;
   1366	unsigned long pad;
   1367#endif
   1368	/*
   1369	 * WARNING: mem_section must be a power-of-2 in size for the
   1370	 * calculation and use of SECTION_ROOT_MASK to make sense.
   1371	 */
   1372};
   1373
   1374#ifdef CONFIG_SPARSEMEM_EXTREME
   1375#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
   1376#else
   1377#define SECTIONS_PER_ROOT	1
   1378#endif
   1379
   1380#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
   1381#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
   1382#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
   1383
   1384#ifdef CONFIG_SPARSEMEM_EXTREME
   1385extern struct mem_section **mem_section;
   1386#else
   1387extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
   1388#endif
   1389
   1390static inline unsigned long *section_to_usemap(struct mem_section *ms)
   1391{
   1392	return ms->usage->pageblock_flags;
   1393}
   1394
   1395static inline struct mem_section *__nr_to_section(unsigned long nr)
   1396{
   1397	unsigned long root = SECTION_NR_TO_ROOT(nr);
   1398
   1399	if (unlikely(root >= NR_SECTION_ROOTS))
   1400		return NULL;
   1401
   1402#ifdef CONFIG_SPARSEMEM_EXTREME
   1403	if (!mem_section || !mem_section[root])
   1404		return NULL;
   1405#endif
   1406	return &mem_section[root][nr & SECTION_ROOT_MASK];
   1407}
   1408extern size_t mem_section_usage_size(void);
   1409
   1410/*
   1411 * We use the lower bits of the mem_map pointer to store
   1412 * a little bit of information.  The pointer is calculated
   1413 * as mem_map - section_nr_to_pfn(pnum).  The result is
   1414 * aligned to the minimum alignment of the two values:
   1415 *   1. All mem_map arrays are page-aligned.
   1416 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
   1417 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
   1418 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
   1419 *      worst combination is powerpc with 256k pages,
   1420 *      which results in PFN_SECTION_SHIFT equal 6.
   1421 * To sum it up, at least 6 bits are available.
   1422 */
   1423#define SECTION_MARKED_PRESENT		(1UL<<0)
   1424#define SECTION_HAS_MEM_MAP		(1UL<<1)
   1425#define SECTION_IS_ONLINE		(1UL<<2)
   1426#define SECTION_IS_EARLY		(1UL<<3)
   1427#define SECTION_TAINT_ZONE_DEVICE	(1UL<<4)
   1428#define SECTION_MAP_LAST_BIT		(1UL<<5)
   1429#define SECTION_MAP_MASK		(~(SECTION_MAP_LAST_BIT-1))
   1430#define SECTION_NID_SHIFT		6
   1431
   1432static inline struct page *__section_mem_map_addr(struct mem_section *section)
   1433{
   1434	unsigned long map = section->section_mem_map;
   1435	map &= SECTION_MAP_MASK;
   1436	return (struct page *)map;
   1437}
   1438
   1439static inline int present_section(struct mem_section *section)
   1440{
   1441	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
   1442}
   1443
   1444static inline int present_section_nr(unsigned long nr)
   1445{
   1446	return present_section(__nr_to_section(nr));
   1447}
   1448
   1449static inline int valid_section(struct mem_section *section)
   1450{
   1451	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
   1452}
   1453
   1454static inline int early_section(struct mem_section *section)
   1455{
   1456	return (section && (section->section_mem_map & SECTION_IS_EARLY));
   1457}
   1458
   1459static inline int valid_section_nr(unsigned long nr)
   1460{
   1461	return valid_section(__nr_to_section(nr));
   1462}
   1463
   1464static inline int online_section(struct mem_section *section)
   1465{
   1466	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
   1467}
   1468
   1469static inline int online_device_section(struct mem_section *section)
   1470{
   1471	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
   1472
   1473	return section && ((section->section_mem_map & flags) == flags);
   1474}
   1475
   1476static inline int online_section_nr(unsigned long nr)
   1477{
   1478	return online_section(__nr_to_section(nr));
   1479}
   1480
   1481#ifdef CONFIG_MEMORY_HOTPLUG
   1482void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
   1483void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
   1484#endif
   1485
   1486static inline struct mem_section *__pfn_to_section(unsigned long pfn)
   1487{
   1488	return __nr_to_section(pfn_to_section_nr(pfn));
   1489}
   1490
   1491extern unsigned long __highest_present_section_nr;
   1492
   1493static inline int subsection_map_index(unsigned long pfn)
   1494{
   1495	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
   1496}
   1497
   1498#ifdef CONFIG_SPARSEMEM_VMEMMAP
   1499static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
   1500{
   1501	int idx = subsection_map_index(pfn);
   1502
   1503	return test_bit(idx, ms->usage->subsection_map);
   1504}
   1505#else
   1506static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
   1507{
   1508	return 1;
   1509}
   1510#endif
   1511
   1512#ifndef CONFIG_HAVE_ARCH_PFN_VALID
   1513/**
   1514 * pfn_valid - check if there is a valid memory map entry for a PFN
   1515 * @pfn: the page frame number to check
   1516 *
   1517 * Check if there is a valid memory map entry aka struct page for the @pfn.
   1518 * Note, that availability of the memory map entry does not imply that
   1519 * there is actual usable memory at that @pfn. The struct page may
   1520 * represent a hole or an unusable page frame.
   1521 *
   1522 * Return: 1 for PFNs that have memory map entries and 0 otherwise
   1523 */
   1524static inline int pfn_valid(unsigned long pfn)
   1525{
   1526	struct mem_section *ms;
   1527
   1528	/*
   1529	 * Ensure the upper PAGE_SHIFT bits are clear in the
   1530	 * pfn. Else it might lead to false positives when
   1531	 * some of the upper bits are set, but the lower bits
   1532	 * match a valid pfn.
   1533	 */
   1534	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
   1535		return 0;
   1536
   1537	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
   1538		return 0;
   1539	ms = __pfn_to_section(pfn);
   1540	if (!valid_section(ms))
   1541		return 0;
   1542	/*
   1543	 * Traditionally early sections always returned pfn_valid() for
   1544	 * the entire section-sized span.
   1545	 */
   1546	return early_section(ms) || pfn_section_valid(ms, pfn);
   1547}
   1548#endif
   1549
   1550static inline int pfn_in_present_section(unsigned long pfn)
   1551{
   1552	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
   1553		return 0;
   1554	return present_section(__pfn_to_section(pfn));
   1555}
   1556
   1557static inline unsigned long next_present_section_nr(unsigned long section_nr)
   1558{
   1559	while (++section_nr <= __highest_present_section_nr) {
   1560		if (present_section_nr(section_nr))
   1561			return section_nr;
   1562	}
   1563
   1564	return -1;
   1565}
   1566
   1567/*
   1568 * These are _only_ used during initialisation, therefore they
   1569 * can use __initdata ...  They could have names to indicate
   1570 * this restriction.
   1571 */
   1572#ifdef CONFIG_NUMA
   1573#define pfn_to_nid(pfn)							\
   1574({									\
   1575	unsigned long __pfn_to_nid_pfn = (pfn);				\
   1576	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
   1577})
   1578#else
   1579#define pfn_to_nid(pfn)		(0)
   1580#endif
   1581
   1582void sparse_init(void);
   1583#else
   1584#define sparse_init()	do {} while (0)
   1585#define sparse_index_init(_sec, _nid)  do {} while (0)
   1586#define pfn_in_present_section pfn_valid
   1587#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
   1588#endif /* CONFIG_SPARSEMEM */
   1589
   1590#endif /* !__GENERATING_BOUNDS.H */
   1591#endif /* !__ASSEMBLY__ */
   1592#endif /* _LINUX_MMZONE_H */