nand.h (31998B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright 2017 - Free Electrons 4 * 5 * Authors: 6 * Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Peter Pan <peterpandong@micron.com> 8 */ 9 10#ifndef __LINUX_MTD_NAND_H 11#define __LINUX_MTD_NAND_H 12 13#include <linux/mtd/mtd.h> 14 15struct nand_device; 16 17/** 18 * struct nand_memory_organization - Memory organization structure 19 * @bits_per_cell: number of bits per NAND cell 20 * @pagesize: page size 21 * @oobsize: OOB area size 22 * @pages_per_eraseblock: number of pages per eraseblock 23 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number) 24 * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN 25 * @planes_per_lun: number of planes per LUN 26 * @luns_per_target: number of LUN per target (target is a synonym for die) 27 * @ntargets: total number of targets exposed by the NAND device 28 */ 29struct nand_memory_organization { 30 unsigned int bits_per_cell; 31 unsigned int pagesize; 32 unsigned int oobsize; 33 unsigned int pages_per_eraseblock; 34 unsigned int eraseblocks_per_lun; 35 unsigned int max_bad_eraseblocks_per_lun; 36 unsigned int planes_per_lun; 37 unsigned int luns_per_target; 38 unsigned int ntargets; 39}; 40 41#define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt) \ 42 { \ 43 .bits_per_cell = (bpc), \ 44 .pagesize = (ps), \ 45 .oobsize = (os), \ 46 .pages_per_eraseblock = (ppe), \ 47 .eraseblocks_per_lun = (epl), \ 48 .max_bad_eraseblocks_per_lun = (mbb), \ 49 .planes_per_lun = (ppl), \ 50 .luns_per_target = (lpt), \ 51 .ntargets = (nt), \ 52 } 53 54/** 55 * struct nand_row_converter - Information needed to convert an absolute offset 56 * into a row address 57 * @lun_addr_shift: position of the LUN identifier in the row address 58 * @eraseblock_addr_shift: position of the eraseblock identifier in the row 59 * address 60 */ 61struct nand_row_converter { 62 unsigned int lun_addr_shift; 63 unsigned int eraseblock_addr_shift; 64}; 65 66/** 67 * struct nand_pos - NAND position object 68 * @target: the NAND target/die 69 * @lun: the LUN identifier 70 * @plane: the plane within the LUN 71 * @eraseblock: the eraseblock within the LUN 72 * @page: the page within the LUN 73 * 74 * These information are usually used by specific sub-layers to select the 75 * appropriate target/die and generate a row address to pass to the device. 76 */ 77struct nand_pos { 78 unsigned int target; 79 unsigned int lun; 80 unsigned int plane; 81 unsigned int eraseblock; 82 unsigned int page; 83}; 84 85/** 86 * enum nand_page_io_req_type - Direction of an I/O request 87 * @NAND_PAGE_READ: from the chip, to the controller 88 * @NAND_PAGE_WRITE: from the controller, to the chip 89 */ 90enum nand_page_io_req_type { 91 NAND_PAGE_READ = 0, 92 NAND_PAGE_WRITE, 93}; 94 95/** 96 * struct nand_page_io_req - NAND I/O request object 97 * @type: the type of page I/O: read or write 98 * @pos: the position this I/O request is targeting 99 * @dataoffs: the offset within the page 100 * @datalen: number of data bytes to read from/write to this page 101 * @databuf: buffer to store data in or get data from 102 * @ooboffs: the OOB offset within the page 103 * @ooblen: the number of OOB bytes to read from/write to this page 104 * @oobbuf: buffer to store OOB data in or get OOB data from 105 * @mode: one of the %MTD_OPS_XXX mode 106 * 107 * This object is used to pass per-page I/O requests to NAND sub-layers. This 108 * way all useful information are already formatted in a useful way and 109 * specific NAND layers can focus on translating these information into 110 * specific commands/operations. 111 */ 112struct nand_page_io_req { 113 enum nand_page_io_req_type type; 114 struct nand_pos pos; 115 unsigned int dataoffs; 116 unsigned int datalen; 117 union { 118 const void *out; 119 void *in; 120 } databuf; 121 unsigned int ooboffs; 122 unsigned int ooblen; 123 union { 124 const void *out; 125 void *in; 126 } oobbuf; 127 int mode; 128}; 129 130const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void); 131const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void); 132const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void); 133 134/** 135 * enum nand_ecc_engine_type - NAND ECC engine type 136 * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value 137 * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction 138 * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction 139 * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction 140 * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction 141 */ 142enum nand_ecc_engine_type { 143 NAND_ECC_ENGINE_TYPE_INVALID, 144 NAND_ECC_ENGINE_TYPE_NONE, 145 NAND_ECC_ENGINE_TYPE_SOFT, 146 NAND_ECC_ENGINE_TYPE_ON_HOST, 147 NAND_ECC_ENGINE_TYPE_ON_DIE, 148}; 149 150/** 151 * enum nand_ecc_placement - NAND ECC bytes placement 152 * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown 153 * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area 154 * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes 155 * interleaved with regular data in the main 156 * area 157 */ 158enum nand_ecc_placement { 159 NAND_ECC_PLACEMENT_UNKNOWN, 160 NAND_ECC_PLACEMENT_OOB, 161 NAND_ECC_PLACEMENT_INTERLEAVED, 162}; 163 164/** 165 * enum nand_ecc_algo - NAND ECC algorithm 166 * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm 167 * @NAND_ECC_ALGO_HAMMING: Hamming algorithm 168 * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm 169 * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm 170 */ 171enum nand_ecc_algo { 172 NAND_ECC_ALGO_UNKNOWN, 173 NAND_ECC_ALGO_HAMMING, 174 NAND_ECC_ALGO_BCH, 175 NAND_ECC_ALGO_RS, 176}; 177 178/** 179 * struct nand_ecc_props - NAND ECC properties 180 * @engine_type: ECC engine type 181 * @placement: OOB placement (if relevant) 182 * @algo: ECC algorithm (if relevant) 183 * @strength: ECC strength 184 * @step_size: Number of bytes per step 185 * @flags: Misc properties 186 */ 187struct nand_ecc_props { 188 enum nand_ecc_engine_type engine_type; 189 enum nand_ecc_placement placement; 190 enum nand_ecc_algo algo; 191 unsigned int strength; 192 unsigned int step_size; 193 unsigned int flags; 194}; 195 196#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) } 197 198/* NAND ECC misc flags */ 199#define NAND_ECC_MAXIMIZE_STRENGTH BIT(0) 200 201/** 202 * struct nand_bbt - bad block table object 203 * @cache: in memory BBT cache 204 */ 205struct nand_bbt { 206 unsigned long *cache; 207}; 208 209/** 210 * struct nand_ops - NAND operations 211 * @erase: erase a specific block. No need to check if the block is bad before 212 * erasing, this has been taken care of by the generic NAND layer 213 * @markbad: mark a specific block bad. No need to check if the block is 214 * already marked bad, this has been taken care of by the generic 215 * NAND layer. This method should just write the BBM (Bad Block 216 * Marker) so that future call to struct_nand_ops->isbad() return 217 * true 218 * @isbad: check whether a block is bad or not. This method should just read 219 * the BBM and return whether the block is bad or not based on what it 220 * reads 221 * 222 * These are all low level operations that should be implemented by specialized 223 * NAND layers (SPI NAND, raw NAND, ...). 224 */ 225struct nand_ops { 226 int (*erase)(struct nand_device *nand, const struct nand_pos *pos); 227 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos); 228 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos); 229}; 230 231/** 232 * struct nand_ecc_context - Context for the ECC engine 233 * @conf: basic ECC engine parameters 234 * @nsteps: number of ECC steps 235 * @total: total number of bytes used for storing ECC codes, this is used by 236 * generic OOB layouts 237 * @priv: ECC engine driver private data 238 */ 239struct nand_ecc_context { 240 struct nand_ecc_props conf; 241 unsigned int nsteps; 242 unsigned int total; 243 void *priv; 244}; 245 246/** 247 * struct nand_ecc_engine_ops - ECC engine operations 248 * @init_ctx: given a desired user configuration for the pointed NAND device, 249 * requests the ECC engine driver to setup a configuration with 250 * values it supports. 251 * @cleanup_ctx: clean the context initialized by @init_ctx. 252 * @prepare_io_req: is called before reading/writing a page to prepare the I/O 253 * request to be performed with ECC correction. 254 * @finish_io_req: is called after reading/writing a page to terminate the I/O 255 * request and ensure proper ECC correction. 256 */ 257struct nand_ecc_engine_ops { 258 int (*init_ctx)(struct nand_device *nand); 259 void (*cleanup_ctx)(struct nand_device *nand); 260 int (*prepare_io_req)(struct nand_device *nand, 261 struct nand_page_io_req *req); 262 int (*finish_io_req)(struct nand_device *nand, 263 struct nand_page_io_req *req); 264}; 265 266/** 267 * enum nand_ecc_engine_integration - How the NAND ECC engine is integrated 268 * @NAND_ECC_ENGINE_INTEGRATION_INVALID: Invalid value 269 * @NAND_ECC_ENGINE_INTEGRATION_PIPELINED: Pipelined engine, performs on-the-fly 270 * correction, does not need to copy 271 * data around 272 * @NAND_ECC_ENGINE_INTEGRATION_EXTERNAL: External engine, needs to bring the 273 * data into its own area before use 274 */ 275enum nand_ecc_engine_integration { 276 NAND_ECC_ENGINE_INTEGRATION_INVALID, 277 NAND_ECC_ENGINE_INTEGRATION_PIPELINED, 278 NAND_ECC_ENGINE_INTEGRATION_EXTERNAL, 279}; 280 281/** 282 * struct nand_ecc_engine - ECC engine abstraction for NAND devices 283 * @dev: Host device 284 * @node: Private field for registration time 285 * @ops: ECC engine operations 286 * @integration: How the engine is integrated with the host 287 * (only relevant on %NAND_ECC_ENGINE_TYPE_ON_HOST engines) 288 * @priv: Private data 289 */ 290struct nand_ecc_engine { 291 struct device *dev; 292 struct list_head node; 293 struct nand_ecc_engine_ops *ops; 294 enum nand_ecc_engine_integration integration; 295 void *priv; 296}; 297 298void of_get_nand_ecc_user_config(struct nand_device *nand); 299int nand_ecc_init_ctx(struct nand_device *nand); 300void nand_ecc_cleanup_ctx(struct nand_device *nand); 301int nand_ecc_prepare_io_req(struct nand_device *nand, 302 struct nand_page_io_req *req); 303int nand_ecc_finish_io_req(struct nand_device *nand, 304 struct nand_page_io_req *req); 305bool nand_ecc_is_strong_enough(struct nand_device *nand); 306 307#if IS_REACHABLE(CONFIG_MTD_NAND_CORE) 308int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine); 309int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine); 310#else 311static inline int 312nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine) 313{ 314 return -ENOTSUPP; 315} 316static inline int 317nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine) 318{ 319 return -ENOTSUPP; 320} 321#endif 322 323struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand); 324struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand); 325struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand); 326void nand_ecc_put_on_host_hw_engine(struct nand_device *nand); 327struct device *nand_ecc_get_engine_dev(struct device *host); 328 329#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING) 330struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void); 331#else 332static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void) 333{ 334 return NULL; 335} 336#endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */ 337 338#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH) 339struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void); 340#else 341static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void) 342{ 343 return NULL; 344} 345#endif /* CONFIG_MTD_NAND_ECC_SW_BCH */ 346 347/** 348 * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests 349 * @orig_req: Pointer to the original IO request 350 * @nand: Related NAND device, to have access to its memory organization 351 * @page_buffer_size: Real size of the page buffer to use (can be set by the 352 * user before the tweaking mechanism initialization) 353 * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the 354 * user before the tweaking mechanism initialization) 355 * @spare_databuf: Data bounce buffer 356 * @spare_oobbuf: OOB bounce buffer 357 * @bounce_data: Flag indicating a data bounce buffer is used 358 * @bounce_oob: Flag indicating an OOB bounce buffer is used 359 */ 360struct nand_ecc_req_tweak_ctx { 361 struct nand_page_io_req orig_req; 362 struct nand_device *nand; 363 unsigned int page_buffer_size; 364 unsigned int oob_buffer_size; 365 void *spare_databuf; 366 void *spare_oobbuf; 367 bool bounce_data; 368 bool bounce_oob; 369}; 370 371int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx, 372 struct nand_device *nand); 373void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx); 374void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx, 375 struct nand_page_io_req *req); 376void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx, 377 struct nand_page_io_req *req); 378 379/** 380 * struct nand_ecc - Information relative to the ECC 381 * @defaults: Default values, depend on the underlying subsystem 382 * @requirements: ECC requirements from the NAND chip perspective 383 * @user_conf: User desires in terms of ECC parameters 384 * @ctx: ECC context for the ECC engine, derived from the device @requirements 385 * the @user_conf and the @defaults 386 * @ondie_engine: On-die ECC engine reference, if any 387 * @engine: ECC engine actually bound 388 */ 389struct nand_ecc { 390 struct nand_ecc_props defaults; 391 struct nand_ecc_props requirements; 392 struct nand_ecc_props user_conf; 393 struct nand_ecc_context ctx; 394 struct nand_ecc_engine *ondie_engine; 395 struct nand_ecc_engine *engine; 396}; 397 398/** 399 * struct nand_device - NAND device 400 * @mtd: MTD instance attached to the NAND device 401 * @memorg: memory layout 402 * @ecc: NAND ECC object attached to the NAND device 403 * @rowconv: position to row address converter 404 * @bbt: bad block table info 405 * @ops: NAND operations attached to the NAND device 406 * 407 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND) 408 * should declare their own NAND object embedding a nand_device struct (that's 409 * how inheritance is done). 410 * struct_nand_device->memorg and struct_nand_device->ecc.requirements should 411 * be filled at device detection time to reflect the NAND device 412 * capabilities/requirements. Once this is done nanddev_init() can be called. 413 * It will take care of converting NAND information into MTD ones, which means 414 * the specialized NAND layers should never manually tweak 415 * struct_nand_device->mtd except for the ->_read/write() hooks. 416 */ 417struct nand_device { 418 struct mtd_info mtd; 419 struct nand_memory_organization memorg; 420 struct nand_ecc ecc; 421 struct nand_row_converter rowconv; 422 struct nand_bbt bbt; 423 const struct nand_ops *ops; 424}; 425 426/** 427 * struct nand_io_iter - NAND I/O iterator 428 * @req: current I/O request 429 * @oobbytes_per_page: maximum number of OOB bytes per page 430 * @dataleft: remaining number of data bytes to read/write 431 * @oobleft: remaining number of OOB bytes to read/write 432 * 433 * Can be used by specialized NAND layers to iterate over all pages covered 434 * by an MTD I/O request, which should greatly simplifies the boiler-plate 435 * code needed to read/write data from/to a NAND device. 436 */ 437struct nand_io_iter { 438 struct nand_page_io_req req; 439 unsigned int oobbytes_per_page; 440 unsigned int dataleft; 441 unsigned int oobleft; 442}; 443 444/** 445 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance 446 * @mtd: MTD instance 447 * 448 * Return: the NAND device embedding @mtd. 449 */ 450static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd) 451{ 452 return container_of(mtd, struct nand_device, mtd); 453} 454 455/** 456 * nanddev_to_mtd() - Get the MTD device attached to a NAND device 457 * @nand: NAND device 458 * 459 * Return: the MTD device embedded in @nand. 460 */ 461static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand) 462{ 463 return &nand->mtd; 464} 465 466/* 467 * nanddev_bits_per_cell() - Get the number of bits per cell 468 * @nand: NAND device 469 * 470 * Return: the number of bits per cell. 471 */ 472static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand) 473{ 474 return nand->memorg.bits_per_cell; 475} 476 477/** 478 * nanddev_page_size() - Get NAND page size 479 * @nand: NAND device 480 * 481 * Return: the page size. 482 */ 483static inline size_t nanddev_page_size(const struct nand_device *nand) 484{ 485 return nand->memorg.pagesize; 486} 487 488/** 489 * nanddev_per_page_oobsize() - Get NAND OOB size 490 * @nand: NAND device 491 * 492 * Return: the OOB size. 493 */ 494static inline unsigned int 495nanddev_per_page_oobsize(const struct nand_device *nand) 496{ 497 return nand->memorg.oobsize; 498} 499 500/** 501 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock 502 * @nand: NAND device 503 * 504 * Return: the number of pages per eraseblock. 505 */ 506static inline unsigned int 507nanddev_pages_per_eraseblock(const struct nand_device *nand) 508{ 509 return nand->memorg.pages_per_eraseblock; 510} 511 512/** 513 * nanddev_pages_per_target() - Get the number of pages per target 514 * @nand: NAND device 515 * 516 * Return: the number of pages per target. 517 */ 518static inline unsigned int 519nanddev_pages_per_target(const struct nand_device *nand) 520{ 521 return nand->memorg.pages_per_eraseblock * 522 nand->memorg.eraseblocks_per_lun * 523 nand->memorg.luns_per_target; 524} 525 526/** 527 * nanddev_per_page_oobsize() - Get NAND erase block size 528 * @nand: NAND device 529 * 530 * Return: the eraseblock size. 531 */ 532static inline size_t nanddev_eraseblock_size(const struct nand_device *nand) 533{ 534 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock; 535} 536 537/** 538 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN 539 * @nand: NAND device 540 * 541 * Return: the number of eraseblocks per LUN. 542 */ 543static inline unsigned int 544nanddev_eraseblocks_per_lun(const struct nand_device *nand) 545{ 546 return nand->memorg.eraseblocks_per_lun; 547} 548 549/** 550 * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target 551 * @nand: NAND device 552 * 553 * Return: the number of eraseblocks per target. 554 */ 555static inline unsigned int 556nanddev_eraseblocks_per_target(const struct nand_device *nand) 557{ 558 return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target; 559} 560 561/** 562 * nanddev_target_size() - Get the total size provided by a single target/die 563 * @nand: NAND device 564 * 565 * Return: the total size exposed by a single target/die in bytes. 566 */ 567static inline u64 nanddev_target_size(const struct nand_device *nand) 568{ 569 return (u64)nand->memorg.luns_per_target * 570 nand->memorg.eraseblocks_per_lun * 571 nand->memorg.pages_per_eraseblock * 572 nand->memorg.pagesize; 573} 574 575/** 576 * nanddev_ntarget() - Get the total of targets 577 * @nand: NAND device 578 * 579 * Return: the number of targets/dies exposed by @nand. 580 */ 581static inline unsigned int nanddev_ntargets(const struct nand_device *nand) 582{ 583 return nand->memorg.ntargets; 584} 585 586/** 587 * nanddev_neraseblocks() - Get the total number of eraseblocks 588 * @nand: NAND device 589 * 590 * Return: the total number of eraseblocks exposed by @nand. 591 */ 592static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand) 593{ 594 return nand->memorg.ntargets * nand->memorg.luns_per_target * 595 nand->memorg.eraseblocks_per_lun; 596} 597 598/** 599 * nanddev_size() - Get NAND size 600 * @nand: NAND device 601 * 602 * Return: the total size (in bytes) exposed by @nand. 603 */ 604static inline u64 nanddev_size(const struct nand_device *nand) 605{ 606 return nanddev_target_size(nand) * nanddev_ntargets(nand); 607} 608 609/** 610 * nanddev_get_memorg() - Extract memory organization info from a NAND device 611 * @nand: NAND device 612 * 613 * This can be used by the upper layer to fill the memorg info before calling 614 * nanddev_init(). 615 * 616 * Return: the memorg object embedded in the NAND device. 617 */ 618static inline struct nand_memory_organization * 619nanddev_get_memorg(struct nand_device *nand) 620{ 621 return &nand->memorg; 622} 623 624/** 625 * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device 626 * @nand: NAND device 627 */ 628static inline const struct nand_ecc_props * 629nanddev_get_ecc_conf(struct nand_device *nand) 630{ 631 return &nand->ecc.ctx.conf; 632} 633 634/** 635 * nanddev_get_ecc_nsteps() - Extract the number of ECC steps 636 * @nand: NAND device 637 */ 638static inline unsigned int 639nanddev_get_ecc_nsteps(struct nand_device *nand) 640{ 641 return nand->ecc.ctx.nsteps; 642} 643 644/** 645 * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step 646 * @nand: NAND device 647 */ 648static inline unsigned int 649nanddev_get_ecc_bytes_per_step(struct nand_device *nand) 650{ 651 return nand->ecc.ctx.total / nand->ecc.ctx.nsteps; 652} 653 654/** 655 * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND 656 * device 657 * @nand: NAND device 658 */ 659static inline const struct nand_ecc_props * 660nanddev_get_ecc_requirements(struct nand_device *nand) 661{ 662 return &nand->ecc.requirements; 663} 664 665/** 666 * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND 667 * device 668 * @nand: NAND device 669 * @reqs: Requirements 670 */ 671static inline void 672nanddev_set_ecc_requirements(struct nand_device *nand, 673 const struct nand_ecc_props *reqs) 674{ 675 nand->ecc.requirements = *reqs; 676} 677 678int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, 679 struct module *owner); 680void nanddev_cleanup(struct nand_device *nand); 681 682/** 683 * nanddev_register() - Register a NAND device 684 * @nand: NAND device 685 * 686 * Register a NAND device. 687 * This function is just a wrapper around mtd_device_register() 688 * registering the MTD device embedded in @nand. 689 * 690 * Return: 0 in case of success, a negative error code otherwise. 691 */ 692static inline int nanddev_register(struct nand_device *nand) 693{ 694 return mtd_device_register(&nand->mtd, NULL, 0); 695} 696 697/** 698 * nanddev_unregister() - Unregister a NAND device 699 * @nand: NAND device 700 * 701 * Unregister a NAND device. 702 * This function is just a wrapper around mtd_device_unregister() 703 * unregistering the MTD device embedded in @nand. 704 * 705 * Return: 0 in case of success, a negative error code otherwise. 706 */ 707static inline int nanddev_unregister(struct nand_device *nand) 708{ 709 return mtd_device_unregister(&nand->mtd); 710} 711 712/** 713 * nanddev_set_of_node() - Attach a DT node to a NAND device 714 * @nand: NAND device 715 * @np: DT node 716 * 717 * Attach a DT node to a NAND device. 718 */ 719static inline void nanddev_set_of_node(struct nand_device *nand, 720 struct device_node *np) 721{ 722 mtd_set_of_node(&nand->mtd, np); 723} 724 725/** 726 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device 727 * @nand: NAND device 728 * 729 * Return: the DT node attached to @nand. 730 */ 731static inline struct device_node *nanddev_get_of_node(struct nand_device *nand) 732{ 733 return mtd_get_of_node(&nand->mtd); 734} 735 736/** 737 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position 738 * @nand: NAND device 739 * @offs: absolute NAND offset (usually passed by the MTD layer) 740 * @pos: a NAND position object to fill in 741 * 742 * Converts @offs into a nand_pos representation. 743 * 744 * Return: the offset within the NAND page pointed by @pos. 745 */ 746static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand, 747 loff_t offs, 748 struct nand_pos *pos) 749{ 750 unsigned int pageoffs; 751 u64 tmp = offs; 752 753 pageoffs = do_div(tmp, nand->memorg.pagesize); 754 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock); 755 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun); 756 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 757 pos->lun = do_div(tmp, nand->memorg.luns_per_target); 758 pos->target = tmp; 759 760 return pageoffs; 761} 762 763/** 764 * nanddev_pos_cmp() - Compare two NAND positions 765 * @a: First NAND position 766 * @b: Second NAND position 767 * 768 * Compares two NAND positions. 769 * 770 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b. 771 */ 772static inline int nanddev_pos_cmp(const struct nand_pos *a, 773 const struct nand_pos *b) 774{ 775 if (a->target != b->target) 776 return a->target < b->target ? -1 : 1; 777 778 if (a->lun != b->lun) 779 return a->lun < b->lun ? -1 : 1; 780 781 if (a->eraseblock != b->eraseblock) 782 return a->eraseblock < b->eraseblock ? -1 : 1; 783 784 if (a->page != b->page) 785 return a->page < b->page ? -1 : 1; 786 787 return 0; 788} 789 790/** 791 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset 792 * @nand: NAND device 793 * @pos: the NAND position to convert 794 * 795 * Converts @pos NAND position into an absolute offset. 796 * 797 * Return: the absolute offset. Note that @pos points to the beginning of a 798 * page, if one wants to point to a specific offset within this page 799 * the returned offset has to be adjusted manually. 800 */ 801static inline loff_t nanddev_pos_to_offs(struct nand_device *nand, 802 const struct nand_pos *pos) 803{ 804 unsigned int npages; 805 806 npages = pos->page + 807 ((pos->eraseblock + 808 (pos->lun + 809 (pos->target * nand->memorg.luns_per_target)) * 810 nand->memorg.eraseblocks_per_lun) * 811 nand->memorg.pages_per_eraseblock); 812 813 return (loff_t)npages * nand->memorg.pagesize; 814} 815 816/** 817 * nanddev_pos_to_row() - Extract a row address from a NAND position 818 * @nand: NAND device 819 * @pos: the position to convert 820 * 821 * Converts a NAND position into a row address that can then be passed to the 822 * device. 823 * 824 * Return: the row address extracted from @pos. 825 */ 826static inline unsigned int nanddev_pos_to_row(struct nand_device *nand, 827 const struct nand_pos *pos) 828{ 829 return (pos->lun << nand->rowconv.lun_addr_shift) | 830 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) | 831 pos->page; 832} 833 834/** 835 * nanddev_pos_next_target() - Move a position to the next target/die 836 * @nand: NAND device 837 * @pos: the position to update 838 * 839 * Updates @pos to point to the start of the next target/die. Useful when you 840 * want to iterate over all targets/dies of a NAND device. 841 */ 842static inline void nanddev_pos_next_target(struct nand_device *nand, 843 struct nand_pos *pos) 844{ 845 pos->page = 0; 846 pos->plane = 0; 847 pos->eraseblock = 0; 848 pos->lun = 0; 849 pos->target++; 850} 851 852/** 853 * nanddev_pos_next_lun() - Move a position to the next LUN 854 * @nand: NAND device 855 * @pos: the position to update 856 * 857 * Updates @pos to point to the start of the next LUN. Useful when you want to 858 * iterate over all LUNs of a NAND device. 859 */ 860static inline void nanddev_pos_next_lun(struct nand_device *nand, 861 struct nand_pos *pos) 862{ 863 if (pos->lun >= nand->memorg.luns_per_target - 1) 864 return nanddev_pos_next_target(nand, pos); 865 866 pos->lun++; 867 pos->page = 0; 868 pos->plane = 0; 869 pos->eraseblock = 0; 870} 871 872/** 873 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock 874 * @nand: NAND device 875 * @pos: the position to update 876 * 877 * Updates @pos to point to the start of the next eraseblock. Useful when you 878 * want to iterate over all eraseblocks of a NAND device. 879 */ 880static inline void nanddev_pos_next_eraseblock(struct nand_device *nand, 881 struct nand_pos *pos) 882{ 883 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1) 884 return nanddev_pos_next_lun(nand, pos); 885 886 pos->eraseblock++; 887 pos->page = 0; 888 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 889} 890 891/** 892 * nanddev_pos_next_page() - Move a position to the next page 893 * @nand: NAND device 894 * @pos: the position to update 895 * 896 * Updates @pos to point to the start of the next page. Useful when you want to 897 * iterate over all pages of a NAND device. 898 */ 899static inline void nanddev_pos_next_page(struct nand_device *nand, 900 struct nand_pos *pos) 901{ 902 if (pos->page >= nand->memorg.pages_per_eraseblock - 1) 903 return nanddev_pos_next_eraseblock(nand, pos); 904 905 pos->page++; 906} 907 908/** 909 * nand_io_iter_init - Initialize a NAND I/O iterator 910 * @nand: NAND device 911 * @offs: absolute offset 912 * @req: MTD request 913 * @iter: NAND I/O iterator 914 * 915 * Initializes a NAND iterator based on the information passed by the MTD 916 * layer. 917 */ 918static inline void nanddev_io_iter_init(struct nand_device *nand, 919 enum nand_page_io_req_type reqtype, 920 loff_t offs, struct mtd_oob_ops *req, 921 struct nand_io_iter *iter) 922{ 923 struct mtd_info *mtd = nanddev_to_mtd(nand); 924 925 iter->req.type = reqtype; 926 iter->req.mode = req->mode; 927 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); 928 iter->req.ooboffs = req->ooboffs; 929 iter->oobbytes_per_page = mtd_oobavail(mtd, req); 930 iter->dataleft = req->len; 931 iter->oobleft = req->ooblen; 932 iter->req.databuf.in = req->datbuf; 933 iter->req.datalen = min_t(unsigned int, 934 nand->memorg.pagesize - iter->req.dataoffs, 935 iter->dataleft); 936 iter->req.oobbuf.in = req->oobbuf; 937 iter->req.ooblen = min_t(unsigned int, 938 iter->oobbytes_per_page - iter->req.ooboffs, 939 iter->oobleft); 940} 941 942/** 943 * nand_io_iter_next_page - Move to the next page 944 * @nand: NAND device 945 * @iter: NAND I/O iterator 946 * 947 * Updates the @iter to point to the next page. 948 */ 949static inline void nanddev_io_iter_next_page(struct nand_device *nand, 950 struct nand_io_iter *iter) 951{ 952 nanddev_pos_next_page(nand, &iter->req.pos); 953 iter->dataleft -= iter->req.datalen; 954 iter->req.databuf.in += iter->req.datalen; 955 iter->oobleft -= iter->req.ooblen; 956 iter->req.oobbuf.in += iter->req.ooblen; 957 iter->req.dataoffs = 0; 958 iter->req.ooboffs = 0; 959 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize, 960 iter->dataleft); 961 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page, 962 iter->oobleft); 963} 964 965/** 966 * nand_io_iter_end - Should end iteration or not 967 * @nand: NAND device 968 * @iter: NAND I/O iterator 969 * 970 * Check whether @iter has reached the end of the NAND portion it was asked to 971 * iterate on or not. 972 * 973 * Return: true if @iter has reached the end of the iteration request, false 974 * otherwise. 975 */ 976static inline bool nanddev_io_iter_end(struct nand_device *nand, 977 const struct nand_io_iter *iter) 978{ 979 if (iter->dataleft || iter->oobleft) 980 return false; 981 982 return true; 983} 984 985/** 986 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O 987 * request 988 * @nand: NAND device 989 * @start: start address to read/write from 990 * @req: MTD I/O request 991 * @iter: NAND I/O iterator 992 * 993 * Should be used for iterate over pages that are contained in an MTD request. 994 */ 995#define nanddev_io_for_each_page(nand, type, start, req, iter) \ 996 for (nanddev_io_iter_init(nand, type, start, req, iter); \ 997 !nanddev_io_iter_end(nand, iter); \ 998 nanddev_io_iter_next_page(nand, iter)) 999 1000bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos); 1001bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos); 1002int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos); 1003int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos); 1004 1005/* ECC related functions */ 1006int nanddev_ecc_engine_init(struct nand_device *nand); 1007void nanddev_ecc_engine_cleanup(struct nand_device *nand); 1008 1009static inline void *nand_to_ecc_ctx(struct nand_device *nand) 1010{ 1011 return nand->ecc.ctx.priv; 1012} 1013 1014/* BBT related functions */ 1015enum nand_bbt_block_status { 1016 NAND_BBT_BLOCK_STATUS_UNKNOWN, 1017 NAND_BBT_BLOCK_GOOD, 1018 NAND_BBT_BLOCK_WORN, 1019 NAND_BBT_BLOCK_RESERVED, 1020 NAND_BBT_BLOCK_FACTORY_BAD, 1021 NAND_BBT_BLOCK_NUM_STATUS, 1022}; 1023 1024int nanddev_bbt_init(struct nand_device *nand); 1025void nanddev_bbt_cleanup(struct nand_device *nand); 1026int nanddev_bbt_update(struct nand_device *nand); 1027int nanddev_bbt_get_block_status(const struct nand_device *nand, 1028 unsigned int entry); 1029int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, 1030 enum nand_bbt_block_status status); 1031int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block); 1032 1033/** 1034 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry 1035 * @nand: NAND device 1036 * @pos: the NAND position we want to get BBT entry for 1037 * 1038 * Return the BBT entry used to store information about the eraseblock pointed 1039 * by @pos. 1040 * 1041 * Return: the BBT entry storing information about eraseblock pointed by @pos. 1042 */ 1043static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand, 1044 const struct nand_pos *pos) 1045{ 1046 return pos->eraseblock + 1047 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) * 1048 nand->memorg.eraseblocks_per_lun); 1049} 1050 1051/** 1052 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized 1053 * @nand: NAND device 1054 * 1055 * Return: true if the BBT has been initialized, false otherwise. 1056 */ 1057static inline bool nanddev_bbt_is_initialized(struct nand_device *nand) 1058{ 1059 return !!nand->bbt.cache; 1060} 1061 1062/* MTD -> NAND helper functions. */ 1063int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo); 1064int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len); 1065 1066#endif /* __LINUX_MTD_NAND_H */