rawnand.h (52400B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 4 * Steven J. Hill <sjhill@realitydiluted.com> 5 * Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Info: 8 * Contains standard defines and IDs for NAND flash devices 9 * 10 * Changelog: 11 * See git changelog. 12 */ 13#ifndef __LINUX_MTD_RAWNAND_H 14#define __LINUX_MTD_RAWNAND_H 15 16#include <linux/mtd/mtd.h> 17#include <linux/mtd/nand.h> 18#include <linux/mtd/flashchip.h> 19#include <linux/mtd/bbm.h> 20#include <linux/mtd/jedec.h> 21#include <linux/mtd/onfi.h> 22#include <linux/mutex.h> 23#include <linux/of.h> 24#include <linux/types.h> 25 26struct nand_chip; 27struct gpio_desc; 28 29/* The maximum number of NAND chips in an array */ 30#define NAND_MAX_CHIPS 8 31 32/* 33 * Constants for hardware specific CLE/ALE/NCE function 34 * 35 * These are bits which can be or'ed to set/clear multiple 36 * bits in one go. 37 */ 38/* Select the chip by setting nCE to low */ 39#define NAND_NCE 0x01 40/* Select the command latch by setting CLE to high */ 41#define NAND_CLE 0x02 42/* Select the address latch by setting ALE to high */ 43#define NAND_ALE 0x04 44 45#define NAND_CTRL_CLE (NAND_NCE | NAND_CLE) 46#define NAND_CTRL_ALE (NAND_NCE | NAND_ALE) 47#define NAND_CTRL_CHANGE 0x80 48 49/* 50 * Standard NAND flash commands 51 */ 52#define NAND_CMD_READ0 0 53#define NAND_CMD_READ1 1 54#define NAND_CMD_RNDOUT 5 55#define NAND_CMD_PAGEPROG 0x10 56#define NAND_CMD_READOOB 0x50 57#define NAND_CMD_ERASE1 0x60 58#define NAND_CMD_STATUS 0x70 59#define NAND_CMD_SEQIN 0x80 60#define NAND_CMD_RNDIN 0x85 61#define NAND_CMD_READID 0x90 62#define NAND_CMD_ERASE2 0xd0 63#define NAND_CMD_PARAM 0xec 64#define NAND_CMD_GET_FEATURES 0xee 65#define NAND_CMD_SET_FEATURES 0xef 66#define NAND_CMD_RESET 0xff 67 68/* Extended commands for large page devices */ 69#define NAND_CMD_READSTART 0x30 70#define NAND_CMD_RNDOUTSTART 0xE0 71#define NAND_CMD_CACHEDPROG 0x15 72 73#define NAND_CMD_NONE -1 74 75/* Status bits */ 76#define NAND_STATUS_FAIL 0x01 77#define NAND_STATUS_FAIL_N1 0x02 78#define NAND_STATUS_TRUE_READY 0x20 79#define NAND_STATUS_READY 0x40 80#define NAND_STATUS_WP 0x80 81 82#define NAND_DATA_IFACE_CHECK_ONLY -1 83 84/* 85 * Constants for Hardware ECC 86 */ 87/* Reset Hardware ECC for read */ 88#define NAND_ECC_READ 0 89/* Reset Hardware ECC for write */ 90#define NAND_ECC_WRITE 1 91/* Enable Hardware ECC before syndrome is read back from flash */ 92#define NAND_ECC_READSYN 2 93 94/* 95 * Enable generic NAND 'page erased' check. This check is only done when 96 * ecc.correct() returns -EBADMSG. 97 * Set this flag if your implementation does not fix bitflips in erased 98 * pages and you want to rely on the default implementation. 99 */ 100#define NAND_ECC_GENERIC_ERASED_CHECK BIT(0) 101 102/* 103 * Option constants for bizarre disfunctionality and real 104 * features. 105 */ 106 107/* Buswidth is 16 bit */ 108#define NAND_BUSWIDTH_16 BIT(1) 109 110/* 111 * When using software implementation of Hamming, we can specify which byte 112 * ordering should be used. 113 */ 114#define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2) 115 116/* Chip has cache program function */ 117#define NAND_CACHEPRG BIT(3) 118/* Options valid for Samsung large page devices */ 119#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG 120 121/* 122 * Chip requires ready check on read (for auto-incremented sequential read). 123 * True only for small page devices; large page devices do not support 124 * autoincrement. 125 */ 126#define NAND_NEED_READRDY BIT(8) 127 128/* Chip does not allow subpage writes */ 129#define NAND_NO_SUBPAGE_WRITE BIT(9) 130 131/* Device is one of 'new' xD cards that expose fake nand command set */ 132#define NAND_BROKEN_XD BIT(10) 133 134/* Device behaves just like nand, but is readonly */ 135#define NAND_ROM BIT(11) 136 137/* Device supports subpage reads */ 138#define NAND_SUBPAGE_READ BIT(12) 139/* Macros to identify the above */ 140#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ)) 141 142/* 143 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated 144 * patterns. 145 */ 146#define NAND_NEED_SCRAMBLING BIT(13) 147 148/* Device needs 3rd row address cycle */ 149#define NAND_ROW_ADDR_3 BIT(14) 150 151/* Non chip related options */ 152/* This option skips the bbt scan during initialization. */ 153#define NAND_SKIP_BBTSCAN BIT(16) 154/* Chip may not exist, so silence any errors in scan */ 155#define NAND_SCAN_SILENT_NODEV BIT(18) 156 157/* 158 * Autodetect nand buswidth with readid/onfi. 159 * This suppose the driver will configure the hardware in 8 bits mode 160 * when calling nand_scan_ident, and update its configuration 161 * before calling nand_scan_tail. 162 */ 163#define NAND_BUSWIDTH_AUTO BIT(19) 164 165/* 166 * This option could be defined by controller drivers to protect against 167 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers 168 */ 169#define NAND_USES_DMA BIT(20) 170 171/* 172 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying 173 * on the default ->cmdfunc() implementation, you may want to let the core 174 * handle the tCCS delay which is required when a column change (RNDIN or 175 * RNDOUT) is requested. 176 * If your controller already takes care of this delay, you don't need to set 177 * this flag. 178 */ 179#define NAND_WAIT_TCCS BIT(21) 180 181/* 182 * Whether the NAND chip is a boot medium. Drivers might use this information 183 * to select ECC algorithms supported by the boot ROM or similar restrictions. 184 */ 185#define NAND_IS_BOOT_MEDIUM BIT(22) 186 187/* 188 * Do not try to tweak the timings at runtime. This is needed when the 189 * controller initializes the timings on itself or when it relies on 190 * configuration done by the bootloader. 191 */ 192#define NAND_KEEP_TIMINGS BIT(23) 193 194/* 195 * There are different places where the manufacturer stores the factory bad 196 * block markers. 197 * 198 * Position within the block: Each of these pages needs to be checked for a 199 * bad block marking pattern. 200 */ 201#define NAND_BBM_FIRSTPAGE BIT(24) 202#define NAND_BBM_SECONDPAGE BIT(25) 203#define NAND_BBM_LASTPAGE BIT(26) 204 205/* 206 * Some controllers with pipelined ECC engines override the BBM marker with 207 * data or ECC bytes, thus making bad block detection through bad block marker 208 * impossible. Let's flag those chips so the core knows it shouldn't check the 209 * BBM and consider all blocks good. 210 */ 211#define NAND_NO_BBM_QUIRK BIT(27) 212 213/* Cell info constants */ 214#define NAND_CI_CHIPNR_MSK 0x03 215#define NAND_CI_CELLTYPE_MSK 0x0C 216#define NAND_CI_CELLTYPE_SHIFT 2 217 218/* Position within the OOB data of the page */ 219#define NAND_BBM_POS_SMALL 5 220#define NAND_BBM_POS_LARGE 0 221 222/** 223 * struct nand_parameters - NAND generic parameters from the parameter page 224 * @model: Model name 225 * @supports_set_get_features: The NAND chip supports setting/getting features 226 * @set_feature_list: Bitmap of features that can be set 227 * @get_feature_list: Bitmap of features that can be get 228 * @onfi: ONFI specific parameters 229 */ 230struct nand_parameters { 231 /* Generic parameters */ 232 const char *model; 233 bool supports_set_get_features; 234 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER); 235 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER); 236 237 /* ONFI parameters */ 238 struct onfi_params *onfi; 239}; 240 241/* The maximum expected count of bytes in the NAND ID sequence */ 242#define NAND_MAX_ID_LEN 8 243 244/** 245 * struct nand_id - NAND id structure 246 * @data: buffer containing the id bytes. 247 * @len: ID length. 248 */ 249struct nand_id { 250 u8 data[NAND_MAX_ID_LEN]; 251 int len; 252}; 253 254/** 255 * struct nand_ecc_step_info - ECC step information of ECC engine 256 * @stepsize: data bytes per ECC step 257 * @strengths: array of supported strengths 258 * @nstrengths: number of supported strengths 259 */ 260struct nand_ecc_step_info { 261 int stepsize; 262 const int *strengths; 263 int nstrengths; 264}; 265 266/** 267 * struct nand_ecc_caps - capability of ECC engine 268 * @stepinfos: array of ECC step information 269 * @nstepinfos: number of ECC step information 270 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step 271 */ 272struct nand_ecc_caps { 273 const struct nand_ecc_step_info *stepinfos; 274 int nstepinfos; 275 int (*calc_ecc_bytes)(int step_size, int strength); 276}; 277 278/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */ 279#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \ 280static const int __name##_strengths[] = { __VA_ARGS__ }; \ 281static const struct nand_ecc_step_info __name##_stepinfo = { \ 282 .stepsize = __step, \ 283 .strengths = __name##_strengths, \ 284 .nstrengths = ARRAY_SIZE(__name##_strengths), \ 285}; \ 286static const struct nand_ecc_caps __name = { \ 287 .stepinfos = &__name##_stepinfo, \ 288 .nstepinfos = 1, \ 289 .calc_ecc_bytes = __calc, \ 290} 291 292/** 293 * struct nand_ecc_ctrl - Control structure for ECC 294 * @engine_type: ECC engine type 295 * @placement: OOB bytes placement 296 * @algo: ECC algorithm 297 * @steps: number of ECC steps per page 298 * @size: data bytes per ECC step 299 * @bytes: ECC bytes per step 300 * @strength: max number of correctible bits per ECC step 301 * @total: total number of ECC bytes per page 302 * @prepad: padding information for syndrome based ECC generators 303 * @postpad: padding information for syndrome based ECC generators 304 * @options: ECC specific options (see NAND_ECC_XXX flags defined above) 305 * @calc_buf: buffer for calculated ECC, size is oobsize. 306 * @code_buf: buffer for ECC read from flash, size is oobsize. 307 * @hwctl: function to control hardware ECC generator. Must only 308 * be provided if an hardware ECC is available 309 * @calculate: function for ECC calculation or readback from ECC hardware 310 * @correct: function for ECC correction, matching to ECC generator (sw/hw). 311 * Should return a positive number representing the number of 312 * corrected bitflips, -EBADMSG if the number of bitflips exceed 313 * ECC strength, or any other error code if the error is not 314 * directly related to correction. 315 * If -EBADMSG is returned the input buffers should be left 316 * untouched. 317 * @read_page_raw: function to read a raw page without ECC. This function 318 * should hide the specific layout used by the ECC 319 * controller and always return contiguous in-band and 320 * out-of-band data even if they're not stored 321 * contiguously on the NAND chip (e.g. 322 * NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and 323 * out-of-band data). 324 * @write_page_raw: function to write a raw page without ECC. This function 325 * should hide the specific layout used by the ECC 326 * controller and consider the passed data as contiguous 327 * in-band and out-of-band data. ECC controller is 328 * responsible for doing the appropriate transformations 329 * to adapt to its specific layout (e.g. 330 * NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and 331 * out-of-band data). 332 * @read_page: function to read a page according to the ECC generator 333 * requirements; returns maximum number of bitflips corrected in 334 * any single ECC step, -EIO hw error 335 * @read_subpage: function to read parts of the page covered by ECC; 336 * returns same as read_page() 337 * @write_subpage: function to write parts of the page covered by ECC. 338 * @write_page: function to write a page according to the ECC generator 339 * requirements. 340 * @write_oob_raw: function to write chip OOB data without ECC 341 * @read_oob_raw: function to read chip OOB data without ECC 342 * @read_oob: function to read chip OOB data 343 * @write_oob: function to write chip OOB data 344 */ 345struct nand_ecc_ctrl { 346 enum nand_ecc_engine_type engine_type; 347 enum nand_ecc_placement placement; 348 enum nand_ecc_algo algo; 349 int steps; 350 int size; 351 int bytes; 352 int total; 353 int strength; 354 int prepad; 355 int postpad; 356 unsigned int options; 357 u8 *calc_buf; 358 u8 *code_buf; 359 void (*hwctl)(struct nand_chip *chip, int mode); 360 int (*calculate)(struct nand_chip *chip, const uint8_t *dat, 361 uint8_t *ecc_code); 362 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc, 363 uint8_t *calc_ecc); 364 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf, 365 int oob_required, int page); 366 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf, 367 int oob_required, int page); 368 int (*read_page)(struct nand_chip *chip, uint8_t *buf, 369 int oob_required, int page); 370 int (*read_subpage)(struct nand_chip *chip, uint32_t offs, 371 uint32_t len, uint8_t *buf, int page); 372 int (*write_subpage)(struct nand_chip *chip, uint32_t offset, 373 uint32_t data_len, const uint8_t *data_buf, 374 int oob_required, int page); 375 int (*write_page)(struct nand_chip *chip, const uint8_t *buf, 376 int oob_required, int page); 377 int (*write_oob_raw)(struct nand_chip *chip, int page); 378 int (*read_oob_raw)(struct nand_chip *chip, int page); 379 int (*read_oob)(struct nand_chip *chip, int page); 380 int (*write_oob)(struct nand_chip *chip, int page); 381}; 382 383/** 384 * struct nand_sdr_timings - SDR NAND chip timings 385 * 386 * This struct defines the timing requirements of a SDR NAND chip. 387 * These information can be found in every NAND datasheets and the timings 388 * meaning are described in the ONFI specifications: 389 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf 390 * (chapter 4.15 Timing Parameters) 391 * 392 * All these timings are expressed in picoseconds. 393 * 394 * @tBERS_max: Block erase time 395 * @tCCS_min: Change column setup time 396 * @tPROG_max: Page program time 397 * @tR_max: Page read time 398 * @tALH_min: ALE hold time 399 * @tADL_min: ALE to data loading time 400 * @tALS_min: ALE setup time 401 * @tAR_min: ALE to RE# delay 402 * @tCEA_max: CE# access time 403 * @tCEH_min: CE# high hold time 404 * @tCH_min: CE# hold time 405 * @tCHZ_max: CE# high to output hi-Z 406 * @tCLH_min: CLE hold time 407 * @tCLR_min: CLE to RE# delay 408 * @tCLS_min: CLE setup time 409 * @tCOH_min: CE# high to output hold 410 * @tCS_min: CE# setup time 411 * @tDH_min: Data hold time 412 * @tDS_min: Data setup time 413 * @tFEAT_max: Busy time for Set Features and Get Features 414 * @tIR_min: Output hi-Z to RE# low 415 * @tITC_max: Interface and Timing Mode Change time 416 * @tRC_min: RE# cycle time 417 * @tREA_max: RE# access time 418 * @tREH_min: RE# high hold time 419 * @tRHOH_min: RE# high to output hold 420 * @tRHW_min: RE# high to WE# low 421 * @tRHZ_max: RE# high to output hi-Z 422 * @tRLOH_min: RE# low to output hold 423 * @tRP_min: RE# pulse width 424 * @tRR_min: Ready to RE# low (data only) 425 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 426 * rising edge of R/B#. 427 * @tWB_max: WE# high to SR[6] low 428 * @tWC_min: WE# cycle time 429 * @tWH_min: WE# high hold time 430 * @tWHR_min: WE# high to RE# low 431 * @tWP_min: WE# pulse width 432 * @tWW_min: WP# transition to WE# low 433 */ 434struct nand_sdr_timings { 435 u64 tBERS_max; 436 u32 tCCS_min; 437 u64 tPROG_max; 438 u64 tR_max; 439 u32 tALH_min; 440 u32 tADL_min; 441 u32 tALS_min; 442 u32 tAR_min; 443 u32 tCEA_max; 444 u32 tCEH_min; 445 u32 tCH_min; 446 u32 tCHZ_max; 447 u32 tCLH_min; 448 u32 tCLR_min; 449 u32 tCLS_min; 450 u32 tCOH_min; 451 u32 tCS_min; 452 u32 tDH_min; 453 u32 tDS_min; 454 u32 tFEAT_max; 455 u32 tIR_min; 456 u32 tITC_max; 457 u32 tRC_min; 458 u32 tREA_max; 459 u32 tREH_min; 460 u32 tRHOH_min; 461 u32 tRHW_min; 462 u32 tRHZ_max; 463 u32 tRLOH_min; 464 u32 tRP_min; 465 u32 tRR_min; 466 u64 tRST_max; 467 u32 tWB_max; 468 u32 tWC_min; 469 u32 tWH_min; 470 u32 tWHR_min; 471 u32 tWP_min; 472 u32 tWW_min; 473}; 474 475/** 476 * struct nand_nvddr_timings - NV-DDR NAND chip timings 477 * 478 * This struct defines the timing requirements of a NV-DDR NAND data interface. 479 * These information can be found in every NAND datasheets and the timings 480 * meaning are described in the ONFI specifications: 481 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf 482 * (chapter 4.18.2 NV-DDR) 483 * 484 * All these timings are expressed in picoseconds. 485 * 486 * @tBERS_max: Block erase time 487 * @tCCS_min: Change column setup time 488 * @tPROG_max: Page program time 489 * @tR_max: Page read time 490 * @tAC_min: Access window of DQ[7:0] from CLK 491 * @tAC_max: Access window of DQ[7:0] from CLK 492 * @tADL_min: ALE to data loading time 493 * @tCAD_min: Command, Address, Data delay 494 * @tCAH_min: Command/Address DQ hold time 495 * @tCALH_min: W/R_n, CLE and ALE hold time 496 * @tCALS_min: W/R_n, CLE and ALE setup time 497 * @tCAS_min: Command/address DQ setup time 498 * @tCEH_min: CE# high hold time 499 * @tCH_min: CE# hold time 500 * @tCK_min: Average clock cycle time 501 * @tCS_min: CE# setup time 502 * @tDH_min: Data hold time 503 * @tDQSCK_min: Start of the access window of DQS from CLK 504 * @tDQSCK_max: End of the access window of DQS from CLK 505 * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device 506 * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device 507 * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device 508 * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access 509 * @tDS_min: Data setup time 510 * @tDSC_min: DQS cycle time 511 * @tFEAT_max: Busy time for Set Features and Get Features 512 * @tITC_max: Interface and Timing Mode Change time 513 * @tQHS_max: Data hold skew factor 514 * @tRHW_min: Data output cycle to command, address, or data input cycle 515 * @tRR_min: Ready to RE# low (data only) 516 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 517 * rising edge of R/B#. 518 * @tWB_max: WE# high to SR[6] low 519 * @tWHR_min: WE# high to RE# low 520 * @tWRCK_min: W/R_n low to data output cycle 521 * @tWW_min: WP# transition to WE# low 522 */ 523struct nand_nvddr_timings { 524 u64 tBERS_max; 525 u32 tCCS_min; 526 u64 tPROG_max; 527 u64 tR_max; 528 u32 tAC_min; 529 u32 tAC_max; 530 u32 tADL_min; 531 u32 tCAD_min; 532 u32 tCAH_min; 533 u32 tCALH_min; 534 u32 tCALS_min; 535 u32 tCAS_min; 536 u32 tCEH_min; 537 u32 tCH_min; 538 u32 tCK_min; 539 u32 tCS_min; 540 u32 tDH_min; 541 u32 tDQSCK_min; 542 u32 tDQSCK_max; 543 u32 tDQSD_min; 544 u32 tDQSD_max; 545 u32 tDQSHZ_max; 546 u32 tDQSQ_max; 547 u32 tDS_min; 548 u32 tDSC_min; 549 u32 tFEAT_max; 550 u32 tITC_max; 551 u32 tQHS_max; 552 u32 tRHW_min; 553 u32 tRR_min; 554 u32 tRST_max; 555 u32 tWB_max; 556 u32 tWHR_min; 557 u32 tWRCK_min; 558 u32 tWW_min; 559}; 560 561/* 562 * While timings related to the data interface itself are mostly different 563 * between SDR and NV-DDR, timings related to the internal chip behavior are 564 * common. IOW, the following entries which describe the internal delays have 565 * the same definition and are shared in both SDR and NV-DDR timing structures: 566 * - tADL_min 567 * - tBERS_max 568 * - tCCS_min 569 * - tFEAT_max 570 * - tPROG_max 571 * - tR_max 572 * - tRR_min 573 * - tRST_max 574 * - tWB_max 575 * 576 * The below macros return the value of a given timing, no matter the interface. 577 */ 578#define NAND_COMMON_TIMING_PS(conf, timing_name) \ 579 nand_interface_is_sdr(conf) ? \ 580 nand_get_sdr_timings(conf)->timing_name : \ 581 nand_get_nvddr_timings(conf)->timing_name 582 583#define NAND_COMMON_TIMING_MS(conf, timing_name) \ 584 PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name)) 585 586#define NAND_COMMON_TIMING_NS(conf, timing_name) \ 587 PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name)) 588 589/** 590 * enum nand_interface_type - NAND interface type 591 * @NAND_SDR_IFACE: Single Data Rate interface 592 * @NAND_NVDDR_IFACE: Double Data Rate interface 593 */ 594enum nand_interface_type { 595 NAND_SDR_IFACE, 596 NAND_NVDDR_IFACE, 597}; 598 599/** 600 * struct nand_interface_config - NAND interface timing 601 * @type: type of the timing 602 * @timings: The timing information 603 * @timings.mode: Timing mode as defined in the specification 604 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE. 605 * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE. 606 */ 607struct nand_interface_config { 608 enum nand_interface_type type; 609 struct nand_timings { 610 unsigned int mode; 611 union { 612 struct nand_sdr_timings sdr; 613 struct nand_nvddr_timings nvddr; 614 }; 615 } timings; 616}; 617 618/** 619 * nand_interface_is_sdr - get the interface type 620 * @conf: The data interface 621 */ 622static bool nand_interface_is_sdr(const struct nand_interface_config *conf) 623{ 624 return conf->type == NAND_SDR_IFACE; 625} 626 627/** 628 * nand_interface_is_nvddr - get the interface type 629 * @conf: The data interface 630 */ 631static bool nand_interface_is_nvddr(const struct nand_interface_config *conf) 632{ 633 return conf->type == NAND_NVDDR_IFACE; 634} 635 636/** 637 * nand_get_sdr_timings - get SDR timing from data interface 638 * @conf: The data interface 639 */ 640static inline const struct nand_sdr_timings * 641nand_get_sdr_timings(const struct nand_interface_config *conf) 642{ 643 if (!nand_interface_is_sdr(conf)) 644 return ERR_PTR(-EINVAL); 645 646 return &conf->timings.sdr; 647} 648 649/** 650 * nand_get_nvddr_timings - get NV-DDR timing from data interface 651 * @conf: The data interface 652 */ 653static inline const struct nand_nvddr_timings * 654nand_get_nvddr_timings(const struct nand_interface_config *conf) 655{ 656 if (!nand_interface_is_nvddr(conf)) 657 return ERR_PTR(-EINVAL); 658 659 return &conf->timings.nvddr; 660} 661 662/** 663 * struct nand_op_cmd_instr - Definition of a command instruction 664 * @opcode: the command to issue in one cycle 665 */ 666struct nand_op_cmd_instr { 667 u8 opcode; 668}; 669 670/** 671 * struct nand_op_addr_instr - Definition of an address instruction 672 * @naddrs: length of the @addrs array 673 * @addrs: array containing the address cycles to issue 674 */ 675struct nand_op_addr_instr { 676 unsigned int naddrs; 677 const u8 *addrs; 678}; 679 680/** 681 * struct nand_op_data_instr - Definition of a data instruction 682 * @len: number of data bytes to move 683 * @buf: buffer to fill 684 * @buf.in: buffer to fill when reading from the NAND chip 685 * @buf.out: buffer to read from when writing to the NAND chip 686 * @force_8bit: force 8-bit access 687 * 688 * Please note that "in" and "out" are inverted from the ONFI specification 689 * and are from the controller perspective, so a "in" is a read from the NAND 690 * chip while a "out" is a write to the NAND chip. 691 */ 692struct nand_op_data_instr { 693 unsigned int len; 694 union { 695 void *in; 696 const void *out; 697 } buf; 698 bool force_8bit; 699}; 700 701/** 702 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction 703 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms 704 */ 705struct nand_op_waitrdy_instr { 706 unsigned int timeout_ms; 707}; 708 709/** 710 * enum nand_op_instr_type - Definition of all instruction types 711 * @NAND_OP_CMD_INSTR: command instruction 712 * @NAND_OP_ADDR_INSTR: address instruction 713 * @NAND_OP_DATA_IN_INSTR: data in instruction 714 * @NAND_OP_DATA_OUT_INSTR: data out instruction 715 * @NAND_OP_WAITRDY_INSTR: wait ready instruction 716 */ 717enum nand_op_instr_type { 718 NAND_OP_CMD_INSTR, 719 NAND_OP_ADDR_INSTR, 720 NAND_OP_DATA_IN_INSTR, 721 NAND_OP_DATA_OUT_INSTR, 722 NAND_OP_WAITRDY_INSTR, 723}; 724 725/** 726 * struct nand_op_instr - Instruction object 727 * @type: the instruction type 728 * @ctx: extra data associated to the instruction. You'll have to use the 729 * appropriate element depending on @type 730 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR 731 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR 732 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR 733 * or %NAND_OP_DATA_OUT_INSTR 734 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR 735 * @delay_ns: delay the controller should apply after the instruction has been 736 * issued on the bus. Most modern controllers have internal timings 737 * control logic, and in this case, the controller driver can ignore 738 * this field. 739 */ 740struct nand_op_instr { 741 enum nand_op_instr_type type; 742 union { 743 struct nand_op_cmd_instr cmd; 744 struct nand_op_addr_instr addr; 745 struct nand_op_data_instr data; 746 struct nand_op_waitrdy_instr waitrdy; 747 } ctx; 748 unsigned int delay_ns; 749}; 750 751/* 752 * Special handling must be done for the WAITRDY timeout parameter as it usually 753 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or 754 * tBERS (during an erase) which all of them are u64 values that cannot be 755 * divided by usual kernel macros and must be handled with the special 756 * DIV_ROUND_UP_ULL() macro. 757 * 758 * Cast to type of dividend is needed here to guarantee that the result won't 759 * be an unsigned long long when the dividend is an unsigned long (or smaller), 760 * which is what the compiler does when it sees ternary operator with 2 761 * different return types (picks the largest type to make sure there's no 762 * loss). 763 */ 764#define __DIVIDE(dividend, divisor) ({ \ 765 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \ 766 DIV_ROUND_UP(dividend, divisor) : \ 767 DIV_ROUND_UP_ULL(dividend, divisor)); \ 768 }) 769#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000) 770#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000) 771 772#define NAND_OP_CMD(id, ns) \ 773 { \ 774 .type = NAND_OP_CMD_INSTR, \ 775 .ctx.cmd.opcode = id, \ 776 .delay_ns = ns, \ 777 } 778 779#define NAND_OP_ADDR(ncycles, cycles, ns) \ 780 { \ 781 .type = NAND_OP_ADDR_INSTR, \ 782 .ctx.addr = { \ 783 .naddrs = ncycles, \ 784 .addrs = cycles, \ 785 }, \ 786 .delay_ns = ns, \ 787 } 788 789#define NAND_OP_DATA_IN(l, b, ns) \ 790 { \ 791 .type = NAND_OP_DATA_IN_INSTR, \ 792 .ctx.data = { \ 793 .len = l, \ 794 .buf.in = b, \ 795 .force_8bit = false, \ 796 }, \ 797 .delay_ns = ns, \ 798 } 799 800#define NAND_OP_DATA_OUT(l, b, ns) \ 801 { \ 802 .type = NAND_OP_DATA_OUT_INSTR, \ 803 .ctx.data = { \ 804 .len = l, \ 805 .buf.out = b, \ 806 .force_8bit = false, \ 807 }, \ 808 .delay_ns = ns, \ 809 } 810 811#define NAND_OP_8BIT_DATA_IN(l, b, ns) \ 812 { \ 813 .type = NAND_OP_DATA_IN_INSTR, \ 814 .ctx.data = { \ 815 .len = l, \ 816 .buf.in = b, \ 817 .force_8bit = true, \ 818 }, \ 819 .delay_ns = ns, \ 820 } 821 822#define NAND_OP_8BIT_DATA_OUT(l, b, ns) \ 823 { \ 824 .type = NAND_OP_DATA_OUT_INSTR, \ 825 .ctx.data = { \ 826 .len = l, \ 827 .buf.out = b, \ 828 .force_8bit = true, \ 829 }, \ 830 .delay_ns = ns, \ 831 } 832 833#define NAND_OP_WAIT_RDY(tout_ms, ns) \ 834 { \ 835 .type = NAND_OP_WAITRDY_INSTR, \ 836 .ctx.waitrdy.timeout_ms = tout_ms, \ 837 .delay_ns = ns, \ 838 } 839 840/** 841 * struct nand_subop - a sub operation 842 * @cs: the CS line to select for this NAND sub-operation 843 * @instrs: array of instructions 844 * @ninstrs: length of the @instrs array 845 * @first_instr_start_off: offset to start from for the first instruction 846 * of the sub-operation 847 * @last_instr_end_off: offset to end at (excluded) for the last instruction 848 * of the sub-operation 849 * 850 * Both @first_instr_start_off and @last_instr_end_off only apply to data or 851 * address instructions. 852 * 853 * When an operation cannot be handled as is by the NAND controller, it will 854 * be split by the parser into sub-operations which will be passed to the 855 * controller driver. 856 */ 857struct nand_subop { 858 unsigned int cs; 859 const struct nand_op_instr *instrs; 860 unsigned int ninstrs; 861 unsigned int first_instr_start_off; 862 unsigned int last_instr_end_off; 863}; 864 865unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 866 unsigned int op_id); 867unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 868 unsigned int op_id); 869unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 870 unsigned int op_id); 871unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 872 unsigned int op_id); 873 874/** 875 * struct nand_op_parser_addr_constraints - Constraints for address instructions 876 * @maxcycles: maximum number of address cycles the controller can issue in a 877 * single step 878 */ 879struct nand_op_parser_addr_constraints { 880 unsigned int maxcycles; 881}; 882 883/** 884 * struct nand_op_parser_data_constraints - Constraints for data instructions 885 * @maxlen: maximum data length that the controller can handle in a single step 886 */ 887struct nand_op_parser_data_constraints { 888 unsigned int maxlen; 889}; 890 891/** 892 * struct nand_op_parser_pattern_elem - One element of a pattern 893 * @type: the instructuction type 894 * @optional: whether this element of the pattern is optional or mandatory 895 * @ctx: address or data constraint 896 * @ctx.addr: address constraint (number of cycles) 897 * @ctx.data: data constraint (data length) 898 */ 899struct nand_op_parser_pattern_elem { 900 enum nand_op_instr_type type; 901 bool optional; 902 union { 903 struct nand_op_parser_addr_constraints addr; 904 struct nand_op_parser_data_constraints data; 905 } ctx; 906}; 907 908#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ 909 { \ 910 .type = NAND_OP_CMD_INSTR, \ 911 .optional = _opt, \ 912 } 913 914#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ 915 { \ 916 .type = NAND_OP_ADDR_INSTR, \ 917 .optional = _opt, \ 918 .ctx.addr.maxcycles = _maxcycles, \ 919 } 920 921#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ 922 { \ 923 .type = NAND_OP_DATA_IN_INSTR, \ 924 .optional = _opt, \ 925 .ctx.data.maxlen = _maxlen, \ 926 } 927 928#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ 929 { \ 930 .type = NAND_OP_DATA_OUT_INSTR, \ 931 .optional = _opt, \ 932 .ctx.data.maxlen = _maxlen, \ 933 } 934 935#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ 936 { \ 937 .type = NAND_OP_WAITRDY_INSTR, \ 938 .optional = _opt, \ 939 } 940 941/** 942 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor 943 * @elems: array of pattern elements 944 * @nelems: number of pattern elements in @elems array 945 * @exec: the function that will issue a sub-operation 946 * 947 * A pattern is a list of elements, each element reprensenting one instruction 948 * with its constraints. The pattern itself is used by the core to match NAND 949 * chip operation with NAND controller operations. 950 * Once a match between a NAND controller operation pattern and a NAND chip 951 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec() 952 * hook is called so that the controller driver can issue the operation on the 953 * bus. 954 * 955 * Controller drivers should declare as many patterns as they support and pass 956 * this list of patterns (created with the help of the following macro) to 957 * the nand_op_parser_exec_op() helper. 958 */ 959struct nand_op_parser_pattern { 960 const struct nand_op_parser_pattern_elem *elems; 961 unsigned int nelems; 962 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); 963}; 964 965#define NAND_OP_PARSER_PATTERN(_exec, ...) \ 966 { \ 967 .exec = _exec, \ 968 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ 969 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ 970 sizeof(struct nand_op_parser_pattern_elem), \ 971 } 972 973/** 974 * struct nand_op_parser - NAND controller operation parser descriptor 975 * @patterns: array of supported patterns 976 * @npatterns: length of the @patterns array 977 * 978 * The parser descriptor is just an array of supported patterns which will be 979 * iterated by nand_op_parser_exec_op() everytime it tries to execute an 980 * NAND operation (or tries to determine if a specific operation is supported). 981 * 982 * It is worth mentioning that patterns will be tested in their declaration 983 * order, and the first match will be taken, so it's important to order patterns 984 * appropriately so that simple/inefficient patterns are placed at the end of 985 * the list. Usually, this is where you put single instruction patterns. 986 */ 987struct nand_op_parser { 988 const struct nand_op_parser_pattern *patterns; 989 unsigned int npatterns; 990}; 991 992#define NAND_OP_PARSER(...) \ 993 { \ 994 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ 995 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ 996 sizeof(struct nand_op_parser_pattern), \ 997 } 998 999/** 1000 * struct nand_operation - NAND operation descriptor 1001 * @cs: the CS line to select for this NAND operation 1002 * @instrs: array of instructions to execute 1003 * @ninstrs: length of the @instrs array 1004 * 1005 * The actual operation structure that will be passed to chip->exec_op(). 1006 */ 1007struct nand_operation { 1008 unsigned int cs; 1009 const struct nand_op_instr *instrs; 1010 unsigned int ninstrs; 1011}; 1012 1013#define NAND_OPERATION(_cs, _instrs) \ 1014 { \ 1015 .cs = _cs, \ 1016 .instrs = _instrs, \ 1017 .ninstrs = ARRAY_SIZE(_instrs), \ 1018 } 1019 1020int nand_op_parser_exec_op(struct nand_chip *chip, 1021 const struct nand_op_parser *parser, 1022 const struct nand_operation *op, bool check_only); 1023 1024static inline void nand_op_trace(const char *prefix, 1025 const struct nand_op_instr *instr) 1026{ 1027#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 1028 switch (instr->type) { 1029 case NAND_OP_CMD_INSTR: 1030 pr_debug("%sCMD [0x%02x]\n", prefix, 1031 instr->ctx.cmd.opcode); 1032 break; 1033 case NAND_OP_ADDR_INSTR: 1034 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 1035 instr->ctx.addr.naddrs, 1036 instr->ctx.addr.naddrs < 64 ? 1037 instr->ctx.addr.naddrs : 64, 1038 instr->ctx.addr.addrs); 1039 break; 1040 case NAND_OP_DATA_IN_INSTR: 1041 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 1042 instr->ctx.data.len, 1043 instr->ctx.data.force_8bit ? 1044 ", force 8-bit" : ""); 1045 break; 1046 case NAND_OP_DATA_OUT_INSTR: 1047 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 1048 instr->ctx.data.len, 1049 instr->ctx.data.force_8bit ? 1050 ", force 8-bit" : ""); 1051 break; 1052 case NAND_OP_WAITRDY_INSTR: 1053 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 1054 instr->ctx.waitrdy.timeout_ms); 1055 break; 1056 } 1057#endif 1058} 1059 1060/** 1061 * struct nand_controller_ops - Controller operations 1062 * 1063 * @attach_chip: this method is called after the NAND detection phase after 1064 * flash ID and MTD fields such as erase size, page size and OOB 1065 * size have been set up. ECC requirements are available if 1066 * provided by the NAND chip or device tree. Typically used to 1067 * choose the appropriate ECC configuration and allocate 1068 * associated resources. 1069 * This hook is optional. 1070 * @detach_chip: free all resources allocated/claimed in 1071 * nand_controller_ops->attach_chip(). 1072 * This hook is optional. 1073 * @exec_op: controller specific method to execute NAND operations. 1074 * This method replaces chip->legacy.cmdfunc(), 1075 * chip->legacy.{read,write}_{buf,byte,word}(), 1076 * chip->legacy.dev_ready() and chip->legacy.waifunc(). 1077 * @setup_interface: setup the data interface and timing. If chipnr is set to 1078 * %NAND_DATA_IFACE_CHECK_ONLY this means the configuration 1079 * should not be applied but only checked. 1080 * This hook is optional. 1081 */ 1082struct nand_controller_ops { 1083 int (*attach_chip)(struct nand_chip *chip); 1084 void (*detach_chip)(struct nand_chip *chip); 1085 int (*exec_op)(struct nand_chip *chip, 1086 const struct nand_operation *op, 1087 bool check_only); 1088 int (*setup_interface)(struct nand_chip *chip, int chipnr, 1089 const struct nand_interface_config *conf); 1090}; 1091 1092/** 1093 * struct nand_controller - Structure used to describe a NAND controller 1094 * 1095 * @lock: lock used to serialize accesses to the NAND controller 1096 * @ops: NAND controller operations. 1097 */ 1098struct nand_controller { 1099 struct mutex lock; 1100 const struct nand_controller_ops *ops; 1101}; 1102 1103static inline void nand_controller_init(struct nand_controller *nfc) 1104{ 1105 mutex_init(&nfc->lock); 1106} 1107 1108/** 1109 * struct nand_legacy - NAND chip legacy fields/hooks 1110 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device 1111 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device 1112 * @select_chip: select/deselect a specific target/die 1113 * @read_byte: read one byte from the chip 1114 * @write_byte: write a single byte to the chip on the low 8 I/O lines 1115 * @write_buf: write data from the buffer to the chip 1116 * @read_buf: read data from the chip into the buffer 1117 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used 1118 * to write command and address 1119 * @cmdfunc: hardware specific function for writing commands to the chip. 1120 * @dev_ready: hardware specific function for accessing device ready/busy line. 1121 * If set to NULL no access to ready/busy is available and the 1122 * ready/busy information is read from the chip status register. 1123 * @waitfunc: hardware specific function for wait on ready. 1124 * @block_bad: check if a block is bad, using OOB markers 1125 * @block_markbad: mark a block bad 1126 * @set_features: set the NAND chip features 1127 * @get_features: get the NAND chip features 1128 * @chip_delay: chip dependent delay for transferring data from array to read 1129 * regs (tR). 1130 * @dummy_controller: dummy controller implementation for drivers that can 1131 * only control a single chip 1132 * 1133 * If you look at this structure you're already wrong. These fields/hooks are 1134 * all deprecated. 1135 */ 1136struct nand_legacy { 1137 void __iomem *IO_ADDR_R; 1138 void __iomem *IO_ADDR_W; 1139 void (*select_chip)(struct nand_chip *chip, int cs); 1140 u8 (*read_byte)(struct nand_chip *chip); 1141 void (*write_byte)(struct nand_chip *chip, u8 byte); 1142 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len); 1143 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len); 1144 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl); 1145 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column, 1146 int page_addr); 1147 int (*dev_ready)(struct nand_chip *chip); 1148 int (*waitfunc)(struct nand_chip *chip); 1149 int (*block_bad)(struct nand_chip *chip, loff_t ofs); 1150 int (*block_markbad)(struct nand_chip *chip, loff_t ofs); 1151 int (*set_features)(struct nand_chip *chip, int feature_addr, 1152 u8 *subfeature_para); 1153 int (*get_features)(struct nand_chip *chip, int feature_addr, 1154 u8 *subfeature_para); 1155 int chip_delay; 1156 struct nand_controller dummy_controller; 1157}; 1158 1159/** 1160 * struct nand_chip_ops - NAND chip operations 1161 * @suspend: Suspend operation 1162 * @resume: Resume operation 1163 * @lock_area: Lock operation 1164 * @unlock_area: Unlock operation 1165 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs) 1166 * @choose_interface_config: Choose the best interface configuration 1167 */ 1168struct nand_chip_ops { 1169 int (*suspend)(struct nand_chip *chip); 1170 void (*resume)(struct nand_chip *chip); 1171 int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len); 1172 int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len); 1173 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode); 1174 int (*choose_interface_config)(struct nand_chip *chip, 1175 struct nand_interface_config *iface); 1176}; 1177 1178/** 1179 * struct nand_manufacturer - NAND manufacturer structure 1180 * @desc: The manufacturer description 1181 * @priv: Private information for the manufacturer driver 1182 */ 1183struct nand_manufacturer { 1184 const struct nand_manufacturer_desc *desc; 1185 void *priv; 1186}; 1187 1188/** 1189 * struct nand_secure_region - NAND secure region structure 1190 * @offset: Offset of the start of the secure region 1191 * @size: Size of the secure region 1192 */ 1193struct nand_secure_region { 1194 u64 offset; 1195 u64 size; 1196}; 1197 1198/** 1199 * struct nand_chip - NAND Private Flash Chip Data 1200 * @base: Inherit from the generic NAND device 1201 * @id: Holds NAND ID 1202 * @parameters: Holds generic parameters under an easily readable form 1203 * @manufacturer: Manufacturer information 1204 * @ops: NAND chip operations 1205 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try 1206 * to use any of these fields/hooks, and if you're modifying an 1207 * existing driver that is using those fields/hooks, you should 1208 * consider reworking the driver and avoid using them. 1209 * @options: Various chip options. They can partly be set to inform nand_scan 1210 * about special functionality. See the defines for further 1211 * explanation. 1212 * @current_interface_config: The currently used NAND interface configuration 1213 * @best_interface_config: The best NAND interface configuration which fits both 1214 * the NAND chip and NAND controller constraints. If 1215 * unset, the default reset interface configuration must 1216 * be used. 1217 * @bbt_erase_shift: Number of address bits in a bbt entry 1218 * @bbt_options: Bad block table specific options. All options used here must 1219 * come from bbm.h. By default, these options will be copied to 1220 * the appropriate nand_bbt_descr's. 1221 * @badblockpos: Bad block marker position in the oob area 1222 * @badblockbits: Minimum number of set bits in a good block's bad block marker 1223 * position; i.e., BBM = 11110111b is good when badblockbits = 7 1224 * @bbt_td: Bad block table descriptor for flash lookup 1225 * @bbt_md: Bad block table mirror descriptor 1226 * @badblock_pattern: Bad block scan pattern used for initial bad block scan 1227 * @bbt: Bad block table pointer 1228 * @page_shift: Number of address bits in a page (column address bits) 1229 * @phys_erase_shift: Number of address bits in a physical eraseblock 1230 * @chip_shift: Number of address bits in one chip 1231 * @pagemask: Page number mask = number of (pages / chip) - 1 1232 * @subpagesize: Holds the subpagesize 1233 * @data_buf: Buffer for data, size is (page size + oobsize) 1234 * @oob_poi: pointer on the OOB area covered by data_buf 1235 * @pagecache: Structure containing page cache related fields 1236 * @pagecache.bitflips: Number of bitflips of the cached page 1237 * @pagecache.page: Page number currently in the cache. -1 means no page is 1238 * currently cached 1239 * @buf_align: Minimum buffer alignment required by a platform 1240 * @lock: Lock protecting the suspended field. Also used to serialize accesses 1241 * to the NAND device 1242 * @suspended: Set to 1 when the device is suspended, 0 when it's not 1243 * @resume_wq: wait queue to sleep if rawnand is in suspended state. 1244 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we 1245 * should always have cur_cs >= 0 && cur_cs < nanddev_ntargets(). 1246 * NAND Controller drivers should not modify this value, but they're 1247 * allowed to read it. 1248 * @read_retries: The number of read retry modes supported 1249 * @secure_regions: Structure containing the secure regions info 1250 * @nr_secure_regions: Number of secure regions 1251 * @controller: The hardware controller structure which is shared among multiple 1252 * independent devices 1253 * @ecc: The ECC controller structure 1254 * @priv: Chip private data 1255 */ 1256struct nand_chip { 1257 struct nand_device base; 1258 struct nand_id id; 1259 struct nand_parameters parameters; 1260 struct nand_manufacturer manufacturer; 1261 struct nand_chip_ops ops; 1262 struct nand_legacy legacy; 1263 unsigned int options; 1264 1265 /* Data interface */ 1266 const struct nand_interface_config *current_interface_config; 1267 struct nand_interface_config *best_interface_config; 1268 1269 /* Bad block information */ 1270 unsigned int bbt_erase_shift; 1271 unsigned int bbt_options; 1272 unsigned int badblockpos; 1273 unsigned int badblockbits; 1274 struct nand_bbt_descr *bbt_td; 1275 struct nand_bbt_descr *bbt_md; 1276 struct nand_bbt_descr *badblock_pattern; 1277 u8 *bbt; 1278 1279 /* Device internal layout */ 1280 unsigned int page_shift; 1281 unsigned int phys_erase_shift; 1282 unsigned int chip_shift; 1283 unsigned int pagemask; 1284 unsigned int subpagesize; 1285 1286 /* Buffers */ 1287 u8 *data_buf; 1288 u8 *oob_poi; 1289 struct { 1290 unsigned int bitflips; 1291 int page; 1292 } pagecache; 1293 unsigned long buf_align; 1294 1295 /* Internals */ 1296 struct mutex lock; 1297 unsigned int suspended : 1; 1298 wait_queue_head_t resume_wq; 1299 int cur_cs; 1300 int read_retries; 1301 struct nand_secure_region *secure_regions; 1302 u8 nr_secure_regions; 1303 1304 /* Externals */ 1305 struct nand_controller *controller; 1306 struct nand_ecc_ctrl ecc; 1307 void *priv; 1308}; 1309 1310static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) 1311{ 1312 return container_of(mtd, struct nand_chip, base.mtd); 1313} 1314 1315static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) 1316{ 1317 return &chip->base.mtd; 1318} 1319 1320static inline void *nand_get_controller_data(struct nand_chip *chip) 1321{ 1322 return chip->priv; 1323} 1324 1325static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) 1326{ 1327 chip->priv = priv; 1328} 1329 1330static inline void nand_set_manufacturer_data(struct nand_chip *chip, 1331 void *priv) 1332{ 1333 chip->manufacturer.priv = priv; 1334} 1335 1336static inline void *nand_get_manufacturer_data(struct nand_chip *chip) 1337{ 1338 return chip->manufacturer.priv; 1339} 1340 1341static inline void nand_set_flash_node(struct nand_chip *chip, 1342 struct device_node *np) 1343{ 1344 mtd_set_of_node(nand_to_mtd(chip), np); 1345} 1346 1347static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) 1348{ 1349 return mtd_get_of_node(nand_to_mtd(chip)); 1350} 1351 1352/** 1353 * nand_get_interface_config - Retrieve the current interface configuration 1354 * of a NAND chip 1355 * @chip: The NAND chip 1356 */ 1357static inline const struct nand_interface_config * 1358nand_get_interface_config(struct nand_chip *chip) 1359{ 1360 return chip->current_interface_config; 1361} 1362 1363/* 1364 * A helper for defining older NAND chips where the second ID byte fully 1365 * defined the chip, including the geometry (chip size, eraseblock size, page 1366 * size). All these chips have 512 bytes NAND page size. 1367 */ 1368#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ 1369 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ 1370 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } 1371 1372/* 1373 * A helper for defining newer chips which report their page size and 1374 * eraseblock size via the extended ID bytes. 1375 * 1376 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with 1377 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the 1378 * device ID now only represented a particular total chip size (and voltage, 1379 * buswidth), and the page size, eraseblock size, and OOB size could vary while 1380 * using the same device ID. 1381 */ 1382#define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ 1383 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ 1384 .options = (opts) } 1385 1386#define NAND_ECC_INFO(_strength, _step) \ 1387 { .strength_ds = (_strength), .step_ds = (_step) } 1388#define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) 1389#define NAND_ECC_STEP(type) ((type)->ecc.step_ds) 1390 1391/** 1392 * struct nand_flash_dev - NAND Flash Device ID Structure 1393 * @name: a human-readable name of the NAND chip 1394 * @dev_id: the device ID (the second byte of the full chip ID array) 1395 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same 1396 * memory address as ``id[0]``) 1397 * @dev_id: device ID part of the full chip ID array (refers the same memory 1398 * address as ``id[1]``) 1399 * @id: full device ID array 1400 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as 1401 * well as the eraseblock size) is determined from the extended NAND 1402 * chip ID array) 1403 * @chipsize: total chip size in MiB 1404 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) 1405 * @options: stores various chip bit options 1406 * @id_len: The valid length of the @id. 1407 * @oobsize: OOB size 1408 * @ecc: ECC correctability and step information from the datasheet. 1409 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the 1410 * @ecc_strength_ds in nand_chip{}. 1411 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the 1412 * @ecc_step_ds in nand_chip{}, also from the datasheet. 1413 * For example, the "4bit ECC for each 512Byte" can be set with 1414 * NAND_ECC_INFO(4, 512). 1415 */ 1416struct nand_flash_dev { 1417 char *name; 1418 union { 1419 struct { 1420 uint8_t mfr_id; 1421 uint8_t dev_id; 1422 }; 1423 uint8_t id[NAND_MAX_ID_LEN]; 1424 }; 1425 unsigned int pagesize; 1426 unsigned int chipsize; 1427 unsigned int erasesize; 1428 unsigned int options; 1429 uint16_t id_len; 1430 uint16_t oobsize; 1431 struct { 1432 uint16_t strength_ds; 1433 uint16_t step_ds; 1434 } ecc; 1435}; 1436 1437int nand_create_bbt(struct nand_chip *chip); 1438 1439/* 1440 * Check if it is a SLC nand. 1441 * The !nand_is_slc() can be used to check the MLC/TLC nand chips. 1442 * We do not distinguish the MLC and TLC now. 1443 */ 1444static inline bool nand_is_slc(struct nand_chip *chip) 1445{ 1446 WARN(nanddev_bits_per_cell(&chip->base) == 0, 1447 "chip->bits_per_cell is used uninitialized\n"); 1448 return nanddev_bits_per_cell(&chip->base) == 1; 1449} 1450 1451/** 1452 * nand_opcode_8bits - Check if the opcode's address should be sent only on the 1453 * lower 8 bits 1454 * @command: opcode to check 1455 */ 1456static inline int nand_opcode_8bits(unsigned int command) 1457{ 1458 switch (command) { 1459 case NAND_CMD_READID: 1460 case NAND_CMD_PARAM: 1461 case NAND_CMD_GET_FEATURES: 1462 case NAND_CMD_SET_FEATURES: 1463 return 1; 1464 default: 1465 break; 1466 } 1467 return 0; 1468} 1469 1470int rawnand_sw_hamming_init(struct nand_chip *chip); 1471int rawnand_sw_hamming_calculate(struct nand_chip *chip, 1472 const unsigned char *buf, 1473 unsigned char *code); 1474int rawnand_sw_hamming_correct(struct nand_chip *chip, 1475 unsigned char *buf, 1476 unsigned char *read_ecc, 1477 unsigned char *calc_ecc); 1478void rawnand_sw_hamming_cleanup(struct nand_chip *chip); 1479int rawnand_sw_bch_init(struct nand_chip *chip); 1480int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 1481 unsigned char *read_ecc, unsigned char *calc_ecc); 1482void rawnand_sw_bch_cleanup(struct nand_chip *chip); 1483 1484int nand_check_erased_ecc_chunk(void *data, int datalen, 1485 void *ecc, int ecclen, 1486 void *extraoob, int extraooblen, 1487 int threshold); 1488 1489int nand_ecc_choose_conf(struct nand_chip *chip, 1490 const struct nand_ecc_caps *caps, int oobavail); 1491 1492/* Default write_oob implementation */ 1493int nand_write_oob_std(struct nand_chip *chip, int page); 1494 1495/* Default read_oob implementation */ 1496int nand_read_oob_std(struct nand_chip *chip, int page); 1497 1498/* Stub used by drivers that do not support GET/SET FEATURES operations */ 1499int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, 1500 u8 *subfeature_param); 1501 1502/* read_page_raw implementations */ 1503int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 1504 int page); 1505int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1506 int oob_required, int page); 1507 1508/* write_page_raw implementations */ 1509int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1510 int oob_required, int page); 1511int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1512 int oob_required, int page); 1513 1514/* Reset and initialize a NAND device */ 1515int nand_reset(struct nand_chip *chip, int chipnr); 1516 1517/* NAND operation helpers */ 1518int nand_reset_op(struct nand_chip *chip); 1519int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1520 unsigned int len); 1521int nand_status_op(struct nand_chip *chip, u8 *status); 1522int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); 1523int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1524 unsigned int offset_in_page, void *buf, unsigned int len); 1525int nand_change_read_column_op(struct nand_chip *chip, 1526 unsigned int offset_in_page, void *buf, 1527 unsigned int len, bool force_8bit); 1528int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1529 unsigned int offset_in_page, void *buf, unsigned int len); 1530int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1531 unsigned int offset_in_page, const void *buf, 1532 unsigned int len); 1533int nand_prog_page_end_op(struct nand_chip *chip); 1534int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1535 unsigned int offset_in_page, const void *buf, 1536 unsigned int len); 1537int nand_change_write_column_op(struct nand_chip *chip, 1538 unsigned int offset_in_page, const void *buf, 1539 unsigned int len, bool force_8bit); 1540int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1541 bool force_8bit, bool check_only); 1542int nand_write_data_op(struct nand_chip *chip, const void *buf, 1543 unsigned int len, bool force_8bit); 1544int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 1545 int oob_required, int page); 1546 1547/* Scan and identify a NAND device */ 1548int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips, 1549 struct nand_flash_dev *ids); 1550 1551static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips) 1552{ 1553 return nand_scan_with_ids(chip, max_chips, NULL); 1554} 1555 1556/* Internal helper for board drivers which need to override command function */ 1557void nand_wait_ready(struct nand_chip *chip); 1558 1559/* 1560 * Free resources held by the NAND device, must be called on error after a 1561 * sucessful nand_scan(). 1562 */ 1563void nand_cleanup(struct nand_chip *chip); 1564 1565/* 1566 * External helper for controller drivers that have to implement the WAITRDY 1567 * instruction and have no physical pin to check it. 1568 */ 1569int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms); 1570int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 1571 unsigned long timeout_ms); 1572 1573/* Select/deselect a NAND target. */ 1574void nand_select_target(struct nand_chip *chip, unsigned int cs); 1575void nand_deselect_target(struct nand_chip *chip); 1576 1577/* Bitops */ 1578void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 1579 unsigned int src_off, unsigned int nbits); 1580 1581/** 1582 * nand_get_data_buf() - Get the internal page buffer 1583 * @chip: NAND chip object 1584 * 1585 * Returns the pre-allocated page buffer after invalidating the cache. This 1586 * function should be used by drivers that do not want to allocate their own 1587 * bounce buffer and still need such a buffer for specific operations (most 1588 * commonly when reading OOB data only). 1589 * 1590 * Be careful to never call this function in the write/write_oob path, because 1591 * the core may have placed the data to be written out in this buffer. 1592 * 1593 * Return: pointer to the page cache buffer 1594 */ 1595static inline void *nand_get_data_buf(struct nand_chip *chip) 1596{ 1597 chip->pagecache.page = -1; 1598 1599 return chip->data_buf; 1600} 1601 1602/* Parse the gpio-cs property */ 1603int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, 1604 unsigned int *ncs_array); 1605 1606#endif /* __LINUX_MTD_RAWNAND_H */