cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rawnand.h (52400B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
      4 *                        Steven J. Hill <sjhill@realitydiluted.com>
      5 *		          Thomas Gleixner <tglx@linutronix.de>
      6 *
      7 * Info:
      8 *	Contains standard defines and IDs for NAND flash devices
      9 *
     10 * Changelog:
     11 *	See git changelog.
     12 */
     13#ifndef __LINUX_MTD_RAWNAND_H
     14#define __LINUX_MTD_RAWNAND_H
     15
     16#include <linux/mtd/mtd.h>
     17#include <linux/mtd/nand.h>
     18#include <linux/mtd/flashchip.h>
     19#include <linux/mtd/bbm.h>
     20#include <linux/mtd/jedec.h>
     21#include <linux/mtd/onfi.h>
     22#include <linux/mutex.h>
     23#include <linux/of.h>
     24#include <linux/types.h>
     25
     26struct nand_chip;
     27struct gpio_desc;
     28
     29/* The maximum number of NAND chips in an array */
     30#define NAND_MAX_CHIPS		8
     31
     32/*
     33 * Constants for hardware specific CLE/ALE/NCE function
     34 *
     35 * These are bits which can be or'ed to set/clear multiple
     36 * bits in one go.
     37 */
     38/* Select the chip by setting nCE to low */
     39#define NAND_NCE		0x01
     40/* Select the command latch by setting CLE to high */
     41#define NAND_CLE		0x02
     42/* Select the address latch by setting ALE to high */
     43#define NAND_ALE		0x04
     44
     45#define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
     46#define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
     47#define NAND_CTRL_CHANGE	0x80
     48
     49/*
     50 * Standard NAND flash commands
     51 */
     52#define NAND_CMD_READ0		0
     53#define NAND_CMD_READ1		1
     54#define NAND_CMD_RNDOUT		5
     55#define NAND_CMD_PAGEPROG	0x10
     56#define NAND_CMD_READOOB	0x50
     57#define NAND_CMD_ERASE1		0x60
     58#define NAND_CMD_STATUS		0x70
     59#define NAND_CMD_SEQIN		0x80
     60#define NAND_CMD_RNDIN		0x85
     61#define NAND_CMD_READID		0x90
     62#define NAND_CMD_ERASE2		0xd0
     63#define NAND_CMD_PARAM		0xec
     64#define NAND_CMD_GET_FEATURES	0xee
     65#define NAND_CMD_SET_FEATURES	0xef
     66#define NAND_CMD_RESET		0xff
     67
     68/* Extended commands for large page devices */
     69#define NAND_CMD_READSTART	0x30
     70#define NAND_CMD_RNDOUTSTART	0xE0
     71#define NAND_CMD_CACHEDPROG	0x15
     72
     73#define NAND_CMD_NONE		-1
     74
     75/* Status bits */
     76#define NAND_STATUS_FAIL	0x01
     77#define NAND_STATUS_FAIL_N1	0x02
     78#define NAND_STATUS_TRUE_READY	0x20
     79#define NAND_STATUS_READY	0x40
     80#define NAND_STATUS_WP		0x80
     81
     82#define NAND_DATA_IFACE_CHECK_ONLY	-1
     83
     84/*
     85 * Constants for Hardware ECC
     86 */
     87/* Reset Hardware ECC for read */
     88#define NAND_ECC_READ		0
     89/* Reset Hardware ECC for write */
     90#define NAND_ECC_WRITE		1
     91/* Enable Hardware ECC before syndrome is read back from flash */
     92#define NAND_ECC_READSYN	2
     93
     94/*
     95 * Enable generic NAND 'page erased' check. This check is only done when
     96 * ecc.correct() returns -EBADMSG.
     97 * Set this flag if your implementation does not fix bitflips in erased
     98 * pages and you want to rely on the default implementation.
     99 */
    100#define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
    101
    102/*
    103 * Option constants for bizarre disfunctionality and real
    104 * features.
    105 */
    106
    107/* Buswidth is 16 bit */
    108#define NAND_BUSWIDTH_16	BIT(1)
    109
    110/*
    111 * When using software implementation of Hamming, we can specify which byte
    112 * ordering should be used.
    113 */
    114#define NAND_ECC_SOFT_HAMMING_SM_ORDER	BIT(2)
    115
    116/* Chip has cache program function */
    117#define NAND_CACHEPRG		BIT(3)
    118/* Options valid for Samsung large page devices */
    119#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
    120
    121/*
    122 * Chip requires ready check on read (for auto-incremented sequential read).
    123 * True only for small page devices; large page devices do not support
    124 * autoincrement.
    125 */
    126#define NAND_NEED_READRDY	BIT(8)
    127
    128/* Chip does not allow subpage writes */
    129#define NAND_NO_SUBPAGE_WRITE	BIT(9)
    130
    131/* Device is one of 'new' xD cards that expose fake nand command set */
    132#define NAND_BROKEN_XD		BIT(10)
    133
    134/* Device behaves just like nand, but is readonly */
    135#define NAND_ROM		BIT(11)
    136
    137/* Device supports subpage reads */
    138#define NAND_SUBPAGE_READ	BIT(12)
    139/* Macros to identify the above */
    140#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
    141
    142/*
    143 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
    144 * patterns.
    145 */
    146#define NAND_NEED_SCRAMBLING	BIT(13)
    147
    148/* Device needs 3rd row address cycle */
    149#define NAND_ROW_ADDR_3		BIT(14)
    150
    151/* Non chip related options */
    152/* This option skips the bbt scan during initialization. */
    153#define NAND_SKIP_BBTSCAN	BIT(16)
    154/* Chip may not exist, so silence any errors in scan */
    155#define NAND_SCAN_SILENT_NODEV	BIT(18)
    156
    157/*
    158 * Autodetect nand buswidth with readid/onfi.
    159 * This suppose the driver will configure the hardware in 8 bits mode
    160 * when calling nand_scan_ident, and update its configuration
    161 * before calling nand_scan_tail.
    162 */
    163#define NAND_BUSWIDTH_AUTO      BIT(19)
    164
    165/*
    166 * This option could be defined by controller drivers to protect against
    167 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
    168 */
    169#define NAND_USES_DMA		BIT(20)
    170
    171/*
    172 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
    173 * on the default ->cmdfunc() implementation, you may want to let the core
    174 * handle the tCCS delay which is required when a column change (RNDIN or
    175 * RNDOUT) is requested.
    176 * If your controller already takes care of this delay, you don't need to set
    177 * this flag.
    178 */
    179#define NAND_WAIT_TCCS		BIT(21)
    180
    181/*
    182 * Whether the NAND chip is a boot medium. Drivers might use this information
    183 * to select ECC algorithms supported by the boot ROM or similar restrictions.
    184 */
    185#define NAND_IS_BOOT_MEDIUM	BIT(22)
    186
    187/*
    188 * Do not try to tweak the timings at runtime. This is needed when the
    189 * controller initializes the timings on itself or when it relies on
    190 * configuration done by the bootloader.
    191 */
    192#define NAND_KEEP_TIMINGS	BIT(23)
    193
    194/*
    195 * There are different places where the manufacturer stores the factory bad
    196 * block markers.
    197 *
    198 * Position within the block: Each of these pages needs to be checked for a
    199 * bad block marking pattern.
    200 */
    201#define NAND_BBM_FIRSTPAGE	BIT(24)
    202#define NAND_BBM_SECONDPAGE	BIT(25)
    203#define NAND_BBM_LASTPAGE	BIT(26)
    204
    205/*
    206 * Some controllers with pipelined ECC engines override the BBM marker with
    207 * data or ECC bytes, thus making bad block detection through bad block marker
    208 * impossible. Let's flag those chips so the core knows it shouldn't check the
    209 * BBM and consider all blocks good.
    210 */
    211#define NAND_NO_BBM_QUIRK	BIT(27)
    212
    213/* Cell info constants */
    214#define NAND_CI_CHIPNR_MSK	0x03
    215#define NAND_CI_CELLTYPE_MSK	0x0C
    216#define NAND_CI_CELLTYPE_SHIFT	2
    217
    218/* Position within the OOB data of the page */
    219#define NAND_BBM_POS_SMALL		5
    220#define NAND_BBM_POS_LARGE		0
    221
    222/**
    223 * struct nand_parameters - NAND generic parameters from the parameter page
    224 * @model: Model name
    225 * @supports_set_get_features: The NAND chip supports setting/getting features
    226 * @set_feature_list: Bitmap of features that can be set
    227 * @get_feature_list: Bitmap of features that can be get
    228 * @onfi: ONFI specific parameters
    229 */
    230struct nand_parameters {
    231	/* Generic parameters */
    232	const char *model;
    233	bool supports_set_get_features;
    234	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
    235	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
    236
    237	/* ONFI parameters */
    238	struct onfi_params *onfi;
    239};
    240
    241/* The maximum expected count of bytes in the NAND ID sequence */
    242#define NAND_MAX_ID_LEN 8
    243
    244/**
    245 * struct nand_id - NAND id structure
    246 * @data: buffer containing the id bytes.
    247 * @len: ID length.
    248 */
    249struct nand_id {
    250	u8 data[NAND_MAX_ID_LEN];
    251	int len;
    252};
    253
    254/**
    255 * struct nand_ecc_step_info - ECC step information of ECC engine
    256 * @stepsize: data bytes per ECC step
    257 * @strengths: array of supported strengths
    258 * @nstrengths: number of supported strengths
    259 */
    260struct nand_ecc_step_info {
    261	int stepsize;
    262	const int *strengths;
    263	int nstrengths;
    264};
    265
    266/**
    267 * struct nand_ecc_caps - capability of ECC engine
    268 * @stepinfos: array of ECC step information
    269 * @nstepinfos: number of ECC step information
    270 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
    271 */
    272struct nand_ecc_caps {
    273	const struct nand_ecc_step_info *stepinfos;
    274	int nstepinfos;
    275	int (*calc_ecc_bytes)(int step_size, int strength);
    276};
    277
    278/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
    279#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
    280static const int __name##_strengths[] = { __VA_ARGS__ };	\
    281static const struct nand_ecc_step_info __name##_stepinfo = {	\
    282	.stepsize = __step,					\
    283	.strengths = __name##_strengths,			\
    284	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
    285};								\
    286static const struct nand_ecc_caps __name = {			\
    287	.stepinfos = &__name##_stepinfo,			\
    288	.nstepinfos = 1,					\
    289	.calc_ecc_bytes = __calc,				\
    290}
    291
    292/**
    293 * struct nand_ecc_ctrl - Control structure for ECC
    294 * @engine_type: ECC engine type
    295 * @placement:	OOB bytes placement
    296 * @algo:	ECC algorithm
    297 * @steps:	number of ECC steps per page
    298 * @size:	data bytes per ECC step
    299 * @bytes:	ECC bytes per step
    300 * @strength:	max number of correctible bits per ECC step
    301 * @total:	total number of ECC bytes per page
    302 * @prepad:	padding information for syndrome based ECC generators
    303 * @postpad:	padding information for syndrome based ECC generators
    304 * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
    305 * @calc_buf:	buffer for calculated ECC, size is oobsize.
    306 * @code_buf:	buffer for ECC read from flash, size is oobsize.
    307 * @hwctl:	function to control hardware ECC generator. Must only
    308 *		be provided if an hardware ECC is available
    309 * @calculate:	function for ECC calculation or readback from ECC hardware
    310 * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
    311 *		Should return a positive number representing the number of
    312 *		corrected bitflips, -EBADMSG if the number of bitflips exceed
    313 *		ECC strength, or any other error code if the error is not
    314 *		directly related to correction.
    315 *		If -EBADMSG is returned the input buffers should be left
    316 *		untouched.
    317 * @read_page_raw:	function to read a raw page without ECC. This function
    318 *			should hide the specific layout used by the ECC
    319 *			controller and always return contiguous in-band and
    320 *			out-of-band data even if they're not stored
    321 *			contiguously on the NAND chip (e.g.
    322 *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
    323 *			out-of-band data).
    324 * @write_page_raw:	function to write a raw page without ECC. This function
    325 *			should hide the specific layout used by the ECC
    326 *			controller and consider the passed data as contiguous
    327 *			in-band and out-of-band data. ECC controller is
    328 *			responsible for doing the appropriate transformations
    329 *			to adapt to its specific layout (e.g.
    330 *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
    331 *			out-of-band data).
    332 * @read_page:	function to read a page according to the ECC generator
    333 *		requirements; returns maximum number of bitflips corrected in
    334 *		any single ECC step, -EIO hw error
    335 * @read_subpage:	function to read parts of the page covered by ECC;
    336 *			returns same as read_page()
    337 * @write_subpage:	function to write parts of the page covered by ECC.
    338 * @write_page:	function to write a page according to the ECC generator
    339 *		requirements.
    340 * @write_oob_raw:	function to write chip OOB data without ECC
    341 * @read_oob_raw:	function to read chip OOB data without ECC
    342 * @read_oob:	function to read chip OOB data
    343 * @write_oob:	function to write chip OOB data
    344 */
    345struct nand_ecc_ctrl {
    346	enum nand_ecc_engine_type engine_type;
    347	enum nand_ecc_placement placement;
    348	enum nand_ecc_algo algo;
    349	int steps;
    350	int size;
    351	int bytes;
    352	int total;
    353	int strength;
    354	int prepad;
    355	int postpad;
    356	unsigned int options;
    357	u8 *calc_buf;
    358	u8 *code_buf;
    359	void (*hwctl)(struct nand_chip *chip, int mode);
    360	int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
    361			 uint8_t *ecc_code);
    362	int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
    363		       uint8_t *calc_ecc);
    364	int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
    365			     int oob_required, int page);
    366	int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
    367			      int oob_required, int page);
    368	int (*read_page)(struct nand_chip *chip, uint8_t *buf,
    369			 int oob_required, int page);
    370	int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
    371			    uint32_t len, uint8_t *buf, int page);
    372	int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
    373			     uint32_t data_len, const uint8_t *data_buf,
    374			     int oob_required, int page);
    375	int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
    376			  int oob_required, int page);
    377	int (*write_oob_raw)(struct nand_chip *chip, int page);
    378	int (*read_oob_raw)(struct nand_chip *chip, int page);
    379	int (*read_oob)(struct nand_chip *chip, int page);
    380	int (*write_oob)(struct nand_chip *chip, int page);
    381};
    382
    383/**
    384 * struct nand_sdr_timings - SDR NAND chip timings
    385 *
    386 * This struct defines the timing requirements of a SDR NAND chip.
    387 * These information can be found in every NAND datasheets and the timings
    388 * meaning are described in the ONFI specifications:
    389 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf
    390 * (chapter 4.15 Timing Parameters)
    391 *
    392 * All these timings are expressed in picoseconds.
    393 *
    394 * @tBERS_max: Block erase time
    395 * @tCCS_min: Change column setup time
    396 * @tPROG_max: Page program time
    397 * @tR_max: Page read time
    398 * @tALH_min: ALE hold time
    399 * @tADL_min: ALE to data loading time
    400 * @tALS_min: ALE setup time
    401 * @tAR_min: ALE to RE# delay
    402 * @tCEA_max: CE# access time
    403 * @tCEH_min: CE# high hold time
    404 * @tCH_min:  CE# hold time
    405 * @tCHZ_max: CE# high to output hi-Z
    406 * @tCLH_min: CLE hold time
    407 * @tCLR_min: CLE to RE# delay
    408 * @tCLS_min: CLE setup time
    409 * @tCOH_min: CE# high to output hold
    410 * @tCS_min: CE# setup time
    411 * @tDH_min: Data hold time
    412 * @tDS_min: Data setup time
    413 * @tFEAT_max: Busy time for Set Features and Get Features
    414 * @tIR_min: Output hi-Z to RE# low
    415 * @tITC_max: Interface and Timing Mode Change time
    416 * @tRC_min: RE# cycle time
    417 * @tREA_max: RE# access time
    418 * @tREH_min: RE# high hold time
    419 * @tRHOH_min: RE# high to output hold
    420 * @tRHW_min: RE# high to WE# low
    421 * @tRHZ_max: RE# high to output hi-Z
    422 * @tRLOH_min: RE# low to output hold
    423 * @tRP_min: RE# pulse width
    424 * @tRR_min: Ready to RE# low (data only)
    425 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
    426 *	      rising edge of R/B#.
    427 * @tWB_max: WE# high to SR[6] low
    428 * @tWC_min: WE# cycle time
    429 * @tWH_min: WE# high hold time
    430 * @tWHR_min: WE# high to RE# low
    431 * @tWP_min: WE# pulse width
    432 * @tWW_min: WP# transition to WE# low
    433 */
    434struct nand_sdr_timings {
    435	u64 tBERS_max;
    436	u32 tCCS_min;
    437	u64 tPROG_max;
    438	u64 tR_max;
    439	u32 tALH_min;
    440	u32 tADL_min;
    441	u32 tALS_min;
    442	u32 tAR_min;
    443	u32 tCEA_max;
    444	u32 tCEH_min;
    445	u32 tCH_min;
    446	u32 tCHZ_max;
    447	u32 tCLH_min;
    448	u32 tCLR_min;
    449	u32 tCLS_min;
    450	u32 tCOH_min;
    451	u32 tCS_min;
    452	u32 tDH_min;
    453	u32 tDS_min;
    454	u32 tFEAT_max;
    455	u32 tIR_min;
    456	u32 tITC_max;
    457	u32 tRC_min;
    458	u32 tREA_max;
    459	u32 tREH_min;
    460	u32 tRHOH_min;
    461	u32 tRHW_min;
    462	u32 tRHZ_max;
    463	u32 tRLOH_min;
    464	u32 tRP_min;
    465	u32 tRR_min;
    466	u64 tRST_max;
    467	u32 tWB_max;
    468	u32 tWC_min;
    469	u32 tWH_min;
    470	u32 tWHR_min;
    471	u32 tWP_min;
    472	u32 tWW_min;
    473};
    474
    475/**
    476 * struct nand_nvddr_timings - NV-DDR NAND chip timings
    477 *
    478 * This struct defines the timing requirements of a NV-DDR NAND data interface.
    479 * These information can be found in every NAND datasheets and the timings
    480 * meaning are described in the ONFI specifications:
    481 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
    482 * (chapter 4.18.2 NV-DDR)
    483 *
    484 * All these timings are expressed in picoseconds.
    485 *
    486 * @tBERS_max: Block erase time
    487 * @tCCS_min: Change column setup time
    488 * @tPROG_max: Page program time
    489 * @tR_max: Page read time
    490 * @tAC_min: Access window of DQ[7:0] from CLK
    491 * @tAC_max: Access window of DQ[7:0] from CLK
    492 * @tADL_min: ALE to data loading time
    493 * @tCAD_min: Command, Address, Data delay
    494 * @tCAH_min: Command/Address DQ hold time
    495 * @tCALH_min: W/R_n, CLE and ALE hold time
    496 * @tCALS_min: W/R_n, CLE and ALE setup time
    497 * @tCAS_min: Command/address DQ setup time
    498 * @tCEH_min: CE# high hold time
    499 * @tCH_min:  CE# hold time
    500 * @tCK_min: Average clock cycle time
    501 * @tCS_min: CE# setup time
    502 * @tDH_min: Data hold time
    503 * @tDQSCK_min: Start of the access window of DQS from CLK
    504 * @tDQSCK_max: End of the access window of DQS from CLK
    505 * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
    506 * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
    507 * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
    508 * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
    509 * @tDS_min: Data setup time
    510 * @tDSC_min: DQS cycle time
    511 * @tFEAT_max: Busy time for Set Features and Get Features
    512 * @tITC_max: Interface and Timing Mode Change time
    513 * @tQHS_max: Data hold skew factor
    514 * @tRHW_min: Data output cycle to command, address, or data input cycle
    515 * @tRR_min: Ready to RE# low (data only)
    516 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
    517 *	      rising edge of R/B#.
    518 * @tWB_max: WE# high to SR[6] low
    519 * @tWHR_min: WE# high to RE# low
    520 * @tWRCK_min: W/R_n low to data output cycle
    521 * @tWW_min: WP# transition to WE# low
    522 */
    523struct nand_nvddr_timings {
    524	u64 tBERS_max;
    525	u32 tCCS_min;
    526	u64 tPROG_max;
    527	u64 tR_max;
    528	u32 tAC_min;
    529	u32 tAC_max;
    530	u32 tADL_min;
    531	u32 tCAD_min;
    532	u32 tCAH_min;
    533	u32 tCALH_min;
    534	u32 tCALS_min;
    535	u32 tCAS_min;
    536	u32 tCEH_min;
    537	u32 tCH_min;
    538	u32 tCK_min;
    539	u32 tCS_min;
    540	u32 tDH_min;
    541	u32 tDQSCK_min;
    542	u32 tDQSCK_max;
    543	u32 tDQSD_min;
    544	u32 tDQSD_max;
    545	u32 tDQSHZ_max;
    546	u32 tDQSQ_max;
    547	u32 tDS_min;
    548	u32 tDSC_min;
    549	u32 tFEAT_max;
    550	u32 tITC_max;
    551	u32 tQHS_max;
    552	u32 tRHW_min;
    553	u32 tRR_min;
    554	u32 tRST_max;
    555	u32 tWB_max;
    556	u32 tWHR_min;
    557	u32 tWRCK_min;
    558	u32 tWW_min;
    559};
    560
    561/*
    562 * While timings related to the data interface itself are mostly different
    563 * between SDR and NV-DDR, timings related to the internal chip behavior are
    564 * common. IOW, the following entries which describe the internal delays have
    565 * the same definition and are shared in both SDR and NV-DDR timing structures:
    566 * - tADL_min
    567 * - tBERS_max
    568 * - tCCS_min
    569 * - tFEAT_max
    570 * - tPROG_max
    571 * - tR_max
    572 * - tRR_min
    573 * - tRST_max
    574 * - tWB_max
    575 *
    576 * The below macros return the value of a given timing, no matter the interface.
    577 */
    578#define NAND_COMMON_TIMING_PS(conf, timing_name)		\
    579	nand_interface_is_sdr(conf) ?				\
    580		nand_get_sdr_timings(conf)->timing_name :	\
    581		nand_get_nvddr_timings(conf)->timing_name
    582
    583#define NAND_COMMON_TIMING_MS(conf, timing_name) \
    584	PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
    585
    586#define NAND_COMMON_TIMING_NS(conf, timing_name) \
    587	PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
    588
    589/**
    590 * enum nand_interface_type - NAND interface type
    591 * @NAND_SDR_IFACE:	Single Data Rate interface
    592 * @NAND_NVDDR_IFACE:	Double Data Rate interface
    593 */
    594enum nand_interface_type {
    595	NAND_SDR_IFACE,
    596	NAND_NVDDR_IFACE,
    597};
    598
    599/**
    600 * struct nand_interface_config - NAND interface timing
    601 * @type:	 type of the timing
    602 * @timings:	 The timing information
    603 * @timings.mode: Timing mode as defined in the specification
    604 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
    605 * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
    606 */
    607struct nand_interface_config {
    608	enum nand_interface_type type;
    609	struct nand_timings {
    610		unsigned int mode;
    611		union {
    612			struct nand_sdr_timings sdr;
    613			struct nand_nvddr_timings nvddr;
    614		};
    615	} timings;
    616};
    617
    618/**
    619 * nand_interface_is_sdr - get the interface type
    620 * @conf:	The data interface
    621 */
    622static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
    623{
    624	return conf->type == NAND_SDR_IFACE;
    625}
    626
    627/**
    628 * nand_interface_is_nvddr - get the interface type
    629 * @conf:	The data interface
    630 */
    631static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
    632{
    633	return conf->type == NAND_NVDDR_IFACE;
    634}
    635
    636/**
    637 * nand_get_sdr_timings - get SDR timing from data interface
    638 * @conf:	The data interface
    639 */
    640static inline const struct nand_sdr_timings *
    641nand_get_sdr_timings(const struct nand_interface_config *conf)
    642{
    643	if (!nand_interface_is_sdr(conf))
    644		return ERR_PTR(-EINVAL);
    645
    646	return &conf->timings.sdr;
    647}
    648
    649/**
    650 * nand_get_nvddr_timings - get NV-DDR timing from data interface
    651 * @conf:	The data interface
    652 */
    653static inline const struct nand_nvddr_timings *
    654nand_get_nvddr_timings(const struct nand_interface_config *conf)
    655{
    656	if (!nand_interface_is_nvddr(conf))
    657		return ERR_PTR(-EINVAL);
    658
    659	return &conf->timings.nvddr;
    660}
    661
    662/**
    663 * struct nand_op_cmd_instr - Definition of a command instruction
    664 * @opcode: the command to issue in one cycle
    665 */
    666struct nand_op_cmd_instr {
    667	u8 opcode;
    668};
    669
    670/**
    671 * struct nand_op_addr_instr - Definition of an address instruction
    672 * @naddrs: length of the @addrs array
    673 * @addrs: array containing the address cycles to issue
    674 */
    675struct nand_op_addr_instr {
    676	unsigned int naddrs;
    677	const u8 *addrs;
    678};
    679
    680/**
    681 * struct nand_op_data_instr - Definition of a data instruction
    682 * @len: number of data bytes to move
    683 * @buf: buffer to fill
    684 * @buf.in: buffer to fill when reading from the NAND chip
    685 * @buf.out: buffer to read from when writing to the NAND chip
    686 * @force_8bit: force 8-bit access
    687 *
    688 * Please note that "in" and "out" are inverted from the ONFI specification
    689 * and are from the controller perspective, so a "in" is a read from the NAND
    690 * chip while a "out" is a write to the NAND chip.
    691 */
    692struct nand_op_data_instr {
    693	unsigned int len;
    694	union {
    695		void *in;
    696		const void *out;
    697	} buf;
    698	bool force_8bit;
    699};
    700
    701/**
    702 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
    703 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
    704 */
    705struct nand_op_waitrdy_instr {
    706	unsigned int timeout_ms;
    707};
    708
    709/**
    710 * enum nand_op_instr_type - Definition of all instruction types
    711 * @NAND_OP_CMD_INSTR: command instruction
    712 * @NAND_OP_ADDR_INSTR: address instruction
    713 * @NAND_OP_DATA_IN_INSTR: data in instruction
    714 * @NAND_OP_DATA_OUT_INSTR: data out instruction
    715 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
    716 */
    717enum nand_op_instr_type {
    718	NAND_OP_CMD_INSTR,
    719	NAND_OP_ADDR_INSTR,
    720	NAND_OP_DATA_IN_INSTR,
    721	NAND_OP_DATA_OUT_INSTR,
    722	NAND_OP_WAITRDY_INSTR,
    723};
    724
    725/**
    726 * struct nand_op_instr - Instruction object
    727 * @type: the instruction type
    728 * @ctx:  extra data associated to the instruction. You'll have to use the
    729 *        appropriate element depending on @type
    730 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
    731 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
    732 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
    733 *	      or %NAND_OP_DATA_OUT_INSTR
    734 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
    735 * @delay_ns: delay the controller should apply after the instruction has been
    736 *	      issued on the bus. Most modern controllers have internal timings
    737 *	      control logic, and in this case, the controller driver can ignore
    738 *	      this field.
    739 */
    740struct nand_op_instr {
    741	enum nand_op_instr_type type;
    742	union {
    743		struct nand_op_cmd_instr cmd;
    744		struct nand_op_addr_instr addr;
    745		struct nand_op_data_instr data;
    746		struct nand_op_waitrdy_instr waitrdy;
    747	} ctx;
    748	unsigned int delay_ns;
    749};
    750
    751/*
    752 * Special handling must be done for the WAITRDY timeout parameter as it usually
    753 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
    754 * tBERS (during an erase) which all of them are u64 values that cannot be
    755 * divided by usual kernel macros and must be handled with the special
    756 * DIV_ROUND_UP_ULL() macro.
    757 *
    758 * Cast to type of dividend is needed here to guarantee that the result won't
    759 * be an unsigned long long when the dividend is an unsigned long (or smaller),
    760 * which is what the compiler does when it sees ternary operator with 2
    761 * different return types (picks the largest type to make sure there's no
    762 * loss).
    763 */
    764#define __DIVIDE(dividend, divisor) ({						\
    765	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
    766			       DIV_ROUND_UP(dividend, divisor) :		\
    767			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
    768	})
    769#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
    770#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
    771
    772#define NAND_OP_CMD(id, ns)						\
    773	{								\
    774		.type = NAND_OP_CMD_INSTR,				\
    775		.ctx.cmd.opcode = id,					\
    776		.delay_ns = ns,						\
    777	}
    778
    779#define NAND_OP_ADDR(ncycles, cycles, ns)				\
    780	{								\
    781		.type = NAND_OP_ADDR_INSTR,				\
    782		.ctx.addr = {						\
    783			.naddrs = ncycles,				\
    784			.addrs = cycles,				\
    785		},							\
    786		.delay_ns = ns,						\
    787	}
    788
    789#define NAND_OP_DATA_IN(l, b, ns)					\
    790	{								\
    791		.type = NAND_OP_DATA_IN_INSTR,				\
    792		.ctx.data = {						\
    793			.len = l,					\
    794			.buf.in = b,					\
    795			.force_8bit = false,				\
    796		},							\
    797		.delay_ns = ns,						\
    798	}
    799
    800#define NAND_OP_DATA_OUT(l, b, ns)					\
    801	{								\
    802		.type = NAND_OP_DATA_OUT_INSTR,				\
    803		.ctx.data = {						\
    804			.len = l,					\
    805			.buf.out = b,					\
    806			.force_8bit = false,				\
    807		},							\
    808		.delay_ns = ns,						\
    809	}
    810
    811#define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
    812	{								\
    813		.type = NAND_OP_DATA_IN_INSTR,				\
    814		.ctx.data = {						\
    815			.len = l,					\
    816			.buf.in = b,					\
    817			.force_8bit = true,				\
    818		},							\
    819		.delay_ns = ns,						\
    820	}
    821
    822#define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
    823	{								\
    824		.type = NAND_OP_DATA_OUT_INSTR,				\
    825		.ctx.data = {						\
    826			.len = l,					\
    827			.buf.out = b,					\
    828			.force_8bit = true,				\
    829		},							\
    830		.delay_ns = ns,						\
    831	}
    832
    833#define NAND_OP_WAIT_RDY(tout_ms, ns)					\
    834	{								\
    835		.type = NAND_OP_WAITRDY_INSTR,				\
    836		.ctx.waitrdy.timeout_ms = tout_ms,			\
    837		.delay_ns = ns,						\
    838	}
    839
    840/**
    841 * struct nand_subop - a sub operation
    842 * @cs: the CS line to select for this NAND sub-operation
    843 * @instrs: array of instructions
    844 * @ninstrs: length of the @instrs array
    845 * @first_instr_start_off: offset to start from for the first instruction
    846 *			   of the sub-operation
    847 * @last_instr_end_off: offset to end at (excluded) for the last instruction
    848 *			of the sub-operation
    849 *
    850 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
    851 * address instructions.
    852 *
    853 * When an operation cannot be handled as is by the NAND controller, it will
    854 * be split by the parser into sub-operations which will be passed to the
    855 * controller driver.
    856 */
    857struct nand_subop {
    858	unsigned int cs;
    859	const struct nand_op_instr *instrs;
    860	unsigned int ninstrs;
    861	unsigned int first_instr_start_off;
    862	unsigned int last_instr_end_off;
    863};
    864
    865unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
    866					   unsigned int op_id);
    867unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
    868					 unsigned int op_id);
    869unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
    870					   unsigned int op_id);
    871unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
    872				     unsigned int op_id);
    873
    874/**
    875 * struct nand_op_parser_addr_constraints - Constraints for address instructions
    876 * @maxcycles: maximum number of address cycles the controller can issue in a
    877 *	       single step
    878 */
    879struct nand_op_parser_addr_constraints {
    880	unsigned int maxcycles;
    881};
    882
    883/**
    884 * struct nand_op_parser_data_constraints - Constraints for data instructions
    885 * @maxlen: maximum data length that the controller can handle in a single step
    886 */
    887struct nand_op_parser_data_constraints {
    888	unsigned int maxlen;
    889};
    890
    891/**
    892 * struct nand_op_parser_pattern_elem - One element of a pattern
    893 * @type: the instructuction type
    894 * @optional: whether this element of the pattern is optional or mandatory
    895 * @ctx: address or data constraint
    896 * @ctx.addr: address constraint (number of cycles)
    897 * @ctx.data: data constraint (data length)
    898 */
    899struct nand_op_parser_pattern_elem {
    900	enum nand_op_instr_type type;
    901	bool optional;
    902	union {
    903		struct nand_op_parser_addr_constraints addr;
    904		struct nand_op_parser_data_constraints data;
    905	} ctx;
    906};
    907
    908#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
    909	{							\
    910		.type = NAND_OP_CMD_INSTR,			\
    911		.optional = _opt,				\
    912	}
    913
    914#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
    915	{							\
    916		.type = NAND_OP_ADDR_INSTR,			\
    917		.optional = _opt,				\
    918		.ctx.addr.maxcycles = _maxcycles,		\
    919	}
    920
    921#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
    922	{							\
    923		.type = NAND_OP_DATA_IN_INSTR,			\
    924		.optional = _opt,				\
    925		.ctx.data.maxlen = _maxlen,			\
    926	}
    927
    928#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
    929	{							\
    930		.type = NAND_OP_DATA_OUT_INSTR,			\
    931		.optional = _opt,				\
    932		.ctx.data.maxlen = _maxlen,			\
    933	}
    934
    935#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
    936	{							\
    937		.type = NAND_OP_WAITRDY_INSTR,			\
    938		.optional = _opt,				\
    939	}
    940
    941/**
    942 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
    943 * @elems: array of pattern elements
    944 * @nelems: number of pattern elements in @elems array
    945 * @exec: the function that will issue a sub-operation
    946 *
    947 * A pattern is a list of elements, each element reprensenting one instruction
    948 * with its constraints. The pattern itself is used by the core to match NAND
    949 * chip operation with NAND controller operations.
    950 * Once a match between a NAND controller operation pattern and a NAND chip
    951 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
    952 * hook is called so that the controller driver can issue the operation on the
    953 * bus.
    954 *
    955 * Controller drivers should declare as many patterns as they support and pass
    956 * this list of patterns (created with the help of the following macro) to
    957 * the nand_op_parser_exec_op() helper.
    958 */
    959struct nand_op_parser_pattern {
    960	const struct nand_op_parser_pattern_elem *elems;
    961	unsigned int nelems;
    962	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
    963};
    964
    965#define NAND_OP_PARSER_PATTERN(_exec, ...)							\
    966	{											\
    967		.exec = _exec,									\
    968		.elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
    969		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
    970			  sizeof(struct nand_op_parser_pattern_elem),				\
    971	}
    972
    973/**
    974 * struct nand_op_parser - NAND controller operation parser descriptor
    975 * @patterns: array of supported patterns
    976 * @npatterns: length of the @patterns array
    977 *
    978 * The parser descriptor is just an array of supported patterns which will be
    979 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
    980 * NAND operation (or tries to determine if a specific operation is supported).
    981 *
    982 * It is worth mentioning that patterns will be tested in their declaration
    983 * order, and the first match will be taken, so it's important to order patterns
    984 * appropriately so that simple/inefficient patterns are placed at the end of
    985 * the list. Usually, this is where you put single instruction patterns.
    986 */
    987struct nand_op_parser {
    988	const struct nand_op_parser_pattern *patterns;
    989	unsigned int npatterns;
    990};
    991
    992#define NAND_OP_PARSER(...)									\
    993	{											\
    994		.patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },		\
    995		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
    996			     sizeof(struct nand_op_parser_pattern),				\
    997	}
    998
    999/**
   1000 * struct nand_operation - NAND operation descriptor
   1001 * @cs: the CS line to select for this NAND operation
   1002 * @instrs: array of instructions to execute
   1003 * @ninstrs: length of the @instrs array
   1004 *
   1005 * The actual operation structure that will be passed to chip->exec_op().
   1006 */
   1007struct nand_operation {
   1008	unsigned int cs;
   1009	const struct nand_op_instr *instrs;
   1010	unsigned int ninstrs;
   1011};
   1012
   1013#define NAND_OPERATION(_cs, _instrs)				\
   1014	{							\
   1015		.cs = _cs,					\
   1016		.instrs = _instrs,				\
   1017		.ninstrs = ARRAY_SIZE(_instrs),			\
   1018	}
   1019
   1020int nand_op_parser_exec_op(struct nand_chip *chip,
   1021			   const struct nand_op_parser *parser,
   1022			   const struct nand_operation *op, bool check_only);
   1023
   1024static inline void nand_op_trace(const char *prefix,
   1025				 const struct nand_op_instr *instr)
   1026{
   1027#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
   1028	switch (instr->type) {
   1029	case NAND_OP_CMD_INSTR:
   1030		pr_debug("%sCMD      [0x%02x]\n", prefix,
   1031			 instr->ctx.cmd.opcode);
   1032		break;
   1033	case NAND_OP_ADDR_INSTR:
   1034		pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
   1035			 instr->ctx.addr.naddrs,
   1036			 instr->ctx.addr.naddrs < 64 ?
   1037			 instr->ctx.addr.naddrs : 64,
   1038			 instr->ctx.addr.addrs);
   1039		break;
   1040	case NAND_OP_DATA_IN_INSTR:
   1041		pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
   1042			 instr->ctx.data.len,
   1043			 instr->ctx.data.force_8bit ?
   1044			 ", force 8-bit" : "");
   1045		break;
   1046	case NAND_OP_DATA_OUT_INSTR:
   1047		pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
   1048			 instr->ctx.data.len,
   1049			 instr->ctx.data.force_8bit ?
   1050			 ", force 8-bit" : "");
   1051		break;
   1052	case NAND_OP_WAITRDY_INSTR:
   1053		pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
   1054			 instr->ctx.waitrdy.timeout_ms);
   1055		break;
   1056	}
   1057#endif
   1058}
   1059
   1060/**
   1061 * struct nand_controller_ops - Controller operations
   1062 *
   1063 * @attach_chip: this method is called after the NAND detection phase after
   1064 *		 flash ID and MTD fields such as erase size, page size and OOB
   1065 *		 size have been set up. ECC requirements are available if
   1066 *		 provided by the NAND chip or device tree. Typically used to
   1067 *		 choose the appropriate ECC configuration and allocate
   1068 *		 associated resources.
   1069 *		 This hook is optional.
   1070 * @detach_chip: free all resources allocated/claimed in
   1071 *		 nand_controller_ops->attach_chip().
   1072 *		 This hook is optional.
   1073 * @exec_op:	 controller specific method to execute NAND operations.
   1074 *		 This method replaces chip->legacy.cmdfunc(),
   1075 *		 chip->legacy.{read,write}_{buf,byte,word}(),
   1076 *		 chip->legacy.dev_ready() and chip->legacy.waifunc().
   1077 * @setup_interface: setup the data interface and timing. If chipnr is set to
   1078 *		     %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
   1079 *		     should not be applied but only checked.
   1080 *		     This hook is optional.
   1081 */
   1082struct nand_controller_ops {
   1083	int (*attach_chip)(struct nand_chip *chip);
   1084	void (*detach_chip)(struct nand_chip *chip);
   1085	int (*exec_op)(struct nand_chip *chip,
   1086		       const struct nand_operation *op,
   1087		       bool check_only);
   1088	int (*setup_interface)(struct nand_chip *chip, int chipnr,
   1089			       const struct nand_interface_config *conf);
   1090};
   1091
   1092/**
   1093 * struct nand_controller - Structure used to describe a NAND controller
   1094 *
   1095 * @lock:		lock used to serialize accesses to the NAND controller
   1096 * @ops:		NAND controller operations.
   1097 */
   1098struct nand_controller {
   1099	struct mutex lock;
   1100	const struct nand_controller_ops *ops;
   1101};
   1102
   1103static inline void nand_controller_init(struct nand_controller *nfc)
   1104{
   1105	mutex_init(&nfc->lock);
   1106}
   1107
   1108/**
   1109 * struct nand_legacy - NAND chip legacy fields/hooks
   1110 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
   1111 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
   1112 * @select_chip: select/deselect a specific target/die
   1113 * @read_byte: read one byte from the chip
   1114 * @write_byte: write a single byte to the chip on the low 8 I/O lines
   1115 * @write_buf: write data from the buffer to the chip
   1116 * @read_buf: read data from the chip into the buffer
   1117 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
   1118 *	      to write command and address
   1119 * @cmdfunc: hardware specific function for writing commands to the chip.
   1120 * @dev_ready: hardware specific function for accessing device ready/busy line.
   1121 *	       If set to NULL no access to ready/busy is available and the
   1122 *	       ready/busy information is read from the chip status register.
   1123 * @waitfunc: hardware specific function for wait on ready.
   1124 * @block_bad: check if a block is bad, using OOB markers
   1125 * @block_markbad: mark a block bad
   1126 * @set_features: set the NAND chip features
   1127 * @get_features: get the NAND chip features
   1128 * @chip_delay: chip dependent delay for transferring data from array to read
   1129 *		regs (tR).
   1130 * @dummy_controller: dummy controller implementation for drivers that can
   1131 *		      only control a single chip
   1132 *
   1133 * If you look at this structure you're already wrong. These fields/hooks are
   1134 * all deprecated.
   1135 */
   1136struct nand_legacy {
   1137	void __iomem *IO_ADDR_R;
   1138	void __iomem *IO_ADDR_W;
   1139	void (*select_chip)(struct nand_chip *chip, int cs);
   1140	u8 (*read_byte)(struct nand_chip *chip);
   1141	void (*write_byte)(struct nand_chip *chip, u8 byte);
   1142	void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
   1143	void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
   1144	void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
   1145	void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
   1146			int page_addr);
   1147	int (*dev_ready)(struct nand_chip *chip);
   1148	int (*waitfunc)(struct nand_chip *chip);
   1149	int (*block_bad)(struct nand_chip *chip, loff_t ofs);
   1150	int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
   1151	int (*set_features)(struct nand_chip *chip, int feature_addr,
   1152			    u8 *subfeature_para);
   1153	int (*get_features)(struct nand_chip *chip, int feature_addr,
   1154			    u8 *subfeature_para);
   1155	int chip_delay;
   1156	struct nand_controller dummy_controller;
   1157};
   1158
   1159/**
   1160 * struct nand_chip_ops - NAND chip operations
   1161 * @suspend: Suspend operation
   1162 * @resume: Resume operation
   1163 * @lock_area: Lock operation
   1164 * @unlock_area: Unlock operation
   1165 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
   1166 * @choose_interface_config: Choose the best interface configuration
   1167 */
   1168struct nand_chip_ops {
   1169	int (*suspend)(struct nand_chip *chip);
   1170	void (*resume)(struct nand_chip *chip);
   1171	int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
   1172	int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
   1173	int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
   1174	int (*choose_interface_config)(struct nand_chip *chip,
   1175				       struct nand_interface_config *iface);
   1176};
   1177
   1178/**
   1179 * struct nand_manufacturer - NAND manufacturer structure
   1180 * @desc: The manufacturer description
   1181 * @priv: Private information for the manufacturer driver
   1182 */
   1183struct nand_manufacturer {
   1184	const struct nand_manufacturer_desc *desc;
   1185	void *priv;
   1186};
   1187
   1188/**
   1189 * struct nand_secure_region - NAND secure region structure
   1190 * @offset: Offset of the start of the secure region
   1191 * @size: Size of the secure region
   1192 */
   1193struct nand_secure_region {
   1194	u64 offset;
   1195	u64 size;
   1196};
   1197
   1198/**
   1199 * struct nand_chip - NAND Private Flash Chip Data
   1200 * @base: Inherit from the generic NAND device
   1201 * @id: Holds NAND ID
   1202 * @parameters: Holds generic parameters under an easily readable form
   1203 * @manufacturer: Manufacturer information
   1204 * @ops: NAND chip operations
   1205 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
   1206 *          to use any of these fields/hooks, and if you're modifying an
   1207 *          existing driver that is using those fields/hooks, you should
   1208 *          consider reworking the driver and avoid using them.
   1209 * @options: Various chip options. They can partly be set to inform nand_scan
   1210 *           about special functionality. See the defines for further
   1211 *           explanation.
   1212 * @current_interface_config: The currently used NAND interface configuration
   1213 * @best_interface_config: The best NAND interface configuration which fits both
   1214 *                         the NAND chip and NAND controller constraints. If
   1215 *                         unset, the default reset interface configuration must
   1216 *                         be used.
   1217 * @bbt_erase_shift: Number of address bits in a bbt entry
   1218 * @bbt_options: Bad block table specific options. All options used here must
   1219 *               come from bbm.h. By default, these options will be copied to
   1220 *               the appropriate nand_bbt_descr's.
   1221 * @badblockpos: Bad block marker position in the oob area
   1222 * @badblockbits: Minimum number of set bits in a good block's bad block marker
   1223 *                position; i.e., BBM = 11110111b is good when badblockbits = 7
   1224 * @bbt_td: Bad block table descriptor for flash lookup
   1225 * @bbt_md: Bad block table mirror descriptor
   1226 * @badblock_pattern: Bad block scan pattern used for initial bad block scan
   1227 * @bbt: Bad block table pointer
   1228 * @page_shift: Number of address bits in a page (column address bits)
   1229 * @phys_erase_shift: Number of address bits in a physical eraseblock
   1230 * @chip_shift: Number of address bits in one chip
   1231 * @pagemask: Page number mask = number of (pages / chip) - 1
   1232 * @subpagesize: Holds the subpagesize
   1233 * @data_buf: Buffer for data, size is (page size + oobsize)
   1234 * @oob_poi: pointer on the OOB area covered by data_buf
   1235 * @pagecache: Structure containing page cache related fields
   1236 * @pagecache.bitflips: Number of bitflips of the cached page
   1237 * @pagecache.page: Page number currently in the cache. -1 means no page is
   1238 *                  currently cached
   1239 * @buf_align: Minimum buffer alignment required by a platform
   1240 * @lock: Lock protecting the suspended field. Also used to serialize accesses
   1241 *        to the NAND device
   1242 * @suspended: Set to 1 when the device is suspended, 0 when it's not
   1243 * @resume_wq: wait queue to sleep if rawnand is in suspended state.
   1244 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
   1245 *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
   1246 *          NAND Controller drivers should not modify this value, but they're
   1247 *          allowed to read it.
   1248 * @read_retries: The number of read retry modes supported
   1249 * @secure_regions: Structure containing the secure regions info
   1250 * @nr_secure_regions: Number of secure regions
   1251 * @controller: The hardware controller	structure which is shared among multiple
   1252 *              independent devices
   1253 * @ecc: The ECC controller structure
   1254 * @priv: Chip private data
   1255 */
   1256struct nand_chip {
   1257	struct nand_device base;
   1258	struct nand_id id;
   1259	struct nand_parameters parameters;
   1260	struct nand_manufacturer manufacturer;
   1261	struct nand_chip_ops ops;
   1262	struct nand_legacy legacy;
   1263	unsigned int options;
   1264
   1265	/* Data interface */
   1266	const struct nand_interface_config *current_interface_config;
   1267	struct nand_interface_config *best_interface_config;
   1268
   1269	/* Bad block information */
   1270	unsigned int bbt_erase_shift;
   1271	unsigned int bbt_options;
   1272	unsigned int badblockpos;
   1273	unsigned int badblockbits;
   1274	struct nand_bbt_descr *bbt_td;
   1275	struct nand_bbt_descr *bbt_md;
   1276	struct nand_bbt_descr *badblock_pattern;
   1277	u8 *bbt;
   1278
   1279	/* Device internal layout */
   1280	unsigned int page_shift;
   1281	unsigned int phys_erase_shift;
   1282	unsigned int chip_shift;
   1283	unsigned int pagemask;
   1284	unsigned int subpagesize;
   1285
   1286	/* Buffers */
   1287	u8 *data_buf;
   1288	u8 *oob_poi;
   1289	struct {
   1290		unsigned int bitflips;
   1291		int page;
   1292	} pagecache;
   1293	unsigned long buf_align;
   1294
   1295	/* Internals */
   1296	struct mutex lock;
   1297	unsigned int suspended : 1;
   1298	wait_queue_head_t resume_wq;
   1299	int cur_cs;
   1300	int read_retries;
   1301	struct nand_secure_region *secure_regions;
   1302	u8 nr_secure_regions;
   1303
   1304	/* Externals */
   1305	struct nand_controller *controller;
   1306	struct nand_ecc_ctrl ecc;
   1307	void *priv;
   1308};
   1309
   1310static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
   1311{
   1312	return container_of(mtd, struct nand_chip, base.mtd);
   1313}
   1314
   1315static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
   1316{
   1317	return &chip->base.mtd;
   1318}
   1319
   1320static inline void *nand_get_controller_data(struct nand_chip *chip)
   1321{
   1322	return chip->priv;
   1323}
   1324
   1325static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
   1326{
   1327	chip->priv = priv;
   1328}
   1329
   1330static inline void nand_set_manufacturer_data(struct nand_chip *chip,
   1331					      void *priv)
   1332{
   1333	chip->manufacturer.priv = priv;
   1334}
   1335
   1336static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
   1337{
   1338	return chip->manufacturer.priv;
   1339}
   1340
   1341static inline void nand_set_flash_node(struct nand_chip *chip,
   1342				       struct device_node *np)
   1343{
   1344	mtd_set_of_node(nand_to_mtd(chip), np);
   1345}
   1346
   1347static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
   1348{
   1349	return mtd_get_of_node(nand_to_mtd(chip));
   1350}
   1351
   1352/**
   1353 * nand_get_interface_config - Retrieve the current interface configuration
   1354 *                             of a NAND chip
   1355 * @chip: The NAND chip
   1356 */
   1357static inline const struct nand_interface_config *
   1358nand_get_interface_config(struct nand_chip *chip)
   1359{
   1360	return chip->current_interface_config;
   1361}
   1362
   1363/*
   1364 * A helper for defining older NAND chips where the second ID byte fully
   1365 * defined the chip, including the geometry (chip size, eraseblock size, page
   1366 * size). All these chips have 512 bytes NAND page size.
   1367 */
   1368#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
   1369	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
   1370	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
   1371
   1372/*
   1373 * A helper for defining newer chips which report their page size and
   1374 * eraseblock size via the extended ID bytes.
   1375 *
   1376 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
   1377 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
   1378 * device ID now only represented a particular total chip size (and voltage,
   1379 * buswidth), and the page size, eraseblock size, and OOB size could vary while
   1380 * using the same device ID.
   1381 */
   1382#define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
   1383	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
   1384	  .options = (opts) }
   1385
   1386#define NAND_ECC_INFO(_strength, _step)	\
   1387			{ .strength_ds = (_strength), .step_ds = (_step) }
   1388#define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
   1389#define NAND_ECC_STEP(type)		((type)->ecc.step_ds)
   1390
   1391/**
   1392 * struct nand_flash_dev - NAND Flash Device ID Structure
   1393 * @name: a human-readable name of the NAND chip
   1394 * @dev_id: the device ID (the second byte of the full chip ID array)
   1395 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
   1396 *          memory address as ``id[0]``)
   1397 * @dev_id: device ID part of the full chip ID array (refers the same memory
   1398 *          address as ``id[1]``)
   1399 * @id: full device ID array
   1400 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
   1401 *            well as the eraseblock size) is determined from the extended NAND
   1402 *            chip ID array)
   1403 * @chipsize: total chip size in MiB
   1404 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
   1405 * @options: stores various chip bit options
   1406 * @id_len: The valid length of the @id.
   1407 * @oobsize: OOB size
   1408 * @ecc: ECC correctability and step information from the datasheet.
   1409 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
   1410 *                   @ecc_strength_ds in nand_chip{}.
   1411 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
   1412 *               @ecc_step_ds in nand_chip{}, also from the datasheet.
   1413 *               For example, the "4bit ECC for each 512Byte" can be set with
   1414 *               NAND_ECC_INFO(4, 512).
   1415 */
   1416struct nand_flash_dev {
   1417	char *name;
   1418	union {
   1419		struct {
   1420			uint8_t mfr_id;
   1421			uint8_t dev_id;
   1422		};
   1423		uint8_t id[NAND_MAX_ID_LEN];
   1424	};
   1425	unsigned int pagesize;
   1426	unsigned int chipsize;
   1427	unsigned int erasesize;
   1428	unsigned int options;
   1429	uint16_t id_len;
   1430	uint16_t oobsize;
   1431	struct {
   1432		uint16_t strength_ds;
   1433		uint16_t step_ds;
   1434	} ecc;
   1435};
   1436
   1437int nand_create_bbt(struct nand_chip *chip);
   1438
   1439/*
   1440 * Check if it is a SLC nand.
   1441 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
   1442 * We do not distinguish the MLC and TLC now.
   1443 */
   1444static inline bool nand_is_slc(struct nand_chip *chip)
   1445{
   1446	WARN(nanddev_bits_per_cell(&chip->base) == 0,
   1447	     "chip->bits_per_cell is used uninitialized\n");
   1448	return nanddev_bits_per_cell(&chip->base) == 1;
   1449}
   1450
   1451/**
   1452 * nand_opcode_8bits - Check if the opcode's address should be sent only on the
   1453 *	lower 8 bits
   1454 * @command: opcode to check
   1455 */
   1456static inline int nand_opcode_8bits(unsigned int command)
   1457{
   1458	switch (command) {
   1459	case NAND_CMD_READID:
   1460	case NAND_CMD_PARAM:
   1461	case NAND_CMD_GET_FEATURES:
   1462	case NAND_CMD_SET_FEATURES:
   1463		return 1;
   1464	default:
   1465		break;
   1466	}
   1467	return 0;
   1468}
   1469
   1470int rawnand_sw_hamming_init(struct nand_chip *chip);
   1471int rawnand_sw_hamming_calculate(struct nand_chip *chip,
   1472				 const unsigned char *buf,
   1473				 unsigned char *code);
   1474int rawnand_sw_hamming_correct(struct nand_chip *chip,
   1475			       unsigned char *buf,
   1476			       unsigned char *read_ecc,
   1477			       unsigned char *calc_ecc);
   1478void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
   1479int rawnand_sw_bch_init(struct nand_chip *chip);
   1480int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
   1481			   unsigned char *read_ecc, unsigned char *calc_ecc);
   1482void rawnand_sw_bch_cleanup(struct nand_chip *chip);
   1483
   1484int nand_check_erased_ecc_chunk(void *data, int datalen,
   1485				void *ecc, int ecclen,
   1486				void *extraoob, int extraooblen,
   1487				int threshold);
   1488
   1489int nand_ecc_choose_conf(struct nand_chip *chip,
   1490			 const struct nand_ecc_caps *caps, int oobavail);
   1491
   1492/* Default write_oob implementation */
   1493int nand_write_oob_std(struct nand_chip *chip, int page);
   1494
   1495/* Default read_oob implementation */
   1496int nand_read_oob_std(struct nand_chip *chip, int page);
   1497
   1498/* Stub used by drivers that do not support GET/SET FEATURES operations */
   1499int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
   1500				  u8 *subfeature_param);
   1501
   1502/* read_page_raw implementations */
   1503int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
   1504		       int page);
   1505int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
   1506				  int oob_required, int page);
   1507
   1508/* write_page_raw implementations */
   1509int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
   1510			int oob_required, int page);
   1511int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
   1512				   int oob_required, int page);
   1513
   1514/* Reset and initialize a NAND device */
   1515int nand_reset(struct nand_chip *chip, int chipnr);
   1516
   1517/* NAND operation helpers */
   1518int nand_reset_op(struct nand_chip *chip);
   1519int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
   1520		   unsigned int len);
   1521int nand_status_op(struct nand_chip *chip, u8 *status);
   1522int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
   1523int nand_read_page_op(struct nand_chip *chip, unsigned int page,
   1524		      unsigned int offset_in_page, void *buf, unsigned int len);
   1525int nand_change_read_column_op(struct nand_chip *chip,
   1526			       unsigned int offset_in_page, void *buf,
   1527			       unsigned int len, bool force_8bit);
   1528int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
   1529		     unsigned int offset_in_page, void *buf, unsigned int len);
   1530int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
   1531			    unsigned int offset_in_page, const void *buf,
   1532			    unsigned int len);
   1533int nand_prog_page_end_op(struct nand_chip *chip);
   1534int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
   1535		      unsigned int offset_in_page, const void *buf,
   1536		      unsigned int len);
   1537int nand_change_write_column_op(struct nand_chip *chip,
   1538				unsigned int offset_in_page, const void *buf,
   1539				unsigned int len, bool force_8bit);
   1540int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
   1541		      bool force_8bit, bool check_only);
   1542int nand_write_data_op(struct nand_chip *chip, const void *buf,
   1543		       unsigned int len, bool force_8bit);
   1544int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
   1545				   int oob_required, int page);
   1546
   1547/* Scan and identify a NAND device */
   1548int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
   1549		       struct nand_flash_dev *ids);
   1550
   1551static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
   1552{
   1553	return nand_scan_with_ids(chip, max_chips, NULL);
   1554}
   1555
   1556/* Internal helper for board drivers which need to override command function */
   1557void nand_wait_ready(struct nand_chip *chip);
   1558
   1559/*
   1560 * Free resources held by the NAND device, must be called on error after a
   1561 * sucessful nand_scan().
   1562 */
   1563void nand_cleanup(struct nand_chip *chip);
   1564
   1565/*
   1566 * External helper for controller drivers that have to implement the WAITRDY
   1567 * instruction and have no physical pin to check it.
   1568 */
   1569int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
   1570int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
   1571		      unsigned long timeout_ms);
   1572
   1573/* Select/deselect a NAND target. */
   1574void nand_select_target(struct nand_chip *chip, unsigned int cs);
   1575void nand_deselect_target(struct nand_chip *chip);
   1576
   1577/* Bitops */
   1578void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
   1579		       unsigned int src_off, unsigned int nbits);
   1580
   1581/**
   1582 * nand_get_data_buf() - Get the internal page buffer
   1583 * @chip: NAND chip object
   1584 *
   1585 * Returns the pre-allocated page buffer after invalidating the cache. This
   1586 * function should be used by drivers that do not want to allocate their own
   1587 * bounce buffer and still need such a buffer for specific operations (most
   1588 * commonly when reading OOB data only).
   1589 *
   1590 * Be careful to never call this function in the write/write_oob path, because
   1591 * the core may have placed the data to be written out in this buffer.
   1592 *
   1593 * Return: pointer to the page cache buffer
   1594 */
   1595static inline void *nand_get_data_buf(struct nand_chip *chip)
   1596{
   1597	chip->pagecache.page = -1;
   1598
   1599	return chip->data_buf;
   1600}
   1601
   1602/* Parse the gpio-cs property */
   1603int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
   1604			     unsigned int *ncs_array);
   1605
   1606#endif /* __LINUX_MTD_RAWNAND_H */