cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spinand.h (16367B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Copyright (c) 2016-2017 Micron Technology, Inc.
      4 *
      5 *  Authors:
      6 *	Peter Pan <peterpandong@micron.com>
      7 */
      8#ifndef __LINUX_MTD_SPINAND_H
      9#define __LINUX_MTD_SPINAND_H
     10
     11#include <linux/mutex.h>
     12#include <linux/bitops.h>
     13#include <linux/device.h>
     14#include <linux/mtd/mtd.h>
     15#include <linux/mtd/nand.h>
     16#include <linux/spi/spi.h>
     17#include <linux/spi/spi-mem.h>
     18
     19/**
     20 * Standard SPI NAND flash operations
     21 */
     22
     23#define SPINAND_RESET_OP						\
     24	SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),				\
     25		   SPI_MEM_OP_NO_ADDR,					\
     26		   SPI_MEM_OP_NO_DUMMY,					\
     27		   SPI_MEM_OP_NO_DATA)
     28
     29#define SPINAND_WR_EN_DIS_OP(enable)					\
     30	SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),		\
     31		   SPI_MEM_OP_NO_ADDR,					\
     32		   SPI_MEM_OP_NO_DUMMY,					\
     33		   SPI_MEM_OP_NO_DATA)
     34
     35#define SPINAND_READID_OP(naddr, ndummy, buf, len)			\
     36	SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),				\
     37		   SPI_MEM_OP_ADDR(naddr, 0, 1),			\
     38		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
     39		   SPI_MEM_OP_DATA_IN(len, buf, 1))
     40
     41#define SPINAND_SET_FEATURE_OP(reg, valptr)				\
     42	SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),				\
     43		   SPI_MEM_OP_ADDR(1, reg, 1),				\
     44		   SPI_MEM_OP_NO_DUMMY,					\
     45		   SPI_MEM_OP_DATA_OUT(1, valptr, 1))
     46
     47#define SPINAND_GET_FEATURE_OP(reg, valptr)				\
     48	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),				\
     49		   SPI_MEM_OP_ADDR(1, reg, 1),				\
     50		   SPI_MEM_OP_NO_DUMMY,					\
     51		   SPI_MEM_OP_DATA_IN(1, valptr, 1))
     52
     53#define SPINAND_BLK_ERASE_OP(addr)					\
     54	SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),				\
     55		   SPI_MEM_OP_ADDR(3, addr, 1),				\
     56		   SPI_MEM_OP_NO_DUMMY,					\
     57		   SPI_MEM_OP_NO_DATA)
     58
     59#define SPINAND_PAGE_READ_OP(addr)					\
     60	SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),				\
     61		   SPI_MEM_OP_ADDR(3, addr, 1),				\
     62		   SPI_MEM_OP_NO_DUMMY,					\
     63		   SPI_MEM_OP_NO_DATA)
     64
     65#define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len)	\
     66	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
     67		   SPI_MEM_OP_ADDR(2, addr, 1),				\
     68		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
     69		   SPI_MEM_OP_DATA_IN(len, buf, 1))
     70
     71#define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
     72	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
     73		   SPI_MEM_OP_ADDR(3, addr, 1),				\
     74		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
     75		   SPI_MEM_OP_DATA_IN(len, buf, 1))
     76
     77#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len)	\
     78	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
     79		   SPI_MEM_OP_ADDR(2, addr, 1),				\
     80		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
     81		   SPI_MEM_OP_DATA_IN(len, buf, 2))
     82
     83#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len)	\
     84	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
     85		   SPI_MEM_OP_ADDR(3, addr, 1),				\
     86		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
     87		   SPI_MEM_OP_DATA_IN(len, buf, 2))
     88
     89#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len)	\
     90	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
     91		   SPI_MEM_OP_ADDR(2, addr, 1),				\
     92		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
     93		   SPI_MEM_OP_DATA_IN(len, buf, 4))
     94
     95#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len)	\
     96	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
     97		   SPI_MEM_OP_ADDR(3, addr, 1),				\
     98		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
     99		   SPI_MEM_OP_DATA_IN(len, buf, 4))
    100
    101#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len)	\
    102	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
    103		   SPI_MEM_OP_ADDR(2, addr, 2),				\
    104		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
    105		   SPI_MEM_OP_DATA_IN(len, buf, 2))
    106
    107#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
    108	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
    109		   SPI_MEM_OP_ADDR(3, addr, 2),				\
    110		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
    111		   SPI_MEM_OP_DATA_IN(len, buf, 2))
    112
    113#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len)	\
    114	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
    115		   SPI_MEM_OP_ADDR(2, addr, 4),				\
    116		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
    117		   SPI_MEM_OP_DATA_IN(len, buf, 4))
    118
    119#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
    120	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
    121		   SPI_MEM_OP_ADDR(3, addr, 4),				\
    122		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
    123		   SPI_MEM_OP_DATA_IN(len, buf, 4))
    124
    125#define SPINAND_PROG_EXEC_OP(addr)					\
    126	SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),				\
    127		   SPI_MEM_OP_ADDR(3, addr, 1),				\
    128		   SPI_MEM_OP_NO_DUMMY,					\
    129		   SPI_MEM_OP_NO_DATA)
    130
    131#define SPINAND_PROG_LOAD(reset, addr, buf, len)			\
    132	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),		\
    133		   SPI_MEM_OP_ADDR(2, addr, 1),				\
    134		   SPI_MEM_OP_NO_DUMMY,					\
    135		   SPI_MEM_OP_DATA_OUT(len, buf, 1))
    136
    137#define SPINAND_PROG_LOAD_X4(reset, addr, buf, len)			\
    138	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),		\
    139		   SPI_MEM_OP_ADDR(2, addr, 1),				\
    140		   SPI_MEM_OP_NO_DUMMY,					\
    141		   SPI_MEM_OP_DATA_OUT(len, buf, 4))
    142
    143/**
    144 * Standard SPI NAND flash commands
    145 */
    146#define SPINAND_CMD_PROG_LOAD_X4		0x32
    147#define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4	0x34
    148
    149/* feature register */
    150#define REG_BLOCK_LOCK		0xa0
    151#define BL_ALL_UNLOCKED		0x00
    152
    153/* configuration register */
    154#define REG_CFG			0xb0
    155#define CFG_OTP_ENABLE		BIT(6)
    156#define CFG_ECC_ENABLE		BIT(4)
    157#define CFG_QUAD_ENABLE		BIT(0)
    158
    159/* status register */
    160#define REG_STATUS		0xc0
    161#define STATUS_BUSY		BIT(0)
    162#define STATUS_ERASE_FAILED	BIT(2)
    163#define STATUS_PROG_FAILED	BIT(3)
    164#define STATUS_ECC_MASK		GENMASK(5, 4)
    165#define STATUS_ECC_NO_BITFLIPS	(0 << 4)
    166#define STATUS_ECC_HAS_BITFLIPS	(1 << 4)
    167#define STATUS_ECC_UNCOR_ERROR	(2 << 4)
    168
    169struct spinand_op;
    170struct spinand_device;
    171
    172#define SPINAND_MAX_ID_LEN	4
    173/*
    174 * For erase, write and read operation, we got the following timings :
    175 * tBERS (erase) 1ms to 4ms
    176 * tPROG 300us to 400us
    177 * tREAD 25us to 100us
    178 * In order to minimize latency, the min value is divided by 4 for the
    179 * initial delay, and dividing by 20 for the poll delay.
    180 * For reset, 5us/10us/500us if the device is respectively
    181 * reading/programming/erasing when the RESET occurs. Since we always
    182 * issue a RESET when the device is IDLE, 5us is selected for both initial
    183 * and poll delay.
    184 */
    185#define SPINAND_READ_INITIAL_DELAY_US	6
    186#define SPINAND_READ_POLL_DELAY_US	5
    187#define SPINAND_RESET_INITIAL_DELAY_US	5
    188#define SPINAND_RESET_POLL_DELAY_US	5
    189#define SPINAND_WRITE_INITIAL_DELAY_US	75
    190#define SPINAND_WRITE_POLL_DELAY_US	15
    191#define SPINAND_ERASE_INITIAL_DELAY_US	250
    192#define SPINAND_ERASE_POLL_DELAY_US	50
    193
    194#define SPINAND_WAITRDY_TIMEOUT_MS	400
    195
    196/**
    197 * struct spinand_id - SPI NAND id structure
    198 * @data: buffer containing the id bytes. Currently 4 bytes large, but can
    199 *	  be extended if required
    200 * @len: ID length
    201 */
    202struct spinand_id {
    203	u8 data[SPINAND_MAX_ID_LEN];
    204	int len;
    205};
    206
    207enum spinand_readid_method {
    208	SPINAND_READID_METHOD_OPCODE,
    209	SPINAND_READID_METHOD_OPCODE_ADDR,
    210	SPINAND_READID_METHOD_OPCODE_DUMMY,
    211};
    212
    213/**
    214 * struct spinand_devid - SPI NAND device id structure
    215 * @id: device id of current chip
    216 * @len: number of bytes in device id
    217 * @method: method to read chip id
    218 *	    There are 3 possible variants:
    219 *	    SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
    220 *	    after read_id opcode.
    221 *	    SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
    222 *	    read_id opcode + 1-byte address.
    223 *	    SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
    224 *	    read_id opcode + 1 dummy byte.
    225 */
    226struct spinand_devid {
    227	const u8 *id;
    228	const u8 len;
    229	const enum spinand_readid_method method;
    230};
    231
    232/**
    233 * struct manufacurer_ops - SPI NAND manufacturer specific operations
    234 * @init: initialize a SPI NAND device
    235 * @cleanup: cleanup a SPI NAND device
    236 *
    237 * Each SPI NAND manufacturer driver should implement this interface so that
    238 * NAND chips coming from this vendor can be initialized properly.
    239 */
    240struct spinand_manufacturer_ops {
    241	int (*init)(struct spinand_device *spinand);
    242	void (*cleanup)(struct spinand_device *spinand);
    243};
    244
    245/**
    246 * struct spinand_manufacturer - SPI NAND manufacturer instance
    247 * @id: manufacturer ID
    248 * @name: manufacturer name
    249 * @devid_len: number of bytes in device ID
    250 * @chips: supported SPI NANDs under current manufacturer
    251 * @nchips: number of SPI NANDs available in chips array
    252 * @ops: manufacturer operations
    253 */
    254struct spinand_manufacturer {
    255	u8 id;
    256	char *name;
    257	const struct spinand_info *chips;
    258	const size_t nchips;
    259	const struct spinand_manufacturer_ops *ops;
    260};
    261
    262/* SPI NAND manufacturers */
    263extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
    264extern const struct spinand_manufacturer macronix_spinand_manufacturer;
    265extern const struct spinand_manufacturer micron_spinand_manufacturer;
    266extern const struct spinand_manufacturer paragon_spinand_manufacturer;
    267extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
    268extern const struct spinand_manufacturer winbond_spinand_manufacturer;
    269extern const struct spinand_manufacturer xtx_spinand_manufacturer;
    270
    271/**
    272 * struct spinand_op_variants - SPI NAND operation variants
    273 * @ops: the list of variants for a given operation
    274 * @nops: the number of variants
    275 *
    276 * Some operations like read-from-cache/write-to-cache have several variants
    277 * depending on the number of IO lines you use to transfer data or address
    278 * cycles. This structure is a way to describe the different variants supported
    279 * by a chip and let the core pick the best one based on the SPI mem controller
    280 * capabilities.
    281 */
    282struct spinand_op_variants {
    283	const struct spi_mem_op *ops;
    284	unsigned int nops;
    285};
    286
    287#define SPINAND_OP_VARIANTS(name, ...)					\
    288	const struct spinand_op_variants name = {			\
    289		.ops = (struct spi_mem_op[]) { __VA_ARGS__ },		\
    290		.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /	\
    291			sizeof(struct spi_mem_op),			\
    292	}
    293
    294/**
    295 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
    296 *		      chip
    297 * @get_status: get the ECC status. Should return a positive number encoding
    298 *		the number of corrected bitflips if correction was possible or
    299 *		-EBADMSG if there are uncorrectable errors. I can also return
    300 *		other negative error codes if the error is not caused by
    301 *		uncorrectable bitflips
    302 * @ooblayout: the OOB layout used by the on-die ECC implementation
    303 */
    304struct spinand_ecc_info {
    305	int (*get_status)(struct spinand_device *spinand, u8 status);
    306	const struct mtd_ooblayout_ops *ooblayout;
    307};
    308
    309#define SPINAND_HAS_QE_BIT		BIT(0)
    310#define SPINAND_HAS_CR_FEAT_BIT		BIT(1)
    311
    312/**
    313 * struct spinand_ondie_ecc_conf - private SPI-NAND on-die ECC engine structure
    314 * @status: status of the last wait operation that will be used in case
    315 *          ->get_status() is not populated by the spinand device.
    316 */
    317struct spinand_ondie_ecc_conf {
    318	u8 status;
    319};
    320
    321/**
    322 * struct spinand_info - Structure used to describe SPI NAND chips
    323 * @model: model name
    324 * @devid: device ID
    325 * @flags: OR-ing of the SPINAND_XXX flags
    326 * @memorg: memory organization
    327 * @eccreq: ECC requirements
    328 * @eccinfo: on-die ECC info
    329 * @op_variants: operations variants
    330 * @op_variants.read_cache: variants of the read-cache operation
    331 * @op_variants.write_cache: variants of the write-cache operation
    332 * @op_variants.update_cache: variants of the update-cache operation
    333 * @select_target: function used to select a target/die. Required only for
    334 *		   multi-die chips
    335 *
    336 * Each SPI NAND manufacturer driver should have a spinand_info table
    337 * describing all the chips supported by the driver.
    338 */
    339struct spinand_info {
    340	const char *model;
    341	struct spinand_devid devid;
    342	u32 flags;
    343	struct nand_memory_organization memorg;
    344	struct nand_ecc_props eccreq;
    345	struct spinand_ecc_info eccinfo;
    346	struct {
    347		const struct spinand_op_variants *read_cache;
    348		const struct spinand_op_variants *write_cache;
    349		const struct spinand_op_variants *update_cache;
    350	} op_variants;
    351	int (*select_target)(struct spinand_device *spinand,
    352			     unsigned int target);
    353};
    354
    355#define SPINAND_ID(__method, ...)					\
    356	{								\
    357		.id = (const u8[]){ __VA_ARGS__ },			\
    358		.len = sizeof((u8[]){ __VA_ARGS__ }),			\
    359		.method = __method,					\
    360	}
    361
    362#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)		\
    363	{								\
    364		.read_cache = __read,					\
    365		.write_cache = __write,					\
    366		.update_cache = __update,				\
    367	}
    368
    369#define SPINAND_ECCINFO(__ooblayout, __get_status)			\
    370	.eccinfo = {							\
    371		.ooblayout = __ooblayout,				\
    372		.get_status = __get_status,				\
    373	}
    374
    375#define SPINAND_SELECT_TARGET(__func)					\
    376	.select_target = __func,
    377
    378#define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,	\
    379		     __flags, ...)					\
    380	{								\
    381		.model = __model,					\
    382		.devid = __id,						\
    383		.memorg = __memorg,					\
    384		.eccreq = __eccreq,					\
    385		.op_variants = __op_variants,				\
    386		.flags = __flags,					\
    387		__VA_ARGS__						\
    388	}
    389
    390struct spinand_dirmap {
    391	struct spi_mem_dirmap_desc *wdesc;
    392	struct spi_mem_dirmap_desc *rdesc;
    393	struct spi_mem_dirmap_desc *wdesc_ecc;
    394	struct spi_mem_dirmap_desc *rdesc_ecc;
    395};
    396
    397/**
    398 * struct spinand_device - SPI NAND device instance
    399 * @base: NAND device instance
    400 * @spimem: pointer to the SPI mem object
    401 * @lock: lock used to serialize accesses to the NAND
    402 * @id: NAND ID as returned by READ_ID
    403 * @flags: NAND flags
    404 * @op_templates: various SPI mem op templates
    405 * @op_templates.read_cache: read cache op template
    406 * @op_templates.write_cache: write cache op template
    407 * @op_templates.update_cache: update cache op template
    408 * @select_target: select a specific target/die. Usually called before sending
    409 *		   a command addressing a page or an eraseblock embedded in
    410 *		   this die. Only required if your chip exposes several dies
    411 * @cur_target: currently selected target/die
    412 * @eccinfo: on-die ECC information
    413 * @cfg_cache: config register cache. One entry per die
    414 * @databuf: bounce buffer for data
    415 * @oobbuf: bounce buffer for OOB data
    416 * @scratchbuf: buffer used for everything but page accesses. This is needed
    417 *		because the spi-mem interface explicitly requests that buffers
    418 *		passed in spi_mem_op be DMA-able, so we can't based the bufs on
    419 *		the stack
    420 * @manufacturer: SPI NAND manufacturer information
    421 * @priv: manufacturer private data
    422 */
    423struct spinand_device {
    424	struct nand_device base;
    425	struct spi_mem *spimem;
    426	struct mutex lock;
    427	struct spinand_id id;
    428	u32 flags;
    429
    430	struct {
    431		const struct spi_mem_op *read_cache;
    432		const struct spi_mem_op *write_cache;
    433		const struct spi_mem_op *update_cache;
    434	} op_templates;
    435
    436	struct spinand_dirmap *dirmaps;
    437
    438	int (*select_target)(struct spinand_device *spinand,
    439			     unsigned int target);
    440	unsigned int cur_target;
    441
    442	struct spinand_ecc_info eccinfo;
    443
    444	u8 *cfg_cache;
    445	u8 *databuf;
    446	u8 *oobbuf;
    447	u8 *scratchbuf;
    448	const struct spinand_manufacturer *manufacturer;
    449	void *priv;
    450};
    451
    452/**
    453 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
    454 * @mtd: MTD instance
    455 *
    456 * Return: the SPI NAND device attached to @mtd.
    457 */
    458static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
    459{
    460	return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
    461}
    462
    463/**
    464 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
    465 * @spinand: SPI NAND device
    466 *
    467 * Return: the MTD device embedded in @spinand.
    468 */
    469static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
    470{
    471	return nanddev_to_mtd(&spinand->base);
    472}
    473
    474/**
    475 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
    476 * @nand: NAND object
    477 *
    478 * Return: the SPI NAND device embedding @nand.
    479 */
    480static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
    481{
    482	return container_of(nand, struct spinand_device, base);
    483}
    484
    485/**
    486 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
    487 * @spinand: SPI NAND device
    488 *
    489 * Return: the NAND device embedded in @spinand.
    490 */
    491static inline struct nand_device *
    492spinand_to_nand(struct spinand_device *spinand)
    493{
    494	return &spinand->base;
    495}
    496
    497/**
    498 * spinand_set_of_node - Attach a DT node to a SPI NAND device
    499 * @spinand: SPI NAND device
    500 * @np: DT node
    501 *
    502 * Attach a DT node to a SPI NAND device.
    503 */
    504static inline void spinand_set_of_node(struct spinand_device *spinand,
    505				       struct device_node *np)
    506{
    507	nanddev_set_of_node(&spinand->base, np);
    508}
    509
    510int spinand_match_and_init(struct spinand_device *spinand,
    511			   const struct spinand_info *table,
    512			   unsigned int table_size,
    513			   enum spinand_readid_method rdid_method);
    514
    515int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
    516int spinand_select_target(struct spinand_device *spinand, unsigned int target);
    517
    518#endif /* __LINUX_MTD_SPINAND_H */