cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

netdevice.h (161737B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
      4 *		operating system.  INET is implemented using the  BSD Socket
      5 *		interface as the means of communication with the user level.
      6 *
      7 *		Definitions for the Interfaces handler.
      8 *
      9 * Version:	@(#)dev.h	1.0.10	08/12/93
     10 *
     11 * Authors:	Ross Biro
     12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
     14 *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
     15 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
     16 *		Bjorn Ekwall. <bj0rn@blox.se>
     17 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
     18 *
     19 *		Moved to /usr/include/linux for NET3
     20 */
     21#ifndef _LINUX_NETDEVICE_H
     22#define _LINUX_NETDEVICE_H
     23
     24#include <linux/timer.h>
     25#include <linux/bug.h>
     26#include <linux/delay.h>
     27#include <linux/atomic.h>
     28#include <linux/prefetch.h>
     29#include <asm/cache.h>
     30#include <asm/byteorder.h>
     31#include <asm/local.h>
     32
     33#include <linux/percpu.h>
     34#include <linux/rculist.h>
     35#include <linux/workqueue.h>
     36#include <linux/dynamic_queue_limits.h>
     37
     38#include <net/net_namespace.h>
     39#ifdef CONFIG_DCB
     40#include <net/dcbnl.h>
     41#endif
     42#include <net/netprio_cgroup.h>
     43#include <net/xdp.h>
     44
     45#include <linux/netdev_features.h>
     46#include <linux/neighbour.h>
     47#include <uapi/linux/netdevice.h>
     48#include <uapi/linux/if_bonding.h>
     49#include <uapi/linux/pkt_cls.h>
     50#include <linux/hashtable.h>
     51#include <linux/rbtree.h>
     52#include <net/net_trackers.h>
     53#include <net/net_debug.h>
     54
     55struct netpoll_info;
     56struct device;
     57struct ethtool_ops;
     58struct phy_device;
     59struct dsa_port;
     60struct ip_tunnel_parm;
     61struct macsec_context;
     62struct macsec_ops;
     63struct netdev_name_node;
     64struct sd_flow_limit;
     65struct sfp_bus;
     66/* 802.11 specific */
     67struct wireless_dev;
     68/* 802.15.4 specific */
     69struct wpan_dev;
     70struct mpls_dev;
     71/* UDP Tunnel offloads */
     72struct udp_tunnel_info;
     73struct udp_tunnel_nic_info;
     74struct udp_tunnel_nic;
     75struct bpf_prog;
     76struct xdp_buff;
     77
     78void synchronize_net(void);
     79void netdev_set_default_ethtool_ops(struct net_device *dev,
     80				    const struct ethtool_ops *ops);
     81
     82/* Backlog congestion levels */
     83#define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
     84#define NET_RX_DROP		1	/* packet dropped */
     85
     86#define MAX_NEST_DEV 8
     87
     88/*
     89 * Transmit return codes: transmit return codes originate from three different
     90 * namespaces:
     91 *
     92 * - qdisc return codes
     93 * - driver transmit return codes
     94 * - errno values
     95 *
     96 * Drivers are allowed to return any one of those in their hard_start_xmit()
     97 * function. Real network devices commonly used with qdiscs should only return
     98 * the driver transmit return codes though - when qdiscs are used, the actual
     99 * transmission happens asynchronously, so the value is not propagated to
    100 * higher layers. Virtual network devices transmit synchronously; in this case
    101 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
    102 * others are propagated to higher layers.
    103 */
    104
    105/* qdisc ->enqueue() return codes. */
    106#define NET_XMIT_SUCCESS	0x00
    107#define NET_XMIT_DROP		0x01	/* skb dropped			*/
    108#define NET_XMIT_CN		0x02	/* congestion notification	*/
    109#define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
    110
    111/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
    112 * indicates that the device will soon be dropping packets, or already drops
    113 * some packets of the same priority; prompting us to send less aggressively. */
    114#define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
    115#define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
    116
    117/* Driver transmit return codes */
    118#define NETDEV_TX_MASK		0xf0
    119
    120enum netdev_tx {
    121	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
    122	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
    123	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
    124};
    125typedef enum netdev_tx netdev_tx_t;
    126
    127/*
    128 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
    129 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
    130 */
    131static inline bool dev_xmit_complete(int rc)
    132{
    133	/*
    134	 * Positive cases with an skb consumed by a driver:
    135	 * - successful transmission (rc == NETDEV_TX_OK)
    136	 * - error while transmitting (rc < 0)
    137	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
    138	 */
    139	if (likely(rc < NET_XMIT_MASK))
    140		return true;
    141
    142	return false;
    143}
    144
    145/*
    146 *	Compute the worst-case header length according to the protocols
    147 *	used.
    148 */
    149
    150#if defined(CONFIG_HYPERV_NET)
    151# define LL_MAX_HEADER 128
    152#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
    153# if defined(CONFIG_MAC80211_MESH)
    154#  define LL_MAX_HEADER 128
    155# else
    156#  define LL_MAX_HEADER 96
    157# endif
    158#else
    159# define LL_MAX_HEADER 32
    160#endif
    161
    162#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
    163    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
    164#define MAX_HEADER LL_MAX_HEADER
    165#else
    166#define MAX_HEADER (LL_MAX_HEADER + 48)
    167#endif
    168
    169/*
    170 *	Old network device statistics. Fields are native words
    171 *	(unsigned long) so they can be read and written atomically.
    172 */
    173
    174struct net_device_stats {
    175	unsigned long	rx_packets;
    176	unsigned long	tx_packets;
    177	unsigned long	rx_bytes;
    178	unsigned long	tx_bytes;
    179	unsigned long	rx_errors;
    180	unsigned long	tx_errors;
    181	unsigned long	rx_dropped;
    182	unsigned long	tx_dropped;
    183	unsigned long	multicast;
    184	unsigned long	collisions;
    185	unsigned long	rx_length_errors;
    186	unsigned long	rx_over_errors;
    187	unsigned long	rx_crc_errors;
    188	unsigned long	rx_frame_errors;
    189	unsigned long	rx_fifo_errors;
    190	unsigned long	rx_missed_errors;
    191	unsigned long	tx_aborted_errors;
    192	unsigned long	tx_carrier_errors;
    193	unsigned long	tx_fifo_errors;
    194	unsigned long	tx_heartbeat_errors;
    195	unsigned long	tx_window_errors;
    196	unsigned long	rx_compressed;
    197	unsigned long	tx_compressed;
    198};
    199
    200/* per-cpu stats, allocated on demand.
    201 * Try to fit them in a single cache line, for dev_get_stats() sake.
    202 */
    203struct net_device_core_stats {
    204	unsigned long	rx_dropped;
    205	unsigned long	tx_dropped;
    206	unsigned long	rx_nohandler;
    207	unsigned long	rx_otherhost_dropped;
    208} __aligned(4 * sizeof(unsigned long));
    209
    210#include <linux/cache.h>
    211#include <linux/skbuff.h>
    212
    213#ifdef CONFIG_RPS
    214#include <linux/static_key.h>
    215extern struct static_key_false rps_needed;
    216extern struct static_key_false rfs_needed;
    217#endif
    218
    219struct neighbour;
    220struct neigh_parms;
    221struct sk_buff;
    222
    223struct netdev_hw_addr {
    224	struct list_head	list;
    225	struct rb_node		node;
    226	unsigned char		addr[MAX_ADDR_LEN];
    227	unsigned char		type;
    228#define NETDEV_HW_ADDR_T_LAN		1
    229#define NETDEV_HW_ADDR_T_SAN		2
    230#define NETDEV_HW_ADDR_T_UNICAST	3
    231#define NETDEV_HW_ADDR_T_MULTICAST	4
    232	bool			global_use;
    233	int			sync_cnt;
    234	int			refcount;
    235	int			synced;
    236	struct rcu_head		rcu_head;
    237};
    238
    239struct netdev_hw_addr_list {
    240	struct list_head	list;
    241	int			count;
    242
    243	/* Auxiliary tree for faster lookup on addition and deletion */
    244	struct rb_root		tree;
    245};
    246
    247#define netdev_hw_addr_list_count(l) ((l)->count)
    248#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
    249#define netdev_hw_addr_list_for_each(ha, l) \
    250	list_for_each_entry(ha, &(l)->list, list)
    251
    252#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
    253#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
    254#define netdev_for_each_uc_addr(ha, dev) \
    255	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
    256
    257#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
    258#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
    259#define netdev_for_each_mc_addr(ha, dev) \
    260	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
    261
    262struct hh_cache {
    263	unsigned int	hh_len;
    264	seqlock_t	hh_lock;
    265
    266	/* cached hardware header; allow for machine alignment needs.        */
    267#define HH_DATA_MOD	16
    268#define HH_DATA_OFF(__len) \
    269	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
    270#define HH_DATA_ALIGN(__len) \
    271	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
    272	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
    273};
    274
    275/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
    276 * Alternative is:
    277 *   dev->hard_header_len ? (dev->hard_header_len +
    278 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
    279 *
    280 * We could use other alignment values, but we must maintain the
    281 * relationship HH alignment <= LL alignment.
    282 */
    283#define LL_RESERVED_SPACE(dev) \
    284	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
    285#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
    286	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
    287
    288struct header_ops {
    289	int	(*create) (struct sk_buff *skb, struct net_device *dev,
    290			   unsigned short type, const void *daddr,
    291			   const void *saddr, unsigned int len);
    292	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
    293	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
    294	void	(*cache_update)(struct hh_cache *hh,
    295				const struct net_device *dev,
    296				const unsigned char *haddr);
    297	bool	(*validate)(const char *ll_header, unsigned int len);
    298	__be16	(*parse_protocol)(const struct sk_buff *skb);
    299};
    300
    301/* These flag bits are private to the generic network queueing
    302 * layer; they may not be explicitly referenced by any other
    303 * code.
    304 */
    305
    306enum netdev_state_t {
    307	__LINK_STATE_START,
    308	__LINK_STATE_PRESENT,
    309	__LINK_STATE_NOCARRIER,
    310	__LINK_STATE_LINKWATCH_PENDING,
    311	__LINK_STATE_DORMANT,
    312	__LINK_STATE_TESTING,
    313};
    314
    315struct gro_list {
    316	struct list_head	list;
    317	int			count;
    318};
    319
    320/*
    321 * size of gro hash buckets, must less than bit number of
    322 * napi_struct::gro_bitmask
    323 */
    324#define GRO_HASH_BUCKETS	8
    325
    326/*
    327 * Structure for NAPI scheduling similar to tasklet but with weighting
    328 */
    329struct napi_struct {
    330	/* The poll_list must only be managed by the entity which
    331	 * changes the state of the NAPI_STATE_SCHED bit.  This means
    332	 * whoever atomically sets that bit can add this napi_struct
    333	 * to the per-CPU poll_list, and whoever clears that bit
    334	 * can remove from the list right before clearing the bit.
    335	 */
    336	struct list_head	poll_list;
    337
    338	unsigned long		state;
    339	int			weight;
    340	int			defer_hard_irqs_count;
    341	unsigned long		gro_bitmask;
    342	int			(*poll)(struct napi_struct *, int);
    343#ifdef CONFIG_NETPOLL
    344	int			poll_owner;
    345#endif
    346	struct net_device	*dev;
    347	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
    348	struct sk_buff		*skb;
    349	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
    350	int			rx_count; /* length of rx_list */
    351	struct hrtimer		timer;
    352	struct list_head	dev_list;
    353	struct hlist_node	napi_hash_node;
    354	unsigned int		napi_id;
    355	struct task_struct	*thread;
    356};
    357
    358enum {
    359	NAPI_STATE_SCHED,		/* Poll is scheduled */
    360	NAPI_STATE_MISSED,		/* reschedule a napi */
    361	NAPI_STATE_DISABLE,		/* Disable pending */
    362	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
    363	NAPI_STATE_LISTED,		/* NAPI added to system lists */
    364	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
    365	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
    366	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
    367	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
    368	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
    369};
    370
    371enum {
    372	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
    373	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
    374	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
    375	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
    376	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
    377	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
    378	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
    379	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
    380	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
    381	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
    382};
    383
    384enum gro_result {
    385	GRO_MERGED,
    386	GRO_MERGED_FREE,
    387	GRO_HELD,
    388	GRO_NORMAL,
    389	GRO_CONSUMED,
    390};
    391typedef enum gro_result gro_result_t;
    392
    393/*
    394 * enum rx_handler_result - Possible return values for rx_handlers.
    395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
    396 * further.
    397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
    398 * case skb->dev was changed by rx_handler.
    399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
    400 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
    401 *
    402 * rx_handlers are functions called from inside __netif_receive_skb(), to do
    403 * special processing of the skb, prior to delivery to protocol handlers.
    404 *
    405 * Currently, a net_device can only have a single rx_handler registered. Trying
    406 * to register a second rx_handler will return -EBUSY.
    407 *
    408 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
    409 * To unregister a rx_handler on a net_device, use
    410 * netdev_rx_handler_unregister().
    411 *
    412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
    413 * do with the skb.
    414 *
    415 * If the rx_handler consumed the skb in some way, it should return
    416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
    417 * the skb to be delivered in some other way.
    418 *
    419 * If the rx_handler changed skb->dev, to divert the skb to another
    420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
    421 * new device will be called if it exists.
    422 *
    423 * If the rx_handler decides the skb should be ignored, it should return
    424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
    425 * are registered on exact device (ptype->dev == skb->dev).
    426 *
    427 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
    428 * delivered, it should return RX_HANDLER_PASS.
    429 *
    430 * A device without a registered rx_handler will behave as if rx_handler
    431 * returned RX_HANDLER_PASS.
    432 */
    433
    434enum rx_handler_result {
    435	RX_HANDLER_CONSUMED,
    436	RX_HANDLER_ANOTHER,
    437	RX_HANDLER_EXACT,
    438	RX_HANDLER_PASS,
    439};
    440typedef enum rx_handler_result rx_handler_result_t;
    441typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
    442
    443void __napi_schedule(struct napi_struct *n);
    444void __napi_schedule_irqoff(struct napi_struct *n);
    445
    446static inline bool napi_disable_pending(struct napi_struct *n)
    447{
    448	return test_bit(NAPI_STATE_DISABLE, &n->state);
    449}
    450
    451static inline bool napi_prefer_busy_poll(struct napi_struct *n)
    452{
    453	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
    454}
    455
    456bool napi_schedule_prep(struct napi_struct *n);
    457
    458/**
    459 *	napi_schedule - schedule NAPI poll
    460 *	@n: NAPI context
    461 *
    462 * Schedule NAPI poll routine to be called if it is not already
    463 * running.
    464 */
    465static inline void napi_schedule(struct napi_struct *n)
    466{
    467	if (napi_schedule_prep(n))
    468		__napi_schedule(n);
    469}
    470
    471/**
    472 *	napi_schedule_irqoff - schedule NAPI poll
    473 *	@n: NAPI context
    474 *
    475 * Variant of napi_schedule(), assuming hard irqs are masked.
    476 */
    477static inline void napi_schedule_irqoff(struct napi_struct *n)
    478{
    479	if (napi_schedule_prep(n))
    480		__napi_schedule_irqoff(n);
    481}
    482
    483/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
    484static inline bool napi_reschedule(struct napi_struct *napi)
    485{
    486	if (napi_schedule_prep(napi)) {
    487		__napi_schedule(napi);
    488		return true;
    489	}
    490	return false;
    491}
    492
    493bool napi_complete_done(struct napi_struct *n, int work_done);
    494/**
    495 *	napi_complete - NAPI processing complete
    496 *	@n: NAPI context
    497 *
    498 * Mark NAPI processing as complete.
    499 * Consider using napi_complete_done() instead.
    500 * Return false if device should avoid rearming interrupts.
    501 */
    502static inline bool napi_complete(struct napi_struct *n)
    503{
    504	return napi_complete_done(n, 0);
    505}
    506
    507int dev_set_threaded(struct net_device *dev, bool threaded);
    508
    509/**
    510 *	napi_disable - prevent NAPI from scheduling
    511 *	@n: NAPI context
    512 *
    513 * Stop NAPI from being scheduled on this context.
    514 * Waits till any outstanding processing completes.
    515 */
    516void napi_disable(struct napi_struct *n);
    517
    518void napi_enable(struct napi_struct *n);
    519
    520/**
    521 *	napi_synchronize - wait until NAPI is not running
    522 *	@n: NAPI context
    523 *
    524 * Wait until NAPI is done being scheduled on this context.
    525 * Waits till any outstanding processing completes but
    526 * does not disable future activations.
    527 */
    528static inline void napi_synchronize(const struct napi_struct *n)
    529{
    530	if (IS_ENABLED(CONFIG_SMP))
    531		while (test_bit(NAPI_STATE_SCHED, &n->state))
    532			msleep(1);
    533	else
    534		barrier();
    535}
    536
    537/**
    538 *	napi_if_scheduled_mark_missed - if napi is running, set the
    539 *	NAPIF_STATE_MISSED
    540 *	@n: NAPI context
    541 *
    542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
    543 * NAPI is scheduled.
    544 **/
    545static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
    546{
    547	unsigned long val, new;
    548
    549	do {
    550		val = READ_ONCE(n->state);
    551		if (val & NAPIF_STATE_DISABLE)
    552			return true;
    553
    554		if (!(val & NAPIF_STATE_SCHED))
    555			return false;
    556
    557		new = val | NAPIF_STATE_MISSED;
    558	} while (cmpxchg(&n->state, val, new) != val);
    559
    560	return true;
    561}
    562
    563enum netdev_queue_state_t {
    564	__QUEUE_STATE_DRV_XOFF,
    565	__QUEUE_STATE_STACK_XOFF,
    566	__QUEUE_STATE_FROZEN,
    567};
    568
    569#define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
    570#define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
    571#define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
    572
    573#define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
    574#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
    575					QUEUE_STATE_FROZEN)
    576#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
    577					QUEUE_STATE_FROZEN)
    578
    579/*
    580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
    581 * netif_tx_* functions below are used to manipulate this flag.  The
    582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
    583 * queue independently.  The netif_xmit_*stopped functions below are called
    584 * to check if the queue has been stopped by the driver or stack (either
    585 * of the XOFF bits are set in the state).  Drivers should not need to call
    586 * netif_xmit*stopped functions, they should only be using netif_tx_*.
    587 */
    588
    589struct netdev_queue {
    590/*
    591 * read-mostly part
    592 */
    593	struct net_device	*dev;
    594	netdevice_tracker	dev_tracker;
    595
    596	struct Qdisc __rcu	*qdisc;
    597	struct Qdisc		*qdisc_sleeping;
    598#ifdef CONFIG_SYSFS
    599	struct kobject		kobj;
    600#endif
    601#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
    602	int			numa_node;
    603#endif
    604	unsigned long		tx_maxrate;
    605	/*
    606	 * Number of TX timeouts for this queue
    607	 * (/sys/class/net/DEV/Q/trans_timeout)
    608	 */
    609	atomic_long_t		trans_timeout;
    610
    611	/* Subordinate device that the queue has been assigned to */
    612	struct net_device	*sb_dev;
    613#ifdef CONFIG_XDP_SOCKETS
    614	struct xsk_buff_pool    *pool;
    615#endif
    616/*
    617 * write-mostly part
    618 */
    619	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
    620	int			xmit_lock_owner;
    621	/*
    622	 * Time (in jiffies) of last Tx
    623	 */
    624	unsigned long		trans_start;
    625
    626	unsigned long		state;
    627
    628#ifdef CONFIG_BQL
    629	struct dql		dql;
    630#endif
    631} ____cacheline_aligned_in_smp;
    632
    633extern int sysctl_fb_tunnels_only_for_init_net;
    634extern int sysctl_devconf_inherit_init_net;
    635
    636/*
    637 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
    638 *                                     == 1 : For initns only
    639 *                                     == 2 : For none.
    640 */
    641static inline bool net_has_fallback_tunnels(const struct net *net)
    642{
    643	return !IS_ENABLED(CONFIG_SYSCTL) ||
    644	       !sysctl_fb_tunnels_only_for_init_net ||
    645	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
    646}
    647
    648static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
    649{
    650#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
    651	return q->numa_node;
    652#else
    653	return NUMA_NO_NODE;
    654#endif
    655}
    656
    657static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
    658{
    659#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
    660	q->numa_node = node;
    661#endif
    662}
    663
    664#ifdef CONFIG_RPS
    665/*
    666 * This structure holds an RPS map which can be of variable length.  The
    667 * map is an array of CPUs.
    668 */
    669struct rps_map {
    670	unsigned int len;
    671	struct rcu_head rcu;
    672	u16 cpus[];
    673};
    674#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
    675
    676/*
    677 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
    678 * tail pointer for that CPU's input queue at the time of last enqueue, and
    679 * a hardware filter index.
    680 */
    681struct rps_dev_flow {
    682	u16 cpu;
    683	u16 filter;
    684	unsigned int last_qtail;
    685};
    686#define RPS_NO_FILTER 0xffff
    687
    688/*
    689 * The rps_dev_flow_table structure contains a table of flow mappings.
    690 */
    691struct rps_dev_flow_table {
    692	unsigned int mask;
    693	struct rcu_head rcu;
    694	struct rps_dev_flow flows[];
    695};
    696#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
    697    ((_num) * sizeof(struct rps_dev_flow)))
    698
    699/*
    700 * The rps_sock_flow_table contains mappings of flows to the last CPU
    701 * on which they were processed by the application (set in recvmsg).
    702 * Each entry is a 32bit value. Upper part is the high-order bits
    703 * of flow hash, lower part is CPU number.
    704 * rps_cpu_mask is used to partition the space, depending on number of
    705 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
    706 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
    707 * meaning we use 32-6=26 bits for the hash.
    708 */
    709struct rps_sock_flow_table {
    710	u32	mask;
    711
    712	u32	ents[] ____cacheline_aligned_in_smp;
    713};
    714#define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
    715
    716#define RPS_NO_CPU 0xffff
    717
    718extern u32 rps_cpu_mask;
    719extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
    720
    721static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
    722					u32 hash)
    723{
    724	if (table && hash) {
    725		unsigned int index = hash & table->mask;
    726		u32 val = hash & ~rps_cpu_mask;
    727
    728		/* We only give a hint, preemption can change CPU under us */
    729		val |= raw_smp_processor_id();
    730
    731		if (table->ents[index] != val)
    732			table->ents[index] = val;
    733	}
    734}
    735
    736#ifdef CONFIG_RFS_ACCEL
    737bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
    738			 u16 filter_id);
    739#endif
    740#endif /* CONFIG_RPS */
    741
    742/* This structure contains an instance of an RX queue. */
    743struct netdev_rx_queue {
    744	struct xdp_rxq_info		xdp_rxq;
    745#ifdef CONFIG_RPS
    746	struct rps_map __rcu		*rps_map;
    747	struct rps_dev_flow_table __rcu	*rps_flow_table;
    748#endif
    749	struct kobject			kobj;
    750	struct net_device		*dev;
    751	netdevice_tracker		dev_tracker;
    752
    753#ifdef CONFIG_XDP_SOCKETS
    754	struct xsk_buff_pool            *pool;
    755#endif
    756} ____cacheline_aligned_in_smp;
    757
    758/*
    759 * RX queue sysfs structures and functions.
    760 */
    761struct rx_queue_attribute {
    762	struct attribute attr;
    763	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
    764	ssize_t (*store)(struct netdev_rx_queue *queue,
    765			 const char *buf, size_t len);
    766};
    767
    768/* XPS map type and offset of the xps map within net_device->xps_maps[]. */
    769enum xps_map_type {
    770	XPS_CPUS = 0,
    771	XPS_RXQS,
    772	XPS_MAPS_MAX,
    773};
    774
    775#ifdef CONFIG_XPS
    776/*
    777 * This structure holds an XPS map which can be of variable length.  The
    778 * map is an array of queues.
    779 */
    780struct xps_map {
    781	unsigned int len;
    782	unsigned int alloc_len;
    783	struct rcu_head rcu;
    784	u16 queues[];
    785};
    786#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
    787#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
    788       - sizeof(struct xps_map)) / sizeof(u16))
    789
    790/*
    791 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
    792 *
    793 * We keep track of the number of cpus/rxqs used when the struct is allocated,
    794 * in nr_ids. This will help not accessing out-of-bound memory.
    795 *
    796 * We keep track of the number of traffic classes used when the struct is
    797 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
    798 * not crossing its upper bound, as the original dev->num_tc can be updated in
    799 * the meantime.
    800 */
    801struct xps_dev_maps {
    802	struct rcu_head rcu;
    803	unsigned int nr_ids;
    804	s16 num_tc;
    805	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
    806};
    807
    808#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
    809	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
    810
    811#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
    812	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
    813
    814#endif /* CONFIG_XPS */
    815
    816#define TC_MAX_QUEUE	16
    817#define TC_BITMASK	15
    818/* HW offloaded queuing disciplines txq count and offset maps */
    819struct netdev_tc_txq {
    820	u16 count;
    821	u16 offset;
    822};
    823
    824#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
    825/*
    826 * This structure is to hold information about the device
    827 * configured to run FCoE protocol stack.
    828 */
    829struct netdev_fcoe_hbainfo {
    830	char	manufacturer[64];
    831	char	serial_number[64];
    832	char	hardware_version[64];
    833	char	driver_version[64];
    834	char	optionrom_version[64];
    835	char	firmware_version[64];
    836	char	model[256];
    837	char	model_description[256];
    838};
    839#endif
    840
    841#define MAX_PHYS_ITEM_ID_LEN 32
    842
    843/* This structure holds a unique identifier to identify some
    844 * physical item (port for example) used by a netdevice.
    845 */
    846struct netdev_phys_item_id {
    847	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
    848	unsigned char id_len;
    849};
    850
    851static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
    852					    struct netdev_phys_item_id *b)
    853{
    854	return a->id_len == b->id_len &&
    855	       memcmp(a->id, b->id, a->id_len) == 0;
    856}
    857
    858typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
    859				       struct sk_buff *skb,
    860				       struct net_device *sb_dev);
    861
    862enum net_device_path_type {
    863	DEV_PATH_ETHERNET = 0,
    864	DEV_PATH_VLAN,
    865	DEV_PATH_BRIDGE,
    866	DEV_PATH_PPPOE,
    867	DEV_PATH_DSA,
    868	DEV_PATH_MTK_WDMA,
    869};
    870
    871struct net_device_path {
    872	enum net_device_path_type	type;
    873	const struct net_device		*dev;
    874	union {
    875		struct {
    876			u16		id;
    877			__be16		proto;
    878			u8		h_dest[ETH_ALEN];
    879		} encap;
    880		struct {
    881			enum {
    882				DEV_PATH_BR_VLAN_KEEP,
    883				DEV_PATH_BR_VLAN_TAG,
    884				DEV_PATH_BR_VLAN_UNTAG,
    885				DEV_PATH_BR_VLAN_UNTAG_HW,
    886			}		vlan_mode;
    887			u16		vlan_id;
    888			__be16		vlan_proto;
    889		} bridge;
    890		struct {
    891			int port;
    892			u16 proto;
    893		} dsa;
    894		struct {
    895			u8 wdma_idx;
    896			u8 queue;
    897			u16 wcid;
    898			u8 bss;
    899		} mtk_wdma;
    900	};
    901};
    902
    903#define NET_DEVICE_PATH_STACK_MAX	5
    904#define NET_DEVICE_PATH_VLAN_MAX	2
    905
    906struct net_device_path_stack {
    907	int			num_paths;
    908	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
    909};
    910
    911struct net_device_path_ctx {
    912	const struct net_device *dev;
    913	u8			daddr[ETH_ALEN];
    914
    915	int			num_vlans;
    916	struct {
    917		u16		id;
    918		__be16		proto;
    919	} vlan[NET_DEVICE_PATH_VLAN_MAX];
    920};
    921
    922enum tc_setup_type {
    923	TC_SETUP_QDISC_MQPRIO,
    924	TC_SETUP_CLSU32,
    925	TC_SETUP_CLSFLOWER,
    926	TC_SETUP_CLSMATCHALL,
    927	TC_SETUP_CLSBPF,
    928	TC_SETUP_BLOCK,
    929	TC_SETUP_QDISC_CBS,
    930	TC_SETUP_QDISC_RED,
    931	TC_SETUP_QDISC_PRIO,
    932	TC_SETUP_QDISC_MQ,
    933	TC_SETUP_QDISC_ETF,
    934	TC_SETUP_ROOT_QDISC,
    935	TC_SETUP_QDISC_GRED,
    936	TC_SETUP_QDISC_TAPRIO,
    937	TC_SETUP_FT,
    938	TC_SETUP_QDISC_ETS,
    939	TC_SETUP_QDISC_TBF,
    940	TC_SETUP_QDISC_FIFO,
    941	TC_SETUP_QDISC_HTB,
    942	TC_SETUP_ACT,
    943};
    944
    945/* These structures hold the attributes of bpf state that are being passed
    946 * to the netdevice through the bpf op.
    947 */
    948enum bpf_netdev_command {
    949	/* Set or clear a bpf program used in the earliest stages of packet
    950	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
    951	 * is responsible for calling bpf_prog_put on any old progs that are
    952	 * stored. In case of error, the callee need not release the new prog
    953	 * reference, but on success it takes ownership and must bpf_prog_put
    954	 * when it is no longer used.
    955	 */
    956	XDP_SETUP_PROG,
    957	XDP_SETUP_PROG_HW,
    958	/* BPF program for offload callbacks, invoked at program load time. */
    959	BPF_OFFLOAD_MAP_ALLOC,
    960	BPF_OFFLOAD_MAP_FREE,
    961	XDP_SETUP_XSK_POOL,
    962};
    963
    964struct bpf_prog_offload_ops;
    965struct netlink_ext_ack;
    966struct xdp_umem;
    967struct xdp_dev_bulk_queue;
    968struct bpf_xdp_link;
    969
    970enum bpf_xdp_mode {
    971	XDP_MODE_SKB = 0,
    972	XDP_MODE_DRV = 1,
    973	XDP_MODE_HW = 2,
    974	__MAX_XDP_MODE
    975};
    976
    977struct bpf_xdp_entity {
    978	struct bpf_prog *prog;
    979	struct bpf_xdp_link *link;
    980};
    981
    982struct netdev_bpf {
    983	enum bpf_netdev_command command;
    984	union {
    985		/* XDP_SETUP_PROG */
    986		struct {
    987			u32 flags;
    988			struct bpf_prog *prog;
    989			struct netlink_ext_ack *extack;
    990		};
    991		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
    992		struct {
    993			struct bpf_offloaded_map *offmap;
    994		};
    995		/* XDP_SETUP_XSK_POOL */
    996		struct {
    997			struct xsk_buff_pool *pool;
    998			u16 queue_id;
    999		} xsk;
   1000	};
   1001};
   1002
   1003/* Flags for ndo_xsk_wakeup. */
   1004#define XDP_WAKEUP_RX (1 << 0)
   1005#define XDP_WAKEUP_TX (1 << 1)
   1006
   1007#ifdef CONFIG_XFRM_OFFLOAD
   1008struct xfrmdev_ops {
   1009	int	(*xdo_dev_state_add) (struct xfrm_state *x);
   1010	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
   1011	void	(*xdo_dev_state_free) (struct xfrm_state *x);
   1012	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
   1013				       struct xfrm_state *x);
   1014	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
   1015};
   1016#endif
   1017
   1018struct dev_ifalias {
   1019	struct rcu_head rcuhead;
   1020	char ifalias[];
   1021};
   1022
   1023struct devlink;
   1024struct tlsdev_ops;
   1025
   1026struct netdev_net_notifier {
   1027	struct list_head list;
   1028	struct notifier_block *nb;
   1029};
   1030
   1031/*
   1032 * This structure defines the management hooks for network devices.
   1033 * The following hooks can be defined; unless noted otherwise, they are
   1034 * optional and can be filled with a null pointer.
   1035 *
   1036 * int (*ndo_init)(struct net_device *dev);
   1037 *     This function is called once when a network device is registered.
   1038 *     The network device can use this for any late stage initialization
   1039 *     or semantic validation. It can fail with an error code which will
   1040 *     be propagated back to register_netdev.
   1041 *
   1042 * void (*ndo_uninit)(struct net_device *dev);
   1043 *     This function is called when device is unregistered or when registration
   1044 *     fails. It is not called if init fails.
   1045 *
   1046 * int (*ndo_open)(struct net_device *dev);
   1047 *     This function is called when a network device transitions to the up
   1048 *     state.
   1049 *
   1050 * int (*ndo_stop)(struct net_device *dev);
   1051 *     This function is called when a network device transitions to the down
   1052 *     state.
   1053 *
   1054 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
   1055 *                               struct net_device *dev);
   1056 *	Called when a packet needs to be transmitted.
   1057 *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
   1058 *	the queue before that can happen; it's for obsolete devices and weird
   1059 *	corner cases, but the stack really does a non-trivial amount
   1060 *	of useless work if you return NETDEV_TX_BUSY.
   1061 *	Required; cannot be NULL.
   1062 *
   1063 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
   1064 *					   struct net_device *dev
   1065 *					   netdev_features_t features);
   1066 *	Called by core transmit path to determine if device is capable of
   1067 *	performing offload operations on a given packet. This is to give
   1068 *	the device an opportunity to implement any restrictions that cannot
   1069 *	be otherwise expressed by feature flags. The check is called with
   1070 *	the set of features that the stack has calculated and it returns
   1071 *	those the driver believes to be appropriate.
   1072 *
   1073 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
   1074 *                         struct net_device *sb_dev);
   1075 *	Called to decide which queue to use when device supports multiple
   1076 *	transmit queues.
   1077 *
   1078 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
   1079 *	This function is called to allow device receiver to make
   1080 *	changes to configuration when multicast or promiscuous is enabled.
   1081 *
   1082 * void (*ndo_set_rx_mode)(struct net_device *dev);
   1083 *	This function is called device changes address list filtering.
   1084 *	If driver handles unicast address filtering, it should set
   1085 *	IFF_UNICAST_FLT in its priv_flags.
   1086 *
   1087 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
   1088 *	This function  is called when the Media Access Control address
   1089 *	needs to be changed. If this interface is not defined, the
   1090 *	MAC address can not be changed.
   1091 *
   1092 * int (*ndo_validate_addr)(struct net_device *dev);
   1093 *	Test if Media Access Control address is valid for the device.
   1094 *
   1095 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
   1096 *	Old-style ioctl entry point. This is used internally by the
   1097 *	appletalk and ieee802154 subsystems but is no longer called by
   1098 *	the device ioctl handler.
   1099 *
   1100 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
   1101 *	Used by the bonding driver for its device specific ioctls:
   1102 *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
   1103 *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
   1104 *
   1105 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
   1106 *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
   1107 *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
   1108 *
   1109 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
   1110 *	Used to set network devices bus interface parameters. This interface
   1111 *	is retained for legacy reasons; new devices should use the bus
   1112 *	interface (PCI) for low level management.
   1113 *
   1114 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
   1115 *	Called when a user wants to change the Maximum Transfer Unit
   1116 *	of a device.
   1117 *
   1118 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
   1119 *	Callback used when the transmitter has not made any progress
   1120 *	for dev->watchdog ticks.
   1121 *
   1122 * void (*ndo_get_stats64)(struct net_device *dev,
   1123 *                         struct rtnl_link_stats64 *storage);
   1124 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
   1125 *	Called when a user wants to get the network device usage
   1126 *	statistics. Drivers must do one of the following:
   1127 *	1. Define @ndo_get_stats64 to fill in a zero-initialised
   1128 *	   rtnl_link_stats64 structure passed by the caller.
   1129 *	2. Define @ndo_get_stats to update a net_device_stats structure
   1130 *	   (which should normally be dev->stats) and return a pointer to
   1131 *	   it. The structure may be changed asynchronously only if each
   1132 *	   field is written atomically.
   1133 *	3. Update dev->stats asynchronously and atomically, and define
   1134 *	   neither operation.
   1135 *
   1136 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
   1137 *	Return true if this device supports offload stats of this attr_id.
   1138 *
   1139 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
   1140 *	void *attr_data)
   1141 *	Get statistics for offload operations by attr_id. Write it into the
   1142 *	attr_data pointer.
   1143 *
   1144 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
   1145 *	If device supports VLAN filtering this function is called when a
   1146 *	VLAN id is registered.
   1147 *
   1148 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
   1149 *	If device supports VLAN filtering this function is called when a
   1150 *	VLAN id is unregistered.
   1151 *
   1152 * void (*ndo_poll_controller)(struct net_device *dev);
   1153 *
   1154 *	SR-IOV management functions.
   1155 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
   1156 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
   1157 *			  u8 qos, __be16 proto);
   1158 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
   1159 *			  int max_tx_rate);
   1160 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
   1161 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
   1162 * int (*ndo_get_vf_config)(struct net_device *dev,
   1163 *			    int vf, struct ifla_vf_info *ivf);
   1164 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
   1165 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
   1166 *			  struct nlattr *port[]);
   1167 *
   1168 *      Enable or disable the VF ability to query its RSS Redirection Table and
   1169 *      Hash Key. This is needed since on some devices VF share this information
   1170 *      with PF and querying it may introduce a theoretical security risk.
   1171 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
   1172 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
   1173 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
   1174 *		       void *type_data);
   1175 *	Called to setup any 'tc' scheduler, classifier or action on @dev.
   1176 *	This is always called from the stack with the rtnl lock held and netif
   1177 *	tx queues stopped. This allows the netdevice to perform queue
   1178 *	management safely.
   1179 *
   1180 *	Fiber Channel over Ethernet (FCoE) offload functions.
   1181 * int (*ndo_fcoe_enable)(struct net_device *dev);
   1182 *	Called when the FCoE protocol stack wants to start using LLD for FCoE
   1183 *	so the underlying device can perform whatever needed configuration or
   1184 *	initialization to support acceleration of FCoE traffic.
   1185 *
   1186 * int (*ndo_fcoe_disable)(struct net_device *dev);
   1187 *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
   1188 *	so the underlying device can perform whatever needed clean-ups to
   1189 *	stop supporting acceleration of FCoE traffic.
   1190 *
   1191 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
   1192 *			     struct scatterlist *sgl, unsigned int sgc);
   1193 *	Called when the FCoE Initiator wants to initialize an I/O that
   1194 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
   1195 *	perform necessary setup and returns 1 to indicate the device is set up
   1196 *	successfully to perform DDP on this I/O, otherwise this returns 0.
   1197 *
   1198 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
   1199 *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
   1200 *	indicated by the FC exchange id 'xid', so the underlying device can
   1201 *	clean up and reuse resources for later DDP requests.
   1202 *
   1203 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
   1204 *			      struct scatterlist *sgl, unsigned int sgc);
   1205 *	Called when the FCoE Target wants to initialize an I/O that
   1206 *	is a possible candidate for Direct Data Placement (DDP). The LLD can
   1207 *	perform necessary setup and returns 1 to indicate the device is set up
   1208 *	successfully to perform DDP on this I/O, otherwise this returns 0.
   1209 *
   1210 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
   1211 *			       struct netdev_fcoe_hbainfo *hbainfo);
   1212 *	Called when the FCoE Protocol stack wants information on the underlying
   1213 *	device. This information is utilized by the FCoE protocol stack to
   1214 *	register attributes with Fiber Channel management service as per the
   1215 *	FC-GS Fabric Device Management Information(FDMI) specification.
   1216 *
   1217 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
   1218 *	Called when the underlying device wants to override default World Wide
   1219 *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
   1220 *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
   1221 *	protocol stack to use.
   1222 *
   1223 *	RFS acceleration.
   1224 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
   1225 *			    u16 rxq_index, u32 flow_id);
   1226 *	Set hardware filter for RFS.  rxq_index is the target queue index;
   1227 *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
   1228 *	Return the filter ID on success, or a negative error code.
   1229 *
   1230 *	Slave management functions (for bridge, bonding, etc).
   1231 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
   1232 *	Called to make another netdev an underling.
   1233 *
   1234 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
   1235 *	Called to release previously enslaved netdev.
   1236 *
   1237 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
   1238 *					    struct sk_buff *skb,
   1239 *					    bool all_slaves);
   1240 *	Get the xmit slave of master device. If all_slaves is true, function
   1241 *	assume all the slaves can transmit.
   1242 *
   1243 *      Feature/offload setting functions.
   1244 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
   1245 *		netdev_features_t features);
   1246 *	Adjusts the requested feature flags according to device-specific
   1247 *	constraints, and returns the resulting flags. Must not modify
   1248 *	the device state.
   1249 *
   1250 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
   1251 *	Called to update device configuration to new features. Passed
   1252 *	feature set might be less than what was returned by ndo_fix_features()).
   1253 *	Must return >0 or -errno if it changed dev->features itself.
   1254 *
   1255 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
   1256 *		      struct net_device *dev,
   1257 *		      const unsigned char *addr, u16 vid, u16 flags,
   1258 *		      struct netlink_ext_ack *extack);
   1259 *	Adds an FDB entry to dev for addr.
   1260 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
   1261 *		      struct net_device *dev,
   1262 *		      const unsigned char *addr, u16 vid)
   1263 *	Deletes the FDB entry from dev coresponding to addr.
   1264 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
   1265 *			   struct net_device *dev,
   1266 *			   u16 vid,
   1267 *			   struct netlink_ext_ack *extack);
   1268 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
   1269 *		       struct net_device *dev, struct net_device *filter_dev,
   1270 *		       int *idx)
   1271 *	Used to add FDB entries to dump requests. Implementers should add
   1272 *	entries to skb and update idx with the number of entries.
   1273 *
   1274 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
   1275 *			     u16 flags, struct netlink_ext_ack *extack)
   1276 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
   1277 *			     struct net_device *dev, u32 filter_mask,
   1278 *			     int nlflags)
   1279 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
   1280 *			     u16 flags);
   1281 *
   1282 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
   1283 *	Called to change device carrier. Soft-devices (like dummy, team, etc)
   1284 *	which do not represent real hardware may define this to allow their
   1285 *	userspace components to manage their virtual carrier state. Devices
   1286 *	that determine carrier state from physical hardware properties (eg
   1287 *	network cables) or protocol-dependent mechanisms (eg
   1288 *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
   1289 *
   1290 * int (*ndo_get_phys_port_id)(struct net_device *dev,
   1291 *			       struct netdev_phys_item_id *ppid);
   1292 *	Called to get ID of physical port of this device. If driver does
   1293 *	not implement this, it is assumed that the hw is not able to have
   1294 *	multiple net devices on single physical port.
   1295 *
   1296 * int (*ndo_get_port_parent_id)(struct net_device *dev,
   1297 *				 struct netdev_phys_item_id *ppid)
   1298 *	Called to get the parent ID of the physical port of this device.
   1299 *
   1300 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
   1301 *				 struct net_device *dev)
   1302 *	Called by upper layer devices to accelerate switching or other
   1303 *	station functionality into hardware. 'pdev is the lowerdev
   1304 *	to use for the offload and 'dev' is the net device that will
   1305 *	back the offload. Returns a pointer to the private structure
   1306 *	the upper layer will maintain.
   1307 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
   1308 *	Called by upper layer device to delete the station created
   1309 *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
   1310 *	the station and priv is the structure returned by the add
   1311 *	operation.
   1312 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
   1313 *			     int queue_index, u32 maxrate);
   1314 *	Called when a user wants to set a max-rate limitation of specific
   1315 *	TX queue.
   1316 * int (*ndo_get_iflink)(const struct net_device *dev);
   1317 *	Called to get the iflink value of this device.
   1318 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
   1319 *	This function is used to get egress tunnel information for given skb.
   1320 *	This is useful for retrieving outer tunnel header parameters while
   1321 *	sampling packet.
   1322 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
   1323 *	This function is used to specify the headroom that the skb must
   1324 *	consider when allocation skb during packet reception. Setting
   1325 *	appropriate rx headroom value allows avoiding skb head copy on
   1326 *	forward. Setting a negative value resets the rx headroom to the
   1327 *	default value.
   1328 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
   1329 *	This function is used to set or query state related to XDP on the
   1330 *	netdevice and manage BPF offload. See definition of
   1331 *	enum bpf_netdev_command for details.
   1332 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
   1333 *			u32 flags);
   1334 *	This function is used to submit @n XDP packets for transmit on a
   1335 *	netdevice. Returns number of frames successfully transmitted, frames
   1336 *	that got dropped are freed/returned via xdp_return_frame().
   1337 *	Returns negative number, means general error invoking ndo, meaning
   1338 *	no frames were xmit'ed and core-caller will free all frames.
   1339 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
   1340 *					        struct xdp_buff *xdp);
   1341 *      Get the xmit slave of master device based on the xdp_buff.
   1342 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
   1343 *      This function is used to wake up the softirq, ksoftirqd or kthread
   1344 *	responsible for sending and/or receiving packets on a specific
   1345 *	queue id bound to an AF_XDP socket. The flags field specifies if
   1346 *	only RX, only Tx, or both should be woken up using the flags
   1347 *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
   1348 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
   1349 *	Get devlink port instance associated with a given netdev.
   1350 *	Called with a reference on the netdevice and devlink locks only,
   1351 *	rtnl_lock is not held.
   1352 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
   1353 *			 int cmd);
   1354 *	Add, change, delete or get information on an IPv4 tunnel.
   1355 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
   1356 *	If a device is paired with a peer device, return the peer instance.
   1357 *	The caller must be under RCU read context.
   1358 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
   1359 *     Get the forwarding path to reach the real device from the HW destination address
   1360 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
   1361 *			     const struct skb_shared_hwtstamps *hwtstamps,
   1362 *			     bool cycles);
   1363 *	Get hardware timestamp based on normal/adjustable time or free running
   1364 *	cycle counter. This function is required if physical clock supports a
   1365 *	free running cycle counter.
   1366 */
   1367struct net_device_ops {
   1368	int			(*ndo_init)(struct net_device *dev);
   1369	void			(*ndo_uninit)(struct net_device *dev);
   1370	int			(*ndo_open)(struct net_device *dev);
   1371	int			(*ndo_stop)(struct net_device *dev);
   1372	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
   1373						  struct net_device *dev);
   1374	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
   1375						      struct net_device *dev,
   1376						      netdev_features_t features);
   1377	u16			(*ndo_select_queue)(struct net_device *dev,
   1378						    struct sk_buff *skb,
   1379						    struct net_device *sb_dev);
   1380	void			(*ndo_change_rx_flags)(struct net_device *dev,
   1381						       int flags);
   1382	void			(*ndo_set_rx_mode)(struct net_device *dev);
   1383	int			(*ndo_set_mac_address)(struct net_device *dev,
   1384						       void *addr);
   1385	int			(*ndo_validate_addr)(struct net_device *dev);
   1386	int			(*ndo_do_ioctl)(struct net_device *dev,
   1387					        struct ifreq *ifr, int cmd);
   1388	int			(*ndo_eth_ioctl)(struct net_device *dev,
   1389						 struct ifreq *ifr, int cmd);
   1390	int			(*ndo_siocbond)(struct net_device *dev,
   1391						struct ifreq *ifr, int cmd);
   1392	int			(*ndo_siocwandev)(struct net_device *dev,
   1393						  struct if_settings *ifs);
   1394	int			(*ndo_siocdevprivate)(struct net_device *dev,
   1395						      struct ifreq *ifr,
   1396						      void __user *data, int cmd);
   1397	int			(*ndo_set_config)(struct net_device *dev,
   1398					          struct ifmap *map);
   1399	int			(*ndo_change_mtu)(struct net_device *dev,
   1400						  int new_mtu);
   1401	int			(*ndo_neigh_setup)(struct net_device *dev,
   1402						   struct neigh_parms *);
   1403	void			(*ndo_tx_timeout) (struct net_device *dev,
   1404						   unsigned int txqueue);
   1405
   1406	void			(*ndo_get_stats64)(struct net_device *dev,
   1407						   struct rtnl_link_stats64 *storage);
   1408	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
   1409	int			(*ndo_get_offload_stats)(int attr_id,
   1410							 const struct net_device *dev,
   1411							 void *attr_data);
   1412	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
   1413
   1414	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
   1415						       __be16 proto, u16 vid);
   1416	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
   1417						        __be16 proto, u16 vid);
   1418#ifdef CONFIG_NET_POLL_CONTROLLER
   1419	void                    (*ndo_poll_controller)(struct net_device *dev);
   1420	int			(*ndo_netpoll_setup)(struct net_device *dev,
   1421						     struct netpoll_info *info);
   1422	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
   1423#endif
   1424	int			(*ndo_set_vf_mac)(struct net_device *dev,
   1425						  int queue, u8 *mac);
   1426	int			(*ndo_set_vf_vlan)(struct net_device *dev,
   1427						   int queue, u16 vlan,
   1428						   u8 qos, __be16 proto);
   1429	int			(*ndo_set_vf_rate)(struct net_device *dev,
   1430						   int vf, int min_tx_rate,
   1431						   int max_tx_rate);
   1432	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
   1433						       int vf, bool setting);
   1434	int			(*ndo_set_vf_trust)(struct net_device *dev,
   1435						    int vf, bool setting);
   1436	int			(*ndo_get_vf_config)(struct net_device *dev,
   1437						     int vf,
   1438						     struct ifla_vf_info *ivf);
   1439	int			(*ndo_set_vf_link_state)(struct net_device *dev,
   1440							 int vf, int link_state);
   1441	int			(*ndo_get_vf_stats)(struct net_device *dev,
   1442						    int vf,
   1443						    struct ifla_vf_stats
   1444						    *vf_stats);
   1445	int			(*ndo_set_vf_port)(struct net_device *dev,
   1446						   int vf,
   1447						   struct nlattr *port[]);
   1448	int			(*ndo_get_vf_port)(struct net_device *dev,
   1449						   int vf, struct sk_buff *skb);
   1450	int			(*ndo_get_vf_guid)(struct net_device *dev,
   1451						   int vf,
   1452						   struct ifla_vf_guid *node_guid,
   1453						   struct ifla_vf_guid *port_guid);
   1454	int			(*ndo_set_vf_guid)(struct net_device *dev,
   1455						   int vf, u64 guid,
   1456						   int guid_type);
   1457	int			(*ndo_set_vf_rss_query_en)(
   1458						   struct net_device *dev,
   1459						   int vf, bool setting);
   1460	int			(*ndo_setup_tc)(struct net_device *dev,
   1461						enum tc_setup_type type,
   1462						void *type_data);
   1463#if IS_ENABLED(CONFIG_FCOE)
   1464	int			(*ndo_fcoe_enable)(struct net_device *dev);
   1465	int			(*ndo_fcoe_disable)(struct net_device *dev);
   1466	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
   1467						      u16 xid,
   1468						      struct scatterlist *sgl,
   1469						      unsigned int sgc);
   1470	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
   1471						     u16 xid);
   1472	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
   1473						       u16 xid,
   1474						       struct scatterlist *sgl,
   1475						       unsigned int sgc);
   1476	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
   1477							struct netdev_fcoe_hbainfo *hbainfo);
   1478#endif
   1479
   1480#if IS_ENABLED(CONFIG_LIBFCOE)
   1481#define NETDEV_FCOE_WWNN 0
   1482#define NETDEV_FCOE_WWPN 1
   1483	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
   1484						    u64 *wwn, int type);
   1485#endif
   1486
   1487#ifdef CONFIG_RFS_ACCEL
   1488	int			(*ndo_rx_flow_steer)(struct net_device *dev,
   1489						     const struct sk_buff *skb,
   1490						     u16 rxq_index,
   1491						     u32 flow_id);
   1492#endif
   1493	int			(*ndo_add_slave)(struct net_device *dev,
   1494						 struct net_device *slave_dev,
   1495						 struct netlink_ext_ack *extack);
   1496	int			(*ndo_del_slave)(struct net_device *dev,
   1497						 struct net_device *slave_dev);
   1498	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
   1499						      struct sk_buff *skb,
   1500						      bool all_slaves);
   1501	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
   1502							struct sock *sk);
   1503	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
   1504						    netdev_features_t features);
   1505	int			(*ndo_set_features)(struct net_device *dev,
   1506						    netdev_features_t features);
   1507	int			(*ndo_neigh_construct)(struct net_device *dev,
   1508						       struct neighbour *n);
   1509	void			(*ndo_neigh_destroy)(struct net_device *dev,
   1510						     struct neighbour *n);
   1511
   1512	int			(*ndo_fdb_add)(struct ndmsg *ndm,
   1513					       struct nlattr *tb[],
   1514					       struct net_device *dev,
   1515					       const unsigned char *addr,
   1516					       u16 vid,
   1517					       u16 flags,
   1518					       struct netlink_ext_ack *extack);
   1519	int			(*ndo_fdb_del)(struct ndmsg *ndm,
   1520					       struct nlattr *tb[],
   1521					       struct net_device *dev,
   1522					       const unsigned char *addr,
   1523					       u16 vid, struct netlink_ext_ack *extack);
   1524	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
   1525						    struct nlattr *tb[],
   1526						    struct net_device *dev,
   1527						    u16 vid,
   1528						    struct netlink_ext_ack *extack);
   1529	int			(*ndo_fdb_dump)(struct sk_buff *skb,
   1530						struct netlink_callback *cb,
   1531						struct net_device *dev,
   1532						struct net_device *filter_dev,
   1533						int *idx);
   1534	int			(*ndo_fdb_get)(struct sk_buff *skb,
   1535					       struct nlattr *tb[],
   1536					       struct net_device *dev,
   1537					       const unsigned char *addr,
   1538					       u16 vid, u32 portid, u32 seq,
   1539					       struct netlink_ext_ack *extack);
   1540	int			(*ndo_bridge_setlink)(struct net_device *dev,
   1541						      struct nlmsghdr *nlh,
   1542						      u16 flags,
   1543						      struct netlink_ext_ack *extack);
   1544	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
   1545						      u32 pid, u32 seq,
   1546						      struct net_device *dev,
   1547						      u32 filter_mask,
   1548						      int nlflags);
   1549	int			(*ndo_bridge_dellink)(struct net_device *dev,
   1550						      struct nlmsghdr *nlh,
   1551						      u16 flags);
   1552	int			(*ndo_change_carrier)(struct net_device *dev,
   1553						      bool new_carrier);
   1554	int			(*ndo_get_phys_port_id)(struct net_device *dev,
   1555							struct netdev_phys_item_id *ppid);
   1556	int			(*ndo_get_port_parent_id)(struct net_device *dev,
   1557							  struct netdev_phys_item_id *ppid);
   1558	int			(*ndo_get_phys_port_name)(struct net_device *dev,
   1559							  char *name, size_t len);
   1560	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
   1561							struct net_device *dev);
   1562	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
   1563							void *priv);
   1564
   1565	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
   1566						      int queue_index,
   1567						      u32 maxrate);
   1568	int			(*ndo_get_iflink)(const struct net_device *dev);
   1569	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
   1570						       struct sk_buff *skb);
   1571	void			(*ndo_set_rx_headroom)(struct net_device *dev,
   1572						       int needed_headroom);
   1573	int			(*ndo_bpf)(struct net_device *dev,
   1574					   struct netdev_bpf *bpf);
   1575	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
   1576						struct xdp_frame **xdp,
   1577						u32 flags);
   1578	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
   1579							  struct xdp_buff *xdp);
   1580	int			(*ndo_xsk_wakeup)(struct net_device *dev,
   1581						  u32 queue_id, u32 flags);
   1582	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
   1583	int			(*ndo_tunnel_ctl)(struct net_device *dev,
   1584						  struct ip_tunnel_parm *p, int cmd);
   1585	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
   1586	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
   1587                                                         struct net_device_path *path);
   1588	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
   1589						  const struct skb_shared_hwtstamps *hwtstamps,
   1590						  bool cycles);
   1591};
   1592
   1593/**
   1594 * enum netdev_priv_flags - &struct net_device priv_flags
   1595 *
   1596 * These are the &struct net_device, they are only set internally
   1597 * by drivers and used in the kernel. These flags are invisible to
   1598 * userspace; this means that the order of these flags can change
   1599 * during any kernel release.
   1600 *
   1601 * You should have a pretty good reason to be extending these flags.
   1602 *
   1603 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
   1604 * @IFF_EBRIDGE: Ethernet bridging device
   1605 * @IFF_BONDING: bonding master or slave
   1606 * @IFF_ISATAP: ISATAP interface (RFC4214)
   1607 * @IFF_WAN_HDLC: WAN HDLC device
   1608 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
   1609 *	release skb->dst
   1610 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
   1611 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
   1612 * @IFF_MACVLAN_PORT: device used as macvlan port
   1613 * @IFF_BRIDGE_PORT: device used as bridge port
   1614 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
   1615 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
   1616 * @IFF_UNICAST_FLT: Supports unicast filtering
   1617 * @IFF_TEAM_PORT: device used as team port
   1618 * @IFF_SUPP_NOFCS: device supports sending custom FCS
   1619 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
   1620 *	change when it's running
   1621 * @IFF_MACVLAN: Macvlan device
   1622 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
   1623 *	underlying stacked devices
   1624 * @IFF_L3MDEV_MASTER: device is an L3 master device
   1625 * @IFF_NO_QUEUE: device can run without qdisc attached
   1626 * @IFF_OPENVSWITCH: device is a Open vSwitch master
   1627 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
   1628 * @IFF_TEAM: device is a team device
   1629 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
   1630 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
   1631 *	entity (i.e. the master device for bridged veth)
   1632 * @IFF_MACSEC: device is a MACsec device
   1633 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
   1634 * @IFF_FAILOVER: device is a failover master device
   1635 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
   1636 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
   1637 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
   1638 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
   1639 *	skb_headlen(skb) == 0 (data starts from frag0)
   1640 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
   1641 */
   1642enum netdev_priv_flags {
   1643	IFF_802_1Q_VLAN			= 1<<0,
   1644	IFF_EBRIDGE			= 1<<1,
   1645	IFF_BONDING			= 1<<2,
   1646	IFF_ISATAP			= 1<<3,
   1647	IFF_WAN_HDLC			= 1<<4,
   1648	IFF_XMIT_DST_RELEASE		= 1<<5,
   1649	IFF_DONT_BRIDGE			= 1<<6,
   1650	IFF_DISABLE_NETPOLL		= 1<<7,
   1651	IFF_MACVLAN_PORT		= 1<<8,
   1652	IFF_BRIDGE_PORT			= 1<<9,
   1653	IFF_OVS_DATAPATH		= 1<<10,
   1654	IFF_TX_SKB_SHARING		= 1<<11,
   1655	IFF_UNICAST_FLT			= 1<<12,
   1656	IFF_TEAM_PORT			= 1<<13,
   1657	IFF_SUPP_NOFCS			= 1<<14,
   1658	IFF_LIVE_ADDR_CHANGE		= 1<<15,
   1659	IFF_MACVLAN			= 1<<16,
   1660	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
   1661	IFF_L3MDEV_MASTER		= 1<<18,
   1662	IFF_NO_QUEUE			= 1<<19,
   1663	IFF_OPENVSWITCH			= 1<<20,
   1664	IFF_L3MDEV_SLAVE		= 1<<21,
   1665	IFF_TEAM			= 1<<22,
   1666	IFF_RXFH_CONFIGURED		= 1<<23,
   1667	IFF_PHONY_HEADROOM		= 1<<24,
   1668	IFF_MACSEC			= 1<<25,
   1669	IFF_NO_RX_HANDLER		= 1<<26,
   1670	IFF_FAILOVER			= 1<<27,
   1671	IFF_FAILOVER_SLAVE		= 1<<28,
   1672	IFF_L3MDEV_RX_HANDLER		= 1<<29,
   1673	IFF_LIVE_RENAME_OK		= 1<<30,
   1674	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
   1675	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
   1676};
   1677
   1678#define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
   1679#define IFF_EBRIDGE			IFF_EBRIDGE
   1680#define IFF_BONDING			IFF_BONDING
   1681#define IFF_ISATAP			IFF_ISATAP
   1682#define IFF_WAN_HDLC			IFF_WAN_HDLC
   1683#define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
   1684#define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
   1685#define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
   1686#define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
   1687#define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
   1688#define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
   1689#define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
   1690#define IFF_UNICAST_FLT			IFF_UNICAST_FLT
   1691#define IFF_TEAM_PORT			IFF_TEAM_PORT
   1692#define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
   1693#define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
   1694#define IFF_MACVLAN			IFF_MACVLAN
   1695#define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
   1696#define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
   1697#define IFF_NO_QUEUE			IFF_NO_QUEUE
   1698#define IFF_OPENVSWITCH			IFF_OPENVSWITCH
   1699#define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
   1700#define IFF_TEAM			IFF_TEAM
   1701#define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
   1702#define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
   1703#define IFF_MACSEC			IFF_MACSEC
   1704#define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
   1705#define IFF_FAILOVER			IFF_FAILOVER
   1706#define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
   1707#define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
   1708#define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
   1709#define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
   1710
   1711/* Specifies the type of the struct net_device::ml_priv pointer */
   1712enum netdev_ml_priv_type {
   1713	ML_PRIV_NONE,
   1714	ML_PRIV_CAN,
   1715};
   1716
   1717/**
   1718 *	struct net_device - The DEVICE structure.
   1719 *
   1720 *	Actually, this whole structure is a big mistake.  It mixes I/O
   1721 *	data with strictly "high-level" data, and it has to know about
   1722 *	almost every data structure used in the INET module.
   1723 *
   1724 *	@name:	This is the first field of the "visible" part of this structure
   1725 *		(i.e. as seen by users in the "Space.c" file).  It is the name
   1726 *		of the interface.
   1727 *
   1728 *	@name_node:	Name hashlist node
   1729 *	@ifalias:	SNMP alias
   1730 *	@mem_end:	Shared memory end
   1731 *	@mem_start:	Shared memory start
   1732 *	@base_addr:	Device I/O address
   1733 *	@irq:		Device IRQ number
   1734 *
   1735 *	@state:		Generic network queuing layer state, see netdev_state_t
   1736 *	@dev_list:	The global list of network devices
   1737 *	@napi_list:	List entry used for polling NAPI devices
   1738 *	@unreg_list:	List entry  when we are unregistering the
   1739 *			device; see the function unregister_netdev
   1740 *	@close_list:	List entry used when we are closing the device
   1741 *	@ptype_all:     Device-specific packet handlers for all protocols
   1742 *	@ptype_specific: Device-specific, protocol-specific packet handlers
   1743 *
   1744 *	@adj_list:	Directly linked devices, like slaves for bonding
   1745 *	@features:	Currently active device features
   1746 *	@hw_features:	User-changeable features
   1747 *
   1748 *	@wanted_features:	User-requested features
   1749 *	@vlan_features:		Mask of features inheritable by VLAN devices
   1750 *
   1751 *	@hw_enc_features:	Mask of features inherited by encapsulating devices
   1752 *				This field indicates what encapsulation
   1753 *				offloads the hardware is capable of doing,
   1754 *				and drivers will need to set them appropriately.
   1755 *
   1756 *	@mpls_features:	Mask of features inheritable by MPLS
   1757 *	@gso_partial_features: value(s) from NETIF_F_GSO\*
   1758 *
   1759 *	@ifindex:	interface index
   1760 *	@group:		The group the device belongs to
   1761 *
   1762 *	@stats:		Statistics struct, which was left as a legacy, use
   1763 *			rtnl_link_stats64 instead
   1764 *
   1765 *	@core_stats:	core networking counters,
   1766 *			do not use this in drivers
   1767 *	@carrier_up_count:	Number of times the carrier has been up
   1768 *	@carrier_down_count:	Number of times the carrier has been down
   1769 *
   1770 *	@wireless_handlers:	List of functions to handle Wireless Extensions,
   1771 *				instead of ioctl,
   1772 *				see <net/iw_handler.h> for details.
   1773 *	@wireless_data:	Instance data managed by the core of wireless extensions
   1774 *
   1775 *	@netdev_ops:	Includes several pointers to callbacks,
   1776 *			if one wants to override the ndo_*() functions
   1777 *	@ethtool_ops:	Management operations
   1778 *	@l3mdev_ops:	Layer 3 master device operations
   1779 *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
   1780 *			discovery handling. Necessary for e.g. 6LoWPAN.
   1781 *	@xfrmdev_ops:	Transformation offload operations
   1782 *	@tlsdev_ops:	Transport Layer Security offload operations
   1783 *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
   1784 *			of Layer 2 headers.
   1785 *
   1786 *	@flags:		Interface flags (a la BSD)
   1787 *	@priv_flags:	Like 'flags' but invisible to userspace,
   1788 *			see if.h for the definitions
   1789 *	@gflags:	Global flags ( kept as legacy )
   1790 *	@padded:	How much padding added by alloc_netdev()
   1791 *	@operstate:	RFC2863 operstate
   1792 *	@link_mode:	Mapping policy to operstate
   1793 *	@if_port:	Selectable AUI, TP, ...
   1794 *	@dma:		DMA channel
   1795 *	@mtu:		Interface MTU value
   1796 *	@min_mtu:	Interface Minimum MTU value
   1797 *	@max_mtu:	Interface Maximum MTU value
   1798 *	@type:		Interface hardware type
   1799 *	@hard_header_len: Maximum hardware header length.
   1800 *	@min_header_len:  Minimum hardware header length
   1801 *
   1802 *	@needed_headroom: Extra headroom the hardware may need, but not in all
   1803 *			  cases can this be guaranteed
   1804 *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
   1805 *			  cases can this be guaranteed. Some cases also use
   1806 *			  LL_MAX_HEADER instead to allocate the skb
   1807 *
   1808 *	interface address info:
   1809 *
   1810 * 	@perm_addr:		Permanent hw address
   1811 * 	@addr_assign_type:	Hw address assignment type
   1812 * 	@addr_len:		Hardware address length
   1813 *	@upper_level:		Maximum depth level of upper devices.
   1814 *	@lower_level:		Maximum depth level of lower devices.
   1815 *	@neigh_priv_len:	Used in neigh_alloc()
   1816 * 	@dev_id:		Used to differentiate devices that share
   1817 * 				the same link layer address
   1818 * 	@dev_port:		Used to differentiate devices that share
   1819 * 				the same function
   1820 *	@addr_list_lock:	XXX: need comments on this one
   1821 *	@name_assign_type:	network interface name assignment type
   1822 *	@uc_promisc:		Counter that indicates promiscuous mode
   1823 *				has been enabled due to the need to listen to
   1824 *				additional unicast addresses in a device that
   1825 *				does not implement ndo_set_rx_mode()
   1826 *	@uc:			unicast mac addresses
   1827 *	@mc:			multicast mac addresses
   1828 *	@dev_addrs:		list of device hw addresses
   1829 *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
   1830 *	@promiscuity:		Number of times the NIC is told to work in
   1831 *				promiscuous mode; if it becomes 0 the NIC will
   1832 *				exit promiscuous mode
   1833 *	@allmulti:		Counter, enables or disables allmulticast mode
   1834 *
   1835 *	@vlan_info:	VLAN info
   1836 *	@dsa_ptr:	dsa specific data
   1837 *	@tipc_ptr:	TIPC specific data
   1838 *	@atalk_ptr:	AppleTalk link
   1839 *	@ip_ptr:	IPv4 specific data
   1840 *	@dn_ptr:	DECnet specific data
   1841 *	@ip6_ptr:	IPv6 specific data
   1842 *	@ax25_ptr:	AX.25 specific data
   1843 *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
   1844 *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
   1845 *			 device struct
   1846 *	@mpls_ptr:	mpls_dev struct pointer
   1847 *	@mctp_ptr:	MCTP specific data
   1848 *
   1849 *	@dev_addr:	Hw address (before bcast,
   1850 *			because most packets are unicast)
   1851 *
   1852 *	@_rx:			Array of RX queues
   1853 *	@num_rx_queues:		Number of RX queues
   1854 *				allocated at register_netdev() time
   1855 *	@real_num_rx_queues: 	Number of RX queues currently active in device
   1856 *	@xdp_prog:		XDP sockets filter program pointer
   1857 *	@gro_flush_timeout:	timeout for GRO layer in NAPI
   1858 *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
   1859 *				allow to avoid NIC hard IRQ, on busy queues.
   1860 *
   1861 *	@rx_handler:		handler for received packets
   1862 *	@rx_handler_data: 	XXX: need comments on this one
   1863 *	@miniq_ingress:		ingress/clsact qdisc specific data for
   1864 *				ingress processing
   1865 *	@ingress_queue:		XXX: need comments on this one
   1866 *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
   1867 *	@broadcast:		hw bcast address
   1868 *
   1869 *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
   1870 *			indexed by RX queue number. Assigned by driver.
   1871 *			This must only be set if the ndo_rx_flow_steer
   1872 *			operation is defined
   1873 *	@index_hlist:		Device index hash chain
   1874 *
   1875 *	@_tx:			Array of TX queues
   1876 *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
   1877 *	@real_num_tx_queues: 	Number of TX queues currently active in device
   1878 *	@qdisc:			Root qdisc from userspace point of view
   1879 *	@tx_queue_len:		Max frames per queue allowed
   1880 *	@tx_global_lock: 	XXX: need comments on this one
   1881 *	@xdp_bulkq:		XDP device bulk queue
   1882 *	@xps_maps:		all CPUs/RXQs maps for XPS device
   1883 *
   1884 *	@xps_maps:	XXX: need comments on this one
   1885 *	@miniq_egress:		clsact qdisc specific data for
   1886 *				egress processing
   1887 *	@nf_hooks_egress:	netfilter hooks executed for egress packets
   1888 *	@qdisc_hash:		qdisc hash table
   1889 *	@watchdog_timeo:	Represents the timeout that is used by
   1890 *				the watchdog (see dev_watchdog())
   1891 *	@watchdog_timer:	List of timers
   1892 *
   1893 *	@proto_down_reason:	reason a netdev interface is held down
   1894 *	@pcpu_refcnt:		Number of references to this device
   1895 *	@dev_refcnt:		Number of references to this device
   1896 *	@refcnt_tracker:	Tracker directory for tracked references to this device
   1897 *	@todo_list:		Delayed register/unregister
   1898 *	@link_watch_list:	XXX: need comments on this one
   1899 *
   1900 *	@reg_state:		Register/unregister state machine
   1901 *	@dismantle:		Device is going to be freed
   1902 *	@rtnl_link_state:	This enum represents the phases of creating
   1903 *				a new link
   1904 *
   1905 *	@needs_free_netdev:	Should unregister perform free_netdev?
   1906 *	@priv_destructor:	Called from unregister
   1907 *	@npinfo:		XXX: need comments on this one
   1908 * 	@nd_net:		Network namespace this network device is inside
   1909 *
   1910 * 	@ml_priv:	Mid-layer private
   1911 *	@ml_priv_type:  Mid-layer private type
   1912 * 	@lstats:	Loopback statistics
   1913 * 	@tstats:	Tunnel statistics
   1914 * 	@dstats:	Dummy statistics
   1915 * 	@vstats:	Virtual ethernet statistics
   1916 *
   1917 *	@garp_port:	GARP
   1918 *	@mrp_port:	MRP
   1919 *
   1920 *	@dm_private:	Drop monitor private
   1921 *
   1922 *	@dev:		Class/net/name entry
   1923 *	@sysfs_groups:	Space for optional device, statistics and wireless
   1924 *			sysfs groups
   1925 *
   1926 *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
   1927 *	@rtnl_link_ops:	Rtnl_link_ops
   1928 *
   1929 *	@gso_max_size:	Maximum size of generic segmentation offload
   1930 *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
   1931 *	@gso_max_segs:	Maximum number of segments that can be passed to the
   1932 *			NIC for GSO
   1933 *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
   1934 *
   1935 *	@dcbnl_ops:	Data Center Bridging netlink ops
   1936 *	@num_tc:	Number of traffic classes in the net device
   1937 *	@tc_to_txq:	XXX: need comments on this one
   1938 *	@prio_tc_map:	XXX: need comments on this one
   1939 *
   1940 *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
   1941 *
   1942 *	@priomap:	XXX: need comments on this one
   1943 *	@phydev:	Physical device may attach itself
   1944 *			for hardware timestamping
   1945 *	@sfp_bus:	attached &struct sfp_bus structure.
   1946 *
   1947 *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
   1948 *
   1949 *	@proto_down:	protocol port state information can be sent to the
   1950 *			switch driver and used to set the phys state of the
   1951 *			switch port.
   1952 *
   1953 *	@wol_enabled:	Wake-on-LAN is enabled
   1954 *
   1955 *	@threaded:	napi threaded mode is enabled
   1956 *
   1957 *	@net_notifier_list:	List of per-net netdev notifier block
   1958 *				that follow this device when it is moved
   1959 *				to another network namespace.
   1960 *
   1961 *	@macsec_ops:    MACsec offloading ops
   1962 *
   1963 *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
   1964 *				offload capabilities of the device
   1965 *	@udp_tunnel_nic:	UDP tunnel offload state
   1966 *	@xdp_state:		stores info on attached XDP BPF programs
   1967 *
   1968 *	@nested_level:	Used as a parameter of spin_lock_nested() of
   1969 *			dev->addr_list_lock.
   1970 *	@unlink_list:	As netif_addr_lock() can be called recursively,
   1971 *			keep a list of interfaces to be deleted.
   1972 *	@gro_max_size:	Maximum size of aggregated packet in generic
   1973 *			receive offload (GRO)
   1974 *
   1975 *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
   1976 *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
   1977 *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
   1978 *	@dev_registered_tracker:	tracker for reference held while
   1979 *					registered
   1980 *	@offload_xstats_l3:	L3 HW stats for this netdevice.
   1981 *
   1982 *	FIXME: cleanup struct net_device such that network protocol info
   1983 *	moves out.
   1984 */
   1985
   1986struct net_device {
   1987	char			name[IFNAMSIZ];
   1988	struct netdev_name_node	*name_node;
   1989	struct dev_ifalias	__rcu *ifalias;
   1990	/*
   1991	 *	I/O specific fields
   1992	 *	FIXME: Merge these and struct ifmap into one
   1993	 */
   1994	unsigned long		mem_end;
   1995	unsigned long		mem_start;
   1996	unsigned long		base_addr;
   1997
   1998	/*
   1999	 *	Some hardware also needs these fields (state,dev_list,
   2000	 *	napi_list,unreg_list,close_list) but they are not
   2001	 *	part of the usual set specified in Space.c.
   2002	 */
   2003
   2004	unsigned long		state;
   2005
   2006	struct list_head	dev_list;
   2007	struct list_head	napi_list;
   2008	struct list_head	unreg_list;
   2009	struct list_head	close_list;
   2010	struct list_head	ptype_all;
   2011	struct list_head	ptype_specific;
   2012
   2013	struct {
   2014		struct list_head upper;
   2015		struct list_head lower;
   2016	} adj_list;
   2017
   2018	/* Read-mostly cache-line for fast-path access */
   2019	unsigned int		flags;
   2020	unsigned long long	priv_flags;
   2021	const struct net_device_ops *netdev_ops;
   2022	int			ifindex;
   2023	unsigned short		gflags;
   2024	unsigned short		hard_header_len;
   2025
   2026	/* Note : dev->mtu is often read without holding a lock.
   2027	 * Writers usually hold RTNL.
   2028	 * It is recommended to use READ_ONCE() to annotate the reads,
   2029	 * and to use WRITE_ONCE() to annotate the writes.
   2030	 */
   2031	unsigned int		mtu;
   2032	unsigned short		needed_headroom;
   2033	unsigned short		needed_tailroom;
   2034
   2035	netdev_features_t	features;
   2036	netdev_features_t	hw_features;
   2037	netdev_features_t	wanted_features;
   2038	netdev_features_t	vlan_features;
   2039	netdev_features_t	hw_enc_features;
   2040	netdev_features_t	mpls_features;
   2041	netdev_features_t	gso_partial_features;
   2042
   2043	unsigned int		min_mtu;
   2044	unsigned int		max_mtu;
   2045	unsigned short		type;
   2046	unsigned char		min_header_len;
   2047	unsigned char		name_assign_type;
   2048
   2049	int			group;
   2050
   2051	struct net_device_stats	stats; /* not used by modern drivers */
   2052
   2053	struct net_device_core_stats __percpu *core_stats;
   2054
   2055	/* Stats to monitor link on/off, flapping */
   2056	atomic_t		carrier_up_count;
   2057	atomic_t		carrier_down_count;
   2058
   2059#ifdef CONFIG_WIRELESS_EXT
   2060	const struct iw_handler_def *wireless_handlers;
   2061	struct iw_public_data	*wireless_data;
   2062#endif
   2063	const struct ethtool_ops *ethtool_ops;
   2064#ifdef CONFIG_NET_L3_MASTER_DEV
   2065	const struct l3mdev_ops	*l3mdev_ops;
   2066#endif
   2067#if IS_ENABLED(CONFIG_IPV6)
   2068	const struct ndisc_ops *ndisc_ops;
   2069#endif
   2070
   2071#ifdef CONFIG_XFRM_OFFLOAD
   2072	const struct xfrmdev_ops *xfrmdev_ops;
   2073#endif
   2074
   2075#if IS_ENABLED(CONFIG_TLS_DEVICE)
   2076	const struct tlsdev_ops *tlsdev_ops;
   2077#endif
   2078
   2079	const struct header_ops *header_ops;
   2080
   2081	unsigned char		operstate;
   2082	unsigned char		link_mode;
   2083
   2084	unsigned char		if_port;
   2085	unsigned char		dma;
   2086
   2087	/* Interface address info. */
   2088	unsigned char		perm_addr[MAX_ADDR_LEN];
   2089	unsigned char		addr_assign_type;
   2090	unsigned char		addr_len;
   2091	unsigned char		upper_level;
   2092	unsigned char		lower_level;
   2093
   2094	unsigned short		neigh_priv_len;
   2095	unsigned short          dev_id;
   2096	unsigned short          dev_port;
   2097	unsigned short		padded;
   2098
   2099	spinlock_t		addr_list_lock;
   2100	int			irq;
   2101
   2102	struct netdev_hw_addr_list	uc;
   2103	struct netdev_hw_addr_list	mc;
   2104	struct netdev_hw_addr_list	dev_addrs;
   2105
   2106#ifdef CONFIG_SYSFS
   2107	struct kset		*queues_kset;
   2108#endif
   2109#ifdef CONFIG_LOCKDEP
   2110	struct list_head	unlink_list;
   2111#endif
   2112	unsigned int		promiscuity;
   2113	unsigned int		allmulti;
   2114	bool			uc_promisc;
   2115#ifdef CONFIG_LOCKDEP
   2116	unsigned char		nested_level;
   2117#endif
   2118
   2119
   2120	/* Protocol-specific pointers */
   2121
   2122	struct in_device __rcu	*ip_ptr;
   2123	struct inet6_dev __rcu	*ip6_ptr;
   2124#if IS_ENABLED(CONFIG_VLAN_8021Q)
   2125	struct vlan_info __rcu	*vlan_info;
   2126#endif
   2127#if IS_ENABLED(CONFIG_NET_DSA)
   2128	struct dsa_port		*dsa_ptr;
   2129#endif
   2130#if IS_ENABLED(CONFIG_TIPC)
   2131	struct tipc_bearer __rcu *tipc_ptr;
   2132#endif
   2133#if IS_ENABLED(CONFIG_ATALK)
   2134	void 			*atalk_ptr;
   2135#endif
   2136#if IS_ENABLED(CONFIG_DECNET)
   2137	struct dn_dev __rcu     *dn_ptr;
   2138#endif
   2139#if IS_ENABLED(CONFIG_AX25)
   2140	void			*ax25_ptr;
   2141#endif
   2142#if IS_ENABLED(CONFIG_CFG80211)
   2143	struct wireless_dev	*ieee80211_ptr;
   2144#endif
   2145#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
   2146	struct wpan_dev		*ieee802154_ptr;
   2147#endif
   2148#if IS_ENABLED(CONFIG_MPLS_ROUTING)
   2149	struct mpls_dev __rcu	*mpls_ptr;
   2150#endif
   2151#if IS_ENABLED(CONFIG_MCTP)
   2152	struct mctp_dev __rcu	*mctp_ptr;
   2153#endif
   2154
   2155/*
   2156 * Cache lines mostly used on receive path (including eth_type_trans())
   2157 */
   2158	/* Interface address info used in eth_type_trans() */
   2159	const unsigned char	*dev_addr;
   2160
   2161	struct netdev_rx_queue	*_rx;
   2162	unsigned int		num_rx_queues;
   2163	unsigned int		real_num_rx_queues;
   2164
   2165	struct bpf_prog __rcu	*xdp_prog;
   2166	unsigned long		gro_flush_timeout;
   2167	int			napi_defer_hard_irqs;
   2168#define GRO_LEGACY_MAX_SIZE	65536u
   2169/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
   2170 * and shinfo->gso_segs is a 16bit field.
   2171 */
   2172#define GRO_MAX_SIZE		(8 * 65535u)
   2173	unsigned int		gro_max_size;
   2174	rx_handler_func_t __rcu	*rx_handler;
   2175	void __rcu		*rx_handler_data;
   2176
   2177#ifdef CONFIG_NET_CLS_ACT
   2178	struct mini_Qdisc __rcu	*miniq_ingress;
   2179#endif
   2180	struct netdev_queue __rcu *ingress_queue;
   2181#ifdef CONFIG_NETFILTER_INGRESS
   2182	struct nf_hook_entries __rcu *nf_hooks_ingress;
   2183#endif
   2184
   2185	unsigned char		broadcast[MAX_ADDR_LEN];
   2186#ifdef CONFIG_RFS_ACCEL
   2187	struct cpu_rmap		*rx_cpu_rmap;
   2188#endif
   2189	struct hlist_node	index_hlist;
   2190
   2191/*
   2192 * Cache lines mostly used on transmit path
   2193 */
   2194	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
   2195	unsigned int		num_tx_queues;
   2196	unsigned int		real_num_tx_queues;
   2197	struct Qdisc __rcu	*qdisc;
   2198	unsigned int		tx_queue_len;
   2199	spinlock_t		tx_global_lock;
   2200
   2201	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
   2202
   2203#ifdef CONFIG_XPS
   2204	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
   2205#endif
   2206#ifdef CONFIG_NET_CLS_ACT
   2207	struct mini_Qdisc __rcu	*miniq_egress;
   2208#endif
   2209#ifdef CONFIG_NETFILTER_EGRESS
   2210	struct nf_hook_entries __rcu *nf_hooks_egress;
   2211#endif
   2212
   2213#ifdef CONFIG_NET_SCHED
   2214	DECLARE_HASHTABLE	(qdisc_hash, 4);
   2215#endif
   2216	/* These may be needed for future network-power-down code. */
   2217	struct timer_list	watchdog_timer;
   2218	int			watchdog_timeo;
   2219
   2220	u32                     proto_down_reason;
   2221
   2222	struct list_head	todo_list;
   2223
   2224#ifdef CONFIG_PCPU_DEV_REFCNT
   2225	int __percpu		*pcpu_refcnt;
   2226#else
   2227	refcount_t		dev_refcnt;
   2228#endif
   2229	struct ref_tracker_dir	refcnt_tracker;
   2230
   2231	struct list_head	link_watch_list;
   2232
   2233	enum { NETREG_UNINITIALIZED=0,
   2234	       NETREG_REGISTERED,	/* completed register_netdevice */
   2235	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
   2236	       NETREG_UNREGISTERED,	/* completed unregister todo */
   2237	       NETREG_RELEASED,		/* called free_netdev */
   2238	       NETREG_DUMMY,		/* dummy device for NAPI poll */
   2239	} reg_state:8;
   2240
   2241	bool dismantle;
   2242
   2243	enum {
   2244		RTNL_LINK_INITIALIZED,
   2245		RTNL_LINK_INITIALIZING,
   2246	} rtnl_link_state:16;
   2247
   2248	bool needs_free_netdev;
   2249	void (*priv_destructor)(struct net_device *dev);
   2250
   2251#ifdef CONFIG_NETPOLL
   2252	struct netpoll_info __rcu	*npinfo;
   2253#endif
   2254
   2255	possible_net_t			nd_net;
   2256
   2257	/* mid-layer private */
   2258	void				*ml_priv;
   2259	enum netdev_ml_priv_type	ml_priv_type;
   2260
   2261	union {
   2262		struct pcpu_lstats __percpu		*lstats;
   2263		struct pcpu_sw_netstats __percpu	*tstats;
   2264		struct pcpu_dstats __percpu		*dstats;
   2265	};
   2266
   2267#if IS_ENABLED(CONFIG_GARP)
   2268	struct garp_port __rcu	*garp_port;
   2269#endif
   2270#if IS_ENABLED(CONFIG_MRP)
   2271	struct mrp_port __rcu	*mrp_port;
   2272#endif
   2273#if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
   2274	struct dm_hw_stat_delta __rcu *dm_private;
   2275#endif
   2276	struct device		dev;
   2277	const struct attribute_group *sysfs_groups[4];
   2278	const struct attribute_group *sysfs_rx_queue_group;
   2279
   2280	const struct rtnl_link_ops *rtnl_link_ops;
   2281
   2282	/* for setting kernel sock attribute on TCP connection setup */
   2283#define GSO_MAX_SEGS		65535u
   2284#define GSO_LEGACY_MAX_SIZE	65536u
   2285/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
   2286 * and shinfo->gso_segs is a 16bit field.
   2287 */
   2288#define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
   2289
   2290	unsigned int		gso_max_size;
   2291#define TSO_LEGACY_MAX_SIZE	65536
   2292#define TSO_MAX_SIZE		UINT_MAX
   2293	unsigned int		tso_max_size;
   2294	u16			gso_max_segs;
   2295#define TSO_MAX_SEGS		U16_MAX
   2296	u16			tso_max_segs;
   2297
   2298#ifdef CONFIG_DCB
   2299	const struct dcbnl_rtnl_ops *dcbnl_ops;
   2300#endif
   2301	s16			num_tc;
   2302	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
   2303	u8			prio_tc_map[TC_BITMASK + 1];
   2304
   2305#if IS_ENABLED(CONFIG_FCOE)
   2306	unsigned int		fcoe_ddp_xid;
   2307#endif
   2308#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
   2309	struct netprio_map __rcu *priomap;
   2310#endif
   2311	struct phy_device	*phydev;
   2312	struct sfp_bus		*sfp_bus;
   2313	struct lock_class_key	*qdisc_tx_busylock;
   2314	bool			proto_down;
   2315	unsigned		wol_enabled:1;
   2316	unsigned		threaded:1;
   2317
   2318	struct list_head	net_notifier_list;
   2319
   2320#if IS_ENABLED(CONFIG_MACSEC)
   2321	/* MACsec management functions */
   2322	const struct macsec_ops *macsec_ops;
   2323#endif
   2324	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
   2325	struct udp_tunnel_nic	*udp_tunnel_nic;
   2326
   2327	/* protected by rtnl_lock */
   2328	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
   2329
   2330	u8 dev_addr_shadow[MAX_ADDR_LEN];
   2331	netdevice_tracker	linkwatch_dev_tracker;
   2332	netdevice_tracker	watchdog_dev_tracker;
   2333	netdevice_tracker	dev_registered_tracker;
   2334	struct rtnl_hw_stats64	*offload_xstats_l3;
   2335};
   2336#define to_net_dev(d) container_of(d, struct net_device, dev)
   2337
   2338static inline bool netif_elide_gro(const struct net_device *dev)
   2339{
   2340	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
   2341		return true;
   2342	return false;
   2343}
   2344
   2345#define	NETDEV_ALIGN		32
   2346
   2347static inline
   2348int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
   2349{
   2350	return dev->prio_tc_map[prio & TC_BITMASK];
   2351}
   2352
   2353static inline
   2354int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
   2355{
   2356	if (tc >= dev->num_tc)
   2357		return -EINVAL;
   2358
   2359	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
   2360	return 0;
   2361}
   2362
   2363int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
   2364void netdev_reset_tc(struct net_device *dev);
   2365int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
   2366int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
   2367
   2368static inline
   2369int netdev_get_num_tc(struct net_device *dev)
   2370{
   2371	return dev->num_tc;
   2372}
   2373
   2374static inline void net_prefetch(void *p)
   2375{
   2376	prefetch(p);
   2377#if L1_CACHE_BYTES < 128
   2378	prefetch((u8 *)p + L1_CACHE_BYTES);
   2379#endif
   2380}
   2381
   2382static inline void net_prefetchw(void *p)
   2383{
   2384	prefetchw(p);
   2385#if L1_CACHE_BYTES < 128
   2386	prefetchw((u8 *)p + L1_CACHE_BYTES);
   2387#endif
   2388}
   2389
   2390void netdev_unbind_sb_channel(struct net_device *dev,
   2391			      struct net_device *sb_dev);
   2392int netdev_bind_sb_channel_queue(struct net_device *dev,
   2393				 struct net_device *sb_dev,
   2394				 u8 tc, u16 count, u16 offset);
   2395int netdev_set_sb_channel(struct net_device *dev, u16 channel);
   2396static inline int netdev_get_sb_channel(struct net_device *dev)
   2397{
   2398	return max_t(int, -dev->num_tc, 0);
   2399}
   2400
   2401static inline
   2402struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
   2403					 unsigned int index)
   2404{
   2405	return &dev->_tx[index];
   2406}
   2407
   2408static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
   2409						    const struct sk_buff *skb)
   2410{
   2411	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
   2412}
   2413
   2414static inline void netdev_for_each_tx_queue(struct net_device *dev,
   2415					    void (*f)(struct net_device *,
   2416						      struct netdev_queue *,
   2417						      void *),
   2418					    void *arg)
   2419{
   2420	unsigned int i;
   2421
   2422	for (i = 0; i < dev->num_tx_queues; i++)
   2423		f(dev, &dev->_tx[i], arg);
   2424}
   2425
   2426#define netdev_lockdep_set_classes(dev)				\
   2427{								\
   2428	static struct lock_class_key qdisc_tx_busylock_key;	\
   2429	static struct lock_class_key qdisc_xmit_lock_key;	\
   2430	static struct lock_class_key dev_addr_list_lock_key;	\
   2431	unsigned int i;						\
   2432								\
   2433	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
   2434	lockdep_set_class(&(dev)->addr_list_lock,		\
   2435			  &dev_addr_list_lock_key);		\
   2436	for (i = 0; i < (dev)->num_tx_queues; i++)		\
   2437		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
   2438				  &qdisc_xmit_lock_key);	\
   2439}
   2440
   2441u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
   2442		     struct net_device *sb_dev);
   2443struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
   2444					 struct sk_buff *skb,
   2445					 struct net_device *sb_dev);
   2446
   2447/* returns the headroom that the master device needs to take in account
   2448 * when forwarding to this dev
   2449 */
   2450static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
   2451{
   2452	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
   2453}
   2454
   2455static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
   2456{
   2457	if (dev->netdev_ops->ndo_set_rx_headroom)
   2458		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
   2459}
   2460
   2461/* set the device rx headroom to the dev's default */
   2462static inline void netdev_reset_rx_headroom(struct net_device *dev)
   2463{
   2464	netdev_set_rx_headroom(dev, -1);
   2465}
   2466
   2467static inline void *netdev_get_ml_priv(struct net_device *dev,
   2468				       enum netdev_ml_priv_type type)
   2469{
   2470	if (dev->ml_priv_type != type)
   2471		return NULL;
   2472
   2473	return dev->ml_priv;
   2474}
   2475
   2476static inline void netdev_set_ml_priv(struct net_device *dev,
   2477				      void *ml_priv,
   2478				      enum netdev_ml_priv_type type)
   2479{
   2480	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
   2481	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
   2482	     dev->ml_priv_type, type);
   2483	WARN(!dev->ml_priv_type && dev->ml_priv,
   2484	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
   2485
   2486	dev->ml_priv = ml_priv;
   2487	dev->ml_priv_type = type;
   2488}
   2489
   2490/*
   2491 * Net namespace inlines
   2492 */
   2493static inline
   2494struct net *dev_net(const struct net_device *dev)
   2495{
   2496	return read_pnet(&dev->nd_net);
   2497}
   2498
   2499static inline
   2500void dev_net_set(struct net_device *dev, struct net *net)
   2501{
   2502	write_pnet(&dev->nd_net, net);
   2503}
   2504
   2505/**
   2506 *	netdev_priv - access network device private data
   2507 *	@dev: network device
   2508 *
   2509 * Get network device private data
   2510 */
   2511static inline void *netdev_priv(const struct net_device *dev)
   2512{
   2513	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
   2514}
   2515
   2516/* Set the sysfs physical device reference for the network logical device
   2517 * if set prior to registration will cause a symlink during initialization.
   2518 */
   2519#define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
   2520
   2521/* Set the sysfs device type for the network logical device to allow
   2522 * fine-grained identification of different network device types. For
   2523 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
   2524 */
   2525#define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
   2526
   2527/* Default NAPI poll() weight
   2528 * Device drivers are strongly advised to not use bigger value
   2529 */
   2530#define NAPI_POLL_WEIGHT 64
   2531
   2532void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
   2533			   int (*poll)(struct napi_struct *, int), int weight);
   2534
   2535/**
   2536 * netif_napi_add() - initialize a NAPI context
   2537 * @dev:  network device
   2538 * @napi: NAPI context
   2539 * @poll: polling function
   2540 * @weight: default weight
   2541 *
   2542 * netif_napi_add() must be used to initialize a NAPI context prior to calling
   2543 * *any* of the other NAPI-related functions.
   2544 */
   2545static inline void
   2546netif_napi_add(struct net_device *dev, struct napi_struct *napi,
   2547	       int (*poll)(struct napi_struct *, int), int weight)
   2548{
   2549	netif_napi_add_weight(dev, napi, poll, weight);
   2550}
   2551
   2552static inline void
   2553netif_napi_add_tx_weight(struct net_device *dev,
   2554			 struct napi_struct *napi,
   2555			 int (*poll)(struct napi_struct *, int),
   2556			 int weight)
   2557{
   2558	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
   2559	netif_napi_add_weight(dev, napi, poll, weight);
   2560}
   2561
   2562#define netif_tx_napi_add netif_napi_add_tx_weight
   2563
   2564/**
   2565 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
   2566 * @dev:  network device
   2567 * @napi: NAPI context
   2568 * @poll: polling function
   2569 *
   2570 * This variant of netif_napi_add() should be used from drivers using NAPI
   2571 * to exclusively poll a TX queue.
   2572 * This will avoid we add it into napi_hash[], thus polluting this hash table.
   2573 */
   2574static inline void netif_napi_add_tx(struct net_device *dev,
   2575				     struct napi_struct *napi,
   2576				     int (*poll)(struct napi_struct *, int))
   2577{
   2578	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
   2579}
   2580
   2581/**
   2582 *  __netif_napi_del - remove a NAPI context
   2583 *  @napi: NAPI context
   2584 *
   2585 * Warning: caller must observe RCU grace period before freeing memory
   2586 * containing @napi. Drivers might want to call this helper to combine
   2587 * all the needed RCU grace periods into a single one.
   2588 */
   2589void __netif_napi_del(struct napi_struct *napi);
   2590
   2591/**
   2592 *  netif_napi_del - remove a NAPI context
   2593 *  @napi: NAPI context
   2594 *
   2595 *  netif_napi_del() removes a NAPI context from the network device NAPI list
   2596 */
   2597static inline void netif_napi_del(struct napi_struct *napi)
   2598{
   2599	__netif_napi_del(napi);
   2600	synchronize_net();
   2601}
   2602
   2603struct packet_type {
   2604	__be16			type;	/* This is really htons(ether_type). */
   2605	bool			ignore_outgoing;
   2606	struct net_device	*dev;	/* NULL is wildcarded here	     */
   2607	netdevice_tracker	dev_tracker;
   2608	int			(*func) (struct sk_buff *,
   2609					 struct net_device *,
   2610					 struct packet_type *,
   2611					 struct net_device *);
   2612	void			(*list_func) (struct list_head *,
   2613					      struct packet_type *,
   2614					      struct net_device *);
   2615	bool			(*id_match)(struct packet_type *ptype,
   2616					    struct sock *sk);
   2617	struct net		*af_packet_net;
   2618	void			*af_packet_priv;
   2619	struct list_head	list;
   2620};
   2621
   2622struct offload_callbacks {
   2623	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
   2624						netdev_features_t features);
   2625	struct sk_buff		*(*gro_receive)(struct list_head *head,
   2626						struct sk_buff *skb);
   2627	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
   2628};
   2629
   2630struct packet_offload {
   2631	__be16			 type;	/* This is really htons(ether_type). */
   2632	u16			 priority;
   2633	struct offload_callbacks callbacks;
   2634	struct list_head	 list;
   2635};
   2636
   2637/* often modified stats are per-CPU, other are shared (netdev->stats) */
   2638struct pcpu_sw_netstats {
   2639	u64     rx_packets;
   2640	u64     rx_bytes;
   2641	u64     tx_packets;
   2642	u64     tx_bytes;
   2643	struct u64_stats_sync   syncp;
   2644} __aligned(4 * sizeof(u64));
   2645
   2646struct pcpu_lstats {
   2647	u64_stats_t packets;
   2648	u64_stats_t bytes;
   2649	struct u64_stats_sync syncp;
   2650} __aligned(2 * sizeof(u64));
   2651
   2652void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
   2653
   2654static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
   2655{
   2656	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
   2657
   2658	u64_stats_update_begin(&tstats->syncp);
   2659	tstats->rx_bytes += len;
   2660	tstats->rx_packets++;
   2661	u64_stats_update_end(&tstats->syncp);
   2662}
   2663
   2664static inline void dev_sw_netstats_tx_add(struct net_device *dev,
   2665					  unsigned int packets,
   2666					  unsigned int len)
   2667{
   2668	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
   2669
   2670	u64_stats_update_begin(&tstats->syncp);
   2671	tstats->tx_bytes += len;
   2672	tstats->tx_packets += packets;
   2673	u64_stats_update_end(&tstats->syncp);
   2674}
   2675
   2676static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
   2677{
   2678	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
   2679
   2680	u64_stats_update_begin(&lstats->syncp);
   2681	u64_stats_add(&lstats->bytes, len);
   2682	u64_stats_inc(&lstats->packets);
   2683	u64_stats_update_end(&lstats->syncp);
   2684}
   2685
   2686#define __netdev_alloc_pcpu_stats(type, gfp)				\
   2687({									\
   2688	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
   2689	if (pcpu_stats)	{						\
   2690		int __cpu;						\
   2691		for_each_possible_cpu(__cpu) {				\
   2692			typeof(type) *stat;				\
   2693			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
   2694			u64_stats_init(&stat->syncp);			\
   2695		}							\
   2696	}								\
   2697	pcpu_stats;							\
   2698})
   2699
   2700#define netdev_alloc_pcpu_stats(type)					\
   2701	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
   2702
   2703#define devm_netdev_alloc_pcpu_stats(dev, type)				\
   2704({									\
   2705	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
   2706	if (pcpu_stats) {						\
   2707		int __cpu;						\
   2708		for_each_possible_cpu(__cpu) {				\
   2709			typeof(type) *stat;				\
   2710			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
   2711			u64_stats_init(&stat->syncp);			\
   2712		}							\
   2713	}								\
   2714	pcpu_stats;							\
   2715})
   2716
   2717enum netdev_lag_tx_type {
   2718	NETDEV_LAG_TX_TYPE_UNKNOWN,
   2719	NETDEV_LAG_TX_TYPE_RANDOM,
   2720	NETDEV_LAG_TX_TYPE_BROADCAST,
   2721	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
   2722	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
   2723	NETDEV_LAG_TX_TYPE_HASH,
   2724};
   2725
   2726enum netdev_lag_hash {
   2727	NETDEV_LAG_HASH_NONE,
   2728	NETDEV_LAG_HASH_L2,
   2729	NETDEV_LAG_HASH_L34,
   2730	NETDEV_LAG_HASH_L23,
   2731	NETDEV_LAG_HASH_E23,
   2732	NETDEV_LAG_HASH_E34,
   2733	NETDEV_LAG_HASH_VLAN_SRCMAC,
   2734	NETDEV_LAG_HASH_UNKNOWN,
   2735};
   2736
   2737struct netdev_lag_upper_info {
   2738	enum netdev_lag_tx_type tx_type;
   2739	enum netdev_lag_hash hash_type;
   2740};
   2741
   2742struct netdev_lag_lower_state_info {
   2743	u8 link_up : 1,
   2744	   tx_enabled : 1;
   2745};
   2746
   2747#include <linux/notifier.h>
   2748
   2749/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
   2750 * and the rtnetlink notification exclusion list in rtnetlink_event() when
   2751 * adding new types.
   2752 */
   2753enum netdev_cmd {
   2754	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
   2755	NETDEV_DOWN,
   2756	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
   2757				   detected a hardware crash and restarted
   2758				   - we can use this eg to kick tcp sessions
   2759				   once done */
   2760	NETDEV_CHANGE,		/* Notify device state change */
   2761	NETDEV_REGISTER,
   2762	NETDEV_UNREGISTER,
   2763	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
   2764	NETDEV_CHANGEADDR,	/* notify after the address change */
   2765	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
   2766	NETDEV_GOING_DOWN,
   2767	NETDEV_CHANGENAME,
   2768	NETDEV_FEAT_CHANGE,
   2769	NETDEV_BONDING_FAILOVER,
   2770	NETDEV_PRE_UP,
   2771	NETDEV_PRE_TYPE_CHANGE,
   2772	NETDEV_POST_TYPE_CHANGE,
   2773	NETDEV_POST_INIT,
   2774	NETDEV_RELEASE,
   2775	NETDEV_NOTIFY_PEERS,
   2776	NETDEV_JOIN,
   2777	NETDEV_CHANGEUPPER,
   2778	NETDEV_RESEND_IGMP,
   2779	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
   2780	NETDEV_CHANGEINFODATA,
   2781	NETDEV_BONDING_INFO,
   2782	NETDEV_PRECHANGEUPPER,
   2783	NETDEV_CHANGELOWERSTATE,
   2784	NETDEV_UDP_TUNNEL_PUSH_INFO,
   2785	NETDEV_UDP_TUNNEL_DROP_INFO,
   2786	NETDEV_CHANGE_TX_QUEUE_LEN,
   2787	NETDEV_CVLAN_FILTER_PUSH_INFO,
   2788	NETDEV_CVLAN_FILTER_DROP_INFO,
   2789	NETDEV_SVLAN_FILTER_PUSH_INFO,
   2790	NETDEV_SVLAN_FILTER_DROP_INFO,
   2791	NETDEV_OFFLOAD_XSTATS_ENABLE,
   2792	NETDEV_OFFLOAD_XSTATS_DISABLE,
   2793	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
   2794	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
   2795};
   2796const char *netdev_cmd_to_name(enum netdev_cmd cmd);
   2797
   2798int register_netdevice_notifier(struct notifier_block *nb);
   2799int unregister_netdevice_notifier(struct notifier_block *nb);
   2800int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
   2801int unregister_netdevice_notifier_net(struct net *net,
   2802				      struct notifier_block *nb);
   2803int register_netdevice_notifier_dev_net(struct net_device *dev,
   2804					struct notifier_block *nb,
   2805					struct netdev_net_notifier *nn);
   2806int unregister_netdevice_notifier_dev_net(struct net_device *dev,
   2807					  struct notifier_block *nb,
   2808					  struct netdev_net_notifier *nn);
   2809
   2810struct netdev_notifier_info {
   2811	struct net_device	*dev;
   2812	struct netlink_ext_ack	*extack;
   2813};
   2814
   2815struct netdev_notifier_info_ext {
   2816	struct netdev_notifier_info info; /* must be first */
   2817	union {
   2818		u32 mtu;
   2819	} ext;
   2820};
   2821
   2822struct netdev_notifier_change_info {
   2823	struct netdev_notifier_info info; /* must be first */
   2824	unsigned int flags_changed;
   2825};
   2826
   2827struct netdev_notifier_changeupper_info {
   2828	struct netdev_notifier_info info; /* must be first */
   2829	struct net_device *upper_dev; /* new upper dev */
   2830	bool master; /* is upper dev master */
   2831	bool linking; /* is the notification for link or unlink */
   2832	void *upper_info; /* upper dev info */
   2833};
   2834
   2835struct netdev_notifier_changelowerstate_info {
   2836	struct netdev_notifier_info info; /* must be first */
   2837	void *lower_state_info; /* is lower dev state */
   2838};
   2839
   2840struct netdev_notifier_pre_changeaddr_info {
   2841	struct netdev_notifier_info info; /* must be first */
   2842	const unsigned char *dev_addr;
   2843};
   2844
   2845enum netdev_offload_xstats_type {
   2846	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
   2847};
   2848
   2849struct netdev_notifier_offload_xstats_info {
   2850	struct netdev_notifier_info info; /* must be first */
   2851	enum netdev_offload_xstats_type type;
   2852
   2853	union {
   2854		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
   2855		struct netdev_notifier_offload_xstats_rd *report_delta;
   2856		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
   2857		struct netdev_notifier_offload_xstats_ru *report_used;
   2858	};
   2859};
   2860
   2861int netdev_offload_xstats_enable(struct net_device *dev,
   2862				 enum netdev_offload_xstats_type type,
   2863				 struct netlink_ext_ack *extack);
   2864int netdev_offload_xstats_disable(struct net_device *dev,
   2865				  enum netdev_offload_xstats_type type);
   2866bool netdev_offload_xstats_enabled(const struct net_device *dev,
   2867				   enum netdev_offload_xstats_type type);
   2868int netdev_offload_xstats_get(struct net_device *dev,
   2869			      enum netdev_offload_xstats_type type,
   2870			      struct rtnl_hw_stats64 *stats, bool *used,
   2871			      struct netlink_ext_ack *extack);
   2872void
   2873netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
   2874				   const struct rtnl_hw_stats64 *stats);
   2875void
   2876netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
   2877void netdev_offload_xstats_push_delta(struct net_device *dev,
   2878				      enum netdev_offload_xstats_type type,
   2879				      const struct rtnl_hw_stats64 *stats);
   2880
   2881static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
   2882					     struct net_device *dev)
   2883{
   2884	info->dev = dev;
   2885	info->extack = NULL;
   2886}
   2887
   2888static inline struct net_device *
   2889netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
   2890{
   2891	return info->dev;
   2892}
   2893
   2894static inline struct netlink_ext_ack *
   2895netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
   2896{
   2897	return info->extack;
   2898}
   2899
   2900int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
   2901
   2902
   2903extern rwlock_t				dev_base_lock;		/* Device list lock */
   2904
   2905#define for_each_netdev(net, d)		\
   2906		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
   2907#define for_each_netdev_reverse(net, d)	\
   2908		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
   2909#define for_each_netdev_rcu(net, d)		\
   2910		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
   2911#define for_each_netdev_safe(net, d, n)	\
   2912		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
   2913#define for_each_netdev_continue(net, d)		\
   2914		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
   2915#define for_each_netdev_continue_reverse(net, d)		\
   2916		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
   2917						     dev_list)
   2918#define for_each_netdev_continue_rcu(net, d)		\
   2919	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
   2920#define for_each_netdev_in_bond_rcu(bond, slave)	\
   2921		for_each_netdev_rcu(&init_net, slave)	\
   2922			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
   2923#define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
   2924
   2925static inline struct net_device *next_net_device(struct net_device *dev)
   2926{
   2927	struct list_head *lh;
   2928	struct net *net;
   2929
   2930	net = dev_net(dev);
   2931	lh = dev->dev_list.next;
   2932	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
   2933}
   2934
   2935static inline struct net_device *next_net_device_rcu(struct net_device *dev)
   2936{
   2937	struct list_head *lh;
   2938	struct net *net;
   2939
   2940	net = dev_net(dev);
   2941	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
   2942	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
   2943}
   2944
   2945static inline struct net_device *first_net_device(struct net *net)
   2946{
   2947	return list_empty(&net->dev_base_head) ? NULL :
   2948		net_device_entry(net->dev_base_head.next);
   2949}
   2950
   2951static inline struct net_device *first_net_device_rcu(struct net *net)
   2952{
   2953	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
   2954
   2955	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
   2956}
   2957
   2958int netdev_boot_setup_check(struct net_device *dev);
   2959struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
   2960				       const char *hwaddr);
   2961struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
   2962void dev_add_pack(struct packet_type *pt);
   2963void dev_remove_pack(struct packet_type *pt);
   2964void __dev_remove_pack(struct packet_type *pt);
   2965void dev_add_offload(struct packet_offload *po);
   2966void dev_remove_offload(struct packet_offload *po);
   2967
   2968int dev_get_iflink(const struct net_device *dev);
   2969int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
   2970int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
   2971			  struct net_device_path_stack *stack);
   2972struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
   2973				      unsigned short mask);
   2974struct net_device *dev_get_by_name(struct net *net, const char *name);
   2975struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
   2976struct net_device *__dev_get_by_name(struct net *net, const char *name);
   2977bool netdev_name_in_use(struct net *net, const char *name);
   2978int dev_alloc_name(struct net_device *dev, const char *name);
   2979int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
   2980void dev_close(struct net_device *dev);
   2981void dev_close_many(struct list_head *head, bool unlink);
   2982void dev_disable_lro(struct net_device *dev);
   2983int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
   2984u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
   2985		     struct net_device *sb_dev);
   2986u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
   2987		       struct net_device *sb_dev);
   2988
   2989int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
   2990int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
   2991
   2992static inline int dev_queue_xmit(struct sk_buff *skb)
   2993{
   2994	return __dev_queue_xmit(skb, NULL);
   2995}
   2996
   2997static inline int dev_queue_xmit_accel(struct sk_buff *skb,
   2998				       struct net_device *sb_dev)
   2999{
   3000	return __dev_queue_xmit(skb, sb_dev);
   3001}
   3002
   3003static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
   3004{
   3005	int ret;
   3006
   3007	ret = __dev_direct_xmit(skb, queue_id);
   3008	if (!dev_xmit_complete(ret))
   3009		kfree_skb(skb);
   3010	return ret;
   3011}
   3012
   3013int register_netdevice(struct net_device *dev);
   3014void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
   3015void unregister_netdevice_many(struct list_head *head);
   3016static inline void unregister_netdevice(struct net_device *dev)
   3017{
   3018	unregister_netdevice_queue(dev, NULL);
   3019}
   3020
   3021int netdev_refcnt_read(const struct net_device *dev);
   3022void free_netdev(struct net_device *dev);
   3023void netdev_freemem(struct net_device *dev);
   3024int init_dummy_netdev(struct net_device *dev);
   3025
   3026struct net_device *netdev_get_xmit_slave(struct net_device *dev,
   3027					 struct sk_buff *skb,
   3028					 bool all_slaves);
   3029struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
   3030					    struct sock *sk);
   3031struct net_device *dev_get_by_index(struct net *net, int ifindex);
   3032struct net_device *__dev_get_by_index(struct net *net, int ifindex);
   3033struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
   3034struct net_device *dev_get_by_napi_id(unsigned int napi_id);
   3035int dev_restart(struct net_device *dev);
   3036
   3037
   3038static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
   3039				  unsigned short type,
   3040				  const void *daddr, const void *saddr,
   3041				  unsigned int len)
   3042{
   3043	if (!dev->header_ops || !dev->header_ops->create)
   3044		return 0;
   3045
   3046	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
   3047}
   3048
   3049static inline int dev_parse_header(const struct sk_buff *skb,
   3050				   unsigned char *haddr)
   3051{
   3052	const struct net_device *dev = skb->dev;
   3053
   3054	if (!dev->header_ops || !dev->header_ops->parse)
   3055		return 0;
   3056	return dev->header_ops->parse(skb, haddr);
   3057}
   3058
   3059static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
   3060{
   3061	const struct net_device *dev = skb->dev;
   3062
   3063	if (!dev->header_ops || !dev->header_ops->parse_protocol)
   3064		return 0;
   3065	return dev->header_ops->parse_protocol(skb);
   3066}
   3067
   3068/* ll_header must have at least hard_header_len allocated */
   3069static inline bool dev_validate_header(const struct net_device *dev,
   3070				       char *ll_header, int len)
   3071{
   3072	if (likely(len >= dev->hard_header_len))
   3073		return true;
   3074	if (len < dev->min_header_len)
   3075		return false;
   3076
   3077	if (capable(CAP_SYS_RAWIO)) {
   3078		memset(ll_header + len, 0, dev->hard_header_len - len);
   3079		return true;
   3080	}
   3081
   3082	if (dev->header_ops && dev->header_ops->validate)
   3083		return dev->header_ops->validate(ll_header, len);
   3084
   3085	return false;
   3086}
   3087
   3088static inline bool dev_has_header(const struct net_device *dev)
   3089{
   3090	return dev->header_ops && dev->header_ops->create;
   3091}
   3092
   3093/*
   3094 * Incoming packets are placed on per-CPU queues
   3095 */
   3096struct softnet_data {
   3097	struct list_head	poll_list;
   3098	struct sk_buff_head	process_queue;
   3099
   3100	/* stats */
   3101	unsigned int		processed;
   3102	unsigned int		time_squeeze;
   3103	unsigned int		received_rps;
   3104#ifdef CONFIG_RPS
   3105	struct softnet_data	*rps_ipi_list;
   3106#endif
   3107#ifdef CONFIG_NET_FLOW_LIMIT
   3108	struct sd_flow_limit __rcu *flow_limit;
   3109#endif
   3110	struct Qdisc		*output_queue;
   3111	struct Qdisc		**output_queue_tailp;
   3112	struct sk_buff		*completion_queue;
   3113#ifdef CONFIG_XFRM_OFFLOAD
   3114	struct sk_buff_head	xfrm_backlog;
   3115#endif
   3116	/* written and read only by owning cpu: */
   3117	struct {
   3118		u16 recursion;
   3119		u8  more;
   3120#ifdef CONFIG_NET_EGRESS
   3121		u8  skip_txqueue;
   3122#endif
   3123	} xmit;
   3124#ifdef CONFIG_RPS
   3125	/* input_queue_head should be written by cpu owning this struct,
   3126	 * and only read by other cpus. Worth using a cache line.
   3127	 */
   3128	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
   3129
   3130	/* Elements below can be accessed between CPUs for RPS/RFS */
   3131	call_single_data_t	csd ____cacheline_aligned_in_smp;
   3132	struct softnet_data	*rps_ipi_next;
   3133	unsigned int		cpu;
   3134	unsigned int		input_queue_tail;
   3135#endif
   3136	unsigned int		dropped;
   3137	struct sk_buff_head	input_pkt_queue;
   3138	struct napi_struct	backlog;
   3139
   3140	/* Another possibly contended cache line */
   3141	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
   3142	int			defer_count;
   3143	int			defer_ipi_scheduled;
   3144	struct sk_buff		*defer_list;
   3145	call_single_data_t	defer_csd;
   3146};
   3147
   3148static inline void input_queue_head_incr(struct softnet_data *sd)
   3149{
   3150#ifdef CONFIG_RPS
   3151	sd->input_queue_head++;
   3152#endif
   3153}
   3154
   3155static inline void input_queue_tail_incr_save(struct softnet_data *sd,
   3156					      unsigned int *qtail)
   3157{
   3158#ifdef CONFIG_RPS
   3159	*qtail = ++sd->input_queue_tail;
   3160#endif
   3161}
   3162
   3163DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
   3164
   3165static inline int dev_recursion_level(void)
   3166{
   3167	return this_cpu_read(softnet_data.xmit.recursion);
   3168}
   3169
   3170#define XMIT_RECURSION_LIMIT	8
   3171static inline bool dev_xmit_recursion(void)
   3172{
   3173	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
   3174			XMIT_RECURSION_LIMIT);
   3175}
   3176
   3177static inline void dev_xmit_recursion_inc(void)
   3178{
   3179	__this_cpu_inc(softnet_data.xmit.recursion);
   3180}
   3181
   3182static inline void dev_xmit_recursion_dec(void)
   3183{
   3184	__this_cpu_dec(softnet_data.xmit.recursion);
   3185}
   3186
   3187void __netif_schedule(struct Qdisc *q);
   3188void netif_schedule_queue(struct netdev_queue *txq);
   3189
   3190static inline void netif_tx_schedule_all(struct net_device *dev)
   3191{
   3192	unsigned int i;
   3193
   3194	for (i = 0; i < dev->num_tx_queues; i++)
   3195		netif_schedule_queue(netdev_get_tx_queue(dev, i));
   3196}
   3197
   3198static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
   3199{
   3200	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
   3201}
   3202
   3203/**
   3204 *	netif_start_queue - allow transmit
   3205 *	@dev: network device
   3206 *
   3207 *	Allow upper layers to call the device hard_start_xmit routine.
   3208 */
   3209static inline void netif_start_queue(struct net_device *dev)
   3210{
   3211	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
   3212}
   3213
   3214static inline void netif_tx_start_all_queues(struct net_device *dev)
   3215{
   3216	unsigned int i;
   3217
   3218	for (i = 0; i < dev->num_tx_queues; i++) {
   3219		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
   3220		netif_tx_start_queue(txq);
   3221	}
   3222}
   3223
   3224void netif_tx_wake_queue(struct netdev_queue *dev_queue);
   3225
   3226/**
   3227 *	netif_wake_queue - restart transmit
   3228 *	@dev: network device
   3229 *
   3230 *	Allow upper layers to call the device hard_start_xmit routine.
   3231 *	Used for flow control when transmit resources are available.
   3232 */
   3233static inline void netif_wake_queue(struct net_device *dev)
   3234{
   3235	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
   3236}
   3237
   3238static inline void netif_tx_wake_all_queues(struct net_device *dev)
   3239{
   3240	unsigned int i;
   3241
   3242	for (i = 0; i < dev->num_tx_queues; i++) {
   3243		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
   3244		netif_tx_wake_queue(txq);
   3245	}
   3246}
   3247
   3248static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
   3249{
   3250	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
   3251}
   3252
   3253/**
   3254 *	netif_stop_queue - stop transmitted packets
   3255 *	@dev: network device
   3256 *
   3257 *	Stop upper layers calling the device hard_start_xmit routine.
   3258 *	Used for flow control when transmit resources are unavailable.
   3259 */
   3260static inline void netif_stop_queue(struct net_device *dev)
   3261{
   3262	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
   3263}
   3264
   3265void netif_tx_stop_all_queues(struct net_device *dev);
   3266
   3267static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
   3268{
   3269	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
   3270}
   3271
   3272/**
   3273 *	netif_queue_stopped - test if transmit queue is flowblocked
   3274 *	@dev: network device
   3275 *
   3276 *	Test if transmit queue on device is currently unable to send.
   3277 */
   3278static inline bool netif_queue_stopped(const struct net_device *dev)
   3279{
   3280	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
   3281}
   3282
   3283static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
   3284{
   3285	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
   3286}
   3287
   3288static inline bool
   3289netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
   3290{
   3291	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
   3292}
   3293
   3294static inline bool
   3295netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
   3296{
   3297	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
   3298}
   3299
   3300/**
   3301 *	netdev_queue_set_dql_min_limit - set dql minimum limit
   3302 *	@dev_queue: pointer to transmit queue
   3303 *	@min_limit: dql minimum limit
   3304 *
   3305 * Forces xmit_more() to return true until the minimum threshold
   3306 * defined by @min_limit is reached (or until the tx queue is
   3307 * empty). Warning: to be use with care, misuse will impact the
   3308 * latency.
   3309 */
   3310static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
   3311						  unsigned int min_limit)
   3312{
   3313#ifdef CONFIG_BQL
   3314	dev_queue->dql.min_limit = min_limit;
   3315#endif
   3316}
   3317
   3318/**
   3319 *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
   3320 *	@dev_queue: pointer to transmit queue
   3321 *
   3322 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
   3323 * to give appropriate hint to the CPU.
   3324 */
   3325static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
   3326{
   3327#ifdef CONFIG_BQL
   3328	prefetchw(&dev_queue->dql.num_queued);
   3329#endif
   3330}
   3331
   3332/**
   3333 *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
   3334 *	@dev_queue: pointer to transmit queue
   3335 *
   3336 * BQL enabled drivers might use this helper in their TX completion path,
   3337 * to give appropriate hint to the CPU.
   3338 */
   3339static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
   3340{
   3341#ifdef CONFIG_BQL
   3342	prefetchw(&dev_queue->dql.limit);
   3343#endif
   3344}
   3345
   3346static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
   3347					unsigned int bytes)
   3348{
   3349#ifdef CONFIG_BQL
   3350	dql_queued(&dev_queue->dql, bytes);
   3351
   3352	if (likely(dql_avail(&dev_queue->dql) >= 0))
   3353		return;
   3354
   3355	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
   3356
   3357	/*
   3358	 * The XOFF flag must be set before checking the dql_avail below,
   3359	 * because in netdev_tx_completed_queue we update the dql_completed
   3360	 * before checking the XOFF flag.
   3361	 */
   3362	smp_mb();
   3363
   3364	/* check again in case another CPU has just made room avail */
   3365	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
   3366		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
   3367#endif
   3368}
   3369
   3370/* Variant of netdev_tx_sent_queue() for drivers that are aware
   3371 * that they should not test BQL status themselves.
   3372 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
   3373 * skb of a batch.
   3374 * Returns true if the doorbell must be used to kick the NIC.
   3375 */
   3376static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
   3377					  unsigned int bytes,
   3378					  bool xmit_more)
   3379{
   3380	if (xmit_more) {
   3381#ifdef CONFIG_BQL
   3382		dql_queued(&dev_queue->dql, bytes);
   3383#endif
   3384		return netif_tx_queue_stopped(dev_queue);
   3385	}
   3386	netdev_tx_sent_queue(dev_queue, bytes);
   3387	return true;
   3388}
   3389
   3390/**
   3391 * 	netdev_sent_queue - report the number of bytes queued to hardware
   3392 * 	@dev: network device
   3393 * 	@bytes: number of bytes queued to the hardware device queue
   3394 *
   3395 * 	Report the number of bytes queued for sending/completion to the network
   3396 * 	device hardware queue. @bytes should be a good approximation and should
   3397 * 	exactly match netdev_completed_queue() @bytes
   3398 */
   3399static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
   3400{
   3401	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
   3402}
   3403
   3404static inline bool __netdev_sent_queue(struct net_device *dev,
   3405				       unsigned int bytes,
   3406				       bool xmit_more)
   3407{
   3408	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
   3409				      xmit_more);
   3410}
   3411
   3412static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
   3413					     unsigned int pkts, unsigned int bytes)
   3414{
   3415#ifdef CONFIG_BQL
   3416	if (unlikely(!bytes))
   3417		return;
   3418
   3419	dql_completed(&dev_queue->dql, bytes);
   3420
   3421	/*
   3422	 * Without the memory barrier there is a small possiblity that
   3423	 * netdev_tx_sent_queue will miss the update and cause the queue to
   3424	 * be stopped forever
   3425	 */
   3426	smp_mb();
   3427
   3428	if (unlikely(dql_avail(&dev_queue->dql) < 0))
   3429		return;
   3430
   3431	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
   3432		netif_schedule_queue(dev_queue);
   3433#endif
   3434}
   3435
   3436/**
   3437 * 	netdev_completed_queue - report bytes and packets completed by device
   3438 * 	@dev: network device
   3439 * 	@pkts: actual number of packets sent over the medium
   3440 * 	@bytes: actual number of bytes sent over the medium
   3441 *
   3442 * 	Report the number of bytes and packets transmitted by the network device
   3443 * 	hardware queue over the physical medium, @bytes must exactly match the
   3444 * 	@bytes amount passed to netdev_sent_queue()
   3445 */
   3446static inline void netdev_completed_queue(struct net_device *dev,
   3447					  unsigned int pkts, unsigned int bytes)
   3448{
   3449	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
   3450}
   3451
   3452static inline void netdev_tx_reset_queue(struct netdev_queue *q)
   3453{
   3454#ifdef CONFIG_BQL
   3455	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
   3456	dql_reset(&q->dql);
   3457#endif
   3458}
   3459
   3460/**
   3461 * 	netdev_reset_queue - reset the packets and bytes count of a network device
   3462 * 	@dev_queue: network device
   3463 *
   3464 * 	Reset the bytes and packet count of a network device and clear the
   3465 * 	software flow control OFF bit for this network device
   3466 */
   3467static inline void netdev_reset_queue(struct net_device *dev_queue)
   3468{
   3469	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
   3470}
   3471
   3472/**
   3473 * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
   3474 * 	@dev: network device
   3475 * 	@queue_index: given tx queue index
   3476 *
   3477 * 	Returns 0 if given tx queue index >= number of device tx queues,
   3478 * 	otherwise returns the originally passed tx queue index.
   3479 */
   3480static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
   3481{
   3482	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
   3483		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
   3484				     dev->name, queue_index,
   3485				     dev->real_num_tx_queues);
   3486		return 0;
   3487	}
   3488
   3489	return queue_index;
   3490}
   3491
   3492/**
   3493 *	netif_running - test if up
   3494 *	@dev: network device
   3495 *
   3496 *	Test if the device has been brought up.
   3497 */
   3498static inline bool netif_running(const struct net_device *dev)
   3499{
   3500	return test_bit(__LINK_STATE_START, &dev->state);
   3501}
   3502
   3503/*
   3504 * Routines to manage the subqueues on a device.  We only need start,
   3505 * stop, and a check if it's stopped.  All other device management is
   3506 * done at the overall netdevice level.
   3507 * Also test the device if we're multiqueue.
   3508 */
   3509
   3510/**
   3511 *	netif_start_subqueue - allow sending packets on subqueue
   3512 *	@dev: network device
   3513 *	@queue_index: sub queue index
   3514 *
   3515 * Start individual transmit queue of a device with multiple transmit queues.
   3516 */
   3517static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
   3518{
   3519	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
   3520
   3521	netif_tx_start_queue(txq);
   3522}
   3523
   3524/**
   3525 *	netif_stop_subqueue - stop sending packets on subqueue
   3526 *	@dev: network device
   3527 *	@queue_index: sub queue index
   3528 *
   3529 * Stop individual transmit queue of a device with multiple transmit queues.
   3530 */
   3531static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
   3532{
   3533	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
   3534	netif_tx_stop_queue(txq);
   3535}
   3536
   3537/**
   3538 *	__netif_subqueue_stopped - test status of subqueue
   3539 *	@dev: network device
   3540 *	@queue_index: sub queue index
   3541 *
   3542 * Check individual transmit queue of a device with multiple transmit queues.
   3543 */
   3544static inline bool __netif_subqueue_stopped(const struct net_device *dev,
   3545					    u16 queue_index)
   3546{
   3547	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
   3548
   3549	return netif_tx_queue_stopped(txq);
   3550}
   3551
   3552/**
   3553 *	netif_subqueue_stopped - test status of subqueue
   3554 *	@dev: network device
   3555 *	@skb: sub queue buffer pointer
   3556 *
   3557 * Check individual transmit queue of a device with multiple transmit queues.
   3558 */
   3559static inline bool netif_subqueue_stopped(const struct net_device *dev,
   3560					  struct sk_buff *skb)
   3561{
   3562	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
   3563}
   3564
   3565/**
   3566 *	netif_wake_subqueue - allow sending packets on subqueue
   3567 *	@dev: network device
   3568 *	@queue_index: sub queue index
   3569 *
   3570 * Resume individual transmit queue of a device with multiple transmit queues.
   3571 */
   3572static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
   3573{
   3574	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
   3575
   3576	netif_tx_wake_queue(txq);
   3577}
   3578
   3579#ifdef CONFIG_XPS
   3580int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
   3581			u16 index);
   3582int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
   3583			  u16 index, enum xps_map_type type);
   3584
   3585/**
   3586 *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
   3587 *	@j: CPU/Rx queue index
   3588 *	@mask: bitmask of all cpus/rx queues
   3589 *	@nr_bits: number of bits in the bitmask
   3590 *
   3591 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
   3592 */
   3593static inline bool netif_attr_test_mask(unsigned long j,
   3594					const unsigned long *mask,
   3595					unsigned int nr_bits)
   3596{
   3597	cpu_max_bits_warn(j, nr_bits);
   3598	return test_bit(j, mask);
   3599}
   3600
   3601/**
   3602 *	netif_attr_test_online - Test for online CPU/Rx queue
   3603 *	@j: CPU/Rx queue index
   3604 *	@online_mask: bitmask for CPUs/Rx queues that are online
   3605 *	@nr_bits: number of bits in the bitmask
   3606 *
   3607 * Returns true if a CPU/Rx queue is online.
   3608 */
   3609static inline bool netif_attr_test_online(unsigned long j,
   3610					  const unsigned long *online_mask,
   3611					  unsigned int nr_bits)
   3612{
   3613	cpu_max_bits_warn(j, nr_bits);
   3614
   3615	if (online_mask)
   3616		return test_bit(j, online_mask);
   3617
   3618	return (j < nr_bits);
   3619}
   3620
   3621/**
   3622 *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
   3623 *	@n: CPU/Rx queue index
   3624 *	@srcp: the cpumask/Rx queue mask pointer
   3625 *	@nr_bits: number of bits in the bitmask
   3626 *
   3627 * Returns >= nr_bits if no further CPUs/Rx queues set.
   3628 */
   3629static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
   3630					       unsigned int nr_bits)
   3631{
   3632	/* -1 is a legal arg here. */
   3633	if (n != -1)
   3634		cpu_max_bits_warn(n, nr_bits);
   3635
   3636	if (srcp)
   3637		return find_next_bit(srcp, nr_bits, n + 1);
   3638
   3639	return n + 1;
   3640}
   3641
   3642/**
   3643 *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
   3644 *	@n: CPU/Rx queue index
   3645 *	@src1p: the first CPUs/Rx queues mask pointer
   3646 *	@src2p: the second CPUs/Rx queues mask pointer
   3647 *	@nr_bits: number of bits in the bitmask
   3648 *
   3649 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
   3650 */
   3651static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
   3652					  const unsigned long *src2p,
   3653					  unsigned int nr_bits)
   3654{
   3655	/* -1 is a legal arg here. */
   3656	if (n != -1)
   3657		cpu_max_bits_warn(n, nr_bits);
   3658
   3659	if (src1p && src2p)
   3660		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
   3661	else if (src1p)
   3662		return find_next_bit(src1p, nr_bits, n + 1);
   3663	else if (src2p)
   3664		return find_next_bit(src2p, nr_bits, n + 1);
   3665
   3666	return n + 1;
   3667}
   3668#else
   3669static inline int netif_set_xps_queue(struct net_device *dev,
   3670				      const struct cpumask *mask,
   3671				      u16 index)
   3672{
   3673	return 0;
   3674}
   3675
   3676static inline int __netif_set_xps_queue(struct net_device *dev,
   3677					const unsigned long *mask,
   3678					u16 index, enum xps_map_type type)
   3679{
   3680	return 0;
   3681}
   3682#endif
   3683
   3684/**
   3685 *	netif_is_multiqueue - test if device has multiple transmit queues
   3686 *	@dev: network device
   3687 *
   3688 * Check if device has multiple transmit queues
   3689 */
   3690static inline bool netif_is_multiqueue(const struct net_device *dev)
   3691{
   3692	return dev->num_tx_queues > 1;
   3693}
   3694
   3695int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
   3696
   3697#ifdef CONFIG_SYSFS
   3698int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
   3699#else
   3700static inline int netif_set_real_num_rx_queues(struct net_device *dev,
   3701						unsigned int rxqs)
   3702{
   3703	dev->real_num_rx_queues = rxqs;
   3704	return 0;
   3705}
   3706#endif
   3707int netif_set_real_num_queues(struct net_device *dev,
   3708			      unsigned int txq, unsigned int rxq);
   3709
   3710static inline struct netdev_rx_queue *
   3711__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
   3712{
   3713	return dev->_rx + rxq;
   3714}
   3715
   3716#ifdef CONFIG_SYSFS
   3717static inline unsigned int get_netdev_rx_queue_index(
   3718		struct netdev_rx_queue *queue)
   3719{
   3720	struct net_device *dev = queue->dev;
   3721	int index = queue - dev->_rx;
   3722
   3723	BUG_ON(index >= dev->num_rx_queues);
   3724	return index;
   3725}
   3726#endif
   3727
   3728int netif_get_num_default_rss_queues(void);
   3729
   3730enum skb_free_reason {
   3731	SKB_REASON_CONSUMED,
   3732	SKB_REASON_DROPPED,
   3733};
   3734
   3735void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
   3736void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
   3737
   3738/*
   3739 * It is not allowed to call kfree_skb() or consume_skb() from hardware
   3740 * interrupt context or with hardware interrupts being disabled.
   3741 * (in_hardirq() || irqs_disabled())
   3742 *
   3743 * We provide four helpers that can be used in following contexts :
   3744 *
   3745 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
   3746 *  replacing kfree_skb(skb)
   3747 *
   3748 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
   3749 *  Typically used in place of consume_skb(skb) in TX completion path
   3750 *
   3751 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
   3752 *  replacing kfree_skb(skb)
   3753 *
   3754 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
   3755 *  and consumed a packet. Used in place of consume_skb(skb)
   3756 */
   3757static inline void dev_kfree_skb_irq(struct sk_buff *skb)
   3758{
   3759	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
   3760}
   3761
   3762static inline void dev_consume_skb_irq(struct sk_buff *skb)
   3763{
   3764	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
   3765}
   3766
   3767static inline void dev_kfree_skb_any(struct sk_buff *skb)
   3768{
   3769	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
   3770}
   3771
   3772static inline void dev_consume_skb_any(struct sk_buff *skb)
   3773{
   3774	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
   3775}
   3776
   3777u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
   3778			     struct bpf_prog *xdp_prog);
   3779void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
   3780int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
   3781int netif_rx(struct sk_buff *skb);
   3782int __netif_rx(struct sk_buff *skb);
   3783
   3784int netif_receive_skb(struct sk_buff *skb);
   3785int netif_receive_skb_core(struct sk_buff *skb);
   3786void netif_receive_skb_list_internal(struct list_head *head);
   3787void netif_receive_skb_list(struct list_head *head);
   3788gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
   3789void napi_gro_flush(struct napi_struct *napi, bool flush_old);
   3790struct sk_buff *napi_get_frags(struct napi_struct *napi);
   3791gro_result_t napi_gro_frags(struct napi_struct *napi);
   3792struct packet_offload *gro_find_receive_by_type(__be16 type);
   3793struct packet_offload *gro_find_complete_by_type(__be16 type);
   3794
   3795static inline void napi_free_frags(struct napi_struct *napi)
   3796{
   3797	kfree_skb(napi->skb);
   3798	napi->skb = NULL;
   3799}
   3800
   3801bool netdev_is_rx_handler_busy(struct net_device *dev);
   3802int netdev_rx_handler_register(struct net_device *dev,
   3803			       rx_handler_func_t *rx_handler,
   3804			       void *rx_handler_data);
   3805void netdev_rx_handler_unregister(struct net_device *dev);
   3806
   3807bool dev_valid_name(const char *name);
   3808static inline bool is_socket_ioctl_cmd(unsigned int cmd)
   3809{
   3810	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
   3811}
   3812int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
   3813int put_user_ifreq(struct ifreq *ifr, void __user *arg);
   3814int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
   3815		void __user *data, bool *need_copyout);
   3816int dev_ifconf(struct net *net, struct ifconf __user *ifc);
   3817int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
   3818unsigned int dev_get_flags(const struct net_device *);
   3819int __dev_change_flags(struct net_device *dev, unsigned int flags,
   3820		       struct netlink_ext_ack *extack);
   3821int dev_change_flags(struct net_device *dev, unsigned int flags,
   3822		     struct netlink_ext_ack *extack);
   3823void __dev_notify_flags(struct net_device *, unsigned int old_flags,
   3824			unsigned int gchanges);
   3825int dev_set_alias(struct net_device *, const char *, size_t);
   3826int dev_get_alias(const struct net_device *, char *, size_t);
   3827int __dev_change_net_namespace(struct net_device *dev, struct net *net,
   3828			       const char *pat, int new_ifindex);
   3829static inline
   3830int dev_change_net_namespace(struct net_device *dev, struct net *net,
   3831			     const char *pat)
   3832{
   3833	return __dev_change_net_namespace(dev, net, pat, 0);
   3834}
   3835int __dev_set_mtu(struct net_device *, int);
   3836int dev_set_mtu(struct net_device *, int);
   3837int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
   3838			      struct netlink_ext_ack *extack);
   3839int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
   3840			struct netlink_ext_ack *extack);
   3841int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
   3842			     struct netlink_ext_ack *extack);
   3843int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
   3844int dev_get_port_parent_id(struct net_device *dev,
   3845			   struct netdev_phys_item_id *ppid, bool recurse);
   3846bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
   3847struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
   3848struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
   3849				    struct netdev_queue *txq, int *ret);
   3850
   3851int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
   3852u8 dev_xdp_prog_count(struct net_device *dev);
   3853u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
   3854
   3855int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
   3856int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
   3857int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
   3858bool is_skb_forwardable(const struct net_device *dev,
   3859			const struct sk_buff *skb);
   3860
   3861static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
   3862						 const struct sk_buff *skb,
   3863						 const bool check_mtu)
   3864{
   3865	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
   3866	unsigned int len;
   3867
   3868	if (!(dev->flags & IFF_UP))
   3869		return false;
   3870
   3871	if (!check_mtu)
   3872		return true;
   3873
   3874	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
   3875	if (skb->len <= len)
   3876		return true;
   3877
   3878	/* if TSO is enabled, we don't care about the length as the packet
   3879	 * could be forwarded without being segmented before
   3880	 */
   3881	if (skb_is_gso(skb))
   3882		return true;
   3883
   3884	return false;
   3885}
   3886
   3887struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
   3888
   3889static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
   3890{
   3891	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
   3892	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
   3893
   3894	if (likely(p))
   3895		return p;
   3896
   3897	return netdev_core_stats_alloc(dev);
   3898}
   3899
   3900#define DEV_CORE_STATS_INC(FIELD)						\
   3901static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
   3902{										\
   3903	struct net_device_core_stats __percpu *p;				\
   3904										\
   3905	p = dev_core_stats(dev);						\
   3906	if (p)									\
   3907		this_cpu_inc(p->FIELD);						\
   3908}
   3909DEV_CORE_STATS_INC(rx_dropped)
   3910DEV_CORE_STATS_INC(tx_dropped)
   3911DEV_CORE_STATS_INC(rx_nohandler)
   3912DEV_CORE_STATS_INC(rx_otherhost_dropped)
   3913
   3914static __always_inline int ____dev_forward_skb(struct net_device *dev,
   3915					       struct sk_buff *skb,
   3916					       const bool check_mtu)
   3917{
   3918	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
   3919	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
   3920		dev_core_stats_rx_dropped_inc(dev);
   3921		kfree_skb(skb);
   3922		return NET_RX_DROP;
   3923	}
   3924
   3925	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
   3926	skb->priority = 0;
   3927	return 0;
   3928}
   3929
   3930bool dev_nit_active(struct net_device *dev);
   3931void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
   3932
   3933static inline void __dev_put(struct net_device *dev)
   3934{
   3935	if (dev) {
   3936#ifdef CONFIG_PCPU_DEV_REFCNT
   3937		this_cpu_dec(*dev->pcpu_refcnt);
   3938#else
   3939		refcount_dec(&dev->dev_refcnt);
   3940#endif
   3941	}
   3942}
   3943
   3944static inline void __dev_hold(struct net_device *dev)
   3945{
   3946	if (dev) {
   3947#ifdef CONFIG_PCPU_DEV_REFCNT
   3948		this_cpu_inc(*dev->pcpu_refcnt);
   3949#else
   3950		refcount_inc(&dev->dev_refcnt);
   3951#endif
   3952	}
   3953}
   3954
   3955static inline void __netdev_tracker_alloc(struct net_device *dev,
   3956					  netdevice_tracker *tracker,
   3957					  gfp_t gfp)
   3958{
   3959#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
   3960	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
   3961#endif
   3962}
   3963
   3964/* netdev_tracker_alloc() can upgrade a prior untracked reference
   3965 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
   3966 */
   3967static inline void netdev_tracker_alloc(struct net_device *dev,
   3968					netdevice_tracker *tracker, gfp_t gfp)
   3969{
   3970#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
   3971	refcount_dec(&dev->refcnt_tracker.no_tracker);
   3972	__netdev_tracker_alloc(dev, tracker, gfp);
   3973#endif
   3974}
   3975
   3976static inline void netdev_tracker_free(struct net_device *dev,
   3977				       netdevice_tracker *tracker)
   3978{
   3979#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
   3980	ref_tracker_free(&dev->refcnt_tracker, tracker);
   3981#endif
   3982}
   3983
   3984static inline void dev_hold_track(struct net_device *dev,
   3985				  netdevice_tracker *tracker, gfp_t gfp)
   3986{
   3987	if (dev) {
   3988		__dev_hold(dev);
   3989		__netdev_tracker_alloc(dev, tracker, gfp);
   3990	}
   3991}
   3992
   3993static inline void dev_put_track(struct net_device *dev,
   3994				 netdevice_tracker *tracker)
   3995{
   3996	if (dev) {
   3997		netdev_tracker_free(dev, tracker);
   3998		__dev_put(dev);
   3999	}
   4000}
   4001
   4002/**
   4003 *	dev_hold - get reference to device
   4004 *	@dev: network device
   4005 *
   4006 * Hold reference to device to keep it from being freed.
   4007 * Try using dev_hold_track() instead.
   4008 */
   4009static inline void dev_hold(struct net_device *dev)
   4010{
   4011	dev_hold_track(dev, NULL, GFP_ATOMIC);
   4012}
   4013
   4014/**
   4015 *	dev_put - release reference to device
   4016 *	@dev: network device
   4017 *
   4018 * Release reference to device to allow it to be freed.
   4019 * Try using dev_put_track() instead.
   4020 */
   4021static inline void dev_put(struct net_device *dev)
   4022{
   4023	dev_put_track(dev, NULL);
   4024}
   4025
   4026static inline void dev_replace_track(struct net_device *odev,
   4027				     struct net_device *ndev,
   4028				     netdevice_tracker *tracker,
   4029				     gfp_t gfp)
   4030{
   4031	if (odev)
   4032		netdev_tracker_free(odev, tracker);
   4033
   4034	__dev_hold(ndev);
   4035	__dev_put(odev);
   4036
   4037	if (ndev)
   4038		__netdev_tracker_alloc(ndev, tracker, gfp);
   4039}
   4040
   4041/* Carrier loss detection, dial on demand. The functions netif_carrier_on
   4042 * and _off may be called from IRQ context, but it is caller
   4043 * who is responsible for serialization of these calls.
   4044 *
   4045 * The name carrier is inappropriate, these functions should really be
   4046 * called netif_lowerlayer_*() because they represent the state of any
   4047 * kind of lower layer not just hardware media.
   4048 */
   4049void linkwatch_fire_event(struct net_device *dev);
   4050
   4051/**
   4052 *	netif_carrier_ok - test if carrier present
   4053 *	@dev: network device
   4054 *
   4055 * Check if carrier is present on device
   4056 */
   4057static inline bool netif_carrier_ok(const struct net_device *dev)
   4058{
   4059	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
   4060}
   4061
   4062unsigned long dev_trans_start(struct net_device *dev);
   4063
   4064void __netdev_watchdog_up(struct net_device *dev);
   4065
   4066void netif_carrier_on(struct net_device *dev);
   4067void netif_carrier_off(struct net_device *dev);
   4068void netif_carrier_event(struct net_device *dev);
   4069
   4070/**
   4071 *	netif_dormant_on - mark device as dormant.
   4072 *	@dev: network device
   4073 *
   4074 * Mark device as dormant (as per RFC2863).
   4075 *
   4076 * The dormant state indicates that the relevant interface is not
   4077 * actually in a condition to pass packets (i.e., it is not 'up') but is
   4078 * in a "pending" state, waiting for some external event.  For "on-
   4079 * demand" interfaces, this new state identifies the situation where the
   4080 * interface is waiting for events to place it in the up state.
   4081 */
   4082static inline void netif_dormant_on(struct net_device *dev)
   4083{
   4084	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
   4085		linkwatch_fire_event(dev);
   4086}
   4087
   4088/**
   4089 *	netif_dormant_off - set device as not dormant.
   4090 *	@dev: network device
   4091 *
   4092 * Device is not in dormant state.
   4093 */
   4094static inline void netif_dormant_off(struct net_device *dev)
   4095{
   4096	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
   4097		linkwatch_fire_event(dev);
   4098}
   4099
   4100/**
   4101 *	netif_dormant - test if device is dormant
   4102 *	@dev: network device
   4103 *
   4104 * Check if device is dormant.
   4105 */
   4106static inline bool netif_dormant(const struct net_device *dev)
   4107{
   4108	return test_bit(__LINK_STATE_DORMANT, &dev->state);
   4109}
   4110
   4111
   4112/**
   4113 *	netif_testing_on - mark device as under test.
   4114 *	@dev: network device
   4115 *
   4116 * Mark device as under test (as per RFC2863).
   4117 *
   4118 * The testing state indicates that some test(s) must be performed on
   4119 * the interface. After completion, of the test, the interface state
   4120 * will change to up, dormant, or down, as appropriate.
   4121 */
   4122static inline void netif_testing_on(struct net_device *dev)
   4123{
   4124	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
   4125		linkwatch_fire_event(dev);
   4126}
   4127
   4128/**
   4129 *	netif_testing_off - set device as not under test.
   4130 *	@dev: network device
   4131 *
   4132 * Device is not in testing state.
   4133 */
   4134static inline void netif_testing_off(struct net_device *dev)
   4135{
   4136	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
   4137		linkwatch_fire_event(dev);
   4138}
   4139
   4140/**
   4141 *	netif_testing - test if device is under test
   4142 *	@dev: network device
   4143 *
   4144 * Check if device is under test
   4145 */
   4146static inline bool netif_testing(const struct net_device *dev)
   4147{
   4148	return test_bit(__LINK_STATE_TESTING, &dev->state);
   4149}
   4150
   4151
   4152/**
   4153 *	netif_oper_up - test if device is operational
   4154 *	@dev: network device
   4155 *
   4156 * Check if carrier is operational
   4157 */
   4158static inline bool netif_oper_up(const struct net_device *dev)
   4159{
   4160	return (dev->operstate == IF_OPER_UP ||
   4161		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
   4162}
   4163
   4164/**
   4165 *	netif_device_present - is device available or removed
   4166 *	@dev: network device
   4167 *
   4168 * Check if device has not been removed from system.
   4169 */
   4170static inline bool netif_device_present(const struct net_device *dev)
   4171{
   4172	return test_bit(__LINK_STATE_PRESENT, &dev->state);
   4173}
   4174
   4175void netif_device_detach(struct net_device *dev);
   4176
   4177void netif_device_attach(struct net_device *dev);
   4178
   4179/*
   4180 * Network interface message level settings
   4181 */
   4182
   4183enum {
   4184	NETIF_MSG_DRV_BIT,
   4185	NETIF_MSG_PROBE_BIT,
   4186	NETIF_MSG_LINK_BIT,
   4187	NETIF_MSG_TIMER_BIT,
   4188	NETIF_MSG_IFDOWN_BIT,
   4189	NETIF_MSG_IFUP_BIT,
   4190	NETIF_MSG_RX_ERR_BIT,
   4191	NETIF_MSG_TX_ERR_BIT,
   4192	NETIF_MSG_TX_QUEUED_BIT,
   4193	NETIF_MSG_INTR_BIT,
   4194	NETIF_MSG_TX_DONE_BIT,
   4195	NETIF_MSG_RX_STATUS_BIT,
   4196	NETIF_MSG_PKTDATA_BIT,
   4197	NETIF_MSG_HW_BIT,
   4198	NETIF_MSG_WOL_BIT,
   4199
   4200	/* When you add a new bit above, update netif_msg_class_names array
   4201	 * in net/ethtool/common.c
   4202	 */
   4203	NETIF_MSG_CLASS_COUNT,
   4204};
   4205/* Both ethtool_ops interface and internal driver implementation use u32 */
   4206static_assert(NETIF_MSG_CLASS_COUNT <= 32);
   4207
   4208#define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
   4209#define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
   4210
   4211#define NETIF_MSG_DRV		__NETIF_MSG(DRV)
   4212#define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
   4213#define NETIF_MSG_LINK		__NETIF_MSG(LINK)
   4214#define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
   4215#define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
   4216#define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
   4217#define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
   4218#define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
   4219#define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
   4220#define NETIF_MSG_INTR		__NETIF_MSG(INTR)
   4221#define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
   4222#define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
   4223#define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
   4224#define NETIF_MSG_HW		__NETIF_MSG(HW)
   4225#define NETIF_MSG_WOL		__NETIF_MSG(WOL)
   4226
   4227#define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
   4228#define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
   4229#define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
   4230#define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
   4231#define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
   4232#define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
   4233#define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
   4234#define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
   4235#define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
   4236#define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
   4237#define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
   4238#define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
   4239#define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
   4240#define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
   4241#define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
   4242
   4243static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
   4244{
   4245	/* use default */
   4246	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
   4247		return default_msg_enable_bits;
   4248	if (debug_value == 0)	/* no output */
   4249		return 0;
   4250	/* set low N bits */
   4251	return (1U << debug_value) - 1;
   4252}
   4253
   4254static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
   4255{
   4256	spin_lock(&txq->_xmit_lock);
   4257	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
   4258	WRITE_ONCE(txq->xmit_lock_owner, cpu);
   4259}
   4260
   4261static inline bool __netif_tx_acquire(struct netdev_queue *txq)
   4262{
   4263	__acquire(&txq->_xmit_lock);
   4264	return true;
   4265}
   4266
   4267static inline void __netif_tx_release(struct netdev_queue *txq)
   4268{
   4269	__release(&txq->_xmit_lock);
   4270}
   4271
   4272static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
   4273{
   4274	spin_lock_bh(&txq->_xmit_lock);
   4275	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
   4276	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
   4277}
   4278
   4279static inline bool __netif_tx_trylock(struct netdev_queue *txq)
   4280{
   4281	bool ok = spin_trylock(&txq->_xmit_lock);
   4282
   4283	if (likely(ok)) {
   4284		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
   4285		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
   4286	}
   4287	return ok;
   4288}
   4289
   4290static inline void __netif_tx_unlock(struct netdev_queue *txq)
   4291{
   4292	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
   4293	WRITE_ONCE(txq->xmit_lock_owner, -1);
   4294	spin_unlock(&txq->_xmit_lock);
   4295}
   4296
   4297static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
   4298{
   4299	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
   4300	WRITE_ONCE(txq->xmit_lock_owner, -1);
   4301	spin_unlock_bh(&txq->_xmit_lock);
   4302}
   4303
   4304/*
   4305 * txq->trans_start can be read locklessly from dev_watchdog()
   4306 */
   4307static inline void txq_trans_update(struct netdev_queue *txq)
   4308{
   4309	if (txq->xmit_lock_owner != -1)
   4310		WRITE_ONCE(txq->trans_start, jiffies);
   4311}
   4312
   4313static inline void txq_trans_cond_update(struct netdev_queue *txq)
   4314{
   4315	unsigned long now = jiffies;
   4316
   4317	if (READ_ONCE(txq->trans_start) != now)
   4318		WRITE_ONCE(txq->trans_start, now);
   4319}
   4320
   4321/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
   4322static inline void netif_trans_update(struct net_device *dev)
   4323{
   4324	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
   4325
   4326	txq_trans_cond_update(txq);
   4327}
   4328
   4329/**
   4330 *	netif_tx_lock - grab network device transmit lock
   4331 *	@dev: network device
   4332 *
   4333 * Get network device transmit lock
   4334 */
   4335void netif_tx_lock(struct net_device *dev);
   4336
   4337static inline void netif_tx_lock_bh(struct net_device *dev)
   4338{
   4339	local_bh_disable();
   4340	netif_tx_lock(dev);
   4341}
   4342
   4343void netif_tx_unlock(struct net_device *dev);
   4344
   4345static inline void netif_tx_unlock_bh(struct net_device *dev)
   4346{
   4347	netif_tx_unlock(dev);
   4348	local_bh_enable();
   4349}
   4350
   4351#define HARD_TX_LOCK(dev, txq, cpu) {			\
   4352	if ((dev->features & NETIF_F_LLTX) == 0) {	\
   4353		__netif_tx_lock(txq, cpu);		\
   4354	} else {					\
   4355		__netif_tx_acquire(txq);		\
   4356	}						\
   4357}
   4358
   4359#define HARD_TX_TRYLOCK(dev, txq)			\
   4360	(((dev->features & NETIF_F_LLTX) == 0) ?	\
   4361		__netif_tx_trylock(txq) :		\
   4362		__netif_tx_acquire(txq))
   4363
   4364#define HARD_TX_UNLOCK(dev, txq) {			\
   4365	if ((dev->features & NETIF_F_LLTX) == 0) {	\
   4366		__netif_tx_unlock(txq);			\
   4367	} else {					\
   4368		__netif_tx_release(txq);		\
   4369	}						\
   4370}
   4371
   4372static inline void netif_tx_disable(struct net_device *dev)
   4373{
   4374	unsigned int i;
   4375	int cpu;
   4376
   4377	local_bh_disable();
   4378	cpu = smp_processor_id();
   4379	spin_lock(&dev->tx_global_lock);
   4380	for (i = 0; i < dev->num_tx_queues; i++) {
   4381		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
   4382
   4383		__netif_tx_lock(txq, cpu);
   4384		netif_tx_stop_queue(txq);
   4385		__netif_tx_unlock(txq);
   4386	}
   4387	spin_unlock(&dev->tx_global_lock);
   4388	local_bh_enable();
   4389}
   4390
   4391static inline void netif_addr_lock(struct net_device *dev)
   4392{
   4393	unsigned char nest_level = 0;
   4394
   4395#ifdef CONFIG_LOCKDEP
   4396	nest_level = dev->nested_level;
   4397#endif
   4398	spin_lock_nested(&dev->addr_list_lock, nest_level);
   4399}
   4400
   4401static inline void netif_addr_lock_bh(struct net_device *dev)
   4402{
   4403	unsigned char nest_level = 0;
   4404
   4405#ifdef CONFIG_LOCKDEP
   4406	nest_level = dev->nested_level;
   4407#endif
   4408	local_bh_disable();
   4409	spin_lock_nested(&dev->addr_list_lock, nest_level);
   4410}
   4411
   4412static inline void netif_addr_unlock(struct net_device *dev)
   4413{
   4414	spin_unlock(&dev->addr_list_lock);
   4415}
   4416
   4417static inline void netif_addr_unlock_bh(struct net_device *dev)
   4418{
   4419	spin_unlock_bh(&dev->addr_list_lock);
   4420}
   4421
   4422/*
   4423 * dev_addrs walker. Should be used only for read access. Call with
   4424 * rcu_read_lock held.
   4425 */
   4426#define for_each_dev_addr(dev, ha) \
   4427		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
   4428
   4429/* These functions live elsewhere (drivers/net/net_init.c, but related) */
   4430
   4431void ether_setup(struct net_device *dev);
   4432
   4433/* Support for loadable net-drivers */
   4434struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
   4435				    unsigned char name_assign_type,
   4436				    void (*setup)(struct net_device *),
   4437				    unsigned int txqs, unsigned int rxqs);
   4438#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
   4439	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
   4440
   4441#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
   4442	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
   4443			 count)
   4444
   4445int register_netdev(struct net_device *dev);
   4446void unregister_netdev(struct net_device *dev);
   4447
   4448int devm_register_netdev(struct device *dev, struct net_device *ndev);
   4449
   4450/* General hardware address lists handling functions */
   4451int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
   4452		   struct netdev_hw_addr_list *from_list, int addr_len);
   4453void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
   4454		      struct netdev_hw_addr_list *from_list, int addr_len);
   4455int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
   4456		       struct net_device *dev,
   4457		       int (*sync)(struct net_device *, const unsigned char *),
   4458		       int (*unsync)(struct net_device *,
   4459				     const unsigned char *));
   4460int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
   4461			   struct net_device *dev,
   4462			   int (*sync)(struct net_device *,
   4463				       const unsigned char *, int),
   4464			   int (*unsync)(struct net_device *,
   4465					 const unsigned char *, int));
   4466void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
   4467			      struct net_device *dev,
   4468			      int (*unsync)(struct net_device *,
   4469					    const unsigned char *, int));
   4470void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
   4471			  struct net_device *dev,
   4472			  int (*unsync)(struct net_device *,
   4473					const unsigned char *));
   4474void __hw_addr_init(struct netdev_hw_addr_list *list);
   4475
   4476/* Functions used for device addresses handling */
   4477void dev_addr_mod(struct net_device *dev, unsigned int offset,
   4478		  const void *addr, size_t len);
   4479
   4480static inline void
   4481__dev_addr_set(struct net_device *dev, const void *addr, size_t len)
   4482{
   4483	dev_addr_mod(dev, 0, addr, len);
   4484}
   4485
   4486static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
   4487{
   4488	__dev_addr_set(dev, addr, dev->addr_len);
   4489}
   4490
   4491int dev_addr_add(struct net_device *dev, const unsigned char *addr,
   4492		 unsigned char addr_type);
   4493int dev_addr_del(struct net_device *dev, const unsigned char *addr,
   4494		 unsigned char addr_type);
   4495
   4496/* Functions used for unicast addresses handling */
   4497int dev_uc_add(struct net_device *dev, const unsigned char *addr);
   4498int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
   4499int dev_uc_del(struct net_device *dev, const unsigned char *addr);
   4500int dev_uc_sync(struct net_device *to, struct net_device *from);
   4501int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
   4502void dev_uc_unsync(struct net_device *to, struct net_device *from);
   4503void dev_uc_flush(struct net_device *dev);
   4504void dev_uc_init(struct net_device *dev);
   4505
   4506/**
   4507 *  __dev_uc_sync - Synchonize device's unicast list
   4508 *  @dev:  device to sync
   4509 *  @sync: function to call if address should be added
   4510 *  @unsync: function to call if address should be removed
   4511 *
   4512 *  Add newly added addresses to the interface, and release
   4513 *  addresses that have been deleted.
   4514 */
   4515static inline int __dev_uc_sync(struct net_device *dev,
   4516				int (*sync)(struct net_device *,
   4517					    const unsigned char *),
   4518				int (*unsync)(struct net_device *,
   4519					      const unsigned char *))
   4520{
   4521	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
   4522}
   4523
   4524/**
   4525 *  __dev_uc_unsync - Remove synchronized addresses from device
   4526 *  @dev:  device to sync
   4527 *  @unsync: function to call if address should be removed
   4528 *
   4529 *  Remove all addresses that were added to the device by dev_uc_sync().
   4530 */
   4531static inline void __dev_uc_unsync(struct net_device *dev,
   4532				   int (*unsync)(struct net_device *,
   4533						 const unsigned char *))
   4534{
   4535	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
   4536}
   4537
   4538/* Functions used for multicast addresses handling */
   4539int dev_mc_add(struct net_device *dev, const unsigned char *addr);
   4540int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
   4541int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
   4542int dev_mc_del(struct net_device *dev, const unsigned char *addr);
   4543int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
   4544int dev_mc_sync(struct net_device *to, struct net_device *from);
   4545int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
   4546void dev_mc_unsync(struct net_device *to, struct net_device *from);
   4547void dev_mc_flush(struct net_device *dev);
   4548void dev_mc_init(struct net_device *dev);
   4549
   4550/**
   4551 *  __dev_mc_sync - Synchonize device's multicast list
   4552 *  @dev:  device to sync
   4553 *  @sync: function to call if address should be added
   4554 *  @unsync: function to call if address should be removed
   4555 *
   4556 *  Add newly added addresses to the interface, and release
   4557 *  addresses that have been deleted.
   4558 */
   4559static inline int __dev_mc_sync(struct net_device *dev,
   4560				int (*sync)(struct net_device *,
   4561					    const unsigned char *),
   4562				int (*unsync)(struct net_device *,
   4563					      const unsigned char *))
   4564{
   4565	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
   4566}
   4567
   4568/**
   4569 *  __dev_mc_unsync - Remove synchronized addresses from device
   4570 *  @dev:  device to sync
   4571 *  @unsync: function to call if address should be removed
   4572 *
   4573 *  Remove all addresses that were added to the device by dev_mc_sync().
   4574 */
   4575static inline void __dev_mc_unsync(struct net_device *dev,
   4576				   int (*unsync)(struct net_device *,
   4577						 const unsigned char *))
   4578{
   4579	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
   4580}
   4581
   4582/* Functions used for secondary unicast and multicast support */
   4583void dev_set_rx_mode(struct net_device *dev);
   4584int dev_set_promiscuity(struct net_device *dev, int inc);
   4585int dev_set_allmulti(struct net_device *dev, int inc);
   4586void netdev_state_change(struct net_device *dev);
   4587void __netdev_notify_peers(struct net_device *dev);
   4588void netdev_notify_peers(struct net_device *dev);
   4589void netdev_features_change(struct net_device *dev);
   4590/* Load a device via the kmod */
   4591void dev_load(struct net *net, const char *name);
   4592struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
   4593					struct rtnl_link_stats64 *storage);
   4594void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
   4595			     const struct net_device_stats *netdev_stats);
   4596void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
   4597			   const struct pcpu_sw_netstats __percpu *netstats);
   4598void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
   4599
   4600extern int		netdev_max_backlog;
   4601extern int		dev_rx_weight;
   4602extern int		dev_tx_weight;
   4603extern int		gro_normal_batch;
   4604
   4605enum {
   4606	NESTED_SYNC_IMM_BIT,
   4607	NESTED_SYNC_TODO_BIT,
   4608};
   4609
   4610#define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
   4611#define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
   4612
   4613#define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
   4614#define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
   4615
   4616struct netdev_nested_priv {
   4617	unsigned char flags;
   4618	void *data;
   4619};
   4620
   4621bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
   4622struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
   4623						     struct list_head **iter);
   4624
   4625/* iterate through upper list, must be called under RCU read lock */
   4626#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
   4627	for (iter = &(dev)->adj_list.upper, \
   4628	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
   4629	     updev; \
   4630	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
   4631
   4632int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
   4633				  int (*fn)(struct net_device *upper_dev,
   4634					    struct netdev_nested_priv *priv),
   4635				  struct netdev_nested_priv *priv);
   4636
   4637bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
   4638				  struct net_device *upper_dev);
   4639
   4640bool netdev_has_any_upper_dev(struct net_device *dev);
   4641
   4642void *netdev_lower_get_next_private(struct net_device *dev,
   4643				    struct list_head **iter);
   4644void *netdev_lower_get_next_private_rcu(struct net_device *dev,
   4645					struct list_head **iter);
   4646
   4647#define netdev_for_each_lower_private(dev, priv, iter) \
   4648	for (iter = (dev)->adj_list.lower.next, \
   4649	     priv = netdev_lower_get_next_private(dev, &(iter)); \
   4650	     priv; \
   4651	     priv = netdev_lower_get_next_private(dev, &(iter)))
   4652
   4653#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
   4654	for (iter = &(dev)->adj_list.lower, \
   4655	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
   4656	     priv; \
   4657	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
   4658
   4659void *netdev_lower_get_next(struct net_device *dev,
   4660				struct list_head **iter);
   4661
   4662#define netdev_for_each_lower_dev(dev, ldev, iter) \
   4663	for (iter = (dev)->adj_list.lower.next, \
   4664	     ldev = netdev_lower_get_next(dev, &(iter)); \
   4665	     ldev; \
   4666	     ldev = netdev_lower_get_next(dev, &(iter)))
   4667
   4668struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
   4669					     struct list_head **iter);
   4670int netdev_walk_all_lower_dev(struct net_device *dev,
   4671			      int (*fn)(struct net_device *lower_dev,
   4672					struct netdev_nested_priv *priv),
   4673			      struct netdev_nested_priv *priv);
   4674int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
   4675				  int (*fn)(struct net_device *lower_dev,
   4676					    struct netdev_nested_priv *priv),
   4677				  struct netdev_nested_priv *priv);
   4678
   4679void *netdev_adjacent_get_private(struct list_head *adj_list);
   4680void *netdev_lower_get_first_private_rcu(struct net_device *dev);
   4681struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
   4682struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
   4683int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
   4684			  struct netlink_ext_ack *extack);
   4685int netdev_master_upper_dev_link(struct net_device *dev,
   4686				 struct net_device *upper_dev,
   4687				 void *upper_priv, void *upper_info,
   4688				 struct netlink_ext_ack *extack);
   4689void netdev_upper_dev_unlink(struct net_device *dev,
   4690			     struct net_device *upper_dev);
   4691int netdev_adjacent_change_prepare(struct net_device *old_dev,
   4692				   struct net_device *new_dev,
   4693				   struct net_device *dev,
   4694				   struct netlink_ext_ack *extack);
   4695void netdev_adjacent_change_commit(struct net_device *old_dev,
   4696				   struct net_device *new_dev,
   4697				   struct net_device *dev);
   4698void netdev_adjacent_change_abort(struct net_device *old_dev,
   4699				  struct net_device *new_dev,
   4700				  struct net_device *dev);
   4701void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
   4702void *netdev_lower_dev_get_private(struct net_device *dev,
   4703				   struct net_device *lower_dev);
   4704void netdev_lower_state_changed(struct net_device *lower_dev,
   4705				void *lower_state_info);
   4706
   4707/* RSS keys are 40 or 52 bytes long */
   4708#define NETDEV_RSS_KEY_LEN 52
   4709extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
   4710void netdev_rss_key_fill(void *buffer, size_t len);
   4711
   4712int skb_checksum_help(struct sk_buff *skb);
   4713int skb_crc32c_csum_help(struct sk_buff *skb);
   4714int skb_csum_hwoffload_help(struct sk_buff *skb,
   4715			    const netdev_features_t features);
   4716
   4717struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
   4718				  netdev_features_t features, bool tx_path);
   4719struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
   4720				    netdev_features_t features, __be16 type);
   4721struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
   4722				    netdev_features_t features);
   4723
   4724struct netdev_bonding_info {
   4725	ifslave	slave;
   4726	ifbond	master;
   4727};
   4728
   4729struct netdev_notifier_bonding_info {
   4730	struct netdev_notifier_info info; /* must be first */
   4731	struct netdev_bonding_info  bonding_info;
   4732};
   4733
   4734void netdev_bonding_info_change(struct net_device *dev,
   4735				struct netdev_bonding_info *bonding_info);
   4736
   4737#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
   4738void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
   4739#else
   4740static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
   4741				  const void *data)
   4742{
   4743}
   4744#endif
   4745
   4746static inline
   4747struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
   4748{
   4749	return __skb_gso_segment(skb, features, true);
   4750}
   4751__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
   4752
   4753static inline bool can_checksum_protocol(netdev_features_t features,
   4754					 __be16 protocol)
   4755{
   4756	if (protocol == htons(ETH_P_FCOE))
   4757		return !!(features & NETIF_F_FCOE_CRC);
   4758
   4759	/* Assume this is an IP checksum (not SCTP CRC) */
   4760
   4761	if (features & NETIF_F_HW_CSUM) {
   4762		/* Can checksum everything */
   4763		return true;
   4764	}
   4765
   4766	switch (protocol) {
   4767	case htons(ETH_P_IP):
   4768		return !!(features & NETIF_F_IP_CSUM);
   4769	case htons(ETH_P_IPV6):
   4770		return !!(features & NETIF_F_IPV6_CSUM);
   4771	default:
   4772		return false;
   4773	}
   4774}
   4775
   4776#ifdef CONFIG_BUG
   4777void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
   4778#else
   4779static inline void netdev_rx_csum_fault(struct net_device *dev,
   4780					struct sk_buff *skb)
   4781{
   4782}
   4783#endif
   4784/* rx skb timestamps */
   4785void net_enable_timestamp(void);
   4786void net_disable_timestamp(void);
   4787
   4788static inline ktime_t netdev_get_tstamp(struct net_device *dev,
   4789					const struct skb_shared_hwtstamps *hwtstamps,
   4790					bool cycles)
   4791{
   4792	const struct net_device_ops *ops = dev->netdev_ops;
   4793
   4794	if (ops->ndo_get_tstamp)
   4795		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
   4796
   4797	return hwtstamps->hwtstamp;
   4798}
   4799
   4800static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
   4801					      struct sk_buff *skb, struct net_device *dev,
   4802					      bool more)
   4803{
   4804	__this_cpu_write(softnet_data.xmit.more, more);
   4805	return ops->ndo_start_xmit(skb, dev);
   4806}
   4807
   4808static inline bool netdev_xmit_more(void)
   4809{
   4810	return __this_cpu_read(softnet_data.xmit.more);
   4811}
   4812
   4813static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
   4814					    struct netdev_queue *txq, bool more)
   4815{
   4816	const struct net_device_ops *ops = dev->netdev_ops;
   4817	netdev_tx_t rc;
   4818
   4819	rc = __netdev_start_xmit(ops, skb, dev, more);
   4820	if (rc == NETDEV_TX_OK)
   4821		txq_trans_update(txq);
   4822
   4823	return rc;
   4824}
   4825
   4826int netdev_class_create_file_ns(const struct class_attribute *class_attr,
   4827				const void *ns);
   4828void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
   4829				 const void *ns);
   4830
   4831extern const struct kobj_ns_type_operations net_ns_type_operations;
   4832
   4833const char *netdev_drivername(const struct net_device *dev);
   4834
   4835static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
   4836							  netdev_features_t f2)
   4837{
   4838	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
   4839		if (f1 & NETIF_F_HW_CSUM)
   4840			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
   4841		else
   4842			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
   4843	}
   4844
   4845	return f1 & f2;
   4846}
   4847
   4848static inline netdev_features_t netdev_get_wanted_features(
   4849	struct net_device *dev)
   4850{
   4851	return (dev->features & ~dev->hw_features) | dev->wanted_features;
   4852}
   4853netdev_features_t netdev_increment_features(netdev_features_t all,
   4854	netdev_features_t one, netdev_features_t mask);
   4855
   4856/* Allow TSO being used on stacked device :
   4857 * Performing the GSO segmentation before last device
   4858 * is a performance improvement.
   4859 */
   4860static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
   4861							netdev_features_t mask)
   4862{
   4863	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
   4864}
   4865
   4866int __netdev_update_features(struct net_device *dev);
   4867void netdev_update_features(struct net_device *dev);
   4868void netdev_change_features(struct net_device *dev);
   4869
   4870void netif_stacked_transfer_operstate(const struct net_device *rootdev,
   4871					struct net_device *dev);
   4872
   4873netdev_features_t passthru_features_check(struct sk_buff *skb,
   4874					  struct net_device *dev,
   4875					  netdev_features_t features);
   4876netdev_features_t netif_skb_features(struct sk_buff *skb);
   4877
   4878static inline bool net_gso_ok(netdev_features_t features, int gso_type)
   4879{
   4880	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
   4881
   4882	/* check flags correspondence */
   4883	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
   4884	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
   4885	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
   4886	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
   4887	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
   4888	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
   4889	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
   4890	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
   4891	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
   4892	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
   4893	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
   4894	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
   4895	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
   4896	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
   4897	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
   4898	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
   4899	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
   4900	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
   4901	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
   4902
   4903	return (features & feature) == feature;
   4904}
   4905
   4906static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
   4907{
   4908	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
   4909	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
   4910}
   4911
   4912static inline bool netif_needs_gso(struct sk_buff *skb,
   4913				   netdev_features_t features)
   4914{
   4915	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
   4916		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
   4917			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
   4918}
   4919
   4920void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
   4921void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
   4922void netif_inherit_tso_max(struct net_device *to,
   4923			   const struct net_device *from);
   4924
   4925static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
   4926					int pulled_hlen, u16 mac_offset,
   4927					int mac_len)
   4928{
   4929	skb->protocol = protocol;
   4930	skb->encapsulation = 1;
   4931	skb_push(skb, pulled_hlen);
   4932	skb_reset_transport_header(skb);
   4933	skb->mac_header = mac_offset;
   4934	skb->network_header = skb->mac_header + mac_len;
   4935	skb->mac_len = mac_len;
   4936}
   4937
   4938static inline bool netif_is_macsec(const struct net_device *dev)
   4939{
   4940	return dev->priv_flags & IFF_MACSEC;
   4941}
   4942
   4943static inline bool netif_is_macvlan(const struct net_device *dev)
   4944{
   4945	return dev->priv_flags & IFF_MACVLAN;
   4946}
   4947
   4948static inline bool netif_is_macvlan_port(const struct net_device *dev)
   4949{
   4950	return dev->priv_flags & IFF_MACVLAN_PORT;
   4951}
   4952
   4953static inline bool netif_is_bond_master(const struct net_device *dev)
   4954{
   4955	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
   4956}
   4957
   4958static inline bool netif_is_bond_slave(const struct net_device *dev)
   4959{
   4960	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
   4961}
   4962
   4963static inline bool netif_supports_nofcs(struct net_device *dev)
   4964{
   4965	return dev->priv_flags & IFF_SUPP_NOFCS;
   4966}
   4967
   4968static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
   4969{
   4970	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
   4971}
   4972
   4973static inline bool netif_is_l3_master(const struct net_device *dev)
   4974{
   4975	return dev->priv_flags & IFF_L3MDEV_MASTER;
   4976}
   4977
   4978static inline bool netif_is_l3_slave(const struct net_device *dev)
   4979{
   4980	return dev->priv_flags & IFF_L3MDEV_SLAVE;
   4981}
   4982
   4983static inline bool netif_is_bridge_master(const struct net_device *dev)
   4984{
   4985	return dev->priv_flags & IFF_EBRIDGE;
   4986}
   4987
   4988static inline bool netif_is_bridge_port(const struct net_device *dev)
   4989{
   4990	return dev->priv_flags & IFF_BRIDGE_PORT;
   4991}
   4992
   4993static inline bool netif_is_ovs_master(const struct net_device *dev)
   4994{
   4995	return dev->priv_flags & IFF_OPENVSWITCH;
   4996}
   4997
   4998static inline bool netif_is_ovs_port(const struct net_device *dev)
   4999{
   5000	return dev->priv_flags & IFF_OVS_DATAPATH;
   5001}
   5002
   5003static inline bool netif_is_any_bridge_port(const struct net_device *dev)
   5004{
   5005	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
   5006}
   5007
   5008static inline bool netif_is_team_master(const struct net_device *dev)
   5009{
   5010	return dev->priv_flags & IFF_TEAM;
   5011}
   5012
   5013static inline bool netif_is_team_port(const struct net_device *dev)
   5014{
   5015	return dev->priv_flags & IFF_TEAM_PORT;
   5016}
   5017
   5018static inline bool netif_is_lag_master(const struct net_device *dev)
   5019{
   5020	return netif_is_bond_master(dev) || netif_is_team_master(dev);
   5021}
   5022
   5023static inline bool netif_is_lag_port(const struct net_device *dev)
   5024{
   5025	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
   5026}
   5027
   5028static inline bool netif_is_rxfh_configured(const struct net_device *dev)
   5029{
   5030	return dev->priv_flags & IFF_RXFH_CONFIGURED;
   5031}
   5032
   5033static inline bool netif_is_failover(const struct net_device *dev)
   5034{
   5035	return dev->priv_flags & IFF_FAILOVER;
   5036}
   5037
   5038static inline bool netif_is_failover_slave(const struct net_device *dev)
   5039{
   5040	return dev->priv_flags & IFF_FAILOVER_SLAVE;
   5041}
   5042
   5043/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
   5044static inline void netif_keep_dst(struct net_device *dev)
   5045{
   5046	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
   5047}
   5048
   5049/* return true if dev can't cope with mtu frames that need vlan tag insertion */
   5050static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
   5051{
   5052	/* TODO: reserve and use an additional IFF bit, if we get more users */
   5053	return netif_is_macsec(dev);
   5054}
   5055
   5056extern struct pernet_operations __net_initdata loopback_net_ops;
   5057
   5058/* Logging, debugging and troubleshooting/diagnostic helpers. */
   5059
   5060/* netdev_printk helpers, similar to dev_printk */
   5061
   5062static inline const char *netdev_name(const struct net_device *dev)
   5063{
   5064	if (!dev->name[0] || strchr(dev->name, '%'))
   5065		return "(unnamed net_device)";
   5066	return dev->name;
   5067}
   5068
   5069static inline bool netdev_unregistering(const struct net_device *dev)
   5070{
   5071	return dev->reg_state == NETREG_UNREGISTERING;
   5072}
   5073
   5074static inline const char *netdev_reg_state(const struct net_device *dev)
   5075{
   5076	switch (dev->reg_state) {
   5077	case NETREG_UNINITIALIZED: return " (uninitialized)";
   5078	case NETREG_REGISTERED: return "";
   5079	case NETREG_UNREGISTERING: return " (unregistering)";
   5080	case NETREG_UNREGISTERED: return " (unregistered)";
   5081	case NETREG_RELEASED: return " (released)";
   5082	case NETREG_DUMMY: return " (dummy)";
   5083	}
   5084
   5085	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
   5086	return " (unknown)";
   5087}
   5088
   5089#define MODULE_ALIAS_NETDEV(device) \
   5090	MODULE_ALIAS("netdev-" device)
   5091
   5092/*
   5093 * netdev_WARN() acts like dev_printk(), but with the key difference
   5094 * of using a WARN/WARN_ON to get the message out, including the
   5095 * file/line information and a backtrace.
   5096 */
   5097#define netdev_WARN(dev, format, args...)			\
   5098	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
   5099	     netdev_reg_state(dev), ##args)
   5100
   5101#define netdev_WARN_ONCE(dev, format, args...)				\
   5102	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
   5103		  netdev_reg_state(dev), ##args)
   5104
   5105/*
   5106 *	The list of packet types we will receive (as opposed to discard)
   5107 *	and the routines to invoke.
   5108 *
   5109 *	Why 16. Because with 16 the only overlap we get on a hash of the
   5110 *	low nibble of the protocol value is RARP/SNAP/X.25.
   5111 *
   5112 *		0800	IP
   5113 *		0001	802.3
   5114 *		0002	AX.25
   5115 *		0004	802.2
   5116 *		8035	RARP
   5117 *		0005	SNAP
   5118 *		0805	X.25
   5119 *		0806	ARP
   5120 *		8137	IPX
   5121 *		0009	Localtalk
   5122 *		86DD	IPv6
   5123 */
   5124#define PTYPE_HASH_SIZE	(16)
   5125#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
   5126
   5127extern struct list_head ptype_all __read_mostly;
   5128extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
   5129
   5130extern struct net_device *blackhole_netdev;
   5131
   5132#endif	/* _LINUX_NETDEVICE_H */