ntb.h (53691B)
1/* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright (C) 2015 EMC Corporation. All Rights Reserved. 8 * Copyright (C) 2016 T-Platforms. All Rights Reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * BSD LICENSE 20 * 21 * Copyright (C) 2015 EMC Corporation. All Rights Reserved. 22 * Copyright (C) 2016 T-Platforms. All Rights Reserved. 23 * 24 * Redistribution and use in source and binary forms, with or without 25 * modification, are permitted provided that the following conditions 26 * are met: 27 * 28 * * Redistributions of source code must retain the above copyright 29 * notice, this list of conditions and the following disclaimer. 30 * * Redistributions in binary form must reproduce the above copy 31 * notice, this list of conditions and the following disclaimer in 32 * the documentation and/or other materials provided with the 33 * distribution. 34 * * Neither the name of Intel Corporation nor the names of its 35 * contributors may be used to endorse or promote products derived 36 * from this software without specific prior written permission. 37 * 38 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 39 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 40 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 41 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 42 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 44 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 45 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 46 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 47 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 48 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 49 * 50 * PCIe NTB Linux driver 51 * 52 * Contact Information: 53 * Allen Hubbe <Allen.Hubbe@emc.com> 54 */ 55 56#ifndef _NTB_H_ 57#define _NTB_H_ 58 59#include <linux/completion.h> 60#include <linux/device.h> 61#include <linux/interrupt.h> 62 63struct ntb_client; 64struct ntb_dev; 65struct ntb_msi; 66struct pci_dev; 67 68/** 69 * enum ntb_topo - NTB connection topology 70 * @NTB_TOPO_NONE: Topology is unknown or invalid. 71 * @NTB_TOPO_PRI: On primary side of local ntb. 72 * @NTB_TOPO_SEC: On secondary side of remote ntb. 73 * @NTB_TOPO_B2B_USD: On primary side of local ntb upstream of remote ntb. 74 * @NTB_TOPO_B2B_DSD: On primary side of local ntb downstream of remote ntb. 75 * @NTB_TOPO_SWITCH: Connected via a switch which supports ntb. 76 * @NTB_TOPO_CROSSLINK: Connected via two symmetric switchecs 77 */ 78enum ntb_topo { 79 NTB_TOPO_NONE = -1, 80 NTB_TOPO_PRI, 81 NTB_TOPO_SEC, 82 NTB_TOPO_B2B_USD, 83 NTB_TOPO_B2B_DSD, 84 NTB_TOPO_SWITCH, 85 NTB_TOPO_CROSSLINK, 86}; 87 88static inline int ntb_topo_is_b2b(enum ntb_topo topo) 89{ 90 switch ((int)topo) { 91 case NTB_TOPO_B2B_USD: 92 case NTB_TOPO_B2B_DSD: 93 return 1; 94 } 95 return 0; 96} 97 98static inline char *ntb_topo_string(enum ntb_topo topo) 99{ 100 switch (topo) { 101 case NTB_TOPO_NONE: return "NTB_TOPO_NONE"; 102 case NTB_TOPO_PRI: return "NTB_TOPO_PRI"; 103 case NTB_TOPO_SEC: return "NTB_TOPO_SEC"; 104 case NTB_TOPO_B2B_USD: return "NTB_TOPO_B2B_USD"; 105 case NTB_TOPO_B2B_DSD: return "NTB_TOPO_B2B_DSD"; 106 case NTB_TOPO_SWITCH: return "NTB_TOPO_SWITCH"; 107 case NTB_TOPO_CROSSLINK: return "NTB_TOPO_CROSSLINK"; 108 } 109 return "NTB_TOPO_INVALID"; 110} 111 112/** 113 * enum ntb_speed - NTB link training speed 114 * @NTB_SPEED_AUTO: Request the max supported speed. 115 * @NTB_SPEED_NONE: Link is not trained to any speed. 116 * @NTB_SPEED_GEN1: Link is trained to gen1 speed. 117 * @NTB_SPEED_GEN2: Link is trained to gen2 speed. 118 * @NTB_SPEED_GEN3: Link is trained to gen3 speed. 119 * @NTB_SPEED_GEN4: Link is trained to gen4 speed. 120 */ 121enum ntb_speed { 122 NTB_SPEED_AUTO = -1, 123 NTB_SPEED_NONE = 0, 124 NTB_SPEED_GEN1 = 1, 125 NTB_SPEED_GEN2 = 2, 126 NTB_SPEED_GEN3 = 3, 127 NTB_SPEED_GEN4 = 4 128}; 129 130/** 131 * enum ntb_width - NTB link training width 132 * @NTB_WIDTH_AUTO: Request the max supported width. 133 * @NTB_WIDTH_NONE: Link is not trained to any width. 134 * @NTB_WIDTH_1: Link is trained to 1 lane width. 135 * @NTB_WIDTH_2: Link is trained to 2 lane width. 136 * @NTB_WIDTH_4: Link is trained to 4 lane width. 137 * @NTB_WIDTH_8: Link is trained to 8 lane width. 138 * @NTB_WIDTH_12: Link is trained to 12 lane width. 139 * @NTB_WIDTH_16: Link is trained to 16 lane width. 140 * @NTB_WIDTH_32: Link is trained to 32 lane width. 141 */ 142enum ntb_width { 143 NTB_WIDTH_AUTO = -1, 144 NTB_WIDTH_NONE = 0, 145 NTB_WIDTH_1 = 1, 146 NTB_WIDTH_2 = 2, 147 NTB_WIDTH_4 = 4, 148 NTB_WIDTH_8 = 8, 149 NTB_WIDTH_12 = 12, 150 NTB_WIDTH_16 = 16, 151 NTB_WIDTH_32 = 32, 152}; 153 154/** 155 * enum ntb_default_port - NTB default port number 156 * @NTB_PORT_PRI_USD: Default port of the NTB_TOPO_PRI/NTB_TOPO_B2B_USD 157 * topologies 158 * @NTB_PORT_SEC_DSD: Default port of the NTB_TOPO_SEC/NTB_TOPO_B2B_DSD 159 * topologies 160 */ 161enum ntb_default_port { 162 NTB_PORT_PRI_USD, 163 NTB_PORT_SEC_DSD 164}; 165#define NTB_DEF_PEER_CNT (1) 166#define NTB_DEF_PEER_IDX (0) 167 168/** 169 * struct ntb_client_ops - ntb client operations 170 * @probe: Notify client of a new device. 171 * @remove: Notify client to remove a device. 172 */ 173struct ntb_client_ops { 174 int (*probe)(struct ntb_client *client, struct ntb_dev *ntb); 175 void (*remove)(struct ntb_client *client, struct ntb_dev *ntb); 176}; 177 178static inline int ntb_client_ops_is_valid(const struct ntb_client_ops *ops) 179{ 180 /* commented callbacks are not required: */ 181 return 182 ops->probe && 183 ops->remove && 184 1; 185} 186 187/** 188 * struct ntb_ctx_ops - ntb driver context operations 189 * @link_event: See ntb_link_event(). 190 * @db_event: See ntb_db_event(). 191 * @msg_event: See ntb_msg_event(). 192 */ 193struct ntb_ctx_ops { 194 void (*link_event)(void *ctx); 195 void (*db_event)(void *ctx, int db_vector); 196 void (*msg_event)(void *ctx); 197}; 198 199static inline int ntb_ctx_ops_is_valid(const struct ntb_ctx_ops *ops) 200{ 201 /* commented callbacks are not required: */ 202 return 203 /* ops->link_event && */ 204 /* ops->db_event && */ 205 /* ops->msg_event && */ 206 1; 207} 208 209/** 210 * struct ntb_dev_ops - ntb device operations 211 * @port_number: See ntb_port_number(). 212 * @peer_port_count: See ntb_peer_port_count(). 213 * @peer_port_number: See ntb_peer_port_number(). 214 * @peer_port_idx: See ntb_peer_port_idx(). 215 * @link_is_up: See ntb_link_is_up(). 216 * @link_enable: See ntb_link_enable(). 217 * @link_disable: See ntb_link_disable(). 218 * @mw_count: See ntb_mw_count(). 219 * @mw_get_align: See ntb_mw_get_align(). 220 * @mw_set_trans: See ntb_mw_set_trans(). 221 * @mw_clear_trans: See ntb_mw_clear_trans(). 222 * @peer_mw_count: See ntb_peer_mw_count(). 223 * @peer_mw_get_addr: See ntb_peer_mw_get_addr(). 224 * @peer_mw_set_trans: See ntb_peer_mw_set_trans(). 225 * @peer_mw_clear_trans:See ntb_peer_mw_clear_trans(). 226 * @db_is_unsafe: See ntb_db_is_unsafe(). 227 * @db_valid_mask: See ntb_db_valid_mask(). 228 * @db_vector_count: See ntb_db_vector_count(). 229 * @db_vector_mask: See ntb_db_vector_mask(). 230 * @db_read: See ntb_db_read(). 231 * @db_set: See ntb_db_set(). 232 * @db_clear: See ntb_db_clear(). 233 * @db_read_mask: See ntb_db_read_mask(). 234 * @db_set_mask: See ntb_db_set_mask(). 235 * @db_clear_mask: See ntb_db_clear_mask(). 236 * @peer_db_addr: See ntb_peer_db_addr(). 237 * @peer_db_read: See ntb_peer_db_read(). 238 * @peer_db_set: See ntb_peer_db_set(). 239 * @peer_db_clear: See ntb_peer_db_clear(). 240 * @peer_db_read_mask: See ntb_peer_db_read_mask(). 241 * @peer_db_set_mask: See ntb_peer_db_set_mask(). 242 * @peer_db_clear_mask: See ntb_peer_db_clear_mask(). 243 * @spad_is_unsafe: See ntb_spad_is_unsafe(). 244 * @spad_count: See ntb_spad_count(). 245 * @spad_read: See ntb_spad_read(). 246 * @spad_write: See ntb_spad_write(). 247 * @peer_spad_addr: See ntb_peer_spad_addr(). 248 * @peer_spad_read: See ntb_peer_spad_read(). 249 * @peer_spad_write: See ntb_peer_spad_write(). 250 * @msg_count: See ntb_msg_count(). 251 * @msg_inbits: See ntb_msg_inbits(). 252 * @msg_outbits: See ntb_msg_outbits(). 253 * @msg_read_sts: See ntb_msg_read_sts(). 254 * @msg_clear_sts: See ntb_msg_clear_sts(). 255 * @msg_set_mask: See ntb_msg_set_mask(). 256 * @msg_clear_mask: See ntb_msg_clear_mask(). 257 * @msg_read: See ntb_msg_read(). 258 * @peer_msg_write: See ntb_peer_msg_write(). 259 */ 260struct ntb_dev_ops { 261 int (*port_number)(struct ntb_dev *ntb); 262 int (*peer_port_count)(struct ntb_dev *ntb); 263 int (*peer_port_number)(struct ntb_dev *ntb, int pidx); 264 int (*peer_port_idx)(struct ntb_dev *ntb, int port); 265 266 u64 (*link_is_up)(struct ntb_dev *ntb, 267 enum ntb_speed *speed, enum ntb_width *width); 268 int (*link_enable)(struct ntb_dev *ntb, 269 enum ntb_speed max_speed, enum ntb_width max_width); 270 int (*link_disable)(struct ntb_dev *ntb); 271 272 int (*mw_count)(struct ntb_dev *ntb, int pidx); 273 int (*mw_get_align)(struct ntb_dev *ntb, int pidx, int widx, 274 resource_size_t *addr_align, 275 resource_size_t *size_align, 276 resource_size_t *size_max); 277 int (*mw_set_trans)(struct ntb_dev *ntb, int pidx, int widx, 278 dma_addr_t addr, resource_size_t size); 279 int (*mw_clear_trans)(struct ntb_dev *ntb, int pidx, int widx); 280 int (*peer_mw_count)(struct ntb_dev *ntb); 281 int (*peer_mw_get_addr)(struct ntb_dev *ntb, int widx, 282 phys_addr_t *base, resource_size_t *size); 283 int (*peer_mw_set_trans)(struct ntb_dev *ntb, int pidx, int widx, 284 u64 addr, resource_size_t size); 285 int (*peer_mw_clear_trans)(struct ntb_dev *ntb, int pidx, int widx); 286 287 int (*db_is_unsafe)(struct ntb_dev *ntb); 288 u64 (*db_valid_mask)(struct ntb_dev *ntb); 289 int (*db_vector_count)(struct ntb_dev *ntb); 290 u64 (*db_vector_mask)(struct ntb_dev *ntb, int db_vector); 291 292 u64 (*db_read)(struct ntb_dev *ntb); 293 int (*db_set)(struct ntb_dev *ntb, u64 db_bits); 294 int (*db_clear)(struct ntb_dev *ntb, u64 db_bits); 295 296 u64 (*db_read_mask)(struct ntb_dev *ntb); 297 int (*db_set_mask)(struct ntb_dev *ntb, u64 db_bits); 298 int (*db_clear_mask)(struct ntb_dev *ntb, u64 db_bits); 299 300 int (*peer_db_addr)(struct ntb_dev *ntb, 301 phys_addr_t *db_addr, resource_size_t *db_size, 302 u64 *db_data, int db_bit); 303 u64 (*peer_db_read)(struct ntb_dev *ntb); 304 int (*peer_db_set)(struct ntb_dev *ntb, u64 db_bits); 305 int (*peer_db_clear)(struct ntb_dev *ntb, u64 db_bits); 306 307 u64 (*peer_db_read_mask)(struct ntb_dev *ntb); 308 int (*peer_db_set_mask)(struct ntb_dev *ntb, u64 db_bits); 309 int (*peer_db_clear_mask)(struct ntb_dev *ntb, u64 db_bits); 310 311 int (*spad_is_unsafe)(struct ntb_dev *ntb); 312 int (*spad_count)(struct ntb_dev *ntb); 313 314 u32 (*spad_read)(struct ntb_dev *ntb, int sidx); 315 int (*spad_write)(struct ntb_dev *ntb, int sidx, u32 val); 316 317 int (*peer_spad_addr)(struct ntb_dev *ntb, int pidx, int sidx, 318 phys_addr_t *spad_addr); 319 u32 (*peer_spad_read)(struct ntb_dev *ntb, int pidx, int sidx); 320 int (*peer_spad_write)(struct ntb_dev *ntb, int pidx, int sidx, 321 u32 val); 322 323 int (*msg_count)(struct ntb_dev *ntb); 324 u64 (*msg_inbits)(struct ntb_dev *ntb); 325 u64 (*msg_outbits)(struct ntb_dev *ntb); 326 u64 (*msg_read_sts)(struct ntb_dev *ntb); 327 int (*msg_clear_sts)(struct ntb_dev *ntb, u64 sts_bits); 328 int (*msg_set_mask)(struct ntb_dev *ntb, u64 mask_bits); 329 int (*msg_clear_mask)(struct ntb_dev *ntb, u64 mask_bits); 330 u32 (*msg_read)(struct ntb_dev *ntb, int *pidx, int midx); 331 int (*peer_msg_write)(struct ntb_dev *ntb, int pidx, int midx, u32 msg); 332}; 333 334static inline int ntb_dev_ops_is_valid(const struct ntb_dev_ops *ops) 335{ 336 /* commented callbacks are not required: */ 337 return 338 /* Port operations are required for multiport devices */ 339 !ops->peer_port_count == !ops->port_number && 340 !ops->peer_port_number == !ops->port_number && 341 !ops->peer_port_idx == !ops->port_number && 342 343 /* Link operations are required */ 344 ops->link_is_up && 345 ops->link_enable && 346 ops->link_disable && 347 348 /* One or both MW interfaces should be developed */ 349 ops->mw_count && 350 ops->mw_get_align && 351 (ops->mw_set_trans || 352 ops->peer_mw_set_trans) && 353 /* ops->mw_clear_trans && */ 354 ops->peer_mw_count && 355 ops->peer_mw_get_addr && 356 /* ops->peer_mw_clear_trans && */ 357 358 /* Doorbell operations are mostly required */ 359 /* ops->db_is_unsafe && */ 360 ops->db_valid_mask && 361 /* both set, or both unset */ 362 (!ops->db_vector_count == !ops->db_vector_mask) && 363 ops->db_read && 364 /* ops->db_set && */ 365 ops->db_clear && 366 /* ops->db_read_mask && */ 367 ops->db_set_mask && 368 ops->db_clear_mask && 369 /* ops->peer_db_addr && */ 370 /* ops->peer_db_read && */ 371 ops->peer_db_set && 372 /* ops->peer_db_clear && */ 373 /* ops->peer_db_read_mask && */ 374 /* ops->peer_db_set_mask && */ 375 /* ops->peer_db_clear_mask && */ 376 377 /* Scrachpads interface is optional */ 378 /* !ops->spad_is_unsafe == !ops->spad_count && */ 379 !ops->spad_read == !ops->spad_count && 380 !ops->spad_write == !ops->spad_count && 381 /* !ops->peer_spad_addr == !ops->spad_count && */ 382 /* !ops->peer_spad_read == !ops->spad_count && */ 383 !ops->peer_spad_write == !ops->spad_count && 384 385 /* Messaging interface is optional */ 386 !ops->msg_inbits == !ops->msg_count && 387 !ops->msg_outbits == !ops->msg_count && 388 !ops->msg_read_sts == !ops->msg_count && 389 !ops->msg_clear_sts == !ops->msg_count && 390 /* !ops->msg_set_mask == !ops->msg_count && */ 391 /* !ops->msg_clear_mask == !ops->msg_count && */ 392 !ops->msg_read == !ops->msg_count && 393 !ops->peer_msg_write == !ops->msg_count && 394 1; 395} 396 397/** 398 * struct ntb_client - client interested in ntb devices 399 * @drv: Linux driver object. 400 * @ops: See &ntb_client_ops. 401 */ 402struct ntb_client { 403 struct device_driver drv; 404 const struct ntb_client_ops ops; 405}; 406#define drv_ntb_client(__drv) container_of((__drv), struct ntb_client, drv) 407 408/** 409 * struct ntb_dev - ntb device 410 * @dev: Linux device object. 411 * @pdev: PCI device entry of the ntb. 412 * @topo: Detected topology of the ntb. 413 * @ops: See &ntb_dev_ops. 414 * @ctx: See &ntb_ctx_ops. 415 * @ctx_ops: See &ntb_ctx_ops. 416 */ 417struct ntb_dev { 418 struct device dev; 419 struct pci_dev *pdev; 420 enum ntb_topo topo; 421 const struct ntb_dev_ops *ops; 422 void *ctx; 423 const struct ntb_ctx_ops *ctx_ops; 424 425 /* private: */ 426 427 /* synchronize setting, clearing, and calling ctx_ops */ 428 spinlock_t ctx_lock; 429 /* block unregister until device is fully released */ 430 struct completion released; 431 432#ifdef CONFIG_NTB_MSI 433 struct ntb_msi *msi; 434#endif 435}; 436#define dev_ntb(__dev) container_of((__dev), struct ntb_dev, dev) 437 438/** 439 * ntb_register_client() - register a client for interest in ntb devices 440 * @client: Client context. 441 * 442 * The client will be added to the list of clients interested in ntb devices. 443 * The client will be notified of any ntb devices that are not already 444 * associated with a client, or if ntb devices are registered later. 445 * 446 * Return: Zero if the client is registered, otherwise an error number. 447 */ 448#define ntb_register_client(client) \ 449 __ntb_register_client((client), THIS_MODULE, KBUILD_MODNAME) 450 451int __ntb_register_client(struct ntb_client *client, struct module *mod, 452 const char *mod_name); 453 454/** 455 * ntb_unregister_client() - unregister a client for interest in ntb devices 456 * @client: Client context. 457 * 458 * The client will be removed from the list of clients interested in ntb 459 * devices. If any ntb devices are associated with the client, the client will 460 * be notified to remove those devices. 461 */ 462void ntb_unregister_client(struct ntb_client *client); 463 464#define module_ntb_client(__ntb_client) \ 465 module_driver(__ntb_client, ntb_register_client, \ 466 ntb_unregister_client) 467 468/** 469 * ntb_register_device() - register a ntb device 470 * @ntb: NTB device context. 471 * 472 * The device will be added to the list of ntb devices. If any clients are 473 * interested in ntb devices, each client will be notified of the ntb device, 474 * until at most one client accepts the device. 475 * 476 * Return: Zero if the device is registered, otherwise an error number. 477 */ 478int ntb_register_device(struct ntb_dev *ntb); 479 480/** 481 * ntb_unregister_device() - unregister a ntb device 482 * @ntb: NTB device context. 483 * 484 * The device will be removed from the list of ntb devices. If the ntb device 485 * is associated with a client, the client will be notified to remove the 486 * device. 487 */ 488void ntb_unregister_device(struct ntb_dev *ntb); 489 490/** 491 * ntb_set_ctx() - associate a driver context with an ntb device 492 * @ntb: NTB device context. 493 * @ctx: Driver context. 494 * @ctx_ops: Driver context operations. 495 * 496 * Associate a driver context and operations with a ntb device. The context is 497 * provided by the client driver, and the driver may associate a different 498 * context with each ntb device. 499 * 500 * Return: Zero if the context is associated, otherwise an error number. 501 */ 502int ntb_set_ctx(struct ntb_dev *ntb, void *ctx, 503 const struct ntb_ctx_ops *ctx_ops); 504 505/** 506 * ntb_clear_ctx() - disassociate any driver context from an ntb device 507 * @ntb: NTB device context. 508 * 509 * Clear any association that may exist between a driver context and the ntb 510 * device. 511 */ 512void ntb_clear_ctx(struct ntb_dev *ntb); 513 514/** 515 * ntb_link_event() - notify driver context of a change in link status 516 * @ntb: NTB device context. 517 * 518 * Notify the driver context that the link status may have changed. The driver 519 * should call ntb_link_is_up() to get the current status. 520 */ 521void ntb_link_event(struct ntb_dev *ntb); 522 523/** 524 * ntb_db_event() - notify driver context of a doorbell event 525 * @ntb: NTB device context. 526 * @vector: Interrupt vector number. 527 * 528 * Notify the driver context of a doorbell event. If hardware supports 529 * multiple interrupt vectors for doorbells, the vector number indicates which 530 * vector received the interrupt. The vector number is relative to the first 531 * vector used for doorbells, starting at zero, and must be less than 532 * ntb_db_vector_count(). The driver may call ntb_db_read() to check which 533 * doorbell bits need service, and ntb_db_vector_mask() to determine which of 534 * those bits are associated with the vector number. 535 */ 536void ntb_db_event(struct ntb_dev *ntb, int vector); 537 538/** 539 * ntb_msg_event() - notify driver context of a message event 540 * @ntb: NTB device context. 541 * 542 * Notify the driver context of a message event. If hardware supports 543 * message registers, this event indicates, that a new message arrived in 544 * some incoming message register or last sent message couldn't be delivered. 545 * The events can be masked/unmasked by the methods ntb_msg_set_mask() and 546 * ntb_msg_clear_mask(). 547 */ 548void ntb_msg_event(struct ntb_dev *ntb); 549 550/** 551 * ntb_default_port_number() - get the default local port number 552 * @ntb: NTB device context. 553 * 554 * If hardware driver doesn't specify port_number() callback method, the NTB 555 * is considered with just two ports. So this method returns default local 556 * port number in compliance with topology. 557 * 558 * NOTE Don't call this method directly. The ntb_port_number() function should 559 * be used instead. 560 * 561 * Return: the default local port number 562 */ 563int ntb_default_port_number(struct ntb_dev *ntb); 564 565/** 566 * ntb_default_port_count() - get the default number of peer device ports 567 * @ntb: NTB device context. 568 * 569 * By default hardware driver supports just one peer device. 570 * 571 * NOTE Don't call this method directly. The ntb_peer_port_count() function 572 * should be used instead. 573 * 574 * Return: the default number of peer ports 575 */ 576int ntb_default_peer_port_count(struct ntb_dev *ntb); 577 578/** 579 * ntb_default_peer_port_number() - get the default peer port by given index 580 * @ntb: NTB device context. 581 * @idx: Peer port index (should not differ from zero). 582 * 583 * By default hardware driver supports just one peer device, so this method 584 * shall return the corresponding value from enum ntb_default_port. 585 * 586 * NOTE Don't call this method directly. The ntb_peer_port_number() function 587 * should be used instead. 588 * 589 * Return: the peer device port or negative value indicating an error 590 */ 591int ntb_default_peer_port_number(struct ntb_dev *ntb, int pidx); 592 593/** 594 * ntb_default_peer_port_idx() - get the default peer device port index by 595 * given port number 596 * @ntb: NTB device context. 597 * @port: Peer port number (should be one of enum ntb_default_port). 598 * 599 * By default hardware driver supports just one peer device, so while 600 * specified port-argument indicates peer port from enum ntb_default_port, 601 * the return value shall be zero. 602 * 603 * NOTE Don't call this method directly. The ntb_peer_port_idx() function 604 * should be used instead. 605 * 606 * Return: the peer port index or negative value indicating an error 607 */ 608int ntb_default_peer_port_idx(struct ntb_dev *ntb, int port); 609 610/** 611 * ntb_port_number() - get the local port number 612 * @ntb: NTB device context. 613 * 614 * Hardware must support at least simple two-ports ntb connection 615 * 616 * Return: the local port number 617 */ 618static inline int ntb_port_number(struct ntb_dev *ntb) 619{ 620 if (!ntb->ops->port_number) 621 return ntb_default_port_number(ntb); 622 623 return ntb->ops->port_number(ntb); 624} 625/** 626 * ntb_peer_port_count() - get the number of peer device ports 627 * @ntb: NTB device context. 628 * 629 * Hardware may support an access to memory of several remote domains 630 * over multi-port NTB devices. This method returns the number of peers, 631 * local device can have shared memory with. 632 * 633 * Return: the number of peer ports 634 */ 635static inline int ntb_peer_port_count(struct ntb_dev *ntb) 636{ 637 if (!ntb->ops->peer_port_count) 638 return ntb_default_peer_port_count(ntb); 639 640 return ntb->ops->peer_port_count(ntb); 641} 642 643/** 644 * ntb_peer_port_number() - get the peer port by given index 645 * @ntb: NTB device context. 646 * @pidx: Peer port index. 647 * 648 * Peer ports are continuously enumerated by NTB API logic, so this method 649 * lets to retrieve port real number by its index. 650 * 651 * Return: the peer device port or negative value indicating an error 652 */ 653static inline int ntb_peer_port_number(struct ntb_dev *ntb, int pidx) 654{ 655 if (!ntb->ops->peer_port_number) 656 return ntb_default_peer_port_number(ntb, pidx); 657 658 return ntb->ops->peer_port_number(ntb, pidx); 659} 660 661/** 662 * ntb_logical_port_number() - get the logical port number of the local port 663 * @ntb: NTB device context. 664 * 665 * The Logical Port Number is defined to be a unique number for each 666 * port starting from zero through to the number of ports minus one. 667 * This is in contrast to the Port Number where each port can be assigned 668 * any unique physical number by the hardware. 669 * 670 * The logical port number is useful for calculating the resource indexes 671 * used by peers. 672 * 673 * Return: the logical port number or negative value indicating an error 674 */ 675static inline int ntb_logical_port_number(struct ntb_dev *ntb) 676{ 677 int lport = ntb_port_number(ntb); 678 int pidx; 679 680 if (lport < 0) 681 return lport; 682 683 for (pidx = 0; pidx < ntb_peer_port_count(ntb); pidx++) 684 if (lport <= ntb_peer_port_number(ntb, pidx)) 685 return pidx; 686 687 return pidx; 688} 689 690/** 691 * ntb_peer_logical_port_number() - get the logical peer port by given index 692 * @ntb: NTB device context. 693 * @pidx: Peer port index. 694 * 695 * The Logical Port Number is defined to be a unique number for each 696 * port starting from zero through to the number of ports minus one. 697 * This is in contrast to the Port Number where each port can be assigned 698 * any unique physical number by the hardware. 699 * 700 * The logical port number is useful for calculating the resource indexes 701 * used by peers. 702 * 703 * Return: the peer's logical port number or negative value indicating an error 704 */ 705static inline int ntb_peer_logical_port_number(struct ntb_dev *ntb, int pidx) 706{ 707 if (ntb_peer_port_number(ntb, pidx) < ntb_port_number(ntb)) 708 return pidx; 709 else 710 return pidx + 1; 711} 712 713/** 714 * ntb_peer_port_idx() - get the peer device port index by given port number 715 * @ntb: NTB device context. 716 * @port: Peer port number. 717 * 718 * Inverse operation of ntb_peer_port_number(), so one can get port index 719 * by specified port number. 720 * 721 * Return: the peer port index or negative value indicating an error 722 */ 723static inline int ntb_peer_port_idx(struct ntb_dev *ntb, int port) 724{ 725 if (!ntb->ops->peer_port_idx) 726 return ntb_default_peer_port_idx(ntb, port); 727 728 return ntb->ops->peer_port_idx(ntb, port); 729} 730 731/** 732 * ntb_link_is_up() - get the current ntb link state 733 * @ntb: NTB device context. 734 * @speed: OUT - The link speed expressed as PCIe generation number. 735 * @width: OUT - The link width expressed as the number of PCIe lanes. 736 * 737 * Get the current state of the ntb link. It is recommended to query the link 738 * state once after every link event. It is safe to query the link state in 739 * the context of the link event callback. 740 * 741 * Return: bitfield of indexed ports link state: bit is set/cleared if the 742 * link is up/down respectively. 743 */ 744static inline u64 ntb_link_is_up(struct ntb_dev *ntb, 745 enum ntb_speed *speed, enum ntb_width *width) 746{ 747 return ntb->ops->link_is_up(ntb, speed, width); 748} 749 750/** 751 * ntb_link_enable() - enable the local port ntb connection 752 * @ntb: NTB device context. 753 * @max_speed: The maximum link speed expressed as PCIe generation number. 754 * @max_width: The maximum link width expressed as the number of PCIe lanes. 755 * 756 * Enable the NTB/PCIe link on the local or remote (for bridge-to-bridge 757 * topology) side of the bridge. If it's supported the ntb device should train 758 * the link to its maximum speed and width, or the requested speed and width, 759 * whichever is smaller. Some hardware doesn't support PCIe link training, so 760 * the last two arguments will be ignored then. 761 * 762 * Return: Zero on success, otherwise an error number. 763 */ 764static inline int ntb_link_enable(struct ntb_dev *ntb, 765 enum ntb_speed max_speed, 766 enum ntb_width max_width) 767{ 768 return ntb->ops->link_enable(ntb, max_speed, max_width); 769} 770 771/** 772 * ntb_link_disable() - disable the local port ntb connection 773 * @ntb: NTB device context. 774 * 775 * Disable the link on the local or remote (for b2b topology) of the ntb. 776 * The ntb device should disable the link. Returning from this call must 777 * indicate that a barrier has passed, though with no more writes may pass in 778 * either direction across the link, except if this call returns an error 779 * number. 780 * 781 * Return: Zero on success, otherwise an error number. 782 */ 783static inline int ntb_link_disable(struct ntb_dev *ntb) 784{ 785 return ntb->ops->link_disable(ntb); 786} 787 788/** 789 * ntb_mw_count() - get the number of inbound memory windows, which could 790 * be created for a specified peer device 791 * @ntb: NTB device context. 792 * @pidx: Port index of peer device. 793 * 794 * Hardware and topology may support a different number of memory windows. 795 * Moreover different peer devices can support different number of memory 796 * windows. Simply speaking this method returns the number of possible inbound 797 * memory windows to share with specified peer device. Note: this may return 798 * zero if the link is not up yet. 799 * 800 * Return: the number of memory windows. 801 */ 802static inline int ntb_mw_count(struct ntb_dev *ntb, int pidx) 803{ 804 return ntb->ops->mw_count(ntb, pidx); 805} 806 807/** 808 * ntb_mw_get_align() - get the restriction parameters of inbound memory window 809 * @ntb: NTB device context. 810 * @pidx: Port index of peer device. 811 * @widx: Memory window index. 812 * @addr_align: OUT - the base alignment for translating the memory window 813 * @size_align: OUT - the size alignment for translating the memory window 814 * @size_max: OUT - the maximum size of the memory window 815 * 816 * Get the alignments of an inbound memory window with specified index. 817 * NULL may be given for any output parameter if the value is not needed. 818 * The alignment and size parameters may be used for allocation of proper 819 * shared memory. Note: this must only be called when the link is up. 820 * 821 * Return: Zero on success, otherwise a negative error number. 822 */ 823static inline int ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int widx, 824 resource_size_t *addr_align, 825 resource_size_t *size_align, 826 resource_size_t *size_max) 827{ 828 if (!(ntb_link_is_up(ntb, NULL, NULL) & BIT_ULL(pidx))) 829 return -ENOTCONN; 830 831 return ntb->ops->mw_get_align(ntb, pidx, widx, addr_align, size_align, 832 size_max); 833} 834 835/** 836 * ntb_mw_set_trans() - set the translation of an inbound memory window 837 * @ntb: NTB device context. 838 * @pidx: Port index of peer device. 839 * @widx: Memory window index. 840 * @addr: The dma address of local memory to expose to the peer. 841 * @size: The size of the local memory to expose to the peer. 842 * 843 * Set the translation of a memory window. The peer may access local memory 844 * through the window starting at the address, up to the size. The address 845 * and size must be aligned in compliance with restrictions of 846 * ntb_mw_get_align(). The region size should not exceed the size_max parameter 847 * of that method. 848 * 849 * This method may not be implemented due to the hardware specific memory 850 * windows interface. 851 * 852 * Return: Zero on success, otherwise an error number. 853 */ 854static inline int ntb_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx, 855 dma_addr_t addr, resource_size_t size) 856{ 857 if (!ntb->ops->mw_set_trans) 858 return 0; 859 860 return ntb->ops->mw_set_trans(ntb, pidx, widx, addr, size); 861} 862 863/** 864 * ntb_mw_clear_trans() - clear the translation address of an inbound memory 865 * window 866 * @ntb: NTB device context. 867 * @pidx: Port index of peer device. 868 * @widx: Memory window index. 869 * 870 * Clear the translation of an inbound memory window. The peer may no longer 871 * access local memory through the window. 872 * 873 * Return: Zero on success, otherwise an error number. 874 */ 875static inline int ntb_mw_clear_trans(struct ntb_dev *ntb, int pidx, int widx) 876{ 877 if (!ntb->ops->mw_clear_trans) 878 return ntb_mw_set_trans(ntb, pidx, widx, 0, 0); 879 880 return ntb->ops->mw_clear_trans(ntb, pidx, widx); 881} 882 883/** 884 * ntb_peer_mw_count() - get the number of outbound memory windows, which could 885 * be mapped to access a shared memory 886 * @ntb: NTB device context. 887 * 888 * Hardware and topology may support a different number of memory windows. 889 * This method returns the number of outbound memory windows supported by 890 * local device. 891 * 892 * Return: the number of memory windows. 893 */ 894static inline int ntb_peer_mw_count(struct ntb_dev *ntb) 895{ 896 return ntb->ops->peer_mw_count(ntb); 897} 898 899/** 900 * ntb_peer_mw_get_addr() - get map address of an outbound memory window 901 * @ntb: NTB device context. 902 * @widx: Memory window index (within ntb_peer_mw_count() return value). 903 * @base: OUT - the base address of mapping region. 904 * @size: OUT - the size of mapping region. 905 * 906 * Get base and size of memory region to map. NULL may be given for any output 907 * parameter if the value is not needed. The base and size may be used for 908 * mapping the memory window, to access the peer memory. 909 * 910 * Return: Zero on success, otherwise a negative error number. 911 */ 912static inline int ntb_peer_mw_get_addr(struct ntb_dev *ntb, int widx, 913 phys_addr_t *base, resource_size_t *size) 914{ 915 return ntb->ops->peer_mw_get_addr(ntb, widx, base, size); 916} 917 918/** 919 * ntb_peer_mw_set_trans() - set a translation address of a memory window 920 * retrieved from a peer device 921 * @ntb: NTB device context. 922 * @pidx: Port index of peer device the translation address received from. 923 * @widx: Memory window index. 924 * @addr: The dma address of the shared memory to access. 925 * @size: The size of the shared memory to access. 926 * 927 * Set the translation of an outbound memory window. The local device may 928 * access shared memory allocated by a peer device sent the address. 929 * 930 * This method may not be implemented due to the hardware specific memory 931 * windows interface, so a translation address can be only set on the side, 932 * where shared memory (inbound memory windows) is allocated. 933 * 934 * Return: Zero on success, otherwise an error number. 935 */ 936static inline int ntb_peer_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx, 937 u64 addr, resource_size_t size) 938{ 939 if (!ntb->ops->peer_mw_set_trans) 940 return 0; 941 942 return ntb->ops->peer_mw_set_trans(ntb, pidx, widx, addr, size); 943} 944 945/** 946 * ntb_peer_mw_clear_trans() - clear the translation address of an outbound 947 * memory window 948 * @ntb: NTB device context. 949 * @pidx: Port index of peer device. 950 * @widx: Memory window index. 951 * 952 * Clear the translation of a outbound memory window. The local device may no 953 * longer access a shared memory through the window. 954 * 955 * This method may not be implemented due to the hardware specific memory 956 * windows interface. 957 * 958 * Return: Zero on success, otherwise an error number. 959 */ 960static inline int ntb_peer_mw_clear_trans(struct ntb_dev *ntb, int pidx, 961 int widx) 962{ 963 if (!ntb->ops->peer_mw_clear_trans) 964 return ntb_peer_mw_set_trans(ntb, pidx, widx, 0, 0); 965 966 return ntb->ops->peer_mw_clear_trans(ntb, pidx, widx); 967} 968 969/** 970 * ntb_db_is_unsafe() - check if it is safe to use hardware doorbell 971 * @ntb: NTB device context. 972 * 973 * It is possible for some ntb hardware to be affected by errata. Hardware 974 * drivers can advise clients to avoid using doorbells. Clients may ignore 975 * this advice, though caution is recommended. 976 * 977 * Return: Zero if it is safe to use doorbells, or One if it is not safe. 978 */ 979static inline int ntb_db_is_unsafe(struct ntb_dev *ntb) 980{ 981 if (!ntb->ops->db_is_unsafe) 982 return 0; 983 984 return ntb->ops->db_is_unsafe(ntb); 985} 986 987/** 988 * ntb_db_valid_mask() - get a mask of doorbell bits supported by the ntb 989 * @ntb: NTB device context. 990 * 991 * Hardware may support different number or arrangement of doorbell bits. 992 * 993 * Return: A mask of doorbell bits supported by the ntb. 994 */ 995static inline u64 ntb_db_valid_mask(struct ntb_dev *ntb) 996{ 997 return ntb->ops->db_valid_mask(ntb); 998} 999 1000/** 1001 * ntb_db_vector_count() - get the number of doorbell interrupt vectors 1002 * @ntb: NTB device context. 1003 * 1004 * Hardware may support different number of interrupt vectors. 1005 * 1006 * Return: The number of doorbell interrupt vectors. 1007 */ 1008static inline int ntb_db_vector_count(struct ntb_dev *ntb) 1009{ 1010 if (!ntb->ops->db_vector_count) 1011 return 1; 1012 1013 return ntb->ops->db_vector_count(ntb); 1014} 1015 1016/** 1017 * ntb_db_vector_mask() - get a mask of doorbell bits serviced by a vector 1018 * @ntb: NTB device context. 1019 * @vector: Doorbell vector number. 1020 * 1021 * Each interrupt vector may have a different number or arrangement of bits. 1022 * 1023 * Return: A mask of doorbell bits serviced by a vector. 1024 */ 1025static inline u64 ntb_db_vector_mask(struct ntb_dev *ntb, int vector) 1026{ 1027 if (!ntb->ops->db_vector_mask) 1028 return ntb_db_valid_mask(ntb); 1029 1030 return ntb->ops->db_vector_mask(ntb, vector); 1031} 1032 1033/** 1034 * ntb_db_read() - read the local doorbell register 1035 * @ntb: NTB device context. 1036 * 1037 * Read the local doorbell register, and return the bits that are set. 1038 * 1039 * Return: The bits currently set in the local doorbell register. 1040 */ 1041static inline u64 ntb_db_read(struct ntb_dev *ntb) 1042{ 1043 return ntb->ops->db_read(ntb); 1044} 1045 1046/** 1047 * ntb_db_set() - set bits in the local doorbell register 1048 * @ntb: NTB device context. 1049 * @db_bits: Doorbell bits to set. 1050 * 1051 * Set bits in the local doorbell register, which may generate a local doorbell 1052 * interrupt. Bits that were already set must remain set. 1053 * 1054 * This is unusual, and hardware may not support it. 1055 * 1056 * Return: Zero on success, otherwise an error number. 1057 */ 1058static inline int ntb_db_set(struct ntb_dev *ntb, u64 db_bits) 1059{ 1060 if (!ntb->ops->db_set) 1061 return -EINVAL; 1062 1063 return ntb->ops->db_set(ntb, db_bits); 1064} 1065 1066/** 1067 * ntb_db_clear() - clear bits in the local doorbell register 1068 * @ntb: NTB device context. 1069 * @db_bits: Doorbell bits to clear. 1070 * 1071 * Clear bits in the local doorbell register, arming the bits for the next 1072 * doorbell. 1073 * 1074 * Return: Zero on success, otherwise an error number. 1075 */ 1076static inline int ntb_db_clear(struct ntb_dev *ntb, u64 db_bits) 1077{ 1078 return ntb->ops->db_clear(ntb, db_bits); 1079} 1080 1081/** 1082 * ntb_db_read_mask() - read the local doorbell mask 1083 * @ntb: NTB device context. 1084 * 1085 * Read the local doorbell mask register, and return the bits that are set. 1086 * 1087 * This is unusual, though hardware is likely to support it. 1088 * 1089 * Return: The bits currently set in the local doorbell mask register. 1090 */ 1091static inline u64 ntb_db_read_mask(struct ntb_dev *ntb) 1092{ 1093 if (!ntb->ops->db_read_mask) 1094 return 0; 1095 1096 return ntb->ops->db_read_mask(ntb); 1097} 1098 1099/** 1100 * ntb_db_set_mask() - set bits in the local doorbell mask 1101 * @ntb: NTB device context. 1102 * @db_bits: Doorbell mask bits to set. 1103 * 1104 * Set bits in the local doorbell mask register, preventing doorbell interrupts 1105 * from being generated for those doorbell bits. Bits that were already set 1106 * must remain set. 1107 * 1108 * Return: Zero on success, otherwise an error number. 1109 */ 1110static inline int ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits) 1111{ 1112 return ntb->ops->db_set_mask(ntb, db_bits); 1113} 1114 1115/** 1116 * ntb_db_clear_mask() - clear bits in the local doorbell mask 1117 * @ntb: NTB device context. 1118 * @db_bits: Doorbell bits to clear. 1119 * 1120 * Clear bits in the local doorbell mask register, allowing doorbell interrupts 1121 * from being generated for those doorbell bits. If a doorbell bit is already 1122 * set at the time the mask is cleared, and the corresponding mask bit is 1123 * changed from set to clear, then the ntb driver must ensure that 1124 * ntb_db_event() is called. If the hardware does not generate the interrupt 1125 * on clearing the mask bit, then the driver must call ntb_db_event() anyway. 1126 * 1127 * Return: Zero on success, otherwise an error number. 1128 */ 1129static inline int ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits) 1130{ 1131 return ntb->ops->db_clear_mask(ntb, db_bits); 1132} 1133 1134/** 1135 * ntb_peer_db_addr() - address and size of the peer doorbell register 1136 * @ntb: NTB device context. 1137 * @db_addr: OUT - The address of the peer doorbell register. 1138 * @db_size: OUT - The number of bytes to write the peer doorbell register. 1139 * @db_data: OUT - The data of peer doorbell register 1140 * @db_bit: door bell bit number 1141 * 1142 * Return the address of the peer doorbell register. This may be used, for 1143 * example, by drivers that offload memory copy operations to a dma engine. 1144 * The drivers may wish to ring the peer doorbell at the completion of memory 1145 * copy operations. For efficiency, and to simplify ordering of operations 1146 * between the dma memory copies and the ringing doorbell, the driver may 1147 * append one additional dma memory copy with the doorbell register as the 1148 * destination, after the memory copy operations. 1149 * 1150 * Return: Zero on success, otherwise an error number. 1151 */ 1152static inline int ntb_peer_db_addr(struct ntb_dev *ntb, 1153 phys_addr_t *db_addr, 1154 resource_size_t *db_size, 1155 u64 *db_data, int db_bit) 1156{ 1157 if (!ntb->ops->peer_db_addr) 1158 return -EINVAL; 1159 1160 return ntb->ops->peer_db_addr(ntb, db_addr, db_size, db_data, db_bit); 1161} 1162 1163/** 1164 * ntb_peer_db_read() - read the peer doorbell register 1165 * @ntb: NTB device context. 1166 * 1167 * Read the peer doorbell register, and return the bits that are set. 1168 * 1169 * This is unusual, and hardware may not support it. 1170 * 1171 * Return: The bits currently set in the peer doorbell register. 1172 */ 1173static inline u64 ntb_peer_db_read(struct ntb_dev *ntb) 1174{ 1175 if (!ntb->ops->peer_db_read) 1176 return 0; 1177 1178 return ntb->ops->peer_db_read(ntb); 1179} 1180 1181/** 1182 * ntb_peer_db_set() - set bits in the peer doorbell register 1183 * @ntb: NTB device context. 1184 * @db_bits: Doorbell bits to set. 1185 * 1186 * Set bits in the peer doorbell register, which may generate a peer doorbell 1187 * interrupt. Bits that were already set must remain set. 1188 * 1189 * Return: Zero on success, otherwise an error number. 1190 */ 1191static inline int ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits) 1192{ 1193 return ntb->ops->peer_db_set(ntb, db_bits); 1194} 1195 1196/** 1197 * ntb_peer_db_clear() - clear bits in the peer doorbell register 1198 * @ntb: NTB device context. 1199 * @db_bits: Doorbell bits to clear. 1200 * 1201 * Clear bits in the peer doorbell register, arming the bits for the next 1202 * doorbell. 1203 * 1204 * This is unusual, and hardware may not support it. 1205 * 1206 * Return: Zero on success, otherwise an error number. 1207 */ 1208static inline int ntb_peer_db_clear(struct ntb_dev *ntb, u64 db_bits) 1209{ 1210 if (!ntb->ops->db_clear) 1211 return -EINVAL; 1212 1213 return ntb->ops->peer_db_clear(ntb, db_bits); 1214} 1215 1216/** 1217 * ntb_peer_db_read_mask() - read the peer doorbell mask 1218 * @ntb: NTB device context. 1219 * 1220 * Read the peer doorbell mask register, and return the bits that are set. 1221 * 1222 * This is unusual, and hardware may not support it. 1223 * 1224 * Return: The bits currently set in the peer doorbell mask register. 1225 */ 1226static inline u64 ntb_peer_db_read_mask(struct ntb_dev *ntb) 1227{ 1228 if (!ntb->ops->db_read_mask) 1229 return 0; 1230 1231 return ntb->ops->peer_db_read_mask(ntb); 1232} 1233 1234/** 1235 * ntb_peer_db_set_mask() - set bits in the peer doorbell mask 1236 * @ntb: NTB device context. 1237 * @db_bits: Doorbell mask bits to set. 1238 * 1239 * Set bits in the peer doorbell mask register, preventing doorbell interrupts 1240 * from being generated for those doorbell bits. Bits that were already set 1241 * must remain set. 1242 * 1243 * This is unusual, and hardware may not support it. 1244 * 1245 * Return: Zero on success, otherwise an error number. 1246 */ 1247static inline int ntb_peer_db_set_mask(struct ntb_dev *ntb, u64 db_bits) 1248{ 1249 if (!ntb->ops->db_set_mask) 1250 return -EINVAL; 1251 1252 return ntb->ops->peer_db_set_mask(ntb, db_bits); 1253} 1254 1255/** 1256 * ntb_peer_db_clear_mask() - clear bits in the peer doorbell mask 1257 * @ntb: NTB device context. 1258 * @db_bits: Doorbell bits to clear. 1259 * 1260 * Clear bits in the peer doorbell mask register, allowing doorbell interrupts 1261 * from being generated for those doorbell bits. If the hardware does not 1262 * generate the interrupt on clearing the mask bit, then the driver should not 1263 * implement this function! 1264 * 1265 * This is unusual, and hardware may not support it. 1266 * 1267 * Return: Zero on success, otherwise an error number. 1268 */ 1269static inline int ntb_peer_db_clear_mask(struct ntb_dev *ntb, u64 db_bits) 1270{ 1271 if (!ntb->ops->db_clear_mask) 1272 return -EINVAL; 1273 1274 return ntb->ops->peer_db_clear_mask(ntb, db_bits); 1275} 1276 1277/** 1278 * ntb_spad_is_unsafe() - check if it is safe to use the hardware scratchpads 1279 * @ntb: NTB device context. 1280 * 1281 * It is possible for some ntb hardware to be affected by errata. Hardware 1282 * drivers can advise clients to avoid using scratchpads. Clients may ignore 1283 * this advice, though caution is recommended. 1284 * 1285 * Return: Zero if it is safe to use scratchpads, or One if it is not safe. 1286 */ 1287static inline int ntb_spad_is_unsafe(struct ntb_dev *ntb) 1288{ 1289 if (!ntb->ops->spad_is_unsafe) 1290 return 0; 1291 1292 return ntb->ops->spad_is_unsafe(ntb); 1293} 1294 1295/** 1296 * ntb_spad_count() - get the number of scratchpads 1297 * @ntb: NTB device context. 1298 * 1299 * Hardware and topology may support a different number of scratchpads. 1300 * Although it must be the same for all ports per NTB device. 1301 * 1302 * Return: the number of scratchpads. 1303 */ 1304static inline int ntb_spad_count(struct ntb_dev *ntb) 1305{ 1306 if (!ntb->ops->spad_count) 1307 return 0; 1308 1309 return ntb->ops->spad_count(ntb); 1310} 1311 1312/** 1313 * ntb_spad_read() - read the local scratchpad register 1314 * @ntb: NTB device context. 1315 * @sidx: Scratchpad index. 1316 * 1317 * Read the local scratchpad register, and return the value. 1318 * 1319 * Return: The value of the local scratchpad register. 1320 */ 1321static inline u32 ntb_spad_read(struct ntb_dev *ntb, int sidx) 1322{ 1323 if (!ntb->ops->spad_read) 1324 return ~(u32)0; 1325 1326 return ntb->ops->spad_read(ntb, sidx); 1327} 1328 1329/** 1330 * ntb_spad_write() - write the local scratchpad register 1331 * @ntb: NTB device context. 1332 * @sidx: Scratchpad index. 1333 * @val: Scratchpad value. 1334 * 1335 * Write the value to the local scratchpad register. 1336 * 1337 * Return: Zero on success, otherwise an error number. 1338 */ 1339static inline int ntb_spad_write(struct ntb_dev *ntb, int sidx, u32 val) 1340{ 1341 if (!ntb->ops->spad_write) 1342 return -EINVAL; 1343 1344 return ntb->ops->spad_write(ntb, sidx, val); 1345} 1346 1347/** 1348 * ntb_peer_spad_addr() - address of the peer scratchpad register 1349 * @ntb: NTB device context. 1350 * @pidx: Port index of peer device. 1351 * @sidx: Scratchpad index. 1352 * @spad_addr: OUT - The address of the peer scratchpad register. 1353 * 1354 * Return the address of the peer scratchpad register. This may be used, for 1355 * example, by drivers that offload memory copy operations to a dma engine. 1356 * 1357 * Return: Zero on success, otherwise an error number. 1358 */ 1359static inline int ntb_peer_spad_addr(struct ntb_dev *ntb, int pidx, int sidx, 1360 phys_addr_t *spad_addr) 1361{ 1362 if (!ntb->ops->peer_spad_addr) 1363 return -EINVAL; 1364 1365 return ntb->ops->peer_spad_addr(ntb, pidx, sidx, spad_addr); 1366} 1367 1368/** 1369 * ntb_peer_spad_read() - read the peer scratchpad register 1370 * @ntb: NTB device context. 1371 * @pidx: Port index of peer device. 1372 * @sidx: Scratchpad index. 1373 * 1374 * Read the peer scratchpad register, and return the value. 1375 * 1376 * Return: The value of the peer scratchpad register. 1377 */ 1378static inline u32 ntb_peer_spad_read(struct ntb_dev *ntb, int pidx, int sidx) 1379{ 1380 if (!ntb->ops->peer_spad_read) 1381 return ~(u32)0; 1382 1383 return ntb->ops->peer_spad_read(ntb, pidx, sidx); 1384} 1385 1386/** 1387 * ntb_peer_spad_write() - write the peer scratchpad register 1388 * @ntb: NTB device context. 1389 * @pidx: Port index of peer device. 1390 * @sidx: Scratchpad index. 1391 * @val: Scratchpad value. 1392 * 1393 * Write the value to the peer scratchpad register. 1394 * 1395 * Return: Zero on success, otherwise an error number. 1396 */ 1397static inline int ntb_peer_spad_write(struct ntb_dev *ntb, int pidx, int sidx, 1398 u32 val) 1399{ 1400 if (!ntb->ops->peer_spad_write) 1401 return -EINVAL; 1402 1403 return ntb->ops->peer_spad_write(ntb, pidx, sidx, val); 1404} 1405 1406/** 1407 * ntb_msg_count() - get the number of message registers 1408 * @ntb: NTB device context. 1409 * 1410 * Hardware may support a different number of message registers. 1411 * 1412 * Return: the number of message registers. 1413 */ 1414static inline int ntb_msg_count(struct ntb_dev *ntb) 1415{ 1416 if (!ntb->ops->msg_count) 1417 return 0; 1418 1419 return ntb->ops->msg_count(ntb); 1420} 1421 1422/** 1423 * ntb_msg_inbits() - get a bitfield of inbound message registers status 1424 * @ntb: NTB device context. 1425 * 1426 * The method returns the bitfield of status and mask registers, which related 1427 * to inbound message registers. 1428 * 1429 * Return: bitfield of inbound message registers. 1430 */ 1431static inline u64 ntb_msg_inbits(struct ntb_dev *ntb) 1432{ 1433 if (!ntb->ops->msg_inbits) 1434 return 0; 1435 1436 return ntb->ops->msg_inbits(ntb); 1437} 1438 1439/** 1440 * ntb_msg_outbits() - get a bitfield of outbound message registers status 1441 * @ntb: NTB device context. 1442 * 1443 * The method returns the bitfield of status and mask registers, which related 1444 * to outbound message registers. 1445 * 1446 * Return: bitfield of outbound message registers. 1447 */ 1448static inline u64 ntb_msg_outbits(struct ntb_dev *ntb) 1449{ 1450 if (!ntb->ops->msg_outbits) 1451 return 0; 1452 1453 return ntb->ops->msg_outbits(ntb); 1454} 1455 1456/** 1457 * ntb_msg_read_sts() - read the message registers status 1458 * @ntb: NTB device context. 1459 * 1460 * Read the status of message register. Inbound and outbound message registers 1461 * related bits can be filtered by masks retrieved from ntb_msg_inbits() and 1462 * ntb_msg_outbits(). 1463 * 1464 * Return: status bits of message registers 1465 */ 1466static inline u64 ntb_msg_read_sts(struct ntb_dev *ntb) 1467{ 1468 if (!ntb->ops->msg_read_sts) 1469 return 0; 1470 1471 return ntb->ops->msg_read_sts(ntb); 1472} 1473 1474/** 1475 * ntb_msg_clear_sts() - clear status bits of message registers 1476 * @ntb: NTB device context. 1477 * @sts_bits: Status bits to clear. 1478 * 1479 * Clear bits in the status register. 1480 * 1481 * Return: Zero on success, otherwise a negative error number. 1482 */ 1483static inline int ntb_msg_clear_sts(struct ntb_dev *ntb, u64 sts_bits) 1484{ 1485 if (!ntb->ops->msg_clear_sts) 1486 return -EINVAL; 1487 1488 return ntb->ops->msg_clear_sts(ntb, sts_bits); 1489} 1490 1491/** 1492 * ntb_msg_set_mask() - set mask of message register status bits 1493 * @ntb: NTB device context. 1494 * @mask_bits: Mask bits. 1495 * 1496 * Mask the message registers status bits from raising the message event. 1497 * 1498 * Return: Zero on success, otherwise a negative error number. 1499 */ 1500static inline int ntb_msg_set_mask(struct ntb_dev *ntb, u64 mask_bits) 1501{ 1502 if (!ntb->ops->msg_set_mask) 1503 return -EINVAL; 1504 1505 return ntb->ops->msg_set_mask(ntb, mask_bits); 1506} 1507 1508/** 1509 * ntb_msg_clear_mask() - clear message registers mask 1510 * @ntb: NTB device context. 1511 * @mask_bits: Mask bits to clear. 1512 * 1513 * Clear bits in the message events mask register. 1514 * 1515 * Return: Zero on success, otherwise a negative error number. 1516 */ 1517static inline int ntb_msg_clear_mask(struct ntb_dev *ntb, u64 mask_bits) 1518{ 1519 if (!ntb->ops->msg_clear_mask) 1520 return -EINVAL; 1521 1522 return ntb->ops->msg_clear_mask(ntb, mask_bits); 1523} 1524 1525/** 1526 * ntb_msg_read() - read inbound message register with specified index 1527 * @ntb: NTB device context. 1528 * @pidx: OUT - Port index of peer device a message retrieved from 1529 * @midx: Message register index 1530 * 1531 * Read data from the specified message register. Source port index of a 1532 * message is retrieved as well. 1533 * 1534 * Return: The value of the inbound message register. 1535 */ 1536static inline u32 ntb_msg_read(struct ntb_dev *ntb, int *pidx, int midx) 1537{ 1538 if (!ntb->ops->msg_read) 1539 return ~(u32)0; 1540 1541 return ntb->ops->msg_read(ntb, pidx, midx); 1542} 1543 1544/** 1545 * ntb_peer_msg_write() - write data to the specified peer message register 1546 * @ntb: NTB device context. 1547 * @pidx: Port index of peer device a message being sent to 1548 * @midx: Message register index 1549 * @msg: Data to send 1550 * 1551 * Send data to a specified peer device using the defined message register. 1552 * Message event can be raised if the midx registers isn't empty while 1553 * calling this method and the corresponding interrupt isn't masked. 1554 * 1555 * Return: Zero on success, otherwise a negative error number. 1556 */ 1557static inline int ntb_peer_msg_write(struct ntb_dev *ntb, int pidx, int midx, 1558 u32 msg) 1559{ 1560 if (!ntb->ops->peer_msg_write) 1561 return -EINVAL; 1562 1563 return ntb->ops->peer_msg_write(ntb, pidx, midx, msg); 1564} 1565 1566/** 1567 * ntb_peer_resource_idx() - get a resource index for a given peer idx 1568 * @ntb: NTB device context. 1569 * @pidx: Peer port index. 1570 * 1571 * When constructing a graph of peers, each remote peer must use a different 1572 * resource index (mw, doorbell, etc) to communicate with each other 1573 * peer. 1574 * 1575 * In a two peer system, this function should always return 0 such that 1576 * resource 0 points to the remote peer on both ports. 1577 * 1578 * In a 5 peer system, this function will return the following matrix 1579 * 1580 * pidx \ port 0 1 2 3 4 1581 * 0 0 0 1 2 3 1582 * 1 0 1 1 2 3 1583 * 2 0 1 2 2 3 1584 * 3 0 1 2 3 3 1585 * 1586 * For example, if this function is used to program peer's memory 1587 * windows, port 0 will program MW 0 on all it's peers to point to itself. 1588 * port 1 will program MW 0 in port 0 to point to itself and MW 1 on all 1589 * other ports. etc. 1590 * 1591 * For the legacy two host case, ntb_port_number() and ntb_peer_port_number() 1592 * both return zero and therefore this function will always return zero. 1593 * So MW 0 on each host would be programmed to point to the other host. 1594 * 1595 * Return: the resource index to use for that peer. 1596 */ 1597static inline int ntb_peer_resource_idx(struct ntb_dev *ntb, int pidx) 1598{ 1599 int local_port, peer_port; 1600 1601 if (pidx >= ntb_peer_port_count(ntb)) 1602 return -EINVAL; 1603 1604 local_port = ntb_logical_port_number(ntb); 1605 peer_port = ntb_peer_logical_port_number(ntb, pidx); 1606 1607 if (peer_port < local_port) 1608 return local_port - 1; 1609 else 1610 return local_port; 1611} 1612 1613/** 1614 * ntb_peer_highest_mw_idx() - get a memory window index for a given peer idx 1615 * using the highest index memory windows first 1616 * 1617 * @ntb: NTB device context. 1618 * @pidx: Peer port index. 1619 * 1620 * Like ntb_peer_resource_idx(), except it returns indexes starting with 1621 * last memory window index. 1622 * 1623 * Return: the resource index to use for that peer. 1624 */ 1625static inline int ntb_peer_highest_mw_idx(struct ntb_dev *ntb, int pidx) 1626{ 1627 int ret; 1628 1629 ret = ntb_peer_resource_idx(ntb, pidx); 1630 if (ret < 0) 1631 return ret; 1632 1633 return ntb_mw_count(ntb, pidx) - ret - 1; 1634} 1635 1636struct ntb_msi_desc { 1637 u32 addr_offset; 1638 u32 data; 1639}; 1640 1641#ifdef CONFIG_NTB_MSI 1642 1643int ntb_msi_init(struct ntb_dev *ntb, void (*desc_changed)(void *ctx)); 1644int ntb_msi_setup_mws(struct ntb_dev *ntb); 1645void ntb_msi_clear_mws(struct ntb_dev *ntb); 1646int ntbm_msi_request_threaded_irq(struct ntb_dev *ntb, irq_handler_t handler, 1647 irq_handler_t thread_fn, 1648 const char *name, void *dev_id, 1649 struct ntb_msi_desc *msi_desc); 1650void ntbm_msi_free_irq(struct ntb_dev *ntb, unsigned int irq, void *dev_id); 1651int ntb_msi_peer_trigger(struct ntb_dev *ntb, int peer, 1652 struct ntb_msi_desc *desc); 1653int ntb_msi_peer_addr(struct ntb_dev *ntb, int peer, 1654 struct ntb_msi_desc *desc, 1655 phys_addr_t *msi_addr); 1656 1657#else /* not CONFIG_NTB_MSI */ 1658 1659static inline int ntb_msi_init(struct ntb_dev *ntb, 1660 void (*desc_changed)(void *ctx)) 1661{ 1662 return -EOPNOTSUPP; 1663} 1664static inline int ntb_msi_setup_mws(struct ntb_dev *ntb) 1665{ 1666 return -EOPNOTSUPP; 1667} 1668static inline void ntb_msi_clear_mws(struct ntb_dev *ntb) {} 1669static inline int ntbm_msi_request_threaded_irq(struct ntb_dev *ntb, 1670 irq_handler_t handler, 1671 irq_handler_t thread_fn, 1672 const char *name, void *dev_id, 1673 struct ntb_msi_desc *msi_desc) 1674{ 1675 return -EOPNOTSUPP; 1676} 1677static inline void ntbm_msi_free_irq(struct ntb_dev *ntb, unsigned int irq, 1678 void *dev_id) {} 1679static inline int ntb_msi_peer_trigger(struct ntb_dev *ntb, int peer, 1680 struct ntb_msi_desc *desc) 1681{ 1682 return -EOPNOTSUPP; 1683} 1684static inline int ntb_msi_peer_addr(struct ntb_dev *ntb, int peer, 1685 struct ntb_msi_desc *desc, 1686 phys_addr_t *msi_addr) 1687{ 1688 return -EOPNOTSUPP; 1689 1690} 1691 1692#endif /* CONFIG_NTB_MSI */ 1693 1694static inline int ntbm_msi_request_irq(struct ntb_dev *ntb, 1695 irq_handler_t handler, 1696 const char *name, void *dev_id, 1697 struct ntb_msi_desc *msi_desc) 1698{ 1699 return ntbm_msi_request_threaded_irq(ntb, handler, NULL, name, 1700 dev_id, msi_desc); 1701} 1702 1703#endif