cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

page-flags.h (36825B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Macros for manipulating and testing page->flags
      4 */
      5
      6#ifndef PAGE_FLAGS_H
      7#define PAGE_FLAGS_H
      8
      9#include <linux/types.h>
     10#include <linux/bug.h>
     11#include <linux/mmdebug.h>
     12#ifndef __GENERATING_BOUNDS_H
     13#include <linux/mm_types.h>
     14#include <generated/bounds.h>
     15#endif /* !__GENERATING_BOUNDS_H */
     16
     17/*
     18 * Various page->flags bits:
     19 *
     20 * PG_reserved is set for special pages. The "struct page" of such a page
     21 * should in general not be touched (e.g. set dirty) except by its owner.
     22 * Pages marked as PG_reserved include:
     23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
     24 *   initrd, HW tables)
     25 * - Pages reserved or allocated early during boot (before the page allocator
     26 *   was initialized). This includes (depending on the architecture) the
     27 *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
     28 *   much more. Once (if ever) freed, PG_reserved is cleared and they will
     29 *   be given to the page allocator.
     30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
     31 *   to read/write these pages might end badly. Don't touch!
     32 * - The zero page(s)
     33 * - Pages not added to the page allocator when onlining a section because
     34 *   they were excluded via the online_page_callback() or because they are
     35 *   PG_hwpoison.
     36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
     37 *   control pages, vmcoreinfo)
     38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
     39 *   not marked PG_reserved (as they might be in use by somebody else who does
     40 *   not respect the caching strategy).
     41 * - Pages part of an offline section (struct pages of offline sections should
     42 *   not be trusted as they will be initialized when first onlined).
     43 * - MCA pages on ia64
     44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
     45 * - Device memory (e.g. PMEM, DAX, HMM)
     46 * Some PG_reserved pages will be excluded from the hibernation image.
     47 * PG_reserved does in general not hinder anybody from dumping or swapping
     48 * and is no longer required for remap_pfn_range(). ioremap might require it.
     49 * Consequently, PG_reserved for a page mapped into user space can indicate
     50 * the zero page, the vDSO, MMIO pages or device memory.
     51 *
     52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
     53 * specific data (which is normally at page->private). It can be used by
     54 * private allocations for its own usage.
     55 *
     56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
     57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
     58 * is set before writeback starts and cleared when it finishes.
     59 *
     60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
     61 * while it is held.
     62 *
     63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
     64 * to become unlocked.
     65 *
     66 * PG_swapbacked is set when a page uses swap as a backing storage.  This are
     67 * usually PageAnon or shmem pages but please note that even anonymous pages
     68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
     69 * a result of MADV_FREE).
     70 *
     71 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
     72 * file-backed pagecache (see mm/vmscan.c).
     73 *
     74 * PG_error is set to indicate that an I/O error occurred on this page.
     75 *
     76 * PG_arch_1 is an architecture specific page state bit.  The generic code
     77 * guarantees that this bit is cleared for a page when it first is entered into
     78 * the page cache.
     79 *
     80 * PG_hwpoison indicates that a page got corrupted in hardware and contains
     81 * data with incorrect ECC bits that triggered a machine check. Accessing is
     82 * not safe since it may cause another machine check. Don't touch!
     83 */
     84
     85/*
     86 * Don't use the pageflags directly.  Use the PageFoo macros.
     87 *
     88 * The page flags field is split into two parts, the main flags area
     89 * which extends from the low bits upwards, and the fields area which
     90 * extends from the high bits downwards.
     91 *
     92 *  | FIELD | ... | FLAGS |
     93 *  N-1           ^       0
     94 *               (NR_PAGEFLAGS)
     95 *
     96 * The fields area is reserved for fields mapping zone, node (for NUMA) and
     97 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
     98 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
     99 */
    100enum pageflags {
    101	PG_locked,		/* Page is locked. Don't touch. */
    102	PG_referenced,
    103	PG_uptodate,
    104	PG_dirty,
    105	PG_lru,
    106	PG_active,
    107	PG_workingset,
    108	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
    109	PG_error,
    110	PG_slab,
    111	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
    112	PG_arch_1,
    113	PG_reserved,
    114	PG_private,		/* If pagecache, has fs-private data */
    115	PG_private_2,		/* If pagecache, has fs aux data */
    116	PG_writeback,		/* Page is under writeback */
    117	PG_head,		/* A head page */
    118	PG_mappedtodisk,	/* Has blocks allocated on-disk */
    119	PG_reclaim,		/* To be reclaimed asap */
    120	PG_swapbacked,		/* Page is backed by RAM/swap */
    121	PG_unevictable,		/* Page is "unevictable"  */
    122#ifdef CONFIG_MMU
    123	PG_mlocked,		/* Page is vma mlocked */
    124#endif
    125#ifdef CONFIG_ARCH_USES_PG_UNCACHED
    126	PG_uncached,		/* Page has been mapped as uncached */
    127#endif
    128#ifdef CONFIG_MEMORY_FAILURE
    129	PG_hwpoison,		/* hardware poisoned page. Don't touch */
    130#endif
    131#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
    132	PG_young,
    133	PG_idle,
    134#endif
    135#ifdef CONFIG_64BIT
    136	PG_arch_2,
    137#endif
    138#ifdef CONFIG_KASAN_HW_TAGS
    139	PG_skip_kasan_poison,
    140#endif
    141	__NR_PAGEFLAGS,
    142
    143	PG_readahead = PG_reclaim,
    144
    145	/*
    146	 * Depending on the way an anonymous folio can be mapped into a page
    147	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
    148	 * THP), PG_anon_exclusive may be set only for the head page or for
    149	 * tail pages of an anonymous folio. For now, we only expect it to be
    150	 * set on tail pages for PTE-mapped THP.
    151	 */
    152	PG_anon_exclusive = PG_mappedtodisk,
    153
    154	/* Filesystems */
    155	PG_checked = PG_owner_priv_1,
    156
    157	/* SwapBacked */
    158	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
    159
    160	/* Two page bits are conscripted by FS-Cache to maintain local caching
    161	 * state.  These bits are set on pages belonging to the netfs's inodes
    162	 * when those inodes are being locally cached.
    163	 */
    164	PG_fscache = PG_private_2,	/* page backed by cache */
    165
    166	/* XEN */
    167	/* Pinned in Xen as a read-only pagetable page. */
    168	PG_pinned = PG_owner_priv_1,
    169	/* Pinned as part of domain save (see xen_mm_pin_all()). */
    170	PG_savepinned = PG_dirty,
    171	/* Has a grant mapping of another (foreign) domain's page. */
    172	PG_foreign = PG_owner_priv_1,
    173	/* Remapped by swiotlb-xen. */
    174	PG_xen_remapped = PG_owner_priv_1,
    175
    176	/* SLOB */
    177	PG_slob_free = PG_private,
    178
    179	/* Compound pages. Stored in first tail page's flags */
    180	PG_double_map = PG_workingset,
    181
    182#ifdef CONFIG_MEMORY_FAILURE
    183	/*
    184	 * Compound pages. Stored in first tail page's flags.
    185	 * Indicates that at least one subpage is hwpoisoned in the
    186	 * THP.
    187	 */
    188	PG_has_hwpoisoned = PG_error,
    189#endif
    190
    191	/* non-lru isolated movable page */
    192	PG_isolated = PG_reclaim,
    193
    194	/* Only valid for buddy pages. Used to track pages that are reported */
    195	PG_reported = PG_uptodate,
    196};
    197
    198#define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
    199
    200#ifndef __GENERATING_BOUNDS_H
    201
    202#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
    203DECLARE_STATIC_KEY_MAYBE(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON,
    204			 hugetlb_optimize_vmemmap_key);
    205
    206static __always_inline bool hugetlb_optimize_vmemmap_enabled(void)
    207{
    208	return static_branch_maybe(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON,
    209				   &hugetlb_optimize_vmemmap_key);
    210}
    211
    212/*
    213 * If the feature of optimizing vmemmap pages associated with each HugeTLB
    214 * page is enabled, the head vmemmap page frame is reused and all of the tail
    215 * vmemmap addresses map to the head vmemmap page frame (furture details can
    216 * refer to the figure at the head of the mm/hugetlb_vmemmap.c).  In other
    217 * words, there are more than one page struct with PG_head associated with each
    218 * HugeTLB page.  We __know__ that there is only one head page struct, the tail
    219 * page structs with PG_head are fake head page structs.  We need an approach
    220 * to distinguish between those two different types of page structs so that
    221 * compound_head() can return the real head page struct when the parameter is
    222 * the tail page struct but with PG_head.
    223 *
    224 * The page_fixed_fake_head() returns the real head page struct if the @page is
    225 * fake page head, otherwise, returns @page which can either be a true page
    226 * head or tail.
    227 */
    228static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
    229{
    230	if (!hugetlb_optimize_vmemmap_enabled())
    231		return page;
    232
    233	/*
    234	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
    235	 * struct page. The alignment check aims to avoid access the fields (
    236	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
    237	 * cold cacheline in some cases.
    238	 */
    239	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
    240	    test_bit(PG_head, &page->flags)) {
    241		/*
    242		 * We can safely access the field of the @page[1] with PG_head
    243		 * because the @page is a compound page composed with at least
    244		 * two contiguous pages.
    245		 */
    246		unsigned long head = READ_ONCE(page[1].compound_head);
    247
    248		if (likely(head & 1))
    249			return (const struct page *)(head - 1);
    250	}
    251	return page;
    252}
    253#else
    254static inline const struct page *page_fixed_fake_head(const struct page *page)
    255{
    256	return page;
    257}
    258
    259static inline bool hugetlb_optimize_vmemmap_enabled(void)
    260{
    261	return false;
    262}
    263#endif
    264
    265static __always_inline int page_is_fake_head(struct page *page)
    266{
    267	return page_fixed_fake_head(page) != page;
    268}
    269
    270static inline unsigned long _compound_head(const struct page *page)
    271{
    272	unsigned long head = READ_ONCE(page->compound_head);
    273
    274	if (unlikely(head & 1))
    275		return head - 1;
    276	return (unsigned long)page_fixed_fake_head(page);
    277}
    278
    279#define compound_head(page)	((typeof(page))_compound_head(page))
    280
    281/**
    282 * page_folio - Converts from page to folio.
    283 * @p: The page.
    284 *
    285 * Every page is part of a folio.  This function cannot be called on a
    286 * NULL pointer.
    287 *
    288 * Context: No reference, nor lock is required on @page.  If the caller
    289 * does not hold a reference, this call may race with a folio split, so
    290 * it should re-check the folio still contains this page after gaining
    291 * a reference on the folio.
    292 * Return: The folio which contains this page.
    293 */
    294#define page_folio(p)		(_Generic((p),				\
    295	const struct page *:	(const struct folio *)_compound_head(p), \
    296	struct page *:		(struct folio *)_compound_head(p)))
    297
    298/**
    299 * folio_page - Return a page from a folio.
    300 * @folio: The folio.
    301 * @n: The page number to return.
    302 *
    303 * @n is relative to the start of the folio.  This function does not
    304 * check that the page number lies within @folio; the caller is presumed
    305 * to have a reference to the page.
    306 */
    307#define folio_page(folio, n)	nth_page(&(folio)->page, n)
    308
    309static __always_inline int PageTail(struct page *page)
    310{
    311	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
    312}
    313
    314static __always_inline int PageCompound(struct page *page)
    315{
    316	return test_bit(PG_head, &page->flags) ||
    317	       READ_ONCE(page->compound_head) & 1;
    318}
    319
    320#define	PAGE_POISON_PATTERN	-1l
    321static inline int PagePoisoned(const struct page *page)
    322{
    323	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
    324}
    325
    326#ifdef CONFIG_DEBUG_VM
    327void page_init_poison(struct page *page, size_t size);
    328#else
    329static inline void page_init_poison(struct page *page, size_t size)
    330{
    331}
    332#endif
    333
    334static unsigned long *folio_flags(struct folio *folio, unsigned n)
    335{
    336	struct page *page = &folio->page;
    337
    338	VM_BUG_ON_PGFLAGS(PageTail(page), page);
    339	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
    340	return &page[n].flags;
    341}
    342
    343/*
    344 * Page flags policies wrt compound pages
    345 *
    346 * PF_POISONED_CHECK
    347 *     check if this struct page poisoned/uninitialized
    348 *
    349 * PF_ANY:
    350 *     the page flag is relevant for small, head and tail pages.
    351 *
    352 * PF_HEAD:
    353 *     for compound page all operations related to the page flag applied to
    354 *     head page.
    355 *
    356 * PF_ONLY_HEAD:
    357 *     for compound page, callers only ever operate on the head page.
    358 *
    359 * PF_NO_TAIL:
    360 *     modifications of the page flag must be done on small or head pages,
    361 *     checks can be done on tail pages too.
    362 *
    363 * PF_NO_COMPOUND:
    364 *     the page flag is not relevant for compound pages.
    365 *
    366 * PF_SECOND:
    367 *     the page flag is stored in the first tail page.
    368 */
    369#define PF_POISONED_CHECK(page) ({					\
    370		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
    371		page; })
    372#define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
    373#define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
    374#define PF_ONLY_HEAD(page, enforce) ({					\
    375		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
    376		PF_POISONED_CHECK(page); })
    377#define PF_NO_TAIL(page, enforce) ({					\
    378		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
    379		PF_POISONED_CHECK(compound_head(page)); })
    380#define PF_NO_COMPOUND(page, enforce) ({				\
    381		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
    382		PF_POISONED_CHECK(page); })
    383#define PF_SECOND(page, enforce) ({					\
    384		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
    385		PF_POISONED_CHECK(&page[1]); })
    386
    387/* Which page is the flag stored in */
    388#define FOLIO_PF_ANY		0
    389#define FOLIO_PF_HEAD		0
    390#define FOLIO_PF_ONLY_HEAD	0
    391#define FOLIO_PF_NO_TAIL	0
    392#define FOLIO_PF_NO_COMPOUND	0
    393#define FOLIO_PF_SECOND		1
    394
    395/*
    396 * Macros to create function definitions for page flags
    397 */
    398#define TESTPAGEFLAG(uname, lname, policy)				\
    399static __always_inline bool folio_test_##lname(struct folio *folio)	\
    400{ return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
    401static __always_inline int Page##uname(struct page *page)		\
    402{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
    403
    404#define SETPAGEFLAG(uname, lname, policy)				\
    405static __always_inline							\
    406void folio_set_##lname(struct folio *folio)				\
    407{ set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
    408static __always_inline void SetPage##uname(struct page *page)		\
    409{ set_bit(PG_##lname, &policy(page, 1)->flags); }
    410
    411#define CLEARPAGEFLAG(uname, lname, policy)				\
    412static __always_inline							\
    413void folio_clear_##lname(struct folio *folio)				\
    414{ clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
    415static __always_inline void ClearPage##uname(struct page *page)		\
    416{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
    417
    418#define __SETPAGEFLAG(uname, lname, policy)				\
    419static __always_inline							\
    420void __folio_set_##lname(struct folio *folio)				\
    421{ __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
    422static __always_inline void __SetPage##uname(struct page *page)		\
    423{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
    424
    425#define __CLEARPAGEFLAG(uname, lname, policy)				\
    426static __always_inline							\
    427void __folio_clear_##lname(struct folio *folio)				\
    428{ __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
    429static __always_inline void __ClearPage##uname(struct page *page)	\
    430{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
    431
    432#define TESTSETFLAG(uname, lname, policy)				\
    433static __always_inline							\
    434bool folio_test_set_##lname(struct folio *folio)			\
    435{ return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
    436static __always_inline int TestSetPage##uname(struct page *page)	\
    437{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
    438
    439#define TESTCLEARFLAG(uname, lname, policy)				\
    440static __always_inline							\
    441bool folio_test_clear_##lname(struct folio *folio)			\
    442{ return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
    443static __always_inline int TestClearPage##uname(struct page *page)	\
    444{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
    445
    446#define PAGEFLAG(uname, lname, policy)					\
    447	TESTPAGEFLAG(uname, lname, policy)				\
    448	SETPAGEFLAG(uname, lname, policy)				\
    449	CLEARPAGEFLAG(uname, lname, policy)
    450
    451#define __PAGEFLAG(uname, lname, policy)				\
    452	TESTPAGEFLAG(uname, lname, policy)				\
    453	__SETPAGEFLAG(uname, lname, policy)				\
    454	__CLEARPAGEFLAG(uname, lname, policy)
    455
    456#define TESTSCFLAG(uname, lname, policy)				\
    457	TESTSETFLAG(uname, lname, policy)				\
    458	TESTCLEARFLAG(uname, lname, policy)
    459
    460#define TESTPAGEFLAG_FALSE(uname, lname)				\
    461static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
    462static inline int Page##uname(const struct page *page) { return 0; }
    463
    464#define SETPAGEFLAG_NOOP(uname, lname)					\
    465static inline void folio_set_##lname(struct folio *folio) { }		\
    466static inline void SetPage##uname(struct page *page) {  }
    467
    468#define CLEARPAGEFLAG_NOOP(uname, lname)				\
    469static inline void folio_clear_##lname(struct folio *folio) { }		\
    470static inline void ClearPage##uname(struct page *page) {  }
    471
    472#define __CLEARPAGEFLAG_NOOP(uname, lname)				\
    473static inline void __folio_clear_##lname(struct folio *folio) { }	\
    474static inline void __ClearPage##uname(struct page *page) {  }
    475
    476#define TESTSETFLAG_FALSE(uname, lname)					\
    477static inline bool folio_test_set_##lname(struct folio *folio)		\
    478{ return 0; }								\
    479static inline int TestSetPage##uname(struct page *page) { return 0; }
    480
    481#define TESTCLEARFLAG_FALSE(uname, lname)				\
    482static inline bool folio_test_clear_##lname(struct folio *folio)	\
    483{ return 0; }								\
    484static inline int TestClearPage##uname(struct page *page) { return 0; }
    485
    486#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
    487	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
    488
    489#define TESTSCFLAG_FALSE(uname, lname)					\
    490	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
    491
    492__PAGEFLAG(Locked, locked, PF_NO_TAIL)
    493PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
    494PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
    495PAGEFLAG(Referenced, referenced, PF_HEAD)
    496	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
    497	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
    498PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
    499	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
    500PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
    501	TESTCLEARFLAG(LRU, lru, PF_HEAD)
    502PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
    503	TESTCLEARFLAG(Active, active, PF_HEAD)
    504PAGEFLAG(Workingset, workingset, PF_HEAD)
    505	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
    506__PAGEFLAG(Slab, slab, PF_NO_TAIL)
    507__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
    508PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
    509
    510/* Xen */
    511PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
    512	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
    513PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
    514PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
    515PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
    516	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
    517
    518PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
    519	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
    520	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
    521PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
    522	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
    523	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
    524
    525/*
    526 * Private page markings that may be used by the filesystem that owns the page
    527 * for its own purposes.
    528 * - PG_private and PG_private_2 cause release_folio() and co to be invoked
    529 */
    530PAGEFLAG(Private, private, PF_ANY)
    531PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
    532PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
    533	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
    534
    535/*
    536 * Only test-and-set exist for PG_writeback.  The unconditional operators are
    537 * risky: they bypass page accounting.
    538 */
    539TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
    540	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
    541PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
    542
    543/* PG_readahead is only used for reads; PG_reclaim is only for writes */
    544PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
    545	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
    546PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
    547	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
    548
    549#ifdef CONFIG_HIGHMEM
    550/*
    551 * Must use a macro here due to header dependency issues. page_zone() is not
    552 * available at this point.
    553 */
    554#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
    555#else
    556PAGEFLAG_FALSE(HighMem, highmem)
    557#endif
    558
    559#ifdef CONFIG_SWAP
    560static __always_inline bool folio_test_swapcache(struct folio *folio)
    561{
    562	return folio_test_swapbacked(folio) &&
    563			test_bit(PG_swapcache, folio_flags(folio, 0));
    564}
    565
    566static __always_inline bool PageSwapCache(struct page *page)
    567{
    568	return folio_test_swapcache(page_folio(page));
    569}
    570
    571SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
    572CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
    573#else
    574PAGEFLAG_FALSE(SwapCache, swapcache)
    575#endif
    576
    577PAGEFLAG(Unevictable, unevictable, PF_HEAD)
    578	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
    579	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
    580
    581#ifdef CONFIG_MMU
    582PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
    583	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
    584	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
    585#else
    586PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
    587	TESTSCFLAG_FALSE(Mlocked, mlocked)
    588#endif
    589
    590#ifdef CONFIG_ARCH_USES_PG_UNCACHED
    591PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
    592#else
    593PAGEFLAG_FALSE(Uncached, uncached)
    594#endif
    595
    596#ifdef CONFIG_MEMORY_FAILURE
    597PAGEFLAG(HWPoison, hwpoison, PF_ANY)
    598TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
    599#define __PG_HWPOISON (1UL << PG_hwpoison)
    600#define MAGIC_HWPOISON	0x48575053U	/* HWPS */
    601extern void SetPageHWPoisonTakenOff(struct page *page);
    602extern void ClearPageHWPoisonTakenOff(struct page *page);
    603extern bool take_page_off_buddy(struct page *page);
    604extern bool put_page_back_buddy(struct page *page);
    605#else
    606PAGEFLAG_FALSE(HWPoison, hwpoison)
    607#define __PG_HWPOISON 0
    608#endif
    609
    610#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
    611TESTPAGEFLAG(Young, young, PF_ANY)
    612SETPAGEFLAG(Young, young, PF_ANY)
    613TESTCLEARFLAG(Young, young, PF_ANY)
    614PAGEFLAG(Idle, idle, PF_ANY)
    615#endif
    616
    617#ifdef CONFIG_KASAN_HW_TAGS
    618PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
    619#else
    620PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
    621#endif
    622
    623/*
    624 * PageReported() is used to track reported free pages within the Buddy
    625 * allocator. We can use the non-atomic version of the test and set
    626 * operations as both should be shielded with the zone lock to prevent
    627 * any possible races on the setting or clearing of the bit.
    628 */
    629__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
    630
    631/*
    632 * On an anonymous page mapped into a user virtual memory area,
    633 * page->mapping points to its anon_vma, not to a struct address_space;
    634 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
    635 *
    636 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
    637 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
    638 * bit; and then page->mapping points, not to an anon_vma, but to a private
    639 * structure which KSM associates with that merged page.  See ksm.h.
    640 *
    641 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
    642 * page and then page->mapping points a struct address_space.
    643 *
    644 * Please note that, confusingly, "page_mapping" refers to the inode
    645 * address_space which maps the page from disk; whereas "page_mapped"
    646 * refers to user virtual address space into which the page is mapped.
    647 */
    648#define PAGE_MAPPING_ANON	0x1
    649#define PAGE_MAPPING_MOVABLE	0x2
    650#define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
    651#define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
    652
    653static __always_inline bool folio_mapping_flags(struct folio *folio)
    654{
    655	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
    656}
    657
    658static __always_inline int PageMappingFlags(struct page *page)
    659{
    660	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
    661}
    662
    663static __always_inline bool folio_test_anon(struct folio *folio)
    664{
    665	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
    666}
    667
    668static __always_inline bool PageAnon(struct page *page)
    669{
    670	return folio_test_anon(page_folio(page));
    671}
    672
    673static __always_inline int __PageMovable(struct page *page)
    674{
    675	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
    676				PAGE_MAPPING_MOVABLE;
    677}
    678
    679#ifdef CONFIG_KSM
    680/*
    681 * A KSM page is one of those write-protected "shared pages" or "merged pages"
    682 * which KSM maps into multiple mms, wherever identical anonymous page content
    683 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
    684 * anon_vma, but to that page's node of the stable tree.
    685 */
    686static __always_inline bool folio_test_ksm(struct folio *folio)
    687{
    688	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
    689				PAGE_MAPPING_KSM;
    690}
    691
    692static __always_inline bool PageKsm(struct page *page)
    693{
    694	return folio_test_ksm(page_folio(page));
    695}
    696#else
    697TESTPAGEFLAG_FALSE(Ksm, ksm)
    698#endif
    699
    700u64 stable_page_flags(struct page *page);
    701
    702/**
    703 * folio_test_uptodate - Is this folio up to date?
    704 * @folio: The folio.
    705 *
    706 * The uptodate flag is set on a folio when every byte in the folio is
    707 * at least as new as the corresponding bytes on storage.  Anonymous
    708 * and CoW folios are always uptodate.  If the folio is not uptodate,
    709 * some of the bytes in it may be; see the is_partially_uptodate()
    710 * address_space operation.
    711 */
    712static inline bool folio_test_uptodate(struct folio *folio)
    713{
    714	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
    715	/*
    716	 * Must ensure that the data we read out of the folio is loaded
    717	 * _after_ we've loaded folio->flags to check the uptodate bit.
    718	 * We can skip the barrier if the folio is not uptodate, because
    719	 * we wouldn't be reading anything from it.
    720	 *
    721	 * See folio_mark_uptodate() for the other side of the story.
    722	 */
    723	if (ret)
    724		smp_rmb();
    725
    726	return ret;
    727}
    728
    729static inline int PageUptodate(struct page *page)
    730{
    731	return folio_test_uptodate(page_folio(page));
    732}
    733
    734static __always_inline void __folio_mark_uptodate(struct folio *folio)
    735{
    736	smp_wmb();
    737	__set_bit(PG_uptodate, folio_flags(folio, 0));
    738}
    739
    740static __always_inline void folio_mark_uptodate(struct folio *folio)
    741{
    742	/*
    743	 * Memory barrier must be issued before setting the PG_uptodate bit,
    744	 * so that all previous stores issued in order to bring the folio
    745	 * uptodate are actually visible before folio_test_uptodate becomes true.
    746	 */
    747	smp_wmb();
    748	set_bit(PG_uptodate, folio_flags(folio, 0));
    749}
    750
    751static __always_inline void __SetPageUptodate(struct page *page)
    752{
    753	__folio_mark_uptodate((struct folio *)page);
    754}
    755
    756static __always_inline void SetPageUptodate(struct page *page)
    757{
    758	folio_mark_uptodate((struct folio *)page);
    759}
    760
    761CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
    762
    763bool __folio_start_writeback(struct folio *folio, bool keep_write);
    764bool set_page_writeback(struct page *page);
    765
    766#define folio_start_writeback(folio)			\
    767	__folio_start_writeback(folio, false)
    768#define folio_start_writeback_keepwrite(folio)	\
    769	__folio_start_writeback(folio, true)
    770
    771static inline void set_page_writeback_keepwrite(struct page *page)
    772{
    773	folio_start_writeback_keepwrite(page_folio(page));
    774}
    775
    776static inline bool test_set_page_writeback(struct page *page)
    777{
    778	return set_page_writeback(page);
    779}
    780
    781static __always_inline bool folio_test_head(struct folio *folio)
    782{
    783	return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
    784}
    785
    786static __always_inline int PageHead(struct page *page)
    787{
    788	PF_POISONED_CHECK(page);
    789	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
    790}
    791
    792__SETPAGEFLAG(Head, head, PF_ANY)
    793__CLEARPAGEFLAG(Head, head, PF_ANY)
    794CLEARPAGEFLAG(Head, head, PF_ANY)
    795
    796/**
    797 * folio_test_large() - Does this folio contain more than one page?
    798 * @folio: The folio to test.
    799 *
    800 * Return: True if the folio is larger than one page.
    801 */
    802static inline bool folio_test_large(struct folio *folio)
    803{
    804	return folio_test_head(folio);
    805}
    806
    807static __always_inline void set_compound_head(struct page *page, struct page *head)
    808{
    809	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
    810}
    811
    812static __always_inline void clear_compound_head(struct page *page)
    813{
    814	WRITE_ONCE(page->compound_head, 0);
    815}
    816
    817#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    818static inline void ClearPageCompound(struct page *page)
    819{
    820	BUG_ON(!PageHead(page));
    821	ClearPageHead(page);
    822}
    823#endif
    824
    825#define PG_head_mask ((1UL << PG_head))
    826
    827#ifdef CONFIG_HUGETLB_PAGE
    828int PageHuge(struct page *page);
    829int PageHeadHuge(struct page *page);
    830static inline bool folio_test_hugetlb(struct folio *folio)
    831{
    832	return PageHeadHuge(&folio->page);
    833}
    834#else
    835TESTPAGEFLAG_FALSE(Huge, hugetlb)
    836TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
    837#endif
    838
    839#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    840/*
    841 * PageHuge() only returns true for hugetlbfs pages, but not for
    842 * normal or transparent huge pages.
    843 *
    844 * PageTransHuge() returns true for both transparent huge and
    845 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
    846 * called only in the core VM paths where hugetlbfs pages can't exist.
    847 */
    848static inline int PageTransHuge(struct page *page)
    849{
    850	VM_BUG_ON_PAGE(PageTail(page), page);
    851	return PageHead(page);
    852}
    853
    854static inline bool folio_test_transhuge(struct folio *folio)
    855{
    856	return folio_test_head(folio);
    857}
    858
    859/*
    860 * PageTransCompound returns true for both transparent huge pages
    861 * and hugetlbfs pages, so it should only be called when it's known
    862 * that hugetlbfs pages aren't involved.
    863 */
    864static inline int PageTransCompound(struct page *page)
    865{
    866	return PageCompound(page);
    867}
    868
    869/*
    870 * PageTransTail returns true for both transparent huge pages
    871 * and hugetlbfs pages, so it should only be called when it's known
    872 * that hugetlbfs pages aren't involved.
    873 */
    874static inline int PageTransTail(struct page *page)
    875{
    876	return PageTail(page);
    877}
    878
    879/*
    880 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
    881 * as PMDs.
    882 *
    883 * This is required for optimization of rmap operations for THP: we can postpone
    884 * per small page mapcount accounting (and its overhead from atomic operations)
    885 * until the first PMD split.
    886 *
    887 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
    888 * by one. This reference will go away with last compound_mapcount.
    889 *
    890 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
    891 */
    892PAGEFLAG(DoubleMap, double_map, PF_SECOND)
    893	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
    894#else
    895TESTPAGEFLAG_FALSE(TransHuge, transhuge)
    896TESTPAGEFLAG_FALSE(TransCompound, transcompound)
    897TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
    898TESTPAGEFLAG_FALSE(TransTail, transtail)
    899PAGEFLAG_FALSE(DoubleMap, double_map)
    900	TESTSCFLAG_FALSE(DoubleMap, double_map)
    901#endif
    902
    903#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
    904/*
    905 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
    906 * compound page.
    907 *
    908 * This flag is set by hwpoison handler.  Cleared by THP split or free page.
    909 */
    910PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
    911	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
    912#else
    913PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
    914	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
    915#endif
    916
    917/*
    918 * Check if a page is currently marked HWPoisoned. Note that this check is
    919 * best effort only and inherently racy: there is no way to synchronize with
    920 * failing hardware.
    921 */
    922static inline bool is_page_hwpoison(struct page *page)
    923{
    924	if (PageHWPoison(page))
    925		return true;
    926	return PageHuge(page) && PageHWPoison(compound_head(page));
    927}
    928
    929/*
    930 * For pages that are never mapped to userspace (and aren't PageSlab),
    931 * page_type may be used.  Because it is initialised to -1, we invert the
    932 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
    933 * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
    934 * low bits so that an underflow or overflow of page_mapcount() won't be
    935 * mistaken for a page type value.
    936 */
    937
    938#define PAGE_TYPE_BASE	0xf0000000
    939/* Reserve		0x0000007f to catch underflows of page_mapcount */
    940#define PAGE_MAPCOUNT_RESERVE	-128
    941#define PG_buddy	0x00000080
    942#define PG_offline	0x00000100
    943#define PG_table	0x00000200
    944#define PG_guard	0x00000400
    945
    946#define PageType(page, flag)						\
    947	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
    948
    949static inline int page_has_type(struct page *page)
    950{
    951	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
    952}
    953
    954#define PAGE_TYPE_OPS(uname, lname)					\
    955static __always_inline int Page##uname(struct page *page)		\
    956{									\
    957	return PageType(page, PG_##lname);				\
    958}									\
    959static __always_inline void __SetPage##uname(struct page *page)		\
    960{									\
    961	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
    962	page->page_type &= ~PG_##lname;					\
    963}									\
    964static __always_inline void __ClearPage##uname(struct page *page)	\
    965{									\
    966	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
    967	page->page_type |= PG_##lname;					\
    968}
    969
    970/*
    971 * PageBuddy() indicates that the page is free and in the buddy system
    972 * (see mm/page_alloc.c).
    973 */
    974PAGE_TYPE_OPS(Buddy, buddy)
    975
    976/*
    977 * PageOffline() indicates that the page is logically offline although the
    978 * containing section is online. (e.g. inflated in a balloon driver or
    979 * not onlined when onlining the section).
    980 * The content of these pages is effectively stale. Such pages should not
    981 * be touched (read/write/dump/save) except by their owner.
    982 *
    983 * If a driver wants to allow to offline unmovable PageOffline() pages without
    984 * putting them back to the buddy, it can do so via the memory notifier by
    985 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
    986 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
    987 * pages (now with a reference count of zero) are treated like free pages,
    988 * allowing the containing memory block to get offlined. A driver that
    989 * relies on this feature is aware that re-onlining the memory block will
    990 * require to re-set the pages PageOffline() and not giving them to the
    991 * buddy via online_page_callback_t.
    992 *
    993 * There are drivers that mark a page PageOffline() and expect there won't be
    994 * any further access to page content. PFN walkers that read content of random
    995 * pages should check PageOffline() and synchronize with such drivers using
    996 * page_offline_freeze()/page_offline_thaw().
    997 */
    998PAGE_TYPE_OPS(Offline, offline)
    999
   1000extern void page_offline_freeze(void);
   1001extern void page_offline_thaw(void);
   1002extern void page_offline_begin(void);
   1003extern void page_offline_end(void);
   1004
   1005/*
   1006 * Marks pages in use as page tables.
   1007 */
   1008PAGE_TYPE_OPS(Table, table)
   1009
   1010/*
   1011 * Marks guardpages used with debug_pagealloc.
   1012 */
   1013PAGE_TYPE_OPS(Guard, guard)
   1014
   1015extern bool is_free_buddy_page(struct page *page);
   1016
   1017PAGEFLAG(Isolated, isolated, PF_ANY);
   1018
   1019static __always_inline int PageAnonExclusive(struct page *page)
   1020{
   1021	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
   1022	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
   1023	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
   1024}
   1025
   1026static __always_inline void SetPageAnonExclusive(struct page *page)
   1027{
   1028	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
   1029	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
   1030	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
   1031}
   1032
   1033static __always_inline void ClearPageAnonExclusive(struct page *page)
   1034{
   1035	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
   1036	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
   1037	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
   1038}
   1039
   1040static __always_inline void __ClearPageAnonExclusive(struct page *page)
   1041{
   1042	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
   1043	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
   1044	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
   1045}
   1046
   1047#ifdef CONFIG_MMU
   1048#define __PG_MLOCKED		(1UL << PG_mlocked)
   1049#else
   1050#define __PG_MLOCKED		0
   1051#endif
   1052
   1053/*
   1054 * Flags checked when a page is freed.  Pages being freed should not have
   1055 * these flags set.  If they are, there is a problem.
   1056 */
   1057#define PAGE_FLAGS_CHECK_AT_FREE				\
   1058	(1UL << PG_lru		| 1UL << PG_locked	|	\
   1059	 1UL << PG_private	| 1UL << PG_private_2	|	\
   1060	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
   1061	 1UL << PG_slab		| 1UL << PG_active 	|	\
   1062	 1UL << PG_unevictable	| __PG_MLOCKED)
   1063
   1064/*
   1065 * Flags checked when a page is prepped for return by the page allocator.
   1066 * Pages being prepped should not have these flags set.  If they are set,
   1067 * there has been a kernel bug or struct page corruption.
   1068 *
   1069 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
   1070 * alloc-free cycle to prevent from reusing the page.
   1071 */
   1072#define PAGE_FLAGS_CHECK_AT_PREP	\
   1073	(PAGEFLAGS_MASK & ~__PG_HWPOISON)
   1074
   1075#define PAGE_FLAGS_PRIVATE				\
   1076	(1UL << PG_private | 1UL << PG_private_2)
   1077/**
   1078 * page_has_private - Determine if page has private stuff
   1079 * @page: The page to be checked
   1080 *
   1081 * Determine if a page has private stuff, indicating that release routines
   1082 * should be invoked upon it.
   1083 */
   1084static inline int page_has_private(struct page *page)
   1085{
   1086	return !!(page->flags & PAGE_FLAGS_PRIVATE);
   1087}
   1088
   1089static inline bool folio_has_private(struct folio *folio)
   1090{
   1091	return page_has_private(&folio->page);
   1092}
   1093
   1094#undef PF_ANY
   1095#undef PF_HEAD
   1096#undef PF_ONLY_HEAD
   1097#undef PF_NO_TAIL
   1098#undef PF_NO_COMPOUND
   1099#undef PF_SECOND
   1100#endif /* !__GENERATING_BOUNDS_H */
   1101
   1102#endif	/* PAGE_FLAGS_H */