page-flags.h (36825B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 72 * file-backed pagecache (see mm/vmscan.c). 73 * 74 * PG_error is set to indicate that an I/O error occurred on this page. 75 * 76 * PG_arch_1 is an architecture specific page state bit. The generic code 77 * guarantees that this bit is cleared for a page when it first is entered into 78 * the page cache. 79 * 80 * PG_hwpoison indicates that a page got corrupted in hardware and contains 81 * data with incorrect ECC bits that triggered a machine check. Accessing is 82 * not safe since it may cause another machine check. Don't touch! 83 */ 84 85/* 86 * Don't use the pageflags directly. Use the PageFoo macros. 87 * 88 * The page flags field is split into two parts, the main flags area 89 * which extends from the low bits upwards, and the fields area which 90 * extends from the high bits downwards. 91 * 92 * | FIELD | ... | FLAGS | 93 * N-1 ^ 0 94 * (NR_PAGEFLAGS) 95 * 96 * The fields area is reserved for fields mapping zone, node (for NUMA) and 97 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 98 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 99 */ 100enum pageflags { 101 PG_locked, /* Page is locked. Don't touch. */ 102 PG_referenced, 103 PG_uptodate, 104 PG_dirty, 105 PG_lru, 106 PG_active, 107 PG_workingset, 108 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 109 PG_error, 110 PG_slab, 111 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 112 PG_arch_1, 113 PG_reserved, 114 PG_private, /* If pagecache, has fs-private data */ 115 PG_private_2, /* If pagecache, has fs aux data */ 116 PG_writeback, /* Page is under writeback */ 117 PG_head, /* A head page */ 118 PG_mappedtodisk, /* Has blocks allocated on-disk */ 119 PG_reclaim, /* To be reclaimed asap */ 120 PG_swapbacked, /* Page is backed by RAM/swap */ 121 PG_unevictable, /* Page is "unevictable" */ 122#ifdef CONFIG_MMU 123 PG_mlocked, /* Page is vma mlocked */ 124#endif 125#ifdef CONFIG_ARCH_USES_PG_UNCACHED 126 PG_uncached, /* Page has been mapped as uncached */ 127#endif 128#ifdef CONFIG_MEMORY_FAILURE 129 PG_hwpoison, /* hardware poisoned page. Don't touch */ 130#endif 131#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 132 PG_young, 133 PG_idle, 134#endif 135#ifdef CONFIG_64BIT 136 PG_arch_2, 137#endif 138#ifdef CONFIG_KASAN_HW_TAGS 139 PG_skip_kasan_poison, 140#endif 141 __NR_PAGEFLAGS, 142 143 PG_readahead = PG_reclaim, 144 145 /* 146 * Depending on the way an anonymous folio can be mapped into a page 147 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 148 * THP), PG_anon_exclusive may be set only for the head page or for 149 * tail pages of an anonymous folio. For now, we only expect it to be 150 * set on tail pages for PTE-mapped THP. 151 */ 152 PG_anon_exclusive = PG_mappedtodisk, 153 154 /* Filesystems */ 155 PG_checked = PG_owner_priv_1, 156 157 /* SwapBacked */ 158 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 159 160 /* Two page bits are conscripted by FS-Cache to maintain local caching 161 * state. These bits are set on pages belonging to the netfs's inodes 162 * when those inodes are being locally cached. 163 */ 164 PG_fscache = PG_private_2, /* page backed by cache */ 165 166 /* XEN */ 167 /* Pinned in Xen as a read-only pagetable page. */ 168 PG_pinned = PG_owner_priv_1, 169 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 170 PG_savepinned = PG_dirty, 171 /* Has a grant mapping of another (foreign) domain's page. */ 172 PG_foreign = PG_owner_priv_1, 173 /* Remapped by swiotlb-xen. */ 174 PG_xen_remapped = PG_owner_priv_1, 175 176 /* SLOB */ 177 PG_slob_free = PG_private, 178 179 /* Compound pages. Stored in first tail page's flags */ 180 PG_double_map = PG_workingset, 181 182#ifdef CONFIG_MEMORY_FAILURE 183 /* 184 * Compound pages. Stored in first tail page's flags. 185 * Indicates that at least one subpage is hwpoisoned in the 186 * THP. 187 */ 188 PG_has_hwpoisoned = PG_error, 189#endif 190 191 /* non-lru isolated movable page */ 192 PG_isolated = PG_reclaim, 193 194 /* Only valid for buddy pages. Used to track pages that are reported */ 195 PG_reported = PG_uptodate, 196}; 197 198#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 199 200#ifndef __GENERATING_BOUNDS_H 201 202#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 203DECLARE_STATIC_KEY_MAYBE(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON, 204 hugetlb_optimize_vmemmap_key); 205 206static __always_inline bool hugetlb_optimize_vmemmap_enabled(void) 207{ 208 return static_branch_maybe(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON, 209 &hugetlb_optimize_vmemmap_key); 210} 211 212/* 213 * If the feature of optimizing vmemmap pages associated with each HugeTLB 214 * page is enabled, the head vmemmap page frame is reused and all of the tail 215 * vmemmap addresses map to the head vmemmap page frame (furture details can 216 * refer to the figure at the head of the mm/hugetlb_vmemmap.c). In other 217 * words, there are more than one page struct with PG_head associated with each 218 * HugeTLB page. We __know__ that there is only one head page struct, the tail 219 * page structs with PG_head are fake head page structs. We need an approach 220 * to distinguish between those two different types of page structs so that 221 * compound_head() can return the real head page struct when the parameter is 222 * the tail page struct but with PG_head. 223 * 224 * The page_fixed_fake_head() returns the real head page struct if the @page is 225 * fake page head, otherwise, returns @page which can either be a true page 226 * head or tail. 227 */ 228static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 229{ 230 if (!hugetlb_optimize_vmemmap_enabled()) 231 return page; 232 233 /* 234 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 235 * struct page. The alignment check aims to avoid access the fields ( 236 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 237 * cold cacheline in some cases. 238 */ 239 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 240 test_bit(PG_head, &page->flags)) { 241 /* 242 * We can safely access the field of the @page[1] with PG_head 243 * because the @page is a compound page composed with at least 244 * two contiguous pages. 245 */ 246 unsigned long head = READ_ONCE(page[1].compound_head); 247 248 if (likely(head & 1)) 249 return (const struct page *)(head - 1); 250 } 251 return page; 252} 253#else 254static inline const struct page *page_fixed_fake_head(const struct page *page) 255{ 256 return page; 257} 258 259static inline bool hugetlb_optimize_vmemmap_enabled(void) 260{ 261 return false; 262} 263#endif 264 265static __always_inline int page_is_fake_head(struct page *page) 266{ 267 return page_fixed_fake_head(page) != page; 268} 269 270static inline unsigned long _compound_head(const struct page *page) 271{ 272 unsigned long head = READ_ONCE(page->compound_head); 273 274 if (unlikely(head & 1)) 275 return head - 1; 276 return (unsigned long)page_fixed_fake_head(page); 277} 278 279#define compound_head(page) ((typeof(page))_compound_head(page)) 280 281/** 282 * page_folio - Converts from page to folio. 283 * @p: The page. 284 * 285 * Every page is part of a folio. This function cannot be called on a 286 * NULL pointer. 287 * 288 * Context: No reference, nor lock is required on @page. If the caller 289 * does not hold a reference, this call may race with a folio split, so 290 * it should re-check the folio still contains this page after gaining 291 * a reference on the folio. 292 * Return: The folio which contains this page. 293 */ 294#define page_folio(p) (_Generic((p), \ 295 const struct page *: (const struct folio *)_compound_head(p), \ 296 struct page *: (struct folio *)_compound_head(p))) 297 298/** 299 * folio_page - Return a page from a folio. 300 * @folio: The folio. 301 * @n: The page number to return. 302 * 303 * @n is relative to the start of the folio. This function does not 304 * check that the page number lies within @folio; the caller is presumed 305 * to have a reference to the page. 306 */ 307#define folio_page(folio, n) nth_page(&(folio)->page, n) 308 309static __always_inline int PageTail(struct page *page) 310{ 311 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 312} 313 314static __always_inline int PageCompound(struct page *page) 315{ 316 return test_bit(PG_head, &page->flags) || 317 READ_ONCE(page->compound_head) & 1; 318} 319 320#define PAGE_POISON_PATTERN -1l 321static inline int PagePoisoned(const struct page *page) 322{ 323 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 324} 325 326#ifdef CONFIG_DEBUG_VM 327void page_init_poison(struct page *page, size_t size); 328#else 329static inline void page_init_poison(struct page *page, size_t size) 330{ 331} 332#endif 333 334static unsigned long *folio_flags(struct folio *folio, unsigned n) 335{ 336 struct page *page = &folio->page; 337 338 VM_BUG_ON_PGFLAGS(PageTail(page), page); 339 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 340 return &page[n].flags; 341} 342 343/* 344 * Page flags policies wrt compound pages 345 * 346 * PF_POISONED_CHECK 347 * check if this struct page poisoned/uninitialized 348 * 349 * PF_ANY: 350 * the page flag is relevant for small, head and tail pages. 351 * 352 * PF_HEAD: 353 * for compound page all operations related to the page flag applied to 354 * head page. 355 * 356 * PF_ONLY_HEAD: 357 * for compound page, callers only ever operate on the head page. 358 * 359 * PF_NO_TAIL: 360 * modifications of the page flag must be done on small or head pages, 361 * checks can be done on tail pages too. 362 * 363 * PF_NO_COMPOUND: 364 * the page flag is not relevant for compound pages. 365 * 366 * PF_SECOND: 367 * the page flag is stored in the first tail page. 368 */ 369#define PF_POISONED_CHECK(page) ({ \ 370 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 371 page; }) 372#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 373#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 374#define PF_ONLY_HEAD(page, enforce) ({ \ 375 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 376 PF_POISONED_CHECK(page); }) 377#define PF_NO_TAIL(page, enforce) ({ \ 378 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 379 PF_POISONED_CHECK(compound_head(page)); }) 380#define PF_NO_COMPOUND(page, enforce) ({ \ 381 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 382 PF_POISONED_CHECK(page); }) 383#define PF_SECOND(page, enforce) ({ \ 384 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 385 PF_POISONED_CHECK(&page[1]); }) 386 387/* Which page is the flag stored in */ 388#define FOLIO_PF_ANY 0 389#define FOLIO_PF_HEAD 0 390#define FOLIO_PF_ONLY_HEAD 0 391#define FOLIO_PF_NO_TAIL 0 392#define FOLIO_PF_NO_COMPOUND 0 393#define FOLIO_PF_SECOND 1 394 395/* 396 * Macros to create function definitions for page flags 397 */ 398#define TESTPAGEFLAG(uname, lname, policy) \ 399static __always_inline bool folio_test_##lname(struct folio *folio) \ 400{ return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 401static __always_inline int Page##uname(struct page *page) \ 402{ return test_bit(PG_##lname, &policy(page, 0)->flags); } 403 404#define SETPAGEFLAG(uname, lname, policy) \ 405static __always_inline \ 406void folio_set_##lname(struct folio *folio) \ 407{ set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 408static __always_inline void SetPage##uname(struct page *page) \ 409{ set_bit(PG_##lname, &policy(page, 1)->flags); } 410 411#define CLEARPAGEFLAG(uname, lname, policy) \ 412static __always_inline \ 413void folio_clear_##lname(struct folio *folio) \ 414{ clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 415static __always_inline void ClearPage##uname(struct page *page) \ 416{ clear_bit(PG_##lname, &policy(page, 1)->flags); } 417 418#define __SETPAGEFLAG(uname, lname, policy) \ 419static __always_inline \ 420void __folio_set_##lname(struct folio *folio) \ 421{ __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 422static __always_inline void __SetPage##uname(struct page *page) \ 423{ __set_bit(PG_##lname, &policy(page, 1)->flags); } 424 425#define __CLEARPAGEFLAG(uname, lname, policy) \ 426static __always_inline \ 427void __folio_clear_##lname(struct folio *folio) \ 428{ __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 429static __always_inline void __ClearPage##uname(struct page *page) \ 430{ __clear_bit(PG_##lname, &policy(page, 1)->flags); } 431 432#define TESTSETFLAG(uname, lname, policy) \ 433static __always_inline \ 434bool folio_test_set_##lname(struct folio *folio) \ 435{ return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 436static __always_inline int TestSetPage##uname(struct page *page) \ 437{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 438 439#define TESTCLEARFLAG(uname, lname, policy) \ 440static __always_inline \ 441bool folio_test_clear_##lname(struct folio *folio) \ 442{ return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 443static __always_inline int TestClearPage##uname(struct page *page) \ 444{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 445 446#define PAGEFLAG(uname, lname, policy) \ 447 TESTPAGEFLAG(uname, lname, policy) \ 448 SETPAGEFLAG(uname, lname, policy) \ 449 CLEARPAGEFLAG(uname, lname, policy) 450 451#define __PAGEFLAG(uname, lname, policy) \ 452 TESTPAGEFLAG(uname, lname, policy) \ 453 __SETPAGEFLAG(uname, lname, policy) \ 454 __CLEARPAGEFLAG(uname, lname, policy) 455 456#define TESTSCFLAG(uname, lname, policy) \ 457 TESTSETFLAG(uname, lname, policy) \ 458 TESTCLEARFLAG(uname, lname, policy) 459 460#define TESTPAGEFLAG_FALSE(uname, lname) \ 461static inline bool folio_test_##lname(const struct folio *folio) { return false; } \ 462static inline int Page##uname(const struct page *page) { return 0; } 463 464#define SETPAGEFLAG_NOOP(uname, lname) \ 465static inline void folio_set_##lname(struct folio *folio) { } \ 466static inline void SetPage##uname(struct page *page) { } 467 468#define CLEARPAGEFLAG_NOOP(uname, lname) \ 469static inline void folio_clear_##lname(struct folio *folio) { } \ 470static inline void ClearPage##uname(struct page *page) { } 471 472#define __CLEARPAGEFLAG_NOOP(uname, lname) \ 473static inline void __folio_clear_##lname(struct folio *folio) { } \ 474static inline void __ClearPage##uname(struct page *page) { } 475 476#define TESTSETFLAG_FALSE(uname, lname) \ 477static inline bool folio_test_set_##lname(struct folio *folio) \ 478{ return 0; } \ 479static inline int TestSetPage##uname(struct page *page) { return 0; } 480 481#define TESTCLEARFLAG_FALSE(uname, lname) \ 482static inline bool folio_test_clear_##lname(struct folio *folio) \ 483{ return 0; } \ 484static inline int TestClearPage##uname(struct page *page) { return 0; } 485 486#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 487 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 488 489#define TESTSCFLAG_FALSE(uname, lname) \ 490 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 491 492__PAGEFLAG(Locked, locked, PF_NO_TAIL) 493PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 494PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 495PAGEFLAG(Referenced, referenced, PF_HEAD) 496 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 497 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 498PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 499 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 500PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 501 TESTCLEARFLAG(LRU, lru, PF_HEAD) 502PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 503 TESTCLEARFLAG(Active, active, PF_HEAD) 504PAGEFLAG(Workingset, workingset, PF_HEAD) 505 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 506__PAGEFLAG(Slab, slab, PF_NO_TAIL) 507__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 508PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 509 510/* Xen */ 511PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 512 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 513PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 514PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 515PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 516 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 517 518PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 519 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 520 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 521PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 522 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 523 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 524 525/* 526 * Private page markings that may be used by the filesystem that owns the page 527 * for its own purposes. 528 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 529 */ 530PAGEFLAG(Private, private, PF_ANY) 531PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 532PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 533 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 534 535/* 536 * Only test-and-set exist for PG_writeback. The unconditional operators are 537 * risky: they bypass page accounting. 538 */ 539TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 540 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 541PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 542 543/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 544PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 545 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 546PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND) 547 TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND) 548 549#ifdef CONFIG_HIGHMEM 550/* 551 * Must use a macro here due to header dependency issues. page_zone() is not 552 * available at this point. 553 */ 554#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 555#else 556PAGEFLAG_FALSE(HighMem, highmem) 557#endif 558 559#ifdef CONFIG_SWAP 560static __always_inline bool folio_test_swapcache(struct folio *folio) 561{ 562 return folio_test_swapbacked(folio) && 563 test_bit(PG_swapcache, folio_flags(folio, 0)); 564} 565 566static __always_inline bool PageSwapCache(struct page *page) 567{ 568 return folio_test_swapcache(page_folio(page)); 569} 570 571SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 572CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 573#else 574PAGEFLAG_FALSE(SwapCache, swapcache) 575#endif 576 577PAGEFLAG(Unevictable, unevictable, PF_HEAD) 578 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 579 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 580 581#ifdef CONFIG_MMU 582PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 583 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 584 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 585#else 586PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked) 587 TESTSCFLAG_FALSE(Mlocked, mlocked) 588#endif 589 590#ifdef CONFIG_ARCH_USES_PG_UNCACHED 591PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 592#else 593PAGEFLAG_FALSE(Uncached, uncached) 594#endif 595 596#ifdef CONFIG_MEMORY_FAILURE 597PAGEFLAG(HWPoison, hwpoison, PF_ANY) 598TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 599#define __PG_HWPOISON (1UL << PG_hwpoison) 600#define MAGIC_HWPOISON 0x48575053U /* HWPS */ 601extern void SetPageHWPoisonTakenOff(struct page *page); 602extern void ClearPageHWPoisonTakenOff(struct page *page); 603extern bool take_page_off_buddy(struct page *page); 604extern bool put_page_back_buddy(struct page *page); 605#else 606PAGEFLAG_FALSE(HWPoison, hwpoison) 607#define __PG_HWPOISON 0 608#endif 609 610#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 611TESTPAGEFLAG(Young, young, PF_ANY) 612SETPAGEFLAG(Young, young, PF_ANY) 613TESTCLEARFLAG(Young, young, PF_ANY) 614PAGEFLAG(Idle, idle, PF_ANY) 615#endif 616 617#ifdef CONFIG_KASAN_HW_TAGS 618PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD) 619#else 620PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison) 621#endif 622 623/* 624 * PageReported() is used to track reported free pages within the Buddy 625 * allocator. We can use the non-atomic version of the test and set 626 * operations as both should be shielded with the zone lock to prevent 627 * any possible races on the setting or clearing of the bit. 628 */ 629__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 630 631/* 632 * On an anonymous page mapped into a user virtual memory area, 633 * page->mapping points to its anon_vma, not to a struct address_space; 634 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 635 * 636 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 637 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 638 * bit; and then page->mapping points, not to an anon_vma, but to a private 639 * structure which KSM associates with that merged page. See ksm.h. 640 * 641 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 642 * page and then page->mapping points a struct address_space. 643 * 644 * Please note that, confusingly, "page_mapping" refers to the inode 645 * address_space which maps the page from disk; whereas "page_mapped" 646 * refers to user virtual address space into which the page is mapped. 647 */ 648#define PAGE_MAPPING_ANON 0x1 649#define PAGE_MAPPING_MOVABLE 0x2 650#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 651#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 652 653static __always_inline bool folio_mapping_flags(struct folio *folio) 654{ 655 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0; 656} 657 658static __always_inline int PageMappingFlags(struct page *page) 659{ 660 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 661} 662 663static __always_inline bool folio_test_anon(struct folio *folio) 664{ 665 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 666} 667 668static __always_inline bool PageAnon(struct page *page) 669{ 670 return folio_test_anon(page_folio(page)); 671} 672 673static __always_inline int __PageMovable(struct page *page) 674{ 675 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 676 PAGE_MAPPING_MOVABLE; 677} 678 679#ifdef CONFIG_KSM 680/* 681 * A KSM page is one of those write-protected "shared pages" or "merged pages" 682 * which KSM maps into multiple mms, wherever identical anonymous page content 683 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 684 * anon_vma, but to that page's node of the stable tree. 685 */ 686static __always_inline bool folio_test_ksm(struct folio *folio) 687{ 688 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 689 PAGE_MAPPING_KSM; 690} 691 692static __always_inline bool PageKsm(struct page *page) 693{ 694 return folio_test_ksm(page_folio(page)); 695} 696#else 697TESTPAGEFLAG_FALSE(Ksm, ksm) 698#endif 699 700u64 stable_page_flags(struct page *page); 701 702/** 703 * folio_test_uptodate - Is this folio up to date? 704 * @folio: The folio. 705 * 706 * The uptodate flag is set on a folio when every byte in the folio is 707 * at least as new as the corresponding bytes on storage. Anonymous 708 * and CoW folios are always uptodate. If the folio is not uptodate, 709 * some of the bytes in it may be; see the is_partially_uptodate() 710 * address_space operation. 711 */ 712static inline bool folio_test_uptodate(struct folio *folio) 713{ 714 bool ret = test_bit(PG_uptodate, folio_flags(folio, 0)); 715 /* 716 * Must ensure that the data we read out of the folio is loaded 717 * _after_ we've loaded folio->flags to check the uptodate bit. 718 * We can skip the barrier if the folio is not uptodate, because 719 * we wouldn't be reading anything from it. 720 * 721 * See folio_mark_uptodate() for the other side of the story. 722 */ 723 if (ret) 724 smp_rmb(); 725 726 return ret; 727} 728 729static inline int PageUptodate(struct page *page) 730{ 731 return folio_test_uptodate(page_folio(page)); 732} 733 734static __always_inline void __folio_mark_uptodate(struct folio *folio) 735{ 736 smp_wmb(); 737 __set_bit(PG_uptodate, folio_flags(folio, 0)); 738} 739 740static __always_inline void folio_mark_uptodate(struct folio *folio) 741{ 742 /* 743 * Memory barrier must be issued before setting the PG_uptodate bit, 744 * so that all previous stores issued in order to bring the folio 745 * uptodate are actually visible before folio_test_uptodate becomes true. 746 */ 747 smp_wmb(); 748 set_bit(PG_uptodate, folio_flags(folio, 0)); 749} 750 751static __always_inline void __SetPageUptodate(struct page *page) 752{ 753 __folio_mark_uptodate((struct folio *)page); 754} 755 756static __always_inline void SetPageUptodate(struct page *page) 757{ 758 folio_mark_uptodate((struct folio *)page); 759} 760 761CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 762 763bool __folio_start_writeback(struct folio *folio, bool keep_write); 764bool set_page_writeback(struct page *page); 765 766#define folio_start_writeback(folio) \ 767 __folio_start_writeback(folio, false) 768#define folio_start_writeback_keepwrite(folio) \ 769 __folio_start_writeback(folio, true) 770 771static inline void set_page_writeback_keepwrite(struct page *page) 772{ 773 folio_start_writeback_keepwrite(page_folio(page)); 774} 775 776static inline bool test_set_page_writeback(struct page *page) 777{ 778 return set_page_writeback(page); 779} 780 781static __always_inline bool folio_test_head(struct folio *folio) 782{ 783 return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY)); 784} 785 786static __always_inline int PageHead(struct page *page) 787{ 788 PF_POISONED_CHECK(page); 789 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 790} 791 792__SETPAGEFLAG(Head, head, PF_ANY) 793__CLEARPAGEFLAG(Head, head, PF_ANY) 794CLEARPAGEFLAG(Head, head, PF_ANY) 795 796/** 797 * folio_test_large() - Does this folio contain more than one page? 798 * @folio: The folio to test. 799 * 800 * Return: True if the folio is larger than one page. 801 */ 802static inline bool folio_test_large(struct folio *folio) 803{ 804 return folio_test_head(folio); 805} 806 807static __always_inline void set_compound_head(struct page *page, struct page *head) 808{ 809 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 810} 811 812static __always_inline void clear_compound_head(struct page *page) 813{ 814 WRITE_ONCE(page->compound_head, 0); 815} 816 817#ifdef CONFIG_TRANSPARENT_HUGEPAGE 818static inline void ClearPageCompound(struct page *page) 819{ 820 BUG_ON(!PageHead(page)); 821 ClearPageHead(page); 822} 823#endif 824 825#define PG_head_mask ((1UL << PG_head)) 826 827#ifdef CONFIG_HUGETLB_PAGE 828int PageHuge(struct page *page); 829int PageHeadHuge(struct page *page); 830static inline bool folio_test_hugetlb(struct folio *folio) 831{ 832 return PageHeadHuge(&folio->page); 833} 834#else 835TESTPAGEFLAG_FALSE(Huge, hugetlb) 836TESTPAGEFLAG_FALSE(HeadHuge, headhuge) 837#endif 838 839#ifdef CONFIG_TRANSPARENT_HUGEPAGE 840/* 841 * PageHuge() only returns true for hugetlbfs pages, but not for 842 * normal or transparent huge pages. 843 * 844 * PageTransHuge() returns true for both transparent huge and 845 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 846 * called only in the core VM paths where hugetlbfs pages can't exist. 847 */ 848static inline int PageTransHuge(struct page *page) 849{ 850 VM_BUG_ON_PAGE(PageTail(page), page); 851 return PageHead(page); 852} 853 854static inline bool folio_test_transhuge(struct folio *folio) 855{ 856 return folio_test_head(folio); 857} 858 859/* 860 * PageTransCompound returns true for both transparent huge pages 861 * and hugetlbfs pages, so it should only be called when it's known 862 * that hugetlbfs pages aren't involved. 863 */ 864static inline int PageTransCompound(struct page *page) 865{ 866 return PageCompound(page); 867} 868 869/* 870 * PageTransTail returns true for both transparent huge pages 871 * and hugetlbfs pages, so it should only be called when it's known 872 * that hugetlbfs pages aren't involved. 873 */ 874static inline int PageTransTail(struct page *page) 875{ 876 return PageTail(page); 877} 878 879/* 880 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 881 * as PMDs. 882 * 883 * This is required for optimization of rmap operations for THP: we can postpone 884 * per small page mapcount accounting (and its overhead from atomic operations) 885 * until the first PMD split. 886 * 887 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 888 * by one. This reference will go away with last compound_mapcount. 889 * 890 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 891 */ 892PAGEFLAG(DoubleMap, double_map, PF_SECOND) 893 TESTSCFLAG(DoubleMap, double_map, PF_SECOND) 894#else 895TESTPAGEFLAG_FALSE(TransHuge, transhuge) 896TESTPAGEFLAG_FALSE(TransCompound, transcompound) 897TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) 898TESTPAGEFLAG_FALSE(TransTail, transtail) 899PAGEFLAG_FALSE(DoubleMap, double_map) 900 TESTSCFLAG_FALSE(DoubleMap, double_map) 901#endif 902 903#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 904/* 905 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 906 * compound page. 907 * 908 * This flag is set by hwpoison handler. Cleared by THP split or free page. 909 */ 910PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 911 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 912#else 913PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 914 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 915#endif 916 917/* 918 * Check if a page is currently marked HWPoisoned. Note that this check is 919 * best effort only and inherently racy: there is no way to synchronize with 920 * failing hardware. 921 */ 922static inline bool is_page_hwpoison(struct page *page) 923{ 924 if (PageHWPoison(page)) 925 return true; 926 return PageHuge(page) && PageHWPoison(compound_head(page)); 927} 928 929/* 930 * For pages that are never mapped to userspace (and aren't PageSlab), 931 * page_type may be used. Because it is initialised to -1, we invert the 932 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 933 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 934 * low bits so that an underflow or overflow of page_mapcount() won't be 935 * mistaken for a page type value. 936 */ 937 938#define PAGE_TYPE_BASE 0xf0000000 939/* Reserve 0x0000007f to catch underflows of page_mapcount */ 940#define PAGE_MAPCOUNT_RESERVE -128 941#define PG_buddy 0x00000080 942#define PG_offline 0x00000100 943#define PG_table 0x00000200 944#define PG_guard 0x00000400 945 946#define PageType(page, flag) \ 947 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 948 949static inline int page_has_type(struct page *page) 950{ 951 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; 952} 953 954#define PAGE_TYPE_OPS(uname, lname) \ 955static __always_inline int Page##uname(struct page *page) \ 956{ \ 957 return PageType(page, PG_##lname); \ 958} \ 959static __always_inline void __SetPage##uname(struct page *page) \ 960{ \ 961 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 962 page->page_type &= ~PG_##lname; \ 963} \ 964static __always_inline void __ClearPage##uname(struct page *page) \ 965{ \ 966 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 967 page->page_type |= PG_##lname; \ 968} 969 970/* 971 * PageBuddy() indicates that the page is free and in the buddy system 972 * (see mm/page_alloc.c). 973 */ 974PAGE_TYPE_OPS(Buddy, buddy) 975 976/* 977 * PageOffline() indicates that the page is logically offline although the 978 * containing section is online. (e.g. inflated in a balloon driver or 979 * not onlined when onlining the section). 980 * The content of these pages is effectively stale. Such pages should not 981 * be touched (read/write/dump/save) except by their owner. 982 * 983 * If a driver wants to allow to offline unmovable PageOffline() pages without 984 * putting them back to the buddy, it can do so via the memory notifier by 985 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 986 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 987 * pages (now with a reference count of zero) are treated like free pages, 988 * allowing the containing memory block to get offlined. A driver that 989 * relies on this feature is aware that re-onlining the memory block will 990 * require to re-set the pages PageOffline() and not giving them to the 991 * buddy via online_page_callback_t. 992 * 993 * There are drivers that mark a page PageOffline() and expect there won't be 994 * any further access to page content. PFN walkers that read content of random 995 * pages should check PageOffline() and synchronize with such drivers using 996 * page_offline_freeze()/page_offline_thaw(). 997 */ 998PAGE_TYPE_OPS(Offline, offline) 999 1000extern void page_offline_freeze(void); 1001extern void page_offline_thaw(void); 1002extern void page_offline_begin(void); 1003extern void page_offline_end(void); 1004 1005/* 1006 * Marks pages in use as page tables. 1007 */ 1008PAGE_TYPE_OPS(Table, table) 1009 1010/* 1011 * Marks guardpages used with debug_pagealloc. 1012 */ 1013PAGE_TYPE_OPS(Guard, guard) 1014 1015extern bool is_free_buddy_page(struct page *page); 1016 1017PAGEFLAG(Isolated, isolated, PF_ANY); 1018 1019static __always_inline int PageAnonExclusive(struct page *page) 1020{ 1021 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1022 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1023 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1024} 1025 1026static __always_inline void SetPageAnonExclusive(struct page *page) 1027{ 1028 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1029 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1030 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1031} 1032 1033static __always_inline void ClearPageAnonExclusive(struct page *page) 1034{ 1035 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1036 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1037 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1038} 1039 1040static __always_inline void __ClearPageAnonExclusive(struct page *page) 1041{ 1042 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1043 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1044 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1045} 1046 1047#ifdef CONFIG_MMU 1048#define __PG_MLOCKED (1UL << PG_mlocked) 1049#else 1050#define __PG_MLOCKED 0 1051#endif 1052 1053/* 1054 * Flags checked when a page is freed. Pages being freed should not have 1055 * these flags set. If they are, there is a problem. 1056 */ 1057#define PAGE_FLAGS_CHECK_AT_FREE \ 1058 (1UL << PG_lru | 1UL << PG_locked | \ 1059 1UL << PG_private | 1UL << PG_private_2 | \ 1060 1UL << PG_writeback | 1UL << PG_reserved | \ 1061 1UL << PG_slab | 1UL << PG_active | \ 1062 1UL << PG_unevictable | __PG_MLOCKED) 1063 1064/* 1065 * Flags checked when a page is prepped for return by the page allocator. 1066 * Pages being prepped should not have these flags set. If they are set, 1067 * there has been a kernel bug or struct page corruption. 1068 * 1069 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1070 * alloc-free cycle to prevent from reusing the page. 1071 */ 1072#define PAGE_FLAGS_CHECK_AT_PREP \ 1073 (PAGEFLAGS_MASK & ~__PG_HWPOISON) 1074 1075#define PAGE_FLAGS_PRIVATE \ 1076 (1UL << PG_private | 1UL << PG_private_2) 1077/** 1078 * page_has_private - Determine if page has private stuff 1079 * @page: The page to be checked 1080 * 1081 * Determine if a page has private stuff, indicating that release routines 1082 * should be invoked upon it. 1083 */ 1084static inline int page_has_private(struct page *page) 1085{ 1086 return !!(page->flags & PAGE_FLAGS_PRIVATE); 1087} 1088 1089static inline bool folio_has_private(struct folio *folio) 1090{ 1091 return page_has_private(&folio->page); 1092} 1093 1094#undef PF_ANY 1095#undef PF_HEAD 1096#undef PF_ONLY_HEAD 1097#undef PF_NO_TAIL 1098#undef PF_NO_COMPOUND 1099#undef PF_SECOND 1100#endif /* !__GENERATING_BOUNDS_H */ 1101 1102#endif /* PAGE_FLAGS_H */