pagemap.h (45643B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct folio_batch; 20 21unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24static inline void invalidate_remote_inode(struct inode *inode) 25{ 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29} 30int invalidate_inode_pages2(struct address_space *mapping); 31int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33int write_inode_now(struct inode *, int sync); 34int filemap_fdatawrite(struct address_space *); 35int filemap_flush(struct address_space *); 36int filemap_fdatawait_keep_errors(struct address_space *mapping); 37int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 38int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 39 loff_t start_byte, loff_t end_byte); 40 41static inline int filemap_fdatawait(struct address_space *mapping) 42{ 43 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 44} 45 46bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 47int filemap_write_and_wait_range(struct address_space *mapping, 48 loff_t lstart, loff_t lend); 49int __filemap_fdatawrite_range(struct address_space *mapping, 50 loff_t start, loff_t end, int sync_mode); 51int filemap_fdatawrite_range(struct address_space *mapping, 52 loff_t start, loff_t end); 53int filemap_check_errors(struct address_space *mapping); 54void __filemap_set_wb_err(struct address_space *mapping, int err); 55int filemap_fdatawrite_wbc(struct address_space *mapping, 56 struct writeback_control *wbc); 57 58static inline int filemap_write_and_wait(struct address_space *mapping) 59{ 60 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 61} 62 63/** 64 * filemap_set_wb_err - set a writeback error on an address_space 65 * @mapping: mapping in which to set writeback error 66 * @err: error to be set in mapping 67 * 68 * When writeback fails in some way, we must record that error so that 69 * userspace can be informed when fsync and the like are called. We endeavor 70 * to report errors on any file that was open at the time of the error. Some 71 * internal callers also need to know when writeback errors have occurred. 72 * 73 * When a writeback error occurs, most filesystems will want to call 74 * filemap_set_wb_err to record the error in the mapping so that it will be 75 * automatically reported whenever fsync is called on the file. 76 */ 77static inline void filemap_set_wb_err(struct address_space *mapping, int err) 78{ 79 /* Fastpath for common case of no error */ 80 if (unlikely(err)) 81 __filemap_set_wb_err(mapping, err); 82} 83 84/** 85 * filemap_check_wb_err - has an error occurred since the mark was sampled? 86 * @mapping: mapping to check for writeback errors 87 * @since: previously-sampled errseq_t 88 * 89 * Grab the errseq_t value from the mapping, and see if it has changed "since" 90 * the given value was sampled. 91 * 92 * If it has then report the latest error set, otherwise return 0. 93 */ 94static inline int filemap_check_wb_err(struct address_space *mapping, 95 errseq_t since) 96{ 97 return errseq_check(&mapping->wb_err, since); 98} 99 100/** 101 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 102 * @mapping: mapping to be sampled 103 * 104 * Writeback errors are always reported relative to a particular sample point 105 * in the past. This function provides those sample points. 106 */ 107static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 108{ 109 return errseq_sample(&mapping->wb_err); 110} 111 112/** 113 * file_sample_sb_err - sample the current errseq_t to test for later errors 114 * @file: file pointer to be sampled 115 * 116 * Grab the most current superblock-level errseq_t value for the given 117 * struct file. 118 */ 119static inline errseq_t file_sample_sb_err(struct file *file) 120{ 121 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 122} 123 124/* 125 * Flush file data before changing attributes. Caller must hold any locks 126 * required to prevent further writes to this file until we're done setting 127 * flags. 128 */ 129static inline int inode_drain_writes(struct inode *inode) 130{ 131 inode_dio_wait(inode); 132 return filemap_write_and_wait(inode->i_mapping); 133} 134 135static inline bool mapping_empty(struct address_space *mapping) 136{ 137 return xa_empty(&mapping->i_pages); 138} 139 140/* 141 * mapping_shrinkable - test if page cache state allows inode reclaim 142 * @mapping: the page cache mapping 143 * 144 * This checks the mapping's cache state for the pupose of inode 145 * reclaim and LRU management. 146 * 147 * The caller is expected to hold the i_lock, but is not required to 148 * hold the i_pages lock, which usually protects cache state. That's 149 * because the i_lock and the list_lru lock that protect the inode and 150 * its LRU state don't nest inside the irq-safe i_pages lock. 151 * 152 * Cache deletions are performed under the i_lock, which ensures that 153 * when an inode goes empty, it will reliably get queued on the LRU. 154 * 155 * Cache additions do not acquire the i_lock and may race with this 156 * check, in which case we'll report the inode as shrinkable when it 157 * has cache pages. This is okay: the shrinker also checks the 158 * refcount and the referenced bit, which will be elevated or set in 159 * the process of adding new cache pages to an inode. 160 */ 161static inline bool mapping_shrinkable(struct address_space *mapping) 162{ 163 void *head; 164 165 /* 166 * On highmem systems, there could be lowmem pressure from the 167 * inodes before there is highmem pressure from the page 168 * cache. Make inodes shrinkable regardless of cache state. 169 */ 170 if (IS_ENABLED(CONFIG_HIGHMEM)) 171 return true; 172 173 /* Cache completely empty? Shrink away. */ 174 head = rcu_access_pointer(mapping->i_pages.xa_head); 175 if (!head) 176 return true; 177 178 /* 179 * The xarray stores single offset-0 entries directly in the 180 * head pointer, which allows non-resident page cache entries 181 * to escape the shadow shrinker's list of xarray nodes. The 182 * inode shrinker needs to pick them up under memory pressure. 183 */ 184 if (!xa_is_node(head) && xa_is_value(head)) 185 return true; 186 187 return false; 188} 189 190/* 191 * Bits in mapping->flags. 192 */ 193enum mapping_flags { 194 AS_EIO = 0, /* IO error on async write */ 195 AS_ENOSPC = 1, /* ENOSPC on async write */ 196 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 197 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 198 AS_EXITING = 4, /* final truncate in progress */ 199 /* writeback related tags are not used */ 200 AS_NO_WRITEBACK_TAGS = 5, 201 AS_LARGE_FOLIO_SUPPORT = 6, 202}; 203 204/** 205 * mapping_set_error - record a writeback error in the address_space 206 * @mapping: the mapping in which an error should be set 207 * @error: the error to set in the mapping 208 * 209 * When writeback fails in some way, we must record that error so that 210 * userspace can be informed when fsync and the like are called. We endeavor 211 * to report errors on any file that was open at the time of the error. Some 212 * internal callers also need to know when writeback errors have occurred. 213 * 214 * When a writeback error occurs, most filesystems will want to call 215 * mapping_set_error to record the error in the mapping so that it can be 216 * reported when the application calls fsync(2). 217 */ 218static inline void mapping_set_error(struct address_space *mapping, int error) 219{ 220 if (likely(!error)) 221 return; 222 223 /* Record in wb_err for checkers using errseq_t based tracking */ 224 __filemap_set_wb_err(mapping, error); 225 226 /* Record it in superblock */ 227 if (mapping->host) 228 errseq_set(&mapping->host->i_sb->s_wb_err, error); 229 230 /* Record it in flags for now, for legacy callers */ 231 if (error == -ENOSPC) 232 set_bit(AS_ENOSPC, &mapping->flags); 233 else 234 set_bit(AS_EIO, &mapping->flags); 235} 236 237static inline void mapping_set_unevictable(struct address_space *mapping) 238{ 239 set_bit(AS_UNEVICTABLE, &mapping->flags); 240} 241 242static inline void mapping_clear_unevictable(struct address_space *mapping) 243{ 244 clear_bit(AS_UNEVICTABLE, &mapping->flags); 245} 246 247static inline bool mapping_unevictable(struct address_space *mapping) 248{ 249 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 250} 251 252static inline void mapping_set_exiting(struct address_space *mapping) 253{ 254 set_bit(AS_EXITING, &mapping->flags); 255} 256 257static inline int mapping_exiting(struct address_space *mapping) 258{ 259 return test_bit(AS_EXITING, &mapping->flags); 260} 261 262static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 263{ 264 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 265} 266 267static inline int mapping_use_writeback_tags(struct address_space *mapping) 268{ 269 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 270} 271 272static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 273{ 274 return mapping->gfp_mask; 275} 276 277/* Restricts the given gfp_mask to what the mapping allows. */ 278static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 279 gfp_t gfp_mask) 280{ 281 return mapping_gfp_mask(mapping) & gfp_mask; 282} 283 284/* 285 * This is non-atomic. Only to be used before the mapping is activated. 286 * Probably needs a barrier... 287 */ 288static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 289{ 290 m->gfp_mask = mask; 291} 292 293/** 294 * mapping_set_large_folios() - Indicate the file supports large folios. 295 * @mapping: The file. 296 * 297 * The filesystem should call this function in its inode constructor to 298 * indicate that the VFS can use large folios to cache the contents of 299 * the file. 300 * 301 * Context: This should not be called while the inode is active as it 302 * is non-atomic. 303 */ 304static inline void mapping_set_large_folios(struct address_space *mapping) 305{ 306 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 307} 308 309/* 310 * Large folio support currently depends on THP. These dependencies are 311 * being worked on but are not yet fixed. 312 */ 313static inline bool mapping_large_folio_support(struct address_space *mapping) 314{ 315 return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 316 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 317} 318 319static inline int filemap_nr_thps(struct address_space *mapping) 320{ 321#ifdef CONFIG_READ_ONLY_THP_FOR_FS 322 return atomic_read(&mapping->nr_thps); 323#else 324 return 0; 325#endif 326} 327 328static inline void filemap_nr_thps_inc(struct address_space *mapping) 329{ 330#ifdef CONFIG_READ_ONLY_THP_FOR_FS 331 if (!mapping_large_folio_support(mapping)) 332 atomic_inc(&mapping->nr_thps); 333#else 334 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 335#endif 336} 337 338static inline void filemap_nr_thps_dec(struct address_space *mapping) 339{ 340#ifdef CONFIG_READ_ONLY_THP_FOR_FS 341 if (!mapping_large_folio_support(mapping)) 342 atomic_dec(&mapping->nr_thps); 343#else 344 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 345#endif 346} 347 348void release_pages(struct page **pages, int nr); 349 350struct address_space *page_mapping(struct page *); 351struct address_space *folio_mapping(struct folio *); 352struct address_space *swapcache_mapping(struct folio *); 353 354/** 355 * folio_file_mapping - Find the mapping this folio belongs to. 356 * @folio: The folio. 357 * 358 * For folios which are in the page cache, return the mapping that this 359 * page belongs to. Folios in the swap cache return the mapping of the 360 * swap file or swap device where the data is stored. This is different 361 * from the mapping returned by folio_mapping(). The only reason to 362 * use it is if, like NFS, you return 0 from ->activate_swapfile. 363 * 364 * Do not call this for folios which aren't in the page cache or swap cache. 365 */ 366static inline struct address_space *folio_file_mapping(struct folio *folio) 367{ 368 if (unlikely(folio_test_swapcache(folio))) 369 return swapcache_mapping(folio); 370 371 return folio->mapping; 372} 373 374static inline struct address_space *page_file_mapping(struct page *page) 375{ 376 return folio_file_mapping(page_folio(page)); 377} 378 379/* 380 * For file cache pages, return the address_space, otherwise return NULL 381 */ 382static inline struct address_space *page_mapping_file(struct page *page) 383{ 384 struct folio *folio = page_folio(page); 385 386 if (unlikely(folio_test_swapcache(folio))) 387 return NULL; 388 return folio_mapping(folio); 389} 390 391/** 392 * folio_inode - Get the host inode for this folio. 393 * @folio: The folio. 394 * 395 * For folios which are in the page cache, return the inode that this folio 396 * belongs to. 397 * 398 * Do not call this for folios which aren't in the page cache. 399 */ 400static inline struct inode *folio_inode(struct folio *folio) 401{ 402 return folio->mapping->host; 403} 404 405/** 406 * folio_attach_private - Attach private data to a folio. 407 * @folio: Folio to attach data to. 408 * @data: Data to attach to folio. 409 * 410 * Attaching private data to a folio increments the page's reference count. 411 * The data must be detached before the folio will be freed. 412 */ 413static inline void folio_attach_private(struct folio *folio, void *data) 414{ 415 folio_get(folio); 416 folio->private = data; 417 folio_set_private(folio); 418} 419 420/** 421 * folio_change_private - Change private data on a folio. 422 * @folio: Folio to change the data on. 423 * @data: Data to set on the folio. 424 * 425 * Change the private data attached to a folio and return the old 426 * data. The page must previously have had data attached and the data 427 * must be detached before the folio will be freed. 428 * 429 * Return: Data that was previously attached to the folio. 430 */ 431static inline void *folio_change_private(struct folio *folio, void *data) 432{ 433 void *old = folio_get_private(folio); 434 435 folio->private = data; 436 return old; 437} 438 439/** 440 * folio_detach_private - Detach private data from a folio. 441 * @folio: Folio to detach data from. 442 * 443 * Removes the data that was previously attached to the folio and decrements 444 * the refcount on the page. 445 * 446 * Return: Data that was attached to the folio. 447 */ 448static inline void *folio_detach_private(struct folio *folio) 449{ 450 void *data = folio_get_private(folio); 451 452 if (!folio_test_private(folio)) 453 return NULL; 454 folio_clear_private(folio); 455 folio->private = NULL; 456 folio_put(folio); 457 458 return data; 459} 460 461static inline void attach_page_private(struct page *page, void *data) 462{ 463 folio_attach_private(page_folio(page), data); 464} 465 466static inline void *detach_page_private(struct page *page) 467{ 468 return folio_detach_private(page_folio(page)); 469} 470 471#ifdef CONFIG_NUMA 472struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order); 473#else 474static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 475{ 476 return folio_alloc(gfp, order); 477} 478#endif 479 480static inline struct page *__page_cache_alloc(gfp_t gfp) 481{ 482 return &filemap_alloc_folio(gfp, 0)->page; 483} 484 485static inline struct page *page_cache_alloc(struct address_space *x) 486{ 487 return __page_cache_alloc(mapping_gfp_mask(x)); 488} 489 490static inline gfp_t readahead_gfp_mask(struct address_space *x) 491{ 492 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 493} 494 495typedef int filler_t(struct file *, struct folio *); 496 497pgoff_t page_cache_next_miss(struct address_space *mapping, 498 pgoff_t index, unsigned long max_scan); 499pgoff_t page_cache_prev_miss(struct address_space *mapping, 500 pgoff_t index, unsigned long max_scan); 501 502#define FGP_ACCESSED 0x00000001 503#define FGP_LOCK 0x00000002 504#define FGP_CREAT 0x00000004 505#define FGP_WRITE 0x00000008 506#define FGP_NOFS 0x00000010 507#define FGP_NOWAIT 0x00000020 508#define FGP_FOR_MMAP 0x00000040 509#define FGP_HEAD 0x00000080 510#define FGP_ENTRY 0x00000100 511#define FGP_STABLE 0x00000200 512 513struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 514 int fgp_flags, gfp_t gfp); 515struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 516 int fgp_flags, gfp_t gfp); 517 518/** 519 * filemap_get_folio - Find and get a folio. 520 * @mapping: The address_space to search. 521 * @index: The page index. 522 * 523 * Looks up the page cache entry at @mapping & @index. If a folio is 524 * present, it is returned with an increased refcount. 525 * 526 * Otherwise, %NULL is returned. 527 */ 528static inline struct folio *filemap_get_folio(struct address_space *mapping, 529 pgoff_t index) 530{ 531 return __filemap_get_folio(mapping, index, 0, 0); 532} 533 534/** 535 * filemap_lock_folio - Find and lock a folio. 536 * @mapping: The address_space to search. 537 * @index: The page index. 538 * 539 * Looks up the page cache entry at @mapping & @index. If a folio is 540 * present, it is returned locked with an increased refcount. 541 * 542 * Context: May sleep. 543 * Return: A folio or %NULL if there is no folio in the cache for this 544 * index. Will not return a shadow, swap or DAX entry. 545 */ 546static inline struct folio *filemap_lock_folio(struct address_space *mapping, 547 pgoff_t index) 548{ 549 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 550} 551 552/** 553 * find_get_page - find and get a page reference 554 * @mapping: the address_space to search 555 * @offset: the page index 556 * 557 * Looks up the page cache slot at @mapping & @offset. If there is a 558 * page cache page, it is returned with an increased refcount. 559 * 560 * Otherwise, %NULL is returned. 561 */ 562static inline struct page *find_get_page(struct address_space *mapping, 563 pgoff_t offset) 564{ 565 return pagecache_get_page(mapping, offset, 0, 0); 566} 567 568static inline struct page *find_get_page_flags(struct address_space *mapping, 569 pgoff_t offset, int fgp_flags) 570{ 571 return pagecache_get_page(mapping, offset, fgp_flags, 0); 572} 573 574/** 575 * find_lock_page - locate, pin and lock a pagecache page 576 * @mapping: the address_space to search 577 * @index: the page index 578 * 579 * Looks up the page cache entry at @mapping & @index. If there is a 580 * page cache page, it is returned locked and with an increased 581 * refcount. 582 * 583 * Context: May sleep. 584 * Return: A struct page or %NULL if there is no page in the cache for this 585 * index. 586 */ 587static inline struct page *find_lock_page(struct address_space *mapping, 588 pgoff_t index) 589{ 590 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 591} 592 593/** 594 * find_or_create_page - locate or add a pagecache page 595 * @mapping: the page's address_space 596 * @index: the page's index into the mapping 597 * @gfp_mask: page allocation mode 598 * 599 * Looks up the page cache slot at @mapping & @offset. If there is a 600 * page cache page, it is returned locked and with an increased 601 * refcount. 602 * 603 * If the page is not present, a new page is allocated using @gfp_mask 604 * and added to the page cache and the VM's LRU list. The page is 605 * returned locked and with an increased refcount. 606 * 607 * On memory exhaustion, %NULL is returned. 608 * 609 * find_or_create_page() may sleep, even if @gfp_flags specifies an 610 * atomic allocation! 611 */ 612static inline struct page *find_or_create_page(struct address_space *mapping, 613 pgoff_t index, gfp_t gfp_mask) 614{ 615 return pagecache_get_page(mapping, index, 616 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 617 gfp_mask); 618} 619 620/** 621 * grab_cache_page_nowait - returns locked page at given index in given cache 622 * @mapping: target address_space 623 * @index: the page index 624 * 625 * Same as grab_cache_page(), but do not wait if the page is unavailable. 626 * This is intended for speculative data generators, where the data can 627 * be regenerated if the page couldn't be grabbed. This routine should 628 * be safe to call while holding the lock for another page. 629 * 630 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 631 * and deadlock against the caller's locked page. 632 */ 633static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 634 pgoff_t index) 635{ 636 return pagecache_get_page(mapping, index, 637 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 638 mapping_gfp_mask(mapping)); 639} 640 641#define swapcache_index(folio) __page_file_index(&(folio)->page) 642 643/** 644 * folio_index - File index of a folio. 645 * @folio: The folio. 646 * 647 * For a folio which is either in the page cache or the swap cache, 648 * return its index within the address_space it belongs to. If you know 649 * the page is definitely in the page cache, you can look at the folio's 650 * index directly. 651 * 652 * Return: The index (offset in units of pages) of a folio in its file. 653 */ 654static inline pgoff_t folio_index(struct folio *folio) 655{ 656 if (unlikely(folio_test_swapcache(folio))) 657 return swapcache_index(folio); 658 return folio->index; 659} 660 661/** 662 * folio_next_index - Get the index of the next folio. 663 * @folio: The current folio. 664 * 665 * Return: The index of the folio which follows this folio in the file. 666 */ 667static inline pgoff_t folio_next_index(struct folio *folio) 668{ 669 return folio->index + folio_nr_pages(folio); 670} 671 672/** 673 * folio_file_page - The page for a particular index. 674 * @folio: The folio which contains this index. 675 * @index: The index we want to look up. 676 * 677 * Sometimes after looking up a folio in the page cache, we need to 678 * obtain the specific page for an index (eg a page fault). 679 * 680 * Return: The page containing the file data for this index. 681 */ 682static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 683{ 684 /* HugeTLBfs indexes the page cache in units of hpage_size */ 685 if (folio_test_hugetlb(folio)) 686 return &folio->page; 687 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 688} 689 690/** 691 * folio_contains - Does this folio contain this index? 692 * @folio: The folio. 693 * @index: The page index within the file. 694 * 695 * Context: The caller should have the page locked in order to prevent 696 * (eg) shmem from moving the page between the page cache and swap cache 697 * and changing its index in the middle of the operation. 698 * Return: true or false. 699 */ 700static inline bool folio_contains(struct folio *folio, pgoff_t index) 701{ 702 /* HugeTLBfs indexes the page cache in units of hpage_size */ 703 if (folio_test_hugetlb(folio)) 704 return folio->index == index; 705 return index - folio_index(folio) < folio_nr_pages(folio); 706} 707 708/* 709 * Given the page we found in the page cache, return the page corresponding 710 * to this index in the file 711 */ 712static inline struct page *find_subpage(struct page *head, pgoff_t index) 713{ 714 /* HugeTLBfs wants the head page regardless */ 715 if (PageHuge(head)) 716 return head; 717 718 return head + (index & (thp_nr_pages(head) - 1)); 719} 720 721unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 722 pgoff_t end, unsigned int nr_pages, 723 struct page **pages); 724unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 725 unsigned int nr_pages, struct page **pages); 726unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 727 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 728 struct page **pages); 729static inline unsigned find_get_pages_tag(struct address_space *mapping, 730 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 731 struct page **pages) 732{ 733 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 734 nr_pages, pages); 735} 736 737struct page *grab_cache_page_write_begin(struct address_space *mapping, 738 pgoff_t index); 739 740/* 741 * Returns locked page at given index in given cache, creating it if needed. 742 */ 743static inline struct page *grab_cache_page(struct address_space *mapping, 744 pgoff_t index) 745{ 746 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 747} 748 749struct folio *read_cache_folio(struct address_space *, pgoff_t index, 750 filler_t *filler, struct file *file); 751struct page *read_cache_page(struct address_space *, pgoff_t index, 752 filler_t *filler, struct file *file); 753extern struct page * read_cache_page_gfp(struct address_space *mapping, 754 pgoff_t index, gfp_t gfp_mask); 755 756static inline struct page *read_mapping_page(struct address_space *mapping, 757 pgoff_t index, struct file *file) 758{ 759 return read_cache_page(mapping, index, NULL, file); 760} 761 762static inline struct folio *read_mapping_folio(struct address_space *mapping, 763 pgoff_t index, struct file *file) 764{ 765 return read_cache_folio(mapping, index, NULL, file); 766} 767 768/* 769 * Get index of the page within radix-tree (but not for hugetlb pages). 770 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 771 */ 772static inline pgoff_t page_to_index(struct page *page) 773{ 774 struct page *head; 775 776 if (likely(!PageTransTail(page))) 777 return page->index; 778 779 head = compound_head(page); 780 /* 781 * We don't initialize ->index for tail pages: calculate based on 782 * head page 783 */ 784 return head->index + page - head; 785} 786 787extern pgoff_t hugetlb_basepage_index(struct page *page); 788 789/* 790 * Get the offset in PAGE_SIZE (even for hugetlb pages). 791 * (TODO: hugetlb pages should have ->index in PAGE_SIZE) 792 */ 793static inline pgoff_t page_to_pgoff(struct page *page) 794{ 795 if (unlikely(PageHuge(page))) 796 return hugetlb_basepage_index(page); 797 return page_to_index(page); 798} 799 800/* 801 * Return byte-offset into filesystem object for page. 802 */ 803static inline loff_t page_offset(struct page *page) 804{ 805 return ((loff_t)page->index) << PAGE_SHIFT; 806} 807 808static inline loff_t page_file_offset(struct page *page) 809{ 810 return ((loff_t)page_index(page)) << PAGE_SHIFT; 811} 812 813/** 814 * folio_pos - Returns the byte position of this folio in its file. 815 * @folio: The folio. 816 */ 817static inline loff_t folio_pos(struct folio *folio) 818{ 819 return page_offset(&folio->page); 820} 821 822/** 823 * folio_file_pos - Returns the byte position of this folio in its file. 824 * @folio: The folio. 825 * 826 * This differs from folio_pos() for folios which belong to a swap file. 827 * NFS is the only filesystem today which needs to use folio_file_pos(). 828 */ 829static inline loff_t folio_file_pos(struct folio *folio) 830{ 831 return page_file_offset(&folio->page); 832} 833 834/* 835 * Get the offset in PAGE_SIZE (even for hugetlb folios). 836 * (TODO: hugetlb folios should have ->index in PAGE_SIZE) 837 */ 838static inline pgoff_t folio_pgoff(struct folio *folio) 839{ 840 if (unlikely(folio_test_hugetlb(folio))) 841 return hugetlb_basepage_index(&folio->page); 842 return folio->index; 843} 844 845extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 846 unsigned long address); 847 848static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 849 unsigned long address) 850{ 851 pgoff_t pgoff; 852 if (unlikely(is_vm_hugetlb_page(vma))) 853 return linear_hugepage_index(vma, address); 854 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 855 pgoff += vma->vm_pgoff; 856 return pgoff; 857} 858 859struct wait_page_key { 860 struct folio *folio; 861 int bit_nr; 862 int page_match; 863}; 864 865struct wait_page_queue { 866 struct folio *folio; 867 int bit_nr; 868 wait_queue_entry_t wait; 869}; 870 871static inline bool wake_page_match(struct wait_page_queue *wait_page, 872 struct wait_page_key *key) 873{ 874 if (wait_page->folio != key->folio) 875 return false; 876 key->page_match = 1; 877 878 if (wait_page->bit_nr != key->bit_nr) 879 return false; 880 881 return true; 882} 883 884void __folio_lock(struct folio *folio); 885int __folio_lock_killable(struct folio *folio); 886bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 887 unsigned int flags); 888void unlock_page(struct page *page); 889void folio_unlock(struct folio *folio); 890 891/** 892 * folio_trylock() - Attempt to lock a folio. 893 * @folio: The folio to attempt to lock. 894 * 895 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 896 * when the locks are being taken in the wrong order, or if making 897 * progress through a batch of folios is more important than processing 898 * them in order). Usually folio_lock() is the correct function to call. 899 * 900 * Context: Any context. 901 * Return: Whether the lock was successfully acquired. 902 */ 903static inline bool folio_trylock(struct folio *folio) 904{ 905 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 906} 907 908/* 909 * Return true if the page was successfully locked 910 */ 911static inline int trylock_page(struct page *page) 912{ 913 return folio_trylock(page_folio(page)); 914} 915 916/** 917 * folio_lock() - Lock this folio. 918 * @folio: The folio to lock. 919 * 920 * The folio lock protects against many things, probably more than it 921 * should. It is primarily held while a folio is being brought uptodate, 922 * either from its backing file or from swap. It is also held while a 923 * folio is being truncated from its address_space, so holding the lock 924 * is sufficient to keep folio->mapping stable. 925 * 926 * The folio lock is also held while write() is modifying the page to 927 * provide POSIX atomicity guarantees (as long as the write does not 928 * cross a page boundary). Other modifications to the data in the folio 929 * do not hold the folio lock and can race with writes, eg DMA and stores 930 * to mapped pages. 931 * 932 * Context: May sleep. If you need to acquire the locks of two or 933 * more folios, they must be in order of ascending index, if they are 934 * in the same address_space. If they are in different address_spaces, 935 * acquire the lock of the folio which belongs to the address_space which 936 * has the lowest address in memory first. 937 */ 938static inline void folio_lock(struct folio *folio) 939{ 940 might_sleep(); 941 if (!folio_trylock(folio)) 942 __folio_lock(folio); 943} 944 945/** 946 * lock_page() - Lock the folio containing this page. 947 * @page: The page to lock. 948 * 949 * See folio_lock() for a description of what the lock protects. 950 * This is a legacy function and new code should probably use folio_lock() 951 * instead. 952 * 953 * Context: May sleep. Pages in the same folio share a lock, so do not 954 * attempt to lock two pages which share a folio. 955 */ 956static inline void lock_page(struct page *page) 957{ 958 struct folio *folio; 959 might_sleep(); 960 961 folio = page_folio(page); 962 if (!folio_trylock(folio)) 963 __folio_lock(folio); 964} 965 966/** 967 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 968 * @folio: The folio to lock. 969 * 970 * Attempts to lock the folio, like folio_lock(), except that the sleep 971 * to acquire the lock is interruptible by a fatal signal. 972 * 973 * Context: May sleep; see folio_lock(). 974 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 975 */ 976static inline int folio_lock_killable(struct folio *folio) 977{ 978 might_sleep(); 979 if (!folio_trylock(folio)) 980 return __folio_lock_killable(folio); 981 return 0; 982} 983 984/* 985 * lock_page_killable is like lock_page but can be interrupted by fatal 986 * signals. It returns 0 if it locked the page and -EINTR if it was 987 * killed while waiting. 988 */ 989static inline int lock_page_killable(struct page *page) 990{ 991 return folio_lock_killable(page_folio(page)); 992} 993 994/* 995 * lock_page_or_retry - Lock the page, unless this would block and the 996 * caller indicated that it can handle a retry. 997 * 998 * Return value and mmap_lock implications depend on flags; see 999 * __folio_lock_or_retry(). 1000 */ 1001static inline bool lock_page_or_retry(struct page *page, struct mm_struct *mm, 1002 unsigned int flags) 1003{ 1004 struct folio *folio; 1005 might_sleep(); 1006 1007 folio = page_folio(page); 1008 return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags); 1009} 1010 1011/* 1012 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1013 * and should not be used directly. 1014 */ 1015void folio_wait_bit(struct folio *folio, int bit_nr); 1016int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1017 1018/* 1019 * Wait for a folio to be unlocked. 1020 * 1021 * This must be called with the caller "holding" the folio, 1022 * ie with increased folio reference count so that the folio won't 1023 * go away during the wait. 1024 */ 1025static inline void folio_wait_locked(struct folio *folio) 1026{ 1027 if (folio_test_locked(folio)) 1028 folio_wait_bit(folio, PG_locked); 1029} 1030 1031static inline int folio_wait_locked_killable(struct folio *folio) 1032{ 1033 if (!folio_test_locked(folio)) 1034 return 0; 1035 return folio_wait_bit_killable(folio, PG_locked); 1036} 1037 1038static inline void wait_on_page_locked(struct page *page) 1039{ 1040 folio_wait_locked(page_folio(page)); 1041} 1042 1043static inline int wait_on_page_locked_killable(struct page *page) 1044{ 1045 return folio_wait_locked_killable(page_folio(page)); 1046} 1047 1048int folio_put_wait_locked(struct folio *folio, int state); 1049void wait_on_page_writeback(struct page *page); 1050void folio_wait_writeback(struct folio *folio); 1051int folio_wait_writeback_killable(struct folio *folio); 1052void end_page_writeback(struct page *page); 1053void folio_end_writeback(struct folio *folio); 1054void wait_for_stable_page(struct page *page); 1055void folio_wait_stable(struct folio *folio); 1056void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1057static inline void __set_page_dirty(struct page *page, 1058 struct address_space *mapping, int warn) 1059{ 1060 __folio_mark_dirty(page_folio(page), mapping, warn); 1061} 1062void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1063void __folio_cancel_dirty(struct folio *folio); 1064static inline void folio_cancel_dirty(struct folio *folio) 1065{ 1066 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1067 if (folio_test_dirty(folio)) 1068 __folio_cancel_dirty(folio); 1069} 1070bool folio_clear_dirty_for_io(struct folio *folio); 1071bool clear_page_dirty_for_io(struct page *page); 1072void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1073int __must_check folio_write_one(struct folio *folio); 1074static inline int __must_check write_one_page(struct page *page) 1075{ 1076 return folio_write_one(page_folio(page)); 1077} 1078 1079int __set_page_dirty_nobuffers(struct page *page); 1080bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1081 1082void page_endio(struct page *page, bool is_write, int err); 1083 1084void folio_end_private_2(struct folio *folio); 1085void folio_wait_private_2(struct folio *folio); 1086int folio_wait_private_2_killable(struct folio *folio); 1087 1088/* 1089 * Add an arbitrary waiter to a page's wait queue 1090 */ 1091void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter); 1092 1093/* 1094 * Fault in userspace address range. 1095 */ 1096size_t fault_in_writeable(char __user *uaddr, size_t size); 1097size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1098size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1099size_t fault_in_readable(const char __user *uaddr, size_t size); 1100 1101int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 1102 pgoff_t index, gfp_t gfp); 1103int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1104 pgoff_t index, gfp_t gfp); 1105int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1106 pgoff_t index, gfp_t gfp); 1107void filemap_remove_folio(struct folio *folio); 1108void delete_from_page_cache(struct page *page); 1109void __filemap_remove_folio(struct folio *folio, void *shadow); 1110static inline void __delete_from_page_cache(struct page *page, void *shadow) 1111{ 1112 __filemap_remove_folio(page_folio(page), shadow); 1113} 1114void replace_page_cache_page(struct page *old, struct page *new); 1115void delete_from_page_cache_batch(struct address_space *mapping, 1116 struct folio_batch *fbatch); 1117int try_to_release_page(struct page *page, gfp_t gfp); 1118bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1119loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1120 int whence); 1121 1122/* 1123 * Like add_to_page_cache_locked, but used to add newly allocated pages: 1124 * the page is new, so we can just run __SetPageLocked() against it. 1125 */ 1126static inline int add_to_page_cache(struct page *page, 1127 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 1128{ 1129 int error; 1130 1131 __SetPageLocked(page); 1132 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 1133 if (unlikely(error)) 1134 __ClearPageLocked(page); 1135 return error; 1136} 1137 1138/* Must be non-static for BPF error injection */ 1139int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1140 pgoff_t index, gfp_t gfp, void **shadowp); 1141 1142bool filemap_range_has_writeback(struct address_space *mapping, 1143 loff_t start_byte, loff_t end_byte); 1144 1145/** 1146 * filemap_range_needs_writeback - check if range potentially needs writeback 1147 * @mapping: address space within which to check 1148 * @start_byte: offset in bytes where the range starts 1149 * @end_byte: offset in bytes where the range ends (inclusive) 1150 * 1151 * Find at least one page in the range supplied, usually used to check if 1152 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1153 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1154 * filemap_write_and_wait_range() before proceeding. 1155 * 1156 * Return: %true if the caller should do filemap_write_and_wait_range() before 1157 * doing O_DIRECT to a page in this range, %false otherwise. 1158 */ 1159static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1160 loff_t start_byte, 1161 loff_t end_byte) 1162{ 1163 if (!mapping->nrpages) 1164 return false; 1165 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1166 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1167 return false; 1168 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1169} 1170 1171/** 1172 * struct readahead_control - Describes a readahead request. 1173 * 1174 * A readahead request is for consecutive pages. Filesystems which 1175 * implement the ->readahead method should call readahead_page() or 1176 * readahead_page_batch() in a loop and attempt to start I/O against 1177 * each page in the request. 1178 * 1179 * Most of the fields in this struct are private and should be accessed 1180 * by the functions below. 1181 * 1182 * @file: The file, used primarily by network filesystems for authentication. 1183 * May be NULL if invoked internally by the filesystem. 1184 * @mapping: Readahead this filesystem object. 1185 * @ra: File readahead state. May be NULL. 1186 */ 1187struct readahead_control { 1188 struct file *file; 1189 struct address_space *mapping; 1190 struct file_ra_state *ra; 1191/* private: use the readahead_* accessors instead */ 1192 pgoff_t _index; 1193 unsigned int _nr_pages; 1194 unsigned int _batch_count; 1195}; 1196 1197#define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1198 struct readahead_control ractl = { \ 1199 .file = f, \ 1200 .mapping = m, \ 1201 .ra = r, \ 1202 ._index = i, \ 1203 } 1204 1205#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1206 1207void page_cache_ra_unbounded(struct readahead_control *, 1208 unsigned long nr_to_read, unsigned long lookahead_count); 1209void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1210void page_cache_async_ra(struct readahead_control *, struct folio *, 1211 unsigned long req_count); 1212void readahead_expand(struct readahead_control *ractl, 1213 loff_t new_start, size_t new_len); 1214 1215/** 1216 * page_cache_sync_readahead - generic file readahead 1217 * @mapping: address_space which holds the pagecache and I/O vectors 1218 * @ra: file_ra_state which holds the readahead state 1219 * @file: Used by the filesystem for authentication. 1220 * @index: Index of first page to be read. 1221 * @req_count: Total number of pages being read by the caller. 1222 * 1223 * page_cache_sync_readahead() should be called when a cache miss happened: 1224 * it will submit the read. The readahead logic may decide to piggyback more 1225 * pages onto the read request if access patterns suggest it will improve 1226 * performance. 1227 */ 1228static inline 1229void page_cache_sync_readahead(struct address_space *mapping, 1230 struct file_ra_state *ra, struct file *file, pgoff_t index, 1231 unsigned long req_count) 1232{ 1233 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1234 page_cache_sync_ra(&ractl, req_count); 1235} 1236 1237/** 1238 * page_cache_async_readahead - file readahead for marked pages 1239 * @mapping: address_space which holds the pagecache and I/O vectors 1240 * @ra: file_ra_state which holds the readahead state 1241 * @file: Used by the filesystem for authentication. 1242 * @folio: The folio at @index which triggered the readahead call. 1243 * @index: Index of first page to be read. 1244 * @req_count: Total number of pages being read by the caller. 1245 * 1246 * page_cache_async_readahead() should be called when a page is used which 1247 * is marked as PageReadahead; this is a marker to suggest that the application 1248 * has used up enough of the readahead window that we should start pulling in 1249 * more pages. 1250 */ 1251static inline 1252void page_cache_async_readahead(struct address_space *mapping, 1253 struct file_ra_state *ra, struct file *file, 1254 struct folio *folio, pgoff_t index, unsigned long req_count) 1255{ 1256 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1257 page_cache_async_ra(&ractl, folio, req_count); 1258} 1259 1260static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1261{ 1262 struct folio *folio; 1263 1264 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1265 ractl->_nr_pages -= ractl->_batch_count; 1266 ractl->_index += ractl->_batch_count; 1267 1268 if (!ractl->_nr_pages) { 1269 ractl->_batch_count = 0; 1270 return NULL; 1271 } 1272 1273 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1274 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1275 ractl->_batch_count = folio_nr_pages(folio); 1276 1277 return folio; 1278} 1279 1280/** 1281 * readahead_page - Get the next page to read. 1282 * @ractl: The current readahead request. 1283 * 1284 * Context: The page is locked and has an elevated refcount. The caller 1285 * should decreases the refcount once the page has been submitted for I/O 1286 * and unlock the page once all I/O to that page has completed. 1287 * Return: A pointer to the next page, or %NULL if we are done. 1288 */ 1289static inline struct page *readahead_page(struct readahead_control *ractl) 1290{ 1291 struct folio *folio = __readahead_folio(ractl); 1292 1293 return &folio->page; 1294} 1295 1296/** 1297 * readahead_folio - Get the next folio to read. 1298 * @ractl: The current readahead request. 1299 * 1300 * Context: The folio is locked. The caller should unlock the folio once 1301 * all I/O to that folio has completed. 1302 * Return: A pointer to the next folio, or %NULL if we are done. 1303 */ 1304static inline struct folio *readahead_folio(struct readahead_control *ractl) 1305{ 1306 struct folio *folio = __readahead_folio(ractl); 1307 1308 if (folio) 1309 folio_put(folio); 1310 return folio; 1311} 1312 1313static inline unsigned int __readahead_batch(struct readahead_control *rac, 1314 struct page **array, unsigned int array_sz) 1315{ 1316 unsigned int i = 0; 1317 XA_STATE(xas, &rac->mapping->i_pages, 0); 1318 struct page *page; 1319 1320 BUG_ON(rac->_batch_count > rac->_nr_pages); 1321 rac->_nr_pages -= rac->_batch_count; 1322 rac->_index += rac->_batch_count; 1323 rac->_batch_count = 0; 1324 1325 xas_set(&xas, rac->_index); 1326 rcu_read_lock(); 1327 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 1328 if (xas_retry(&xas, page)) 1329 continue; 1330 VM_BUG_ON_PAGE(!PageLocked(page), page); 1331 VM_BUG_ON_PAGE(PageTail(page), page); 1332 array[i++] = page; 1333 rac->_batch_count += thp_nr_pages(page); 1334 if (i == array_sz) 1335 break; 1336 } 1337 rcu_read_unlock(); 1338 1339 return i; 1340} 1341 1342/** 1343 * readahead_page_batch - Get a batch of pages to read. 1344 * @rac: The current readahead request. 1345 * @array: An array of pointers to struct page. 1346 * 1347 * Context: The pages are locked and have an elevated refcount. The caller 1348 * should decreases the refcount once the page has been submitted for I/O 1349 * and unlock the page once all I/O to that page has completed. 1350 * Return: The number of pages placed in the array. 0 indicates the request 1351 * is complete. 1352 */ 1353#define readahead_page_batch(rac, array) \ 1354 __readahead_batch(rac, array, ARRAY_SIZE(array)) 1355 1356/** 1357 * readahead_pos - The byte offset into the file of this readahead request. 1358 * @rac: The readahead request. 1359 */ 1360static inline loff_t readahead_pos(struct readahead_control *rac) 1361{ 1362 return (loff_t)rac->_index * PAGE_SIZE; 1363} 1364 1365/** 1366 * readahead_length - The number of bytes in this readahead request. 1367 * @rac: The readahead request. 1368 */ 1369static inline size_t readahead_length(struct readahead_control *rac) 1370{ 1371 return rac->_nr_pages * PAGE_SIZE; 1372} 1373 1374/** 1375 * readahead_index - The index of the first page in this readahead request. 1376 * @rac: The readahead request. 1377 */ 1378static inline pgoff_t readahead_index(struct readahead_control *rac) 1379{ 1380 return rac->_index; 1381} 1382 1383/** 1384 * readahead_count - The number of pages in this readahead request. 1385 * @rac: The readahead request. 1386 */ 1387static inline unsigned int readahead_count(struct readahead_control *rac) 1388{ 1389 return rac->_nr_pages; 1390} 1391 1392/** 1393 * readahead_batch_length - The number of bytes in the current batch. 1394 * @rac: The readahead request. 1395 */ 1396static inline size_t readahead_batch_length(struct readahead_control *rac) 1397{ 1398 return rac->_batch_count * PAGE_SIZE; 1399} 1400 1401static inline unsigned long dir_pages(struct inode *inode) 1402{ 1403 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1404 PAGE_SHIFT; 1405} 1406 1407/** 1408 * folio_mkwrite_check_truncate - check if folio was truncated 1409 * @folio: the folio to check 1410 * @inode: the inode to check the folio against 1411 * 1412 * Return: the number of bytes in the folio up to EOF, 1413 * or -EFAULT if the folio was truncated. 1414 */ 1415static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1416 struct inode *inode) 1417{ 1418 loff_t size = i_size_read(inode); 1419 pgoff_t index = size >> PAGE_SHIFT; 1420 size_t offset = offset_in_folio(folio, size); 1421 1422 if (!folio->mapping) 1423 return -EFAULT; 1424 1425 /* folio is wholly inside EOF */ 1426 if (folio_next_index(folio) - 1 < index) 1427 return folio_size(folio); 1428 /* folio is wholly past EOF */ 1429 if (folio->index > index || !offset) 1430 return -EFAULT; 1431 /* folio is partially inside EOF */ 1432 return offset; 1433} 1434 1435/** 1436 * page_mkwrite_check_truncate - check if page was truncated 1437 * @page: the page to check 1438 * @inode: the inode to check the page against 1439 * 1440 * Returns the number of bytes in the page up to EOF, 1441 * or -EFAULT if the page was truncated. 1442 */ 1443static inline int page_mkwrite_check_truncate(struct page *page, 1444 struct inode *inode) 1445{ 1446 loff_t size = i_size_read(inode); 1447 pgoff_t index = size >> PAGE_SHIFT; 1448 int offset = offset_in_page(size); 1449 1450 if (page->mapping != inode->i_mapping) 1451 return -EFAULT; 1452 1453 /* page is wholly inside EOF */ 1454 if (page->index < index) 1455 return PAGE_SIZE; 1456 /* page is wholly past EOF */ 1457 if (page->index > index || !offset) 1458 return -EFAULT; 1459 /* page is partially inside EOF */ 1460 return offset; 1461} 1462 1463/** 1464 * i_blocks_per_folio - How many blocks fit in this folio. 1465 * @inode: The inode which contains the blocks. 1466 * @folio: The folio. 1467 * 1468 * If the block size is larger than the size of this folio, return zero. 1469 * 1470 * Context: The caller should hold a refcount on the folio to prevent it 1471 * from being split. 1472 * Return: The number of filesystem blocks covered by this folio. 1473 */ 1474static inline 1475unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1476{ 1477 return folio_size(folio) >> inode->i_blkbits; 1478} 1479 1480static inline 1481unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 1482{ 1483 return i_blocks_per_folio(inode, page_folio(page)); 1484} 1485#endif /* _LINUX_PAGEMAP_H */