cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pagemap.h (45643B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _LINUX_PAGEMAP_H
      3#define _LINUX_PAGEMAP_H
      4
      5/*
      6 * Copyright 1995 Linus Torvalds
      7 */
      8#include <linux/mm.h>
      9#include <linux/fs.h>
     10#include <linux/list.h>
     11#include <linux/highmem.h>
     12#include <linux/compiler.h>
     13#include <linux/uaccess.h>
     14#include <linux/gfp.h>
     15#include <linux/bitops.h>
     16#include <linux/hardirq.h> /* for in_interrupt() */
     17#include <linux/hugetlb_inline.h>
     18
     19struct folio_batch;
     20
     21unsigned long invalidate_mapping_pages(struct address_space *mapping,
     22					pgoff_t start, pgoff_t end);
     23
     24static inline void invalidate_remote_inode(struct inode *inode)
     25{
     26	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
     27	    S_ISLNK(inode->i_mode))
     28		invalidate_mapping_pages(inode->i_mapping, 0, -1);
     29}
     30int invalidate_inode_pages2(struct address_space *mapping);
     31int invalidate_inode_pages2_range(struct address_space *mapping,
     32		pgoff_t start, pgoff_t end);
     33int write_inode_now(struct inode *, int sync);
     34int filemap_fdatawrite(struct address_space *);
     35int filemap_flush(struct address_space *);
     36int filemap_fdatawait_keep_errors(struct address_space *mapping);
     37int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
     38int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
     39		loff_t start_byte, loff_t end_byte);
     40
     41static inline int filemap_fdatawait(struct address_space *mapping)
     42{
     43	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
     44}
     45
     46bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
     47int filemap_write_and_wait_range(struct address_space *mapping,
     48		loff_t lstart, loff_t lend);
     49int __filemap_fdatawrite_range(struct address_space *mapping,
     50		loff_t start, loff_t end, int sync_mode);
     51int filemap_fdatawrite_range(struct address_space *mapping,
     52		loff_t start, loff_t end);
     53int filemap_check_errors(struct address_space *mapping);
     54void __filemap_set_wb_err(struct address_space *mapping, int err);
     55int filemap_fdatawrite_wbc(struct address_space *mapping,
     56			   struct writeback_control *wbc);
     57
     58static inline int filemap_write_and_wait(struct address_space *mapping)
     59{
     60	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
     61}
     62
     63/**
     64 * filemap_set_wb_err - set a writeback error on an address_space
     65 * @mapping: mapping in which to set writeback error
     66 * @err: error to be set in mapping
     67 *
     68 * When writeback fails in some way, we must record that error so that
     69 * userspace can be informed when fsync and the like are called.  We endeavor
     70 * to report errors on any file that was open at the time of the error.  Some
     71 * internal callers also need to know when writeback errors have occurred.
     72 *
     73 * When a writeback error occurs, most filesystems will want to call
     74 * filemap_set_wb_err to record the error in the mapping so that it will be
     75 * automatically reported whenever fsync is called on the file.
     76 */
     77static inline void filemap_set_wb_err(struct address_space *mapping, int err)
     78{
     79	/* Fastpath for common case of no error */
     80	if (unlikely(err))
     81		__filemap_set_wb_err(mapping, err);
     82}
     83
     84/**
     85 * filemap_check_wb_err - has an error occurred since the mark was sampled?
     86 * @mapping: mapping to check for writeback errors
     87 * @since: previously-sampled errseq_t
     88 *
     89 * Grab the errseq_t value from the mapping, and see if it has changed "since"
     90 * the given value was sampled.
     91 *
     92 * If it has then report the latest error set, otherwise return 0.
     93 */
     94static inline int filemap_check_wb_err(struct address_space *mapping,
     95					errseq_t since)
     96{
     97	return errseq_check(&mapping->wb_err, since);
     98}
     99
    100/**
    101 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
    102 * @mapping: mapping to be sampled
    103 *
    104 * Writeback errors are always reported relative to a particular sample point
    105 * in the past. This function provides those sample points.
    106 */
    107static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
    108{
    109	return errseq_sample(&mapping->wb_err);
    110}
    111
    112/**
    113 * file_sample_sb_err - sample the current errseq_t to test for later errors
    114 * @file: file pointer to be sampled
    115 *
    116 * Grab the most current superblock-level errseq_t value for the given
    117 * struct file.
    118 */
    119static inline errseq_t file_sample_sb_err(struct file *file)
    120{
    121	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
    122}
    123
    124/*
    125 * Flush file data before changing attributes.  Caller must hold any locks
    126 * required to prevent further writes to this file until we're done setting
    127 * flags.
    128 */
    129static inline int inode_drain_writes(struct inode *inode)
    130{
    131	inode_dio_wait(inode);
    132	return filemap_write_and_wait(inode->i_mapping);
    133}
    134
    135static inline bool mapping_empty(struct address_space *mapping)
    136{
    137	return xa_empty(&mapping->i_pages);
    138}
    139
    140/*
    141 * mapping_shrinkable - test if page cache state allows inode reclaim
    142 * @mapping: the page cache mapping
    143 *
    144 * This checks the mapping's cache state for the pupose of inode
    145 * reclaim and LRU management.
    146 *
    147 * The caller is expected to hold the i_lock, but is not required to
    148 * hold the i_pages lock, which usually protects cache state. That's
    149 * because the i_lock and the list_lru lock that protect the inode and
    150 * its LRU state don't nest inside the irq-safe i_pages lock.
    151 *
    152 * Cache deletions are performed under the i_lock, which ensures that
    153 * when an inode goes empty, it will reliably get queued on the LRU.
    154 *
    155 * Cache additions do not acquire the i_lock and may race with this
    156 * check, in which case we'll report the inode as shrinkable when it
    157 * has cache pages. This is okay: the shrinker also checks the
    158 * refcount and the referenced bit, which will be elevated or set in
    159 * the process of adding new cache pages to an inode.
    160 */
    161static inline bool mapping_shrinkable(struct address_space *mapping)
    162{
    163	void *head;
    164
    165	/*
    166	 * On highmem systems, there could be lowmem pressure from the
    167	 * inodes before there is highmem pressure from the page
    168	 * cache. Make inodes shrinkable regardless of cache state.
    169	 */
    170	if (IS_ENABLED(CONFIG_HIGHMEM))
    171		return true;
    172
    173	/* Cache completely empty? Shrink away. */
    174	head = rcu_access_pointer(mapping->i_pages.xa_head);
    175	if (!head)
    176		return true;
    177
    178	/*
    179	 * The xarray stores single offset-0 entries directly in the
    180	 * head pointer, which allows non-resident page cache entries
    181	 * to escape the shadow shrinker's list of xarray nodes. The
    182	 * inode shrinker needs to pick them up under memory pressure.
    183	 */
    184	if (!xa_is_node(head) && xa_is_value(head))
    185		return true;
    186
    187	return false;
    188}
    189
    190/*
    191 * Bits in mapping->flags.
    192 */
    193enum mapping_flags {
    194	AS_EIO		= 0,	/* IO error on async write */
    195	AS_ENOSPC	= 1,	/* ENOSPC on async write */
    196	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
    197	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
    198	AS_EXITING	= 4, 	/* final truncate in progress */
    199	/* writeback related tags are not used */
    200	AS_NO_WRITEBACK_TAGS = 5,
    201	AS_LARGE_FOLIO_SUPPORT = 6,
    202};
    203
    204/**
    205 * mapping_set_error - record a writeback error in the address_space
    206 * @mapping: the mapping in which an error should be set
    207 * @error: the error to set in the mapping
    208 *
    209 * When writeback fails in some way, we must record that error so that
    210 * userspace can be informed when fsync and the like are called.  We endeavor
    211 * to report errors on any file that was open at the time of the error.  Some
    212 * internal callers also need to know when writeback errors have occurred.
    213 *
    214 * When a writeback error occurs, most filesystems will want to call
    215 * mapping_set_error to record the error in the mapping so that it can be
    216 * reported when the application calls fsync(2).
    217 */
    218static inline void mapping_set_error(struct address_space *mapping, int error)
    219{
    220	if (likely(!error))
    221		return;
    222
    223	/* Record in wb_err for checkers using errseq_t based tracking */
    224	__filemap_set_wb_err(mapping, error);
    225
    226	/* Record it in superblock */
    227	if (mapping->host)
    228		errseq_set(&mapping->host->i_sb->s_wb_err, error);
    229
    230	/* Record it in flags for now, for legacy callers */
    231	if (error == -ENOSPC)
    232		set_bit(AS_ENOSPC, &mapping->flags);
    233	else
    234		set_bit(AS_EIO, &mapping->flags);
    235}
    236
    237static inline void mapping_set_unevictable(struct address_space *mapping)
    238{
    239	set_bit(AS_UNEVICTABLE, &mapping->flags);
    240}
    241
    242static inline void mapping_clear_unevictable(struct address_space *mapping)
    243{
    244	clear_bit(AS_UNEVICTABLE, &mapping->flags);
    245}
    246
    247static inline bool mapping_unevictable(struct address_space *mapping)
    248{
    249	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
    250}
    251
    252static inline void mapping_set_exiting(struct address_space *mapping)
    253{
    254	set_bit(AS_EXITING, &mapping->flags);
    255}
    256
    257static inline int mapping_exiting(struct address_space *mapping)
    258{
    259	return test_bit(AS_EXITING, &mapping->flags);
    260}
    261
    262static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
    263{
    264	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
    265}
    266
    267static inline int mapping_use_writeback_tags(struct address_space *mapping)
    268{
    269	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
    270}
    271
    272static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
    273{
    274	return mapping->gfp_mask;
    275}
    276
    277/* Restricts the given gfp_mask to what the mapping allows. */
    278static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
    279		gfp_t gfp_mask)
    280{
    281	return mapping_gfp_mask(mapping) & gfp_mask;
    282}
    283
    284/*
    285 * This is non-atomic.  Only to be used before the mapping is activated.
    286 * Probably needs a barrier...
    287 */
    288static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
    289{
    290	m->gfp_mask = mask;
    291}
    292
    293/**
    294 * mapping_set_large_folios() - Indicate the file supports large folios.
    295 * @mapping: The file.
    296 *
    297 * The filesystem should call this function in its inode constructor to
    298 * indicate that the VFS can use large folios to cache the contents of
    299 * the file.
    300 *
    301 * Context: This should not be called while the inode is active as it
    302 * is non-atomic.
    303 */
    304static inline void mapping_set_large_folios(struct address_space *mapping)
    305{
    306	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
    307}
    308
    309/*
    310 * Large folio support currently depends on THP.  These dependencies are
    311 * being worked on but are not yet fixed.
    312 */
    313static inline bool mapping_large_folio_support(struct address_space *mapping)
    314{
    315	return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
    316		test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
    317}
    318
    319static inline int filemap_nr_thps(struct address_space *mapping)
    320{
    321#ifdef CONFIG_READ_ONLY_THP_FOR_FS
    322	return atomic_read(&mapping->nr_thps);
    323#else
    324	return 0;
    325#endif
    326}
    327
    328static inline void filemap_nr_thps_inc(struct address_space *mapping)
    329{
    330#ifdef CONFIG_READ_ONLY_THP_FOR_FS
    331	if (!mapping_large_folio_support(mapping))
    332		atomic_inc(&mapping->nr_thps);
    333#else
    334	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
    335#endif
    336}
    337
    338static inline void filemap_nr_thps_dec(struct address_space *mapping)
    339{
    340#ifdef CONFIG_READ_ONLY_THP_FOR_FS
    341	if (!mapping_large_folio_support(mapping))
    342		atomic_dec(&mapping->nr_thps);
    343#else
    344	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
    345#endif
    346}
    347
    348void release_pages(struct page **pages, int nr);
    349
    350struct address_space *page_mapping(struct page *);
    351struct address_space *folio_mapping(struct folio *);
    352struct address_space *swapcache_mapping(struct folio *);
    353
    354/**
    355 * folio_file_mapping - Find the mapping this folio belongs to.
    356 * @folio: The folio.
    357 *
    358 * For folios which are in the page cache, return the mapping that this
    359 * page belongs to.  Folios in the swap cache return the mapping of the
    360 * swap file or swap device where the data is stored.  This is different
    361 * from the mapping returned by folio_mapping().  The only reason to
    362 * use it is if, like NFS, you return 0 from ->activate_swapfile.
    363 *
    364 * Do not call this for folios which aren't in the page cache or swap cache.
    365 */
    366static inline struct address_space *folio_file_mapping(struct folio *folio)
    367{
    368	if (unlikely(folio_test_swapcache(folio)))
    369		return swapcache_mapping(folio);
    370
    371	return folio->mapping;
    372}
    373
    374static inline struct address_space *page_file_mapping(struct page *page)
    375{
    376	return folio_file_mapping(page_folio(page));
    377}
    378
    379/*
    380 * For file cache pages, return the address_space, otherwise return NULL
    381 */
    382static inline struct address_space *page_mapping_file(struct page *page)
    383{
    384	struct folio *folio = page_folio(page);
    385
    386	if (unlikely(folio_test_swapcache(folio)))
    387		return NULL;
    388	return folio_mapping(folio);
    389}
    390
    391/**
    392 * folio_inode - Get the host inode for this folio.
    393 * @folio: The folio.
    394 *
    395 * For folios which are in the page cache, return the inode that this folio
    396 * belongs to.
    397 *
    398 * Do not call this for folios which aren't in the page cache.
    399 */
    400static inline struct inode *folio_inode(struct folio *folio)
    401{
    402	return folio->mapping->host;
    403}
    404
    405/**
    406 * folio_attach_private - Attach private data to a folio.
    407 * @folio: Folio to attach data to.
    408 * @data: Data to attach to folio.
    409 *
    410 * Attaching private data to a folio increments the page's reference count.
    411 * The data must be detached before the folio will be freed.
    412 */
    413static inline void folio_attach_private(struct folio *folio, void *data)
    414{
    415	folio_get(folio);
    416	folio->private = data;
    417	folio_set_private(folio);
    418}
    419
    420/**
    421 * folio_change_private - Change private data on a folio.
    422 * @folio: Folio to change the data on.
    423 * @data: Data to set on the folio.
    424 *
    425 * Change the private data attached to a folio and return the old
    426 * data.  The page must previously have had data attached and the data
    427 * must be detached before the folio will be freed.
    428 *
    429 * Return: Data that was previously attached to the folio.
    430 */
    431static inline void *folio_change_private(struct folio *folio, void *data)
    432{
    433	void *old = folio_get_private(folio);
    434
    435	folio->private = data;
    436	return old;
    437}
    438
    439/**
    440 * folio_detach_private - Detach private data from a folio.
    441 * @folio: Folio to detach data from.
    442 *
    443 * Removes the data that was previously attached to the folio and decrements
    444 * the refcount on the page.
    445 *
    446 * Return: Data that was attached to the folio.
    447 */
    448static inline void *folio_detach_private(struct folio *folio)
    449{
    450	void *data = folio_get_private(folio);
    451
    452	if (!folio_test_private(folio))
    453		return NULL;
    454	folio_clear_private(folio);
    455	folio->private = NULL;
    456	folio_put(folio);
    457
    458	return data;
    459}
    460
    461static inline void attach_page_private(struct page *page, void *data)
    462{
    463	folio_attach_private(page_folio(page), data);
    464}
    465
    466static inline void *detach_page_private(struct page *page)
    467{
    468	return folio_detach_private(page_folio(page));
    469}
    470
    471#ifdef CONFIG_NUMA
    472struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
    473#else
    474static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
    475{
    476	return folio_alloc(gfp, order);
    477}
    478#endif
    479
    480static inline struct page *__page_cache_alloc(gfp_t gfp)
    481{
    482	return &filemap_alloc_folio(gfp, 0)->page;
    483}
    484
    485static inline struct page *page_cache_alloc(struct address_space *x)
    486{
    487	return __page_cache_alloc(mapping_gfp_mask(x));
    488}
    489
    490static inline gfp_t readahead_gfp_mask(struct address_space *x)
    491{
    492	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
    493}
    494
    495typedef int filler_t(struct file *, struct folio *);
    496
    497pgoff_t page_cache_next_miss(struct address_space *mapping,
    498			     pgoff_t index, unsigned long max_scan);
    499pgoff_t page_cache_prev_miss(struct address_space *mapping,
    500			     pgoff_t index, unsigned long max_scan);
    501
    502#define FGP_ACCESSED		0x00000001
    503#define FGP_LOCK		0x00000002
    504#define FGP_CREAT		0x00000004
    505#define FGP_WRITE		0x00000008
    506#define FGP_NOFS		0x00000010
    507#define FGP_NOWAIT		0x00000020
    508#define FGP_FOR_MMAP		0x00000040
    509#define FGP_HEAD		0x00000080
    510#define FGP_ENTRY		0x00000100
    511#define FGP_STABLE		0x00000200
    512
    513struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
    514		int fgp_flags, gfp_t gfp);
    515struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
    516		int fgp_flags, gfp_t gfp);
    517
    518/**
    519 * filemap_get_folio - Find and get a folio.
    520 * @mapping: The address_space to search.
    521 * @index: The page index.
    522 *
    523 * Looks up the page cache entry at @mapping & @index.  If a folio is
    524 * present, it is returned with an increased refcount.
    525 *
    526 * Otherwise, %NULL is returned.
    527 */
    528static inline struct folio *filemap_get_folio(struct address_space *mapping,
    529					pgoff_t index)
    530{
    531	return __filemap_get_folio(mapping, index, 0, 0);
    532}
    533
    534/**
    535 * filemap_lock_folio - Find and lock a folio.
    536 * @mapping: The address_space to search.
    537 * @index: The page index.
    538 *
    539 * Looks up the page cache entry at @mapping & @index.  If a folio is
    540 * present, it is returned locked with an increased refcount.
    541 *
    542 * Context: May sleep.
    543 * Return: A folio or %NULL if there is no folio in the cache for this
    544 * index.  Will not return a shadow, swap or DAX entry.
    545 */
    546static inline struct folio *filemap_lock_folio(struct address_space *mapping,
    547					pgoff_t index)
    548{
    549	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
    550}
    551
    552/**
    553 * find_get_page - find and get a page reference
    554 * @mapping: the address_space to search
    555 * @offset: the page index
    556 *
    557 * Looks up the page cache slot at @mapping & @offset.  If there is a
    558 * page cache page, it is returned with an increased refcount.
    559 *
    560 * Otherwise, %NULL is returned.
    561 */
    562static inline struct page *find_get_page(struct address_space *mapping,
    563					pgoff_t offset)
    564{
    565	return pagecache_get_page(mapping, offset, 0, 0);
    566}
    567
    568static inline struct page *find_get_page_flags(struct address_space *mapping,
    569					pgoff_t offset, int fgp_flags)
    570{
    571	return pagecache_get_page(mapping, offset, fgp_flags, 0);
    572}
    573
    574/**
    575 * find_lock_page - locate, pin and lock a pagecache page
    576 * @mapping: the address_space to search
    577 * @index: the page index
    578 *
    579 * Looks up the page cache entry at @mapping & @index.  If there is a
    580 * page cache page, it is returned locked and with an increased
    581 * refcount.
    582 *
    583 * Context: May sleep.
    584 * Return: A struct page or %NULL if there is no page in the cache for this
    585 * index.
    586 */
    587static inline struct page *find_lock_page(struct address_space *mapping,
    588					pgoff_t index)
    589{
    590	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
    591}
    592
    593/**
    594 * find_or_create_page - locate or add a pagecache page
    595 * @mapping: the page's address_space
    596 * @index: the page's index into the mapping
    597 * @gfp_mask: page allocation mode
    598 *
    599 * Looks up the page cache slot at @mapping & @offset.  If there is a
    600 * page cache page, it is returned locked and with an increased
    601 * refcount.
    602 *
    603 * If the page is not present, a new page is allocated using @gfp_mask
    604 * and added to the page cache and the VM's LRU list.  The page is
    605 * returned locked and with an increased refcount.
    606 *
    607 * On memory exhaustion, %NULL is returned.
    608 *
    609 * find_or_create_page() may sleep, even if @gfp_flags specifies an
    610 * atomic allocation!
    611 */
    612static inline struct page *find_or_create_page(struct address_space *mapping,
    613					pgoff_t index, gfp_t gfp_mask)
    614{
    615	return pagecache_get_page(mapping, index,
    616					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
    617					gfp_mask);
    618}
    619
    620/**
    621 * grab_cache_page_nowait - returns locked page at given index in given cache
    622 * @mapping: target address_space
    623 * @index: the page index
    624 *
    625 * Same as grab_cache_page(), but do not wait if the page is unavailable.
    626 * This is intended for speculative data generators, where the data can
    627 * be regenerated if the page couldn't be grabbed.  This routine should
    628 * be safe to call while holding the lock for another page.
    629 *
    630 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
    631 * and deadlock against the caller's locked page.
    632 */
    633static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
    634				pgoff_t index)
    635{
    636	return pagecache_get_page(mapping, index,
    637			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
    638			mapping_gfp_mask(mapping));
    639}
    640
    641#define swapcache_index(folio)	__page_file_index(&(folio)->page)
    642
    643/**
    644 * folio_index - File index of a folio.
    645 * @folio: The folio.
    646 *
    647 * For a folio which is either in the page cache or the swap cache,
    648 * return its index within the address_space it belongs to.  If you know
    649 * the page is definitely in the page cache, you can look at the folio's
    650 * index directly.
    651 *
    652 * Return: The index (offset in units of pages) of a folio in its file.
    653 */
    654static inline pgoff_t folio_index(struct folio *folio)
    655{
    656        if (unlikely(folio_test_swapcache(folio)))
    657                return swapcache_index(folio);
    658        return folio->index;
    659}
    660
    661/**
    662 * folio_next_index - Get the index of the next folio.
    663 * @folio: The current folio.
    664 *
    665 * Return: The index of the folio which follows this folio in the file.
    666 */
    667static inline pgoff_t folio_next_index(struct folio *folio)
    668{
    669	return folio->index + folio_nr_pages(folio);
    670}
    671
    672/**
    673 * folio_file_page - The page for a particular index.
    674 * @folio: The folio which contains this index.
    675 * @index: The index we want to look up.
    676 *
    677 * Sometimes after looking up a folio in the page cache, we need to
    678 * obtain the specific page for an index (eg a page fault).
    679 *
    680 * Return: The page containing the file data for this index.
    681 */
    682static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
    683{
    684	/* HugeTLBfs indexes the page cache in units of hpage_size */
    685	if (folio_test_hugetlb(folio))
    686		return &folio->page;
    687	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
    688}
    689
    690/**
    691 * folio_contains - Does this folio contain this index?
    692 * @folio: The folio.
    693 * @index: The page index within the file.
    694 *
    695 * Context: The caller should have the page locked in order to prevent
    696 * (eg) shmem from moving the page between the page cache and swap cache
    697 * and changing its index in the middle of the operation.
    698 * Return: true or false.
    699 */
    700static inline bool folio_contains(struct folio *folio, pgoff_t index)
    701{
    702	/* HugeTLBfs indexes the page cache in units of hpage_size */
    703	if (folio_test_hugetlb(folio))
    704		return folio->index == index;
    705	return index - folio_index(folio) < folio_nr_pages(folio);
    706}
    707
    708/*
    709 * Given the page we found in the page cache, return the page corresponding
    710 * to this index in the file
    711 */
    712static inline struct page *find_subpage(struct page *head, pgoff_t index)
    713{
    714	/* HugeTLBfs wants the head page regardless */
    715	if (PageHuge(head))
    716		return head;
    717
    718	return head + (index & (thp_nr_pages(head) - 1));
    719}
    720
    721unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
    722			pgoff_t end, unsigned int nr_pages,
    723			struct page **pages);
    724unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
    725			       unsigned int nr_pages, struct page **pages);
    726unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
    727			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
    728			struct page **pages);
    729static inline unsigned find_get_pages_tag(struct address_space *mapping,
    730			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
    731			struct page **pages)
    732{
    733	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
    734					nr_pages, pages);
    735}
    736
    737struct page *grab_cache_page_write_begin(struct address_space *mapping,
    738			pgoff_t index);
    739
    740/*
    741 * Returns locked page at given index in given cache, creating it if needed.
    742 */
    743static inline struct page *grab_cache_page(struct address_space *mapping,
    744								pgoff_t index)
    745{
    746	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
    747}
    748
    749struct folio *read_cache_folio(struct address_space *, pgoff_t index,
    750		filler_t *filler, struct file *file);
    751struct page *read_cache_page(struct address_space *, pgoff_t index,
    752		filler_t *filler, struct file *file);
    753extern struct page * read_cache_page_gfp(struct address_space *mapping,
    754				pgoff_t index, gfp_t gfp_mask);
    755
    756static inline struct page *read_mapping_page(struct address_space *mapping,
    757				pgoff_t index, struct file *file)
    758{
    759	return read_cache_page(mapping, index, NULL, file);
    760}
    761
    762static inline struct folio *read_mapping_folio(struct address_space *mapping,
    763				pgoff_t index, struct file *file)
    764{
    765	return read_cache_folio(mapping, index, NULL, file);
    766}
    767
    768/*
    769 * Get index of the page within radix-tree (but not for hugetlb pages).
    770 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
    771 */
    772static inline pgoff_t page_to_index(struct page *page)
    773{
    774	struct page *head;
    775
    776	if (likely(!PageTransTail(page)))
    777		return page->index;
    778
    779	head = compound_head(page);
    780	/*
    781	 *  We don't initialize ->index for tail pages: calculate based on
    782	 *  head page
    783	 */
    784	return head->index + page - head;
    785}
    786
    787extern pgoff_t hugetlb_basepage_index(struct page *page);
    788
    789/*
    790 * Get the offset in PAGE_SIZE (even for hugetlb pages).
    791 * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
    792 */
    793static inline pgoff_t page_to_pgoff(struct page *page)
    794{
    795	if (unlikely(PageHuge(page)))
    796		return hugetlb_basepage_index(page);
    797	return page_to_index(page);
    798}
    799
    800/*
    801 * Return byte-offset into filesystem object for page.
    802 */
    803static inline loff_t page_offset(struct page *page)
    804{
    805	return ((loff_t)page->index) << PAGE_SHIFT;
    806}
    807
    808static inline loff_t page_file_offset(struct page *page)
    809{
    810	return ((loff_t)page_index(page)) << PAGE_SHIFT;
    811}
    812
    813/**
    814 * folio_pos - Returns the byte position of this folio in its file.
    815 * @folio: The folio.
    816 */
    817static inline loff_t folio_pos(struct folio *folio)
    818{
    819	return page_offset(&folio->page);
    820}
    821
    822/**
    823 * folio_file_pos - Returns the byte position of this folio in its file.
    824 * @folio: The folio.
    825 *
    826 * This differs from folio_pos() for folios which belong to a swap file.
    827 * NFS is the only filesystem today which needs to use folio_file_pos().
    828 */
    829static inline loff_t folio_file_pos(struct folio *folio)
    830{
    831	return page_file_offset(&folio->page);
    832}
    833
    834/*
    835 * Get the offset in PAGE_SIZE (even for hugetlb folios).
    836 * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
    837 */
    838static inline pgoff_t folio_pgoff(struct folio *folio)
    839{
    840	if (unlikely(folio_test_hugetlb(folio)))
    841		return hugetlb_basepage_index(&folio->page);
    842	return folio->index;
    843}
    844
    845extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
    846				     unsigned long address);
    847
    848static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
    849					unsigned long address)
    850{
    851	pgoff_t pgoff;
    852	if (unlikely(is_vm_hugetlb_page(vma)))
    853		return linear_hugepage_index(vma, address);
    854	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
    855	pgoff += vma->vm_pgoff;
    856	return pgoff;
    857}
    858
    859struct wait_page_key {
    860	struct folio *folio;
    861	int bit_nr;
    862	int page_match;
    863};
    864
    865struct wait_page_queue {
    866	struct folio *folio;
    867	int bit_nr;
    868	wait_queue_entry_t wait;
    869};
    870
    871static inline bool wake_page_match(struct wait_page_queue *wait_page,
    872				  struct wait_page_key *key)
    873{
    874	if (wait_page->folio != key->folio)
    875	       return false;
    876	key->page_match = 1;
    877
    878	if (wait_page->bit_nr != key->bit_nr)
    879		return false;
    880
    881	return true;
    882}
    883
    884void __folio_lock(struct folio *folio);
    885int __folio_lock_killable(struct folio *folio);
    886bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
    887				unsigned int flags);
    888void unlock_page(struct page *page);
    889void folio_unlock(struct folio *folio);
    890
    891/**
    892 * folio_trylock() - Attempt to lock a folio.
    893 * @folio: The folio to attempt to lock.
    894 *
    895 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
    896 * when the locks are being taken in the wrong order, or if making
    897 * progress through a batch of folios is more important than processing
    898 * them in order).  Usually folio_lock() is the correct function to call.
    899 *
    900 * Context: Any context.
    901 * Return: Whether the lock was successfully acquired.
    902 */
    903static inline bool folio_trylock(struct folio *folio)
    904{
    905	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
    906}
    907
    908/*
    909 * Return true if the page was successfully locked
    910 */
    911static inline int trylock_page(struct page *page)
    912{
    913	return folio_trylock(page_folio(page));
    914}
    915
    916/**
    917 * folio_lock() - Lock this folio.
    918 * @folio: The folio to lock.
    919 *
    920 * The folio lock protects against many things, probably more than it
    921 * should.  It is primarily held while a folio is being brought uptodate,
    922 * either from its backing file or from swap.  It is also held while a
    923 * folio is being truncated from its address_space, so holding the lock
    924 * is sufficient to keep folio->mapping stable.
    925 *
    926 * The folio lock is also held while write() is modifying the page to
    927 * provide POSIX atomicity guarantees (as long as the write does not
    928 * cross a page boundary).  Other modifications to the data in the folio
    929 * do not hold the folio lock and can race with writes, eg DMA and stores
    930 * to mapped pages.
    931 *
    932 * Context: May sleep.  If you need to acquire the locks of two or
    933 * more folios, they must be in order of ascending index, if they are
    934 * in the same address_space.  If they are in different address_spaces,
    935 * acquire the lock of the folio which belongs to the address_space which
    936 * has the lowest address in memory first.
    937 */
    938static inline void folio_lock(struct folio *folio)
    939{
    940	might_sleep();
    941	if (!folio_trylock(folio))
    942		__folio_lock(folio);
    943}
    944
    945/**
    946 * lock_page() - Lock the folio containing this page.
    947 * @page: The page to lock.
    948 *
    949 * See folio_lock() for a description of what the lock protects.
    950 * This is a legacy function and new code should probably use folio_lock()
    951 * instead.
    952 *
    953 * Context: May sleep.  Pages in the same folio share a lock, so do not
    954 * attempt to lock two pages which share a folio.
    955 */
    956static inline void lock_page(struct page *page)
    957{
    958	struct folio *folio;
    959	might_sleep();
    960
    961	folio = page_folio(page);
    962	if (!folio_trylock(folio))
    963		__folio_lock(folio);
    964}
    965
    966/**
    967 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
    968 * @folio: The folio to lock.
    969 *
    970 * Attempts to lock the folio, like folio_lock(), except that the sleep
    971 * to acquire the lock is interruptible by a fatal signal.
    972 *
    973 * Context: May sleep; see folio_lock().
    974 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
    975 */
    976static inline int folio_lock_killable(struct folio *folio)
    977{
    978	might_sleep();
    979	if (!folio_trylock(folio))
    980		return __folio_lock_killable(folio);
    981	return 0;
    982}
    983
    984/*
    985 * lock_page_killable is like lock_page but can be interrupted by fatal
    986 * signals.  It returns 0 if it locked the page and -EINTR if it was
    987 * killed while waiting.
    988 */
    989static inline int lock_page_killable(struct page *page)
    990{
    991	return folio_lock_killable(page_folio(page));
    992}
    993
    994/*
    995 * lock_page_or_retry - Lock the page, unless this would block and the
    996 * caller indicated that it can handle a retry.
    997 *
    998 * Return value and mmap_lock implications depend on flags; see
    999 * __folio_lock_or_retry().
   1000 */
   1001static inline bool lock_page_or_retry(struct page *page, struct mm_struct *mm,
   1002				     unsigned int flags)
   1003{
   1004	struct folio *folio;
   1005	might_sleep();
   1006
   1007	folio = page_folio(page);
   1008	return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
   1009}
   1010
   1011/*
   1012 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
   1013 * and should not be used directly.
   1014 */
   1015void folio_wait_bit(struct folio *folio, int bit_nr);
   1016int folio_wait_bit_killable(struct folio *folio, int bit_nr);
   1017
   1018/* 
   1019 * Wait for a folio to be unlocked.
   1020 *
   1021 * This must be called with the caller "holding" the folio,
   1022 * ie with increased folio reference count so that the folio won't
   1023 * go away during the wait.
   1024 */
   1025static inline void folio_wait_locked(struct folio *folio)
   1026{
   1027	if (folio_test_locked(folio))
   1028		folio_wait_bit(folio, PG_locked);
   1029}
   1030
   1031static inline int folio_wait_locked_killable(struct folio *folio)
   1032{
   1033	if (!folio_test_locked(folio))
   1034		return 0;
   1035	return folio_wait_bit_killable(folio, PG_locked);
   1036}
   1037
   1038static inline void wait_on_page_locked(struct page *page)
   1039{
   1040	folio_wait_locked(page_folio(page));
   1041}
   1042
   1043static inline int wait_on_page_locked_killable(struct page *page)
   1044{
   1045	return folio_wait_locked_killable(page_folio(page));
   1046}
   1047
   1048int folio_put_wait_locked(struct folio *folio, int state);
   1049void wait_on_page_writeback(struct page *page);
   1050void folio_wait_writeback(struct folio *folio);
   1051int folio_wait_writeback_killable(struct folio *folio);
   1052void end_page_writeback(struct page *page);
   1053void folio_end_writeback(struct folio *folio);
   1054void wait_for_stable_page(struct page *page);
   1055void folio_wait_stable(struct folio *folio);
   1056void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
   1057static inline void __set_page_dirty(struct page *page,
   1058		struct address_space *mapping, int warn)
   1059{
   1060	__folio_mark_dirty(page_folio(page), mapping, warn);
   1061}
   1062void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
   1063void __folio_cancel_dirty(struct folio *folio);
   1064static inline void folio_cancel_dirty(struct folio *folio)
   1065{
   1066	/* Avoid atomic ops, locking, etc. when not actually needed. */
   1067	if (folio_test_dirty(folio))
   1068		__folio_cancel_dirty(folio);
   1069}
   1070bool folio_clear_dirty_for_io(struct folio *folio);
   1071bool clear_page_dirty_for_io(struct page *page);
   1072void folio_invalidate(struct folio *folio, size_t offset, size_t length);
   1073int __must_check folio_write_one(struct folio *folio);
   1074static inline int __must_check write_one_page(struct page *page)
   1075{
   1076	return folio_write_one(page_folio(page));
   1077}
   1078
   1079int __set_page_dirty_nobuffers(struct page *page);
   1080bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
   1081
   1082void page_endio(struct page *page, bool is_write, int err);
   1083
   1084void folio_end_private_2(struct folio *folio);
   1085void folio_wait_private_2(struct folio *folio);
   1086int folio_wait_private_2_killable(struct folio *folio);
   1087
   1088/*
   1089 * Add an arbitrary waiter to a page's wait queue
   1090 */
   1091void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
   1092
   1093/*
   1094 * Fault in userspace address range.
   1095 */
   1096size_t fault_in_writeable(char __user *uaddr, size_t size);
   1097size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
   1098size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
   1099size_t fault_in_readable(const char __user *uaddr, size_t size);
   1100
   1101int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
   1102		pgoff_t index, gfp_t gfp);
   1103int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
   1104		pgoff_t index, gfp_t gfp);
   1105int filemap_add_folio(struct address_space *mapping, struct folio *folio,
   1106		pgoff_t index, gfp_t gfp);
   1107void filemap_remove_folio(struct folio *folio);
   1108void delete_from_page_cache(struct page *page);
   1109void __filemap_remove_folio(struct folio *folio, void *shadow);
   1110static inline void __delete_from_page_cache(struct page *page, void *shadow)
   1111{
   1112	__filemap_remove_folio(page_folio(page), shadow);
   1113}
   1114void replace_page_cache_page(struct page *old, struct page *new);
   1115void delete_from_page_cache_batch(struct address_space *mapping,
   1116				  struct folio_batch *fbatch);
   1117int try_to_release_page(struct page *page, gfp_t gfp);
   1118bool filemap_release_folio(struct folio *folio, gfp_t gfp);
   1119loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
   1120		int whence);
   1121
   1122/*
   1123 * Like add_to_page_cache_locked, but used to add newly allocated pages:
   1124 * the page is new, so we can just run __SetPageLocked() against it.
   1125 */
   1126static inline int add_to_page_cache(struct page *page,
   1127		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
   1128{
   1129	int error;
   1130
   1131	__SetPageLocked(page);
   1132	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
   1133	if (unlikely(error))
   1134		__ClearPageLocked(page);
   1135	return error;
   1136}
   1137
   1138/* Must be non-static for BPF error injection */
   1139int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
   1140		pgoff_t index, gfp_t gfp, void **shadowp);
   1141
   1142bool filemap_range_has_writeback(struct address_space *mapping,
   1143				 loff_t start_byte, loff_t end_byte);
   1144
   1145/**
   1146 * filemap_range_needs_writeback - check if range potentially needs writeback
   1147 * @mapping:           address space within which to check
   1148 * @start_byte:        offset in bytes where the range starts
   1149 * @end_byte:          offset in bytes where the range ends (inclusive)
   1150 *
   1151 * Find at least one page in the range supplied, usually used to check if
   1152 * direct writing in this range will trigger a writeback. Used by O_DIRECT
   1153 * read/write with IOCB_NOWAIT, to see if the caller needs to do
   1154 * filemap_write_and_wait_range() before proceeding.
   1155 *
   1156 * Return: %true if the caller should do filemap_write_and_wait_range() before
   1157 * doing O_DIRECT to a page in this range, %false otherwise.
   1158 */
   1159static inline bool filemap_range_needs_writeback(struct address_space *mapping,
   1160						 loff_t start_byte,
   1161						 loff_t end_byte)
   1162{
   1163	if (!mapping->nrpages)
   1164		return false;
   1165	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
   1166	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
   1167		return false;
   1168	return filemap_range_has_writeback(mapping, start_byte, end_byte);
   1169}
   1170
   1171/**
   1172 * struct readahead_control - Describes a readahead request.
   1173 *
   1174 * A readahead request is for consecutive pages.  Filesystems which
   1175 * implement the ->readahead method should call readahead_page() or
   1176 * readahead_page_batch() in a loop and attempt to start I/O against
   1177 * each page in the request.
   1178 *
   1179 * Most of the fields in this struct are private and should be accessed
   1180 * by the functions below.
   1181 *
   1182 * @file: The file, used primarily by network filesystems for authentication.
   1183 *	  May be NULL if invoked internally by the filesystem.
   1184 * @mapping: Readahead this filesystem object.
   1185 * @ra: File readahead state.  May be NULL.
   1186 */
   1187struct readahead_control {
   1188	struct file *file;
   1189	struct address_space *mapping;
   1190	struct file_ra_state *ra;
   1191/* private: use the readahead_* accessors instead */
   1192	pgoff_t _index;
   1193	unsigned int _nr_pages;
   1194	unsigned int _batch_count;
   1195};
   1196
   1197#define DEFINE_READAHEAD(ractl, f, r, m, i)				\
   1198	struct readahead_control ractl = {				\
   1199		.file = f,						\
   1200		.mapping = m,						\
   1201		.ra = r,						\
   1202		._index = i,						\
   1203	}
   1204
   1205#define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
   1206
   1207void page_cache_ra_unbounded(struct readahead_control *,
   1208		unsigned long nr_to_read, unsigned long lookahead_count);
   1209void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
   1210void page_cache_async_ra(struct readahead_control *, struct folio *,
   1211		unsigned long req_count);
   1212void readahead_expand(struct readahead_control *ractl,
   1213		      loff_t new_start, size_t new_len);
   1214
   1215/**
   1216 * page_cache_sync_readahead - generic file readahead
   1217 * @mapping: address_space which holds the pagecache and I/O vectors
   1218 * @ra: file_ra_state which holds the readahead state
   1219 * @file: Used by the filesystem for authentication.
   1220 * @index: Index of first page to be read.
   1221 * @req_count: Total number of pages being read by the caller.
   1222 *
   1223 * page_cache_sync_readahead() should be called when a cache miss happened:
   1224 * it will submit the read.  The readahead logic may decide to piggyback more
   1225 * pages onto the read request if access patterns suggest it will improve
   1226 * performance.
   1227 */
   1228static inline
   1229void page_cache_sync_readahead(struct address_space *mapping,
   1230		struct file_ra_state *ra, struct file *file, pgoff_t index,
   1231		unsigned long req_count)
   1232{
   1233	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
   1234	page_cache_sync_ra(&ractl, req_count);
   1235}
   1236
   1237/**
   1238 * page_cache_async_readahead - file readahead for marked pages
   1239 * @mapping: address_space which holds the pagecache and I/O vectors
   1240 * @ra: file_ra_state which holds the readahead state
   1241 * @file: Used by the filesystem for authentication.
   1242 * @folio: The folio at @index which triggered the readahead call.
   1243 * @index: Index of first page to be read.
   1244 * @req_count: Total number of pages being read by the caller.
   1245 *
   1246 * page_cache_async_readahead() should be called when a page is used which
   1247 * is marked as PageReadahead; this is a marker to suggest that the application
   1248 * has used up enough of the readahead window that we should start pulling in
   1249 * more pages.
   1250 */
   1251static inline
   1252void page_cache_async_readahead(struct address_space *mapping,
   1253		struct file_ra_state *ra, struct file *file,
   1254		struct folio *folio, pgoff_t index, unsigned long req_count)
   1255{
   1256	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
   1257	page_cache_async_ra(&ractl, folio, req_count);
   1258}
   1259
   1260static inline struct folio *__readahead_folio(struct readahead_control *ractl)
   1261{
   1262	struct folio *folio;
   1263
   1264	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
   1265	ractl->_nr_pages -= ractl->_batch_count;
   1266	ractl->_index += ractl->_batch_count;
   1267
   1268	if (!ractl->_nr_pages) {
   1269		ractl->_batch_count = 0;
   1270		return NULL;
   1271	}
   1272
   1273	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
   1274	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
   1275	ractl->_batch_count = folio_nr_pages(folio);
   1276
   1277	return folio;
   1278}
   1279
   1280/**
   1281 * readahead_page - Get the next page to read.
   1282 * @ractl: The current readahead request.
   1283 *
   1284 * Context: The page is locked and has an elevated refcount.  The caller
   1285 * should decreases the refcount once the page has been submitted for I/O
   1286 * and unlock the page once all I/O to that page has completed.
   1287 * Return: A pointer to the next page, or %NULL if we are done.
   1288 */
   1289static inline struct page *readahead_page(struct readahead_control *ractl)
   1290{
   1291	struct folio *folio = __readahead_folio(ractl);
   1292
   1293	return &folio->page;
   1294}
   1295
   1296/**
   1297 * readahead_folio - Get the next folio to read.
   1298 * @ractl: The current readahead request.
   1299 *
   1300 * Context: The folio is locked.  The caller should unlock the folio once
   1301 * all I/O to that folio has completed.
   1302 * Return: A pointer to the next folio, or %NULL if we are done.
   1303 */
   1304static inline struct folio *readahead_folio(struct readahead_control *ractl)
   1305{
   1306	struct folio *folio = __readahead_folio(ractl);
   1307
   1308	if (folio)
   1309		folio_put(folio);
   1310	return folio;
   1311}
   1312
   1313static inline unsigned int __readahead_batch(struct readahead_control *rac,
   1314		struct page **array, unsigned int array_sz)
   1315{
   1316	unsigned int i = 0;
   1317	XA_STATE(xas, &rac->mapping->i_pages, 0);
   1318	struct page *page;
   1319
   1320	BUG_ON(rac->_batch_count > rac->_nr_pages);
   1321	rac->_nr_pages -= rac->_batch_count;
   1322	rac->_index += rac->_batch_count;
   1323	rac->_batch_count = 0;
   1324
   1325	xas_set(&xas, rac->_index);
   1326	rcu_read_lock();
   1327	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
   1328		if (xas_retry(&xas, page))
   1329			continue;
   1330		VM_BUG_ON_PAGE(!PageLocked(page), page);
   1331		VM_BUG_ON_PAGE(PageTail(page), page);
   1332		array[i++] = page;
   1333		rac->_batch_count += thp_nr_pages(page);
   1334		if (i == array_sz)
   1335			break;
   1336	}
   1337	rcu_read_unlock();
   1338
   1339	return i;
   1340}
   1341
   1342/**
   1343 * readahead_page_batch - Get a batch of pages to read.
   1344 * @rac: The current readahead request.
   1345 * @array: An array of pointers to struct page.
   1346 *
   1347 * Context: The pages are locked and have an elevated refcount.  The caller
   1348 * should decreases the refcount once the page has been submitted for I/O
   1349 * and unlock the page once all I/O to that page has completed.
   1350 * Return: The number of pages placed in the array.  0 indicates the request
   1351 * is complete.
   1352 */
   1353#define readahead_page_batch(rac, array)				\
   1354	__readahead_batch(rac, array, ARRAY_SIZE(array))
   1355
   1356/**
   1357 * readahead_pos - The byte offset into the file of this readahead request.
   1358 * @rac: The readahead request.
   1359 */
   1360static inline loff_t readahead_pos(struct readahead_control *rac)
   1361{
   1362	return (loff_t)rac->_index * PAGE_SIZE;
   1363}
   1364
   1365/**
   1366 * readahead_length - The number of bytes in this readahead request.
   1367 * @rac: The readahead request.
   1368 */
   1369static inline size_t readahead_length(struct readahead_control *rac)
   1370{
   1371	return rac->_nr_pages * PAGE_SIZE;
   1372}
   1373
   1374/**
   1375 * readahead_index - The index of the first page in this readahead request.
   1376 * @rac: The readahead request.
   1377 */
   1378static inline pgoff_t readahead_index(struct readahead_control *rac)
   1379{
   1380	return rac->_index;
   1381}
   1382
   1383/**
   1384 * readahead_count - The number of pages in this readahead request.
   1385 * @rac: The readahead request.
   1386 */
   1387static inline unsigned int readahead_count(struct readahead_control *rac)
   1388{
   1389	return rac->_nr_pages;
   1390}
   1391
   1392/**
   1393 * readahead_batch_length - The number of bytes in the current batch.
   1394 * @rac: The readahead request.
   1395 */
   1396static inline size_t readahead_batch_length(struct readahead_control *rac)
   1397{
   1398	return rac->_batch_count * PAGE_SIZE;
   1399}
   1400
   1401static inline unsigned long dir_pages(struct inode *inode)
   1402{
   1403	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
   1404			       PAGE_SHIFT;
   1405}
   1406
   1407/**
   1408 * folio_mkwrite_check_truncate - check if folio was truncated
   1409 * @folio: the folio to check
   1410 * @inode: the inode to check the folio against
   1411 *
   1412 * Return: the number of bytes in the folio up to EOF,
   1413 * or -EFAULT if the folio was truncated.
   1414 */
   1415static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
   1416					      struct inode *inode)
   1417{
   1418	loff_t size = i_size_read(inode);
   1419	pgoff_t index = size >> PAGE_SHIFT;
   1420	size_t offset = offset_in_folio(folio, size);
   1421
   1422	if (!folio->mapping)
   1423		return -EFAULT;
   1424
   1425	/* folio is wholly inside EOF */
   1426	if (folio_next_index(folio) - 1 < index)
   1427		return folio_size(folio);
   1428	/* folio is wholly past EOF */
   1429	if (folio->index > index || !offset)
   1430		return -EFAULT;
   1431	/* folio is partially inside EOF */
   1432	return offset;
   1433}
   1434
   1435/**
   1436 * page_mkwrite_check_truncate - check if page was truncated
   1437 * @page: the page to check
   1438 * @inode: the inode to check the page against
   1439 *
   1440 * Returns the number of bytes in the page up to EOF,
   1441 * or -EFAULT if the page was truncated.
   1442 */
   1443static inline int page_mkwrite_check_truncate(struct page *page,
   1444					      struct inode *inode)
   1445{
   1446	loff_t size = i_size_read(inode);
   1447	pgoff_t index = size >> PAGE_SHIFT;
   1448	int offset = offset_in_page(size);
   1449
   1450	if (page->mapping != inode->i_mapping)
   1451		return -EFAULT;
   1452
   1453	/* page is wholly inside EOF */
   1454	if (page->index < index)
   1455		return PAGE_SIZE;
   1456	/* page is wholly past EOF */
   1457	if (page->index > index || !offset)
   1458		return -EFAULT;
   1459	/* page is partially inside EOF */
   1460	return offset;
   1461}
   1462
   1463/**
   1464 * i_blocks_per_folio - How many blocks fit in this folio.
   1465 * @inode: The inode which contains the blocks.
   1466 * @folio: The folio.
   1467 *
   1468 * If the block size is larger than the size of this folio, return zero.
   1469 *
   1470 * Context: The caller should hold a refcount on the folio to prevent it
   1471 * from being split.
   1472 * Return: The number of filesystem blocks covered by this folio.
   1473 */
   1474static inline
   1475unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
   1476{
   1477	return folio_size(folio) >> inode->i_blkbits;
   1478}
   1479
   1480static inline
   1481unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
   1482{
   1483	return i_blocks_per_folio(inode, page_folio(page));
   1484}
   1485#endif /* _LINUX_PAGEMAP_H */