cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

percpu-defs.h (18558B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * linux/percpu-defs.h - basic definitions for percpu areas
      4 *
      5 * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
      6 *
      7 * This file is separate from linux/percpu.h to avoid cyclic inclusion
      8 * dependency from arch header files.  Only to be included from
      9 * asm/percpu.h.
     10 *
     11 * This file includes macros necessary to declare percpu sections and
     12 * variables, and definitions of percpu accessors and operations.  It
     13 * should provide enough percpu features to arch header files even when
     14 * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
     15 */
     16
     17#ifndef _LINUX_PERCPU_DEFS_H
     18#define _LINUX_PERCPU_DEFS_H
     19
     20#ifdef CONFIG_SMP
     21
     22#ifdef MODULE
     23#define PER_CPU_SHARED_ALIGNED_SECTION ""
     24#define PER_CPU_ALIGNED_SECTION ""
     25#else
     26#define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
     27#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
     28#endif
     29#define PER_CPU_FIRST_SECTION "..first"
     30
     31#else
     32
     33#define PER_CPU_SHARED_ALIGNED_SECTION ""
     34#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
     35#define PER_CPU_FIRST_SECTION ""
     36
     37#endif
     38
     39/*
     40 * Base implementations of per-CPU variable declarations and definitions, where
     41 * the section in which the variable is to be placed is provided by the
     42 * 'sec' argument.  This may be used to affect the parameters governing the
     43 * variable's storage.
     44 *
     45 * NOTE!  The sections for the DECLARE and for the DEFINE must match, lest
     46 * linkage errors occur due the compiler generating the wrong code to access
     47 * that section.
     48 */
     49#define __PCPU_ATTRS(sec)						\
     50	__percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))	\
     51	PER_CPU_ATTRIBUTES
     52
     53#define __PCPU_DUMMY_ATTRS						\
     54	__section(".discard") __attribute__((unused))
     55
     56/*
     57 * s390 and alpha modules require percpu variables to be defined as
     58 * weak to force the compiler to generate GOT based external
     59 * references for them.  This is necessary because percpu sections
     60 * will be located outside of the usually addressable area.
     61 *
     62 * This definition puts the following two extra restrictions when
     63 * defining percpu variables.
     64 *
     65 * 1. The symbol must be globally unique, even the static ones.
     66 * 2. Static percpu variables cannot be defined inside a function.
     67 *
     68 * Archs which need weak percpu definitions should define
     69 * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
     70 *
     71 * To ensure that the generic code observes the above two
     72 * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
     73 * definition is used for all cases.
     74 */
     75#if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
     76/*
     77 * __pcpu_scope_* dummy variable is used to enforce scope.  It
     78 * receives the static modifier when it's used in front of
     79 * DEFINE_PER_CPU() and will trigger build failure if
     80 * DECLARE_PER_CPU() is used for the same variable.
     81 *
     82 * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
     83 * such that hidden weak symbol collision, which will cause unrelated
     84 * variables to share the same address, can be detected during build.
     85 */
     86#define DECLARE_PER_CPU_SECTION(type, name, sec)			\
     87	extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name;		\
     88	extern __PCPU_ATTRS(sec) __typeof__(type) name
     89
     90#define DEFINE_PER_CPU_SECTION(type, name, sec)				\
     91	__PCPU_DUMMY_ATTRS char __pcpu_scope_##name;			\
     92	extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name;		\
     93	__PCPU_DUMMY_ATTRS char __pcpu_unique_##name;			\
     94	extern __PCPU_ATTRS(sec) __typeof__(type) name;			\
     95	__PCPU_ATTRS(sec) __weak __typeof__(type) name
     96#else
     97/*
     98 * Normal declaration and definition macros.
     99 */
    100#define DECLARE_PER_CPU_SECTION(type, name, sec)			\
    101	extern __PCPU_ATTRS(sec) __typeof__(type) name
    102
    103#define DEFINE_PER_CPU_SECTION(type, name, sec)				\
    104	__PCPU_ATTRS(sec) __typeof__(type) name
    105#endif
    106
    107/*
    108 * Variant on the per-CPU variable declaration/definition theme used for
    109 * ordinary per-CPU variables.
    110 */
    111#define DECLARE_PER_CPU(type, name)					\
    112	DECLARE_PER_CPU_SECTION(type, name, "")
    113
    114#define DEFINE_PER_CPU(type, name)					\
    115	DEFINE_PER_CPU_SECTION(type, name, "")
    116
    117/*
    118 * Declaration/definition used for per-CPU variables that must come first in
    119 * the set of variables.
    120 */
    121#define DECLARE_PER_CPU_FIRST(type, name)				\
    122	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
    123
    124#define DEFINE_PER_CPU_FIRST(type, name)				\
    125	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
    126
    127/*
    128 * Declaration/definition used for per-CPU variables that must be cacheline
    129 * aligned under SMP conditions so that, whilst a particular instance of the
    130 * data corresponds to a particular CPU, inefficiencies due to direct access by
    131 * other CPUs are reduced by preventing the data from unnecessarily spanning
    132 * cachelines.
    133 *
    134 * An example of this would be statistical data, where each CPU's set of data
    135 * is updated by that CPU alone, but the data from across all CPUs is collated
    136 * by a CPU processing a read from a proc file.
    137 */
    138#define DECLARE_PER_CPU_SHARED_ALIGNED(type, name)			\
    139	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
    140	____cacheline_aligned_in_smp
    141
    142#define DEFINE_PER_CPU_SHARED_ALIGNED(type, name)			\
    143	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
    144	____cacheline_aligned_in_smp
    145
    146#define DECLARE_PER_CPU_ALIGNED(type, name)				\
    147	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
    148	____cacheline_aligned
    149
    150#define DEFINE_PER_CPU_ALIGNED(type, name)				\
    151	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
    152	____cacheline_aligned
    153
    154/*
    155 * Declaration/definition used for per-CPU variables that must be page aligned.
    156 */
    157#define DECLARE_PER_CPU_PAGE_ALIGNED(type, name)			\
    158	DECLARE_PER_CPU_SECTION(type, name, "..page_aligned")		\
    159	__aligned(PAGE_SIZE)
    160
    161#define DEFINE_PER_CPU_PAGE_ALIGNED(type, name)				\
    162	DEFINE_PER_CPU_SECTION(type, name, "..page_aligned")		\
    163	__aligned(PAGE_SIZE)
    164
    165/*
    166 * Declaration/definition used for per-CPU variables that must be read mostly.
    167 */
    168#define DECLARE_PER_CPU_READ_MOSTLY(type, name)			\
    169	DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
    170
    171#define DEFINE_PER_CPU_READ_MOSTLY(type, name)				\
    172	DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
    173
    174/*
    175 * Declaration/definition used for per-CPU variables that should be accessed
    176 * as decrypted when memory encryption is enabled in the guest.
    177 */
    178#ifdef CONFIG_AMD_MEM_ENCRYPT
    179#define DECLARE_PER_CPU_DECRYPTED(type, name)				\
    180	DECLARE_PER_CPU_SECTION(type, name, "..decrypted")
    181
    182#define DEFINE_PER_CPU_DECRYPTED(type, name)				\
    183	DEFINE_PER_CPU_SECTION(type, name, "..decrypted")
    184#else
    185#define DEFINE_PER_CPU_DECRYPTED(type, name)	DEFINE_PER_CPU(type, name)
    186#endif
    187
    188/*
    189 * Intermodule exports for per-CPU variables.  sparse forgets about
    190 * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
    191 * noop if __CHECKER__.
    192 */
    193#ifndef __CHECKER__
    194#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
    195#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
    196#else
    197#define EXPORT_PER_CPU_SYMBOL(var)
    198#define EXPORT_PER_CPU_SYMBOL_GPL(var)
    199#endif
    200
    201/*
    202 * Accessors and operations.
    203 */
    204#ifndef __ASSEMBLY__
    205
    206/*
    207 * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
    208 * @ptr and is invoked once before a percpu area is accessed by all
    209 * accessors and operations.  This is performed in the generic part of
    210 * percpu and arch overrides don't need to worry about it; however, if an
    211 * arch wants to implement an arch-specific percpu accessor or operation,
    212 * it may use __verify_pcpu_ptr() to verify the parameters.
    213 *
    214 * + 0 is required in order to convert the pointer type from a
    215 * potential array type to a pointer to a single item of the array.
    216 */
    217#define __verify_pcpu_ptr(ptr)						\
    218do {									\
    219	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
    220	(void)__vpp_verify;						\
    221} while (0)
    222
    223#ifdef CONFIG_SMP
    224
    225/*
    226 * Add an offset to a pointer but keep the pointer as-is.  Use RELOC_HIDE()
    227 * to prevent the compiler from making incorrect assumptions about the
    228 * pointer value.  The weird cast keeps both GCC and sparse happy.
    229 */
    230#define SHIFT_PERCPU_PTR(__p, __offset)					\
    231	RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
    232
    233#define per_cpu_ptr(ptr, cpu)						\
    234({									\
    235	__verify_pcpu_ptr(ptr);						\
    236	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)));			\
    237})
    238
    239#define raw_cpu_ptr(ptr)						\
    240({									\
    241	__verify_pcpu_ptr(ptr);						\
    242	arch_raw_cpu_ptr(ptr);						\
    243})
    244
    245#ifdef CONFIG_DEBUG_PREEMPT
    246#define this_cpu_ptr(ptr)						\
    247({									\
    248	__verify_pcpu_ptr(ptr);						\
    249	SHIFT_PERCPU_PTR(ptr, my_cpu_offset);				\
    250})
    251#else
    252#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
    253#endif
    254
    255#else	/* CONFIG_SMP */
    256
    257#define VERIFY_PERCPU_PTR(__p)						\
    258({									\
    259	__verify_pcpu_ptr(__p);						\
    260	(typeof(*(__p)) __kernel __force *)(__p);			\
    261})
    262
    263#define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
    264#define raw_cpu_ptr(ptr)	per_cpu_ptr(ptr, 0)
    265#define this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)
    266
    267#endif	/* CONFIG_SMP */
    268
    269#define per_cpu(var, cpu)	(*per_cpu_ptr(&(var), cpu))
    270
    271/*
    272 * Must be an lvalue. Since @var must be a simple identifier,
    273 * we force a syntax error here if it isn't.
    274 */
    275#define get_cpu_var(var)						\
    276(*({									\
    277	preempt_disable();						\
    278	this_cpu_ptr(&var);						\
    279}))
    280
    281/*
    282 * The weird & is necessary because sparse considers (void)(var) to be
    283 * a direct dereference of percpu variable (var).
    284 */
    285#define put_cpu_var(var)						\
    286do {									\
    287	(void)&(var);							\
    288	preempt_enable();						\
    289} while (0)
    290
    291#define get_cpu_ptr(var)						\
    292({									\
    293	preempt_disable();						\
    294	this_cpu_ptr(var);						\
    295})
    296
    297#define put_cpu_ptr(var)						\
    298do {									\
    299	(void)(var);							\
    300	preempt_enable();						\
    301} while (0)
    302
    303/*
    304 * Branching function to split up a function into a set of functions that
    305 * are called for different scalar sizes of the objects handled.
    306 */
    307
    308extern void __bad_size_call_parameter(void);
    309
    310#ifdef CONFIG_DEBUG_PREEMPT
    311extern void __this_cpu_preempt_check(const char *op);
    312#else
    313static inline void __this_cpu_preempt_check(const char *op) { }
    314#endif
    315
    316#define __pcpu_size_call_return(stem, variable)				\
    317({									\
    318	typeof(variable) pscr_ret__;					\
    319	__verify_pcpu_ptr(&(variable));					\
    320	switch(sizeof(variable)) {					\
    321	case 1: pscr_ret__ = stem##1(variable); break;			\
    322	case 2: pscr_ret__ = stem##2(variable); break;			\
    323	case 4: pscr_ret__ = stem##4(variable); break;			\
    324	case 8: pscr_ret__ = stem##8(variable); break;			\
    325	default:							\
    326		__bad_size_call_parameter(); break;			\
    327	}								\
    328	pscr_ret__;							\
    329})
    330
    331#define __pcpu_size_call_return2(stem, variable, ...)			\
    332({									\
    333	typeof(variable) pscr2_ret__;					\
    334	__verify_pcpu_ptr(&(variable));					\
    335	switch(sizeof(variable)) {					\
    336	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
    337	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
    338	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
    339	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
    340	default:							\
    341		__bad_size_call_parameter(); break;			\
    342	}								\
    343	pscr2_ret__;							\
    344})
    345
    346/*
    347 * Special handling for cmpxchg_double.  cmpxchg_double is passed two
    348 * percpu variables.  The first has to be aligned to a double word
    349 * boundary and the second has to follow directly thereafter.
    350 * We enforce this on all architectures even if they don't support
    351 * a double cmpxchg instruction, since it's a cheap requirement, and it
    352 * avoids breaking the requirement for architectures with the instruction.
    353 */
    354#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\
    355({									\
    356	bool pdcrb_ret__;						\
    357	__verify_pcpu_ptr(&(pcp1));					\
    358	BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\
    359	VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1)));	\
    360	VM_BUG_ON((unsigned long)(&(pcp2)) !=				\
    361		  (unsigned long)(&(pcp1)) + sizeof(pcp1));		\
    362	switch(sizeof(pcp1)) {						\
    363	case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\
    364	case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\
    365	case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\
    366	case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\
    367	default:							\
    368		__bad_size_call_parameter(); break;			\
    369	}								\
    370	pdcrb_ret__;							\
    371})
    372
    373#define __pcpu_size_call(stem, variable, ...)				\
    374do {									\
    375	__verify_pcpu_ptr(&(variable));					\
    376	switch(sizeof(variable)) {					\
    377		case 1: stem##1(variable, __VA_ARGS__);break;		\
    378		case 2: stem##2(variable, __VA_ARGS__);break;		\
    379		case 4: stem##4(variable, __VA_ARGS__);break;		\
    380		case 8: stem##8(variable, __VA_ARGS__);break;		\
    381		default: 						\
    382			__bad_size_call_parameter();break;		\
    383	}								\
    384} while (0)
    385
    386/*
    387 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
    388 *
    389 * Optimized manipulation for memory allocated through the per cpu
    390 * allocator or for addresses of per cpu variables.
    391 *
    392 * These operation guarantee exclusivity of access for other operations
    393 * on the *same* processor. The assumption is that per cpu data is only
    394 * accessed by a single processor instance (the current one).
    395 *
    396 * The arch code can provide optimized implementation by defining macros
    397 * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
    398 * cpu atomic operations for 2 byte sized RMW actions. If arch code does
    399 * not provide operations for a scalar size then the fallback in the
    400 * generic code will be used.
    401 *
    402 * cmpxchg_double replaces two adjacent scalars at once.  The first two
    403 * parameters are per cpu variables which have to be of the same size.  A
    404 * truth value is returned to indicate success or failure (since a double
    405 * register result is difficult to handle).  There is very limited hardware
    406 * support for these operations, so only certain sizes may work.
    407 */
    408
    409/*
    410 * Operations for contexts where we do not want to do any checks for
    411 * preemptions.  Unless strictly necessary, always use [__]this_cpu_*()
    412 * instead.
    413 *
    414 * If there is no other protection through preempt disable and/or disabling
    415 * interrupts then one of these RMW operations can show unexpected behavior
    416 * because the execution thread was rescheduled on another processor or an
    417 * interrupt occurred and the same percpu variable was modified from the
    418 * interrupt context.
    419 */
    420#define raw_cpu_read(pcp)		__pcpu_size_call_return(raw_cpu_read_, pcp)
    421#define raw_cpu_write(pcp, val)		__pcpu_size_call(raw_cpu_write_, pcp, val)
    422#define raw_cpu_add(pcp, val)		__pcpu_size_call(raw_cpu_add_, pcp, val)
    423#define raw_cpu_and(pcp, val)		__pcpu_size_call(raw_cpu_and_, pcp, val)
    424#define raw_cpu_or(pcp, val)		__pcpu_size_call(raw_cpu_or_, pcp, val)
    425#define raw_cpu_add_return(pcp, val)	__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
    426#define raw_cpu_xchg(pcp, nval)		__pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
    427#define raw_cpu_cmpxchg(pcp, oval, nval) \
    428	__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
    429#define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
    430	__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
    431
    432#define raw_cpu_sub(pcp, val)		raw_cpu_add(pcp, -(val))
    433#define raw_cpu_inc(pcp)		raw_cpu_add(pcp, 1)
    434#define raw_cpu_dec(pcp)		raw_cpu_sub(pcp, 1)
    435#define raw_cpu_sub_return(pcp, val)	raw_cpu_add_return(pcp, -(typeof(pcp))(val))
    436#define raw_cpu_inc_return(pcp)		raw_cpu_add_return(pcp, 1)
    437#define raw_cpu_dec_return(pcp)		raw_cpu_add_return(pcp, -1)
    438
    439/*
    440 * Operations for contexts that are safe from preemption/interrupts.  These
    441 * operations verify that preemption is disabled.
    442 */
    443#define __this_cpu_read(pcp)						\
    444({									\
    445	__this_cpu_preempt_check("read");				\
    446	raw_cpu_read(pcp);						\
    447})
    448
    449#define __this_cpu_write(pcp, val)					\
    450({									\
    451	__this_cpu_preempt_check("write");				\
    452	raw_cpu_write(pcp, val);					\
    453})
    454
    455#define __this_cpu_add(pcp, val)					\
    456({									\
    457	__this_cpu_preempt_check("add");				\
    458	raw_cpu_add(pcp, val);						\
    459})
    460
    461#define __this_cpu_and(pcp, val)					\
    462({									\
    463	__this_cpu_preempt_check("and");				\
    464	raw_cpu_and(pcp, val);						\
    465})
    466
    467#define __this_cpu_or(pcp, val)						\
    468({									\
    469	__this_cpu_preempt_check("or");					\
    470	raw_cpu_or(pcp, val);						\
    471})
    472
    473#define __this_cpu_add_return(pcp, val)					\
    474({									\
    475	__this_cpu_preempt_check("add_return");				\
    476	raw_cpu_add_return(pcp, val);					\
    477})
    478
    479#define __this_cpu_xchg(pcp, nval)					\
    480({									\
    481	__this_cpu_preempt_check("xchg");				\
    482	raw_cpu_xchg(pcp, nval);					\
    483})
    484
    485#define __this_cpu_cmpxchg(pcp, oval, nval)				\
    486({									\
    487	__this_cpu_preempt_check("cmpxchg");				\
    488	raw_cpu_cmpxchg(pcp, oval, nval);				\
    489})
    490
    491#define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
    492({	__this_cpu_preempt_check("cmpxchg_double");			\
    493	raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2);	\
    494})
    495
    496#define __this_cpu_sub(pcp, val)	__this_cpu_add(pcp, -(typeof(pcp))(val))
    497#define __this_cpu_inc(pcp)		__this_cpu_add(pcp, 1)
    498#define __this_cpu_dec(pcp)		__this_cpu_sub(pcp, 1)
    499#define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(typeof(pcp))(val))
    500#define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
    501#define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
    502
    503/*
    504 * Operations with implied preemption/interrupt protection.  These
    505 * operations can be used without worrying about preemption or interrupt.
    506 */
    507#define this_cpu_read(pcp)		__pcpu_size_call_return(this_cpu_read_, pcp)
    508#define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, pcp, val)
    509#define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, pcp, val)
    510#define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, pcp, val)
    511#define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, pcp, val)
    512#define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
    513#define this_cpu_xchg(pcp, nval)	__pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
    514#define this_cpu_cmpxchg(pcp, oval, nval) \
    515	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
    516#define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
    517	__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
    518
    519#define this_cpu_sub(pcp, val)		this_cpu_add(pcp, -(typeof(pcp))(val))
    520#define this_cpu_inc(pcp)		this_cpu_add(pcp, 1)
    521#define this_cpu_dec(pcp)		this_cpu_sub(pcp, 1)
    522#define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(typeof(pcp))(val))
    523#define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
    524#define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)
    525
    526#endif /* __ASSEMBLY__ */
    527#endif /* _LINUX_PERCPU_DEFS_H */